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ABSTRACT 

 

 
In reality, various uncertainties exist in structural systems, because various the 

physical characteristics are not deterministic in the actual engineering application. 

Such characteristics include material properties, boundary conditions, and structural 

shape, etc. These uncertain factors can be investigated by a numerical analysis 

method, that is commonly known as the uncertainty analysis method. Generally, the 

stochastic finite element method (SFEM) and Monte Carlo simulation method (MCS) 

are employed in order to analyse uncertain problems in the structural systems. 

However, in recent years, with the rapid development of structure design methods 

and improvement of risk-based rules, traditional deterministic numerical analysis 

methods have been unable to meet the need of analysing the uncertainty and 

randomness in practical engineering projects, especially for some complex 

geometries and geometric models that are sensitive to analytical precision, for 

instance corroded surfaces and smooth surface structures. Therefore, the 

development of uncertainty analysis methods is currently attracting an increasing 

amount of attention. 

In this study, we mainly research the probability problem for uncertainty in shape 

that exists in the engineering field. We broke the classic “FEA-based” analysis point 

of view and proposed a “physically-based” analysis viewpoint based on the 

isogeometric analysis method, in order to address the numerical solving in regard to 
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uncertainty in shape. In addition, in this thesis, a new probability numerical analysis 

method is proposed that extend the classical deterministic isogeometric analysis 

method (IGA) into a probabilistic analytical framework in order to evaluate the 

uncertainty in shape, and aim to investigate a possible extension of isogeometric 

analysis method in the field of computational stochastic mechanics. This probability 

numerical analysis is called stochastic isogeometric analysis (SIGA). The SIGA 

method for uncertainty in shape is developed by employing the geometric 

characteristics of the non-uniform rational basis spline (NURBS) and the probability 

characteristics of polynomial chaos expansions (PCE). The NURBS is a very 

important and commonly used geometric drawing instrument in Computer Aided 

Geometric Design (CAGD), which has very good geometric representation and 

control ability.  

In this study, we used NURBS as the basis functions, thus the proposed method fully 

inherits its excellent geometric characteristics. Based on these characteristics, the 

proposed method overcomes some of the shortcomings of the classic stochastic finite 

element method during dealing with uncertainty in shape. Despite classical SFEM 

has excellent analytical performance and a sound analytical system, there are still 

some inevitable limitations. Especially, in the uncertainty analysis in shape, because 

of what its use of a geometry approximated by a finite element mesh (FE-mesh), 

some of its innate disadvantages have been exposed. In many situations, this 

geometry approximated can cause errors in the analytical results during the 

performing uncertainty analysis on some complex and sensitive geometric structures. 

In order to overcome the shortcomings in the SFEM mentioned above, based on the 

natural characteristics of NURBS, we proposed the stochastic isogeometric analysis 

method to deal with the problem of uncertainty in shape. Firstly, throughout the 

probabilistic analysis, an exact geometric entity was used to represent uncertainty in 

shape, which effectively reduced errors in terms of geometry. From the algebraic 

aspect, the NURBS basis function used for discretization is a smoother, highly 

continuous basis function, thus that greatly improved the accuracy and reliability of 

the analysis. Furthermore, unlike typically FE-mesh in the classical SFEM, usually, 
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the NURBS uses the control points to manipulate geometric shape, and consequently, 

the problem of mesh repartitioning does not need to be considered, the costs and 

difficulty of the analysis were diminished, significantly. Secondly, based on excellent 

geometric properties of NURBS, the boundaries of the analytical region containing 

random field can be identified exactly, easily and flexibly.  

Finally, we use the intrusive formulation approach to incorporate PCE into the IGA 

framework and gave the corresponding formalization method. this analysis procedure 

is implemented by using the C++ programming language. In addition, in order to 

verify the validity and applicability of the proposed method, three numerical 

examples are presented. The validity and accuracy of the results are assessed by 

comparing them to the results obtained by Monte Carlo simulation (MCS) based on 

the IGA algorithm. 
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1. INTRODUCTION 

 

 

