@article{oai:ynu.repo.nii.ac.jp:00010025, author = {Mijiddorj, Batsaikhan and Kaneda, Shiho and Sato, Hisako and Kitahashi, Yuki and Javkhlantugs, Namsrai and Naito, Akira and Ueda, Kazuyoshi and Kawamura, Izuru}, issue = {7}, journal = {Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics}, month = {Jul}, note = {Bombinin H4 is an antimicrobial peptide that was isolated from the toad Bombina variegata. Bombinin H family peptides are active against gram-positive, gram-negative bacteria, and fungi as well as the parasite Leishmania. Among them, bombinin H4 (H4), which contains d-allo-isoleucine (d-allo-Ile) as the second residue in its sequence, is the most active, and its l-isomer is bombinin H2 (H2). H4 has a significantly lower LC50 than H2 against Leishmania. However, the atomic-level mechanism of the membrane interaction and higher activity of H4 has not been clarified. In this work, we investigated the behavior of the conformations and interactions of H2 and H4 with the Leishmania membrane using 31P solid-state nuclear magnetic resonance (NMR), vibrational circular dichroism (VCD) spectroscopy, and molecular dynamics (MD) simulations. The generation of isotropic 31P NMR signals depending on the peptide concentration indicated the abilities of H2 and H4 to exert antimicrobial activity via membrane disruption. The VCD experiment and density functional theory calculation confirmed the different stability and conformations of the N-termini of H2 and H4. MD simulations revealed that the N-terminus of H4 is more stable than that of H2 in the membrane, in line with the VCD experiment data. VCD and MD analyses demonstrated that the first l-Ile and second d-allo-Ile of H4 tend to take a cis conformation. These residues function as an anchor and facilitate the easy winding of the helical conformation of H4 in the membrane. It may assist to quickly reach to the threshold concentration of H4 on the Leishmania membrane. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.}, pages = {789--798}, title = {The role of d-allo-isoleucine in the deposition of the anti-Leishmania peptide bombinin H4 as revealed by 31P solid-state NMR, VCD spectroscopy, and MD simulation}, volume = {1866}, year = {2018} }