@article{oai:ynu.repo.nii.ac.jp:00010680, author = {Ikufumi, Katayama and Kei-ichi, Inoue and Yusuke, Arashida and Yang, Wu and Hyunsoo, Yang and Taiki, Inoue and Shohei, Chiashi and Shigeo, Maruyama and Tadaaki, Nagao and Masahiro, Kitajima and Jun, Takeda}, issue = {24}, journal = {PHYSICAL REVIEW B}, month = {Jun}, note = {Fermi level dependence of ultrafast optical responses of single-layer graphene has been investigated using sub-10-fs pump-probe spectroscopy under bias voltages. We observe the ultrafast thermalization of photoexcited carriers, whose dynamics can be modulated via bias-induced change of the Fermi level. The relaxation time and the amplitude of the electronic response are maximized when the Fermi level reaches approximately half of the excitation photon energy. From the analysis of the pump-pulse-induced optical conductivity change, we find that the bias-induced blocking of the relaxation pathways and the pump-induced change of the electronic temperature and the Fermi level significantly contribute to the observed ultrafast optical modulation. The results demonstrate the controllability of the ultrafast optical responses in single-layer graphene, which could be useful for future ultrafast electro-optic graphene devices.}, pages = {245408-1--245408-6}, title = {Ultrafast optical modulation of Dirac electrons in gated single-layer graphene}, volume = {101}, year = {2020} }