1.1. Background 

With the rapid development of science and technology and the computer industry, 

numerical analysis technology has been paid more and more attention. Especially for 

numerical simulation technology has become an important analytical tool for product 

reliability evaluation. This technology can greatly shorten the cycle of product 

research and development and quickly and easily simulate some high-risk extreme 

experiments. For large-scale buildings and machinery that have been put into use, 

such as bridges, ships and so on, we can make real-time and effective risk assessment 

according to their actual use. For example, in the field of structural engineering, 

finite element method is often used in numerical simulation technology, which can 

quickly and effectively evaluate various physical and engineering problems 

encountered in real life, such as car crash problems are shown in Figure 1.1; and 

vibration presented in Figure 1.2 etc.  These are very important for building a safe 

and secure production and living environment.    
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In the vast majority of cases, since the deterministic boundary conditions are easy to 

set up and the mathematical configuration is simple, engineering and technical 

personnel are accustomed to using deterministic parameters to approximate 

numerically simulate engineering and physical problems encountered, and that 

achieved very good results and has been widely used. However, in reality, various 

uncertainties exist in structural systems, because the various physical characteristics 

are not deterministic in the actual engineering application. Such physical 

characteristics include material properties, boundary conditions, and structural shape, 

etc. Furthermore, in recent years, with the rapid development of risk-based rules and 

structure design methods, traditional deterministic numerical analysis methods have 

been unable to meet the need of analyzing the uncertainty and randomness in 

practical engineering projects, especially for some high precision machinery. 

Therefore, it is currently attracting an increasing amount of attention to the 

development and research of uncertainty analysis methods. Usually, uncertainties 

exist in the actual situation have large random statistical properties. These uncertain 

factors can be investigated by a numerical analysis method, that is commonly known 

as the uncertainty numerical analysis method and also it is often referred to as 

probabilistic numerical analysis or stochastic numerical analysis. The probabilistic 

numerical analytical technology is widely used in reliability analysis which can 

evaluate the reliability of simple or complex systems as realistically as possible. It is 

similar to the deterministic numerical analysis method, but the uncertainty of the 

variables is considered in the analysis. For example, suppose we want to assess the 

extent to which a typhoon damages a building during its use and the resulting 

economic loss.  First, we need to predict the maximum typhoon wind speed that it 

may encounter during the period of use, and then analyze the wind-induced dynamic 

response of the house under the typhoon wind speed. In this process, it can be found 

that many parameters are not a deterministic value. For example, the maximum 

typhoon wind speed is between V-max and V-min, and the wind speed field spatial 

correlation factor is between 7 and 21. Obviously, it would be unrealistic to consider 

these parameters as deterministic and use them to numerically simulate buildings. 

But if we set these parameters as the uncertain variables, we can quickly implement 
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the analytical process and get more realistic results. Of course, it depends on whether 

the corresponding deterministic algorithm has sufficient analytical accuracy and 

perfect analytical framework, and also on the relevant information we have.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, we mainly discuss the problem of shape uncertainty in the field of 

structural engineering, and based on this, develop a new uncertainty numerical 

method suitable for uncertainty in shape. Although uncertain numerical analysis 

Figure 1.1 The crash problems for the ball hit the composite material car hood. 

Figure 1.2 The vibration problem of the propeller blades. 
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technology has been applied to engineering construction system maturely, and many 

uncertainty analytical methods for different problems have been developed, there are 

few discussions on the application of uncertainty analytical technology to shape 

uncertainties and the development of related technologies. However, for the 

construction system, there are uncertainties in shape. For example, the structure in 

Figure 1.3 is part of the frame of a motorcycle, where the shape of the welded part of 

a structure is uncertain; These uncertainties in shape caused by such welding or 

processing will cause great potential safety hazards in the operation of machinery 

and equipment. Actually, there are many more examples like this one with regard to 

generating shape uncertainty in the process of product development and design such 

as shape uncertainty caused by corrosion, and shape errors that occur during 

processing, etc. Therefore, effective evaluation of these uncertainties in advance can 

detect potential safety hazards in time and avoid accidents.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

welding 
position 

Figure 1.3 A motorcycle part; the uncertainty in shape consist in welding 
position, that is marked with closed red lines. 
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1.2. Uncertainty and Its Analysis 

1.2.1. stochastic finite element method (SFEM) 

At present, in the field of engineering technology, uncertain analysis of various 

physical phenomena is usually based on stochastic finite element method (SFEM), 

which is also often referred to as probabilistic finite element method. The SFEM is 

an extension of the classical finite element method that is from a deterministic 

numerical analysis framework to a stochastic analysis framework. The stochastic 

finite element center idea is a more elaborate description of the performance function, 

and this description is based on the deterministic complex structural finite element 

algorithm. Therefore, it can theoretically contain the characteristics of all 

deterministic finite element methods. For example, considering nonlinear effects and 

dynamic response calculations, in addition to solving the deterministic algorithm 

results, we can simultaneously solve the mean, variance and reliability indicators of 

the response. In addition, the stochastic finite element method is only one of many 

reliability algorithms. It is good at solving the checking point of implicit performance 

function in complex structure system. It incorporates sensitivity analysis technology 

and improves second-order moment method on the basis of deterministic FEM. Its 

basic solution can be expressed as a differential equation, g   , where g is the 

performance function, and   basic random variable. Note that every time the 

differential equation is solved, it is needed to be run for a structural finite element 

analysis process used as a sub-function in the probabilistic finite element method. 

Therefore, for an SFEM-based construction of uncertainty analysis process, there are 

the following several calculation modules. 

 Modeling with deterministic finite element method. 

 Choosing the appropriate performance function 

 Determining the probability description of basic random variables and 

equivalent normalization or non-positive mode 
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 Performing a perturbation analysis of basic random variables by perturbation 

or difference method, etc. 

 Checkpoint iterative algorithm 

 Checkpoint iteration convergence criterion 

As a reliability analysis algorithm, stochastic finite element method aims at mainly 

predicting the probability of an engineering event or physical phenomenon and one 

has been widely applied in science and engineering as an important uncertainty 

analysis method. Initially, Astill and Shinozuka[1] have presented the Monte Carlo 

simulation method (MCS) basis on the framework of the finite element method that 

is a combination of the FEM and MCS. This method performs a numerical solution 

for each sample collected using the finite element method. Therefore, the 

deterministic finite element analysis program is run the same number of times as the 

number of samples, and finally, it is observed whether or not a certain probability 

distribution is presented based on the obtained results. The latter is the most general 

and simplest approach for dealing with response variability in the structural 

system[2]–[8]. However, the MCS requires excessive computational power in 

comparison to other stochastic FEMs, and especially for handling complex models 

involving several stochastic variables. The perturbation method[9]–[17] overcomes 

this drawback, when the perturbation of response variability is in the first and 

second-order. The perturbation method was developed by applying the Taylor series 

expansion of the response vector into the physical system, and the results of the 

analysis are the distribution-free[18]. This method is limited within a minute 

perturbation range that is usually less than 20 or 30 percent of a variable’s mean 

value. In recent years, another important branch of the SFEM has been presented by 

Ghanem and Spanos [19], namely, the spectral stochastic finite element method 

(SSFEM)[20]–[25]. In general, this method makes use of the Karhunen-Loève (K-L) 

expansion of the Gaussian random field in order to represent the uncertain 

parameters of a problem (such as material properties, nodal displacement, etc.). For 

the representation of nodal displacement in the SSFEM, an alternative approach has 

been provided and consists of using polynomial chaos expansions (PCE) [26]. In 
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recent years, some progress has been made in shape uncertainty analysis. For 

instance, Nakagiri et al. [27] published a paper on considering shape uncertainty, 

material uncertainty, and boundary uncertainty, and SFEM based on perturbation 

method is proposed to calculate the mean value and the variance of stress. However, 

it only can deal with the small deformation problem because perturbation method has 

limitations. Honda [28] proposed spectral stochastic boundary element method 

(SSBEM) based on PCE and the K-L expansion in order to analyse the problem of 

uncertainty in shape in the boundary. However, this paper only describes the case 

where the uncertainty of the boundary shape follows the positive distribution, 

because the K-L expansion method is based on normal distribution. Htun et al.[29] 

studied a problem for the ultimate tensile strength of the plates with a random field of 

corrosion. In the study, the corroded plate is represented by K-L expansion method, 

and the stochastic properties of their strength are estimated by PCE method. In 

addition to studying the random ultimate tensile strength problem of the plates with a 

random field of corrosion, the capability of the random field model to represent the 

randomness of corroded surfaces is also investigated. And the random characteristics 

of the real corroded surface were investigated based on the measurement data of the 

real corroded plates. Chen et al. [30] presented a new method of structural analysis 

for the solution of response uncertainty problems in the cases involving uncertainty 

in shape. The proposed method includes a mathematical formulation, which is a 

natural extension of the deterministic finite element concept to the space of random 

functions by the Hermite polynomial chaos expansion, in order to represent the 

uncertainty of shapes and the response surface. And the problem of shape in 

uncertainty following the no-normal distribution has also been studied. 

Developments have been described in some key articles [31]–[33]. 

 

1.2.2. Stochastic isogeometric analysis (SIGA)  

Recently, isogeometric analysis (IGA) method was proposed by Hughes et al. [33] as 

an important alternative technology in computational mechanics. Its core idea was 
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the use of the smooth geometric basis in CAD as the basis functions for numerical 

analysis [3]. This method successfully integrated computer-aided design (CAD) and 

computer-aided engineering (CAE) into a unified process, i.e. parameterizing the 

CAD objects to obtain an effective computation domain and generate a mesh, which 

is applied to the FEM analysis framework [36]. Xu et al. have done a lot of important 

work to improve the quality of the parameterization of the computational domain of 

CAD objects [37], [38]. A detailed schematic diagram of the IGA method is shown 

in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At present, IGA extended rapidly to other fields of numerical analysis, including 

uncertainty analysis. Researchers in the numerical analysis have noticed some 

advantages of IGA in numerical analysis, so they try to combine some stochastic 

analytical methods with the isogeometric analytical framework. Rossana et al. [39] 

presented an innovative numerical method for computing the stress concentration 
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Figure 1.4 The schematic diagram for IGA method. 
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factors in an isotropic plate with discontinuities by using IGA and SFEM. This work 

confirms the potentials and accuracy of the proposed methodologies to capture the 

stress concentrations in fracture mechanics, also for coarse mesh discretizations. 

Hien and Noh [40] developed a perturbation technique in conjugation with IGA for 

the stochastic eigenvalue problem of free vibration of functionally graded material 

(FGM) plates with two random parameters for the elastic modulus and mass density, 

respectively.  The governing equation of stochastic isogeometric analysis for free 

vibration of functionally graded plates is derived in conjunction with perturbation 

expansions to predict the first and second moments of eigenvalues. Hien and Lam 

[41] use IGA and MCS to address the bending of a plate under random load. The 

governing equations are derived to use higher-order plate theory. The fluctuations in 

the random load are modeled as a two-dimensional random field. The random 

process of random loading is simulated by using the spectral representation method. 

Li et al. [42] have proposed spectral stochastic isogeometric analysis (SSIGA) for 

stochastic linear elasticity. Thereinto, NURBS- and T-splines-based Karhunen–

Loève expansion is proposed for random field decomposition. Furthermore, Strength 

and serviceability limit state designs can be incorporated within the proposed SSIGA 

analysis framework. By utilizing the nonparametric statistical analysis, both 

probability density functions (PDFs) and cumulative distribution functions (CDFs) of 

concerned structural displacements and stresses can be effectively established. In 

addition, Li et al. [43] have also investigated the nondeterministic structural 

responses of functionally graded material (FGM) plates under static loads with 

uncertain material property. The considered spatially dependent uncertainties are 

modeled as random fields with Gaussian distribution. A novel spectral stochastic 

isogeometric analysis (SSIGA) framework is proposed for such uncertainty 

quantification through the first-order shear deformation theory. Within the SSIGA 

framework, the non-uniform rational B-spline (NURBS) is adopted for both the 

geometry modeling of the random fields of the uncertain material properties and 

random field discretization through the Karhunen-Loève (K-L) expansion. Such new 

feature provides an effective and practically applicable random field modeling 

technique, especially for uncertain parameters over complex physical domains. 
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1.3. Motivation and Challenges 

 Actually, with the rapid development of industry and the improvement of structural 

design technology, the geometric shape of structures has become increasingly 

complex. Simultaneously, it has brought more new challenges to the field of 

uncertainty analysis techniques. From the above discussion, we can see that at 

present, among all the proposed SIGA methods, there is no one to discuss the 

problem for uncertainty in shape.  Therefore, in the field of stochastic isogeometric 

analysis, the research on shape uncertainty is a blank space. Despite the remarkable 

advantages and benefits of what stochastic FEM has brought to modern engineering 

applications, but with regard to research uncertainty in shape, there are still some 

inevitable limitations. It is because of what stochastic FEA is an extension based on 

the analytical framework of the classical FEA, i.e. integrating probability analysis 

into FEA. Therefore, it inherits all the characteristics of FEA. Note that these 

inheritances include advantages and disadvantages of FEA [44]. And, some of the 

inherited disadvantages have severely astricted uncertainty representation of the 

structure. Here, from the perspective of uncertainty analysis in shape, we discuss the 

effects of these shortcomings on the uncertainty represent of geometry.  

Throughout the stochastic FEM analysis process, a geometry approximated by finite 

element mesh is used to represent the uncertainty in shape. In many situations, this 

approximation can cause errors in the analytical results, especially for engineering 

applications that are extremely sensitive to geometric imperfections. For instance, the 

random field acting on a physical object with conic geometry is already difficult 

enough to be accurately modeled within stochastic FEA, not to mention the 

stochastic system with complicated, yet realistic, geometries which are often 

designed from modern industrial applications.  

In addition, within stochastic FEA, since uncertainty in shape is represented by 

introducing the uncertain parameter into the nodes, the finite element mesh needs to 

be divided repeatedly. The example of a 1/4 model regarding plate with a circular 

hole at the center shown in Figure 1.5 from Reference [32], where the geometry 
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model is described by the approximated finite element mesh is divided by 8 elements 

and 15 nodes. We assume that the uncertainty takes place in the central hole, so the 

uncertain parameters are introduced into the nodes 1, 2, 3, 4 and 5 denoted by blue 

dote in Figure 1.5. When uncertainty in shape occurs, the nodes being moved are 

denoted by red dots and changes of FE mesh are denoted by dotted lines.  

 

 

    

 

 

From Figure 1.5, we can see that in order to represent the uncertainty in shape and 

calculate response surfaces, the FE mesh must be divided repeatedly and this 

remeshing is not a single node location change but will affect elements and nodes in 

the entire analytical area. Especially, in actual application, the FE mesh structure in 

the analytical position is usually complex and fine, which adds more difficulty and 

workload to analysis. Note that the geometrical shape of the hole in Figure 1.5 

cannot be accurately represented by the FE mesh. 

1 

4

2
3

5

l 

Figure 1.5 A 1/4 model regarding plate with a circular hole at the center 
which is approximated from FE mesh. 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

12 
 

 

Another major disadvantage of SFEM in current uncertainty analysis in shape is that 

the classical SFEM cannot define the analytical boundaries flexibly, exactly and 

easily. For example, if we assume that we want to change the shape of the circular 

hole in Figure 1.5 into other geometric shapes. Commonly, in the FEA framework 

through geometric visualization tools, we can visualize the geometric model first and 

then intuitively artificially move the nodes at the position of the hole to change its 

shape into the desired shapes, and then repartition the FE mesh. Unfortunately, in the 

actual analysis and formulation of probability system, due to the fact that we can't 

artificially physically manipulate the nodes in the analytical process, instead, use 

algebraic manipulation to deal with this process. For the SFEA, the degree of change 

of each node at the position of the circular hole need to be calculated in order to 

represent uncertainty in shape and FE mesh needs to be repartitioned, tautologically 

[32]. At present, as the example in Figure 1.5, within the SFEM analytical 

framework, the uncertainty of the hole is represented only by changing the radius of 

the hole, i.e. the uncertainty in shape is only considered as a change in the size of the 

radius at the hole. Because, the coefficients of the degree of change at each node are 

very difficult to be calculated, that leads to difficulties in the representation of 

uncertainty in shape and re-division of the mesh. In Reference [32], Chen et al. gave 

an algorithm with respect to determining the coefficients of the degree of change at 

each node, but that cannot perform well for geometric structures with curves and 

surfaces due to the drawbacks inherited from the FEM mentioned above. For 

example, As shown in Figure 1.5, in order to represent the uncertainty at the position 

of the hole, the all nodes at the hole are moved in same the distance l. For preventing 

bad mesh, the corresponding the surrounding nodes are also moved based on the 

coefficients of the degree of change at each node. Note that these coefficients of the 

degree of change also there is an impact on the analytical results to a certain degree. 

In Reference [32], Chen et al. gave a discussion with respect to the influence of the 

determining of the coefficients on the analysis result. It is expounded that if the bad 

coefficients are determined, a bad mesh will be generated, resulting in an inaccuracy 

result that may be obtained. 
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1.4. Contributions  

With the development of the times, structural safety problems are being concerned 

more and more. Therefore, it is expected that the research and development in regard 

to the more efficient and more convenient stochastic analysis method are applied to 

the fields of structural reliability analysis and structural risk assessment etc. In 

addition, in order to overcome the shortcomings in the SFEM mentioned above. 

Therefore, in this study, we proposed the stochastic isogeometric analysis method to 

deal with the problem of uncertainty in shape. moreover, we explored one possible 

extension of IGA in the field of computational stochastic mechanics, that is 

incorporating of classical response surface methodology into the IGA analytical 

framework to evaluate the uncertainty problem in shape in stochastic analysis. The 

main contributions of this study can be summarized as follows: 

 

 The stochastic isogeometric analysis method is freshly proposed for 

uncertainty in shape. From the above discussion, we can see that at present, 

among all the proposed SIGA methods, there is no one to discuss the problem 

for uncertainty in shape. Therefore, in the field of stochastic isogeometric 

analysis, the research on shape uncertainty is a blank space. This study makes 

up for the gap in the field of shape uncertainty analysis of SIGA, and further 

improves the processing method of shape uncertainty in the field of 

engineering computing. 

 

 The PCE is introduced in IGA analysis framework. 

In this study, we proposed to introduce PCE into the IGA analysis framework 

to address the uncertainty problems in shape and given a formalization 

method. According to the authors’ best knowledge, the presented work herein 

is the first reported work to integrate the PCE computational scheme into the 

isogeometric analysis. 

 

 Comparing with SFEM. 
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This approach breaks some of the limitations of SFEM in uncertain analysis 

and effectively improves the analysis environment. 

• In the SFEM, the uncertainty in shape is represented by setting the 

coefficients of the degree of change at each node, and these coefficients 

have an impact on the analytical results.  In this study, we can achieve 

numerical solving without using these coefficients. Therefore, our work 

effectively improves computational efficiency and reduces the complexity 

of the analysis. 

• From the perspective of probabilistic analysis, the random field is 

directly applied to an exact geometric entity through the control point, 

rather than an approximate mesh structure. Therefore, it is sensitive to 

geometric shape changes, which effectively reduced geometrical errors of 

numerical solving. This is beneficial to uncertainty analysis in shape, 

especially for engineering applications that are extremely sensitive to 

geometric imperfections. 

• Moreover, by inheriting the advantage of IGA, the proposed SIGA 

approach with several unique superiorities. Firstly, this approach is 

applicable to situations where the physical domains of the random fields 

are possessing complex geometries. In particular, the proposed SIGA can 

exactly represent commonly encountered shapes such as ellipse, circles, 

spheres, and cylinders. That is, exact geometries of the physical domains 

can be promised even at a relatively coarse level of discretization and 

consequently, the corresponding geometrical errors can be significantly 

diminished. Secondly, this approach does not require meshing, and that 

use the smoother, highly continuous basis function, thus the calculation 

time is reduced and the analysis accuracy is improved.  Finally, the CAD 

model can be directly used to analyze uncertainty in shape, which makes 

probability analysis and CAD integration. In this study, we use the 

geometry data output directly from the CAD tool to implement the 

interaction between the probabilistic system and CAD.  
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 Comparing with MCS based on IGA 

As a typical representative of the non-intrusive method, Monte Carlo 

Simulation Method (MCS) is the most widely used technique which is used 

to evaluate response uncertainty. Its main advantages are easy 

implementation, but require a lot of samples and repetitive calculations in the 

analytical process. As a result, the computational cost is increased, especially 

for complex and large structures the analytical workload of the MCS is 

enormous. In this study, the analysis framework was built by using the 

intrusive method and is therefore very scalable, and the construction of 

stochastic response surface does not require multiple simulations, thus it can 

deliver very fast results at a minimum computational cost. 
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1.5.  Organization of This Thesis 

In the light of achieving a self-contained thesis with enhanced readability, this paper 

has been meticulously structured as follows.  

First of all, in Chapter 2, the theory of IGA is briefly presented. Some important 

notions which are a key to understanding IGA are described and illustrated in detail, 

including the physical space, parameter space, and knot vector etc. In addition, some 

main paraphernalia employed in isogeometric analysis be given, for example, 

NURBS, B-spline, and basis function etc. Finally, we also focused on some of the 

properties of B-spline, which played a crucial role in the development of later 

algorithms. 

The purpose of Chapter 3 is to review the mathematical basis of probability theory. 

In this chapter, we mainly describe the relevant knowledge of stochastic analysis, 

including the concept of stochastic analysis, the types of stochastic analysis, and the 

knowledge of the current mainstream polynomial expansion method. In addition, We 

can learn from this chapter that stochastic analysis is mainly divided into two 

categories: the intrusive method and non-intrusive method. 

In Chapter 4, we describe in detail the formalization process for stochastic 

isogeometric analysis method for uncertainty in shape. The formalization constructed 

is an intrusive formulation procedure. The deterministic isogeometric analysis 

framework was rewritten as an uncertainty form based on PCE, and the orthogonal 

properties of PCE were fully utilized in order to solve the stiffness matrix. In 

addition, we propose a new analytical perspective to deal with the shape uncertainty 

problem in engineering analysis, namely, in this study, a novel method is proposed in 

the aspect of reliability analysis for uncertainty in shape, and it is carried out from a 

physically-based point of view. Because the uncertainty in the shape of structure 

model was represented by directly introducing stochastic parameters into the control 

points in the physical space, the new analytical viewpoint overcomes many 

shortcomings of the traditional SFEM method.    
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In order to illustrate the effectiveness and efficiency of the proposed method, four 

distinctive numerical examples are thoroughly explored in Chapter 5. For the first 

numerical example which is a cantilever beam model, the freshly proposed 

generalized stochastic isogeometric analysis based polynomial chaos expansion is 

rigorously verified against the well-established theoretical results. Subsequently, the 

proposed stochastic isogeometric analysis framework is further implemented for the 

stochastic static analysis of localized corrosion in the second example. In order to 

apply to more complex analytical models, we present examples of two multi-patch 

NURBS geometry models i.e. infinite plate with circular hole and butt joint, these 

ones fully demonstrate the ability of SIGA to handle multiple patch geometries. 

Finally, conclusions and further work are drawn in Chapter 6. 
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1.6. Conclusion 

In this part, we present the research and development background of uncertainty 

analysis. It also briefly introduced some uncertain analytical methods that are widely 

used in the field of current computational stochastic mechanics, for example, Monte 

Carlo simulation method, stochastic finite element method, and spectral stochastic 

analysis. In addition, we point out some classical SFEM methods in dealing with the 

problem of shape uncertainty. Especially, because of what its use of a geometry 

approximated by a finite element mesh (FE-mesh), some of its innate disadvantages 

have been exposed. In many situations, this geometry approximated can cause errors 

in the analytical results during the performing uncertainty analysis on some complex 

and sensitive geometric structures. in order to overcome these shortcomings, we 

propose stochastic isogeometric analysis method, that extend the classical 

deterministic isogeometric analysis (IGA) into a probabilistic analytical framework 

in order to evaluate the uncertainty in shape, and aim to investigate a possible 

extension of IGA in the field of computational stochastic mechanics. Stochastic 

isogeometric analysis (SIGA) method for uncertainty in shape is developed by 

employing the geometric characteristics of the non-uniform rational basis spline 

(NURBS) and the probability characteristics of polynomial chaos expansions (PCE). 

The proposed method can accurately and freely evaluate problems of uncertainty in 

shape caused by the deformation of the structural model. Finally, we list in detail 

some of the main contributions of this study. 
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2. ISOGEOMETRIC ANALYSIS      
(IGA) AND PRE-ANALYSIS  
TOOL NURBS 

 

 

 

2.1. Overview 

In the practically development and manufacturing processes of products and 

structures, the geometrical shape design and physical analysis methods for the model 

are completely different engineering fields. Computer Aided Geometric Design 

(CAGD) as a widely used geometric design technique, that usually attaches more 

importance to the construction and description of the geometric model of the product 

other than the physical characteristics of the product in the model analysis process. In 

addition, classical CAE (Computer Aided Engineering) tools focus only on the 

analysis and simulation of the physical characteristics of the product, for instance, 

structural strength, safety etc. and cannot be carried out the optimization of geometry 
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design for the product. The great divergence between geometric modeling and 

structural analysis is that the corresponding design and analysis systems of objects 

differ in their concerns at the implementation level [1]. From the conceptual 

perspective, this difference is manifested in the functionality of the model, which is 

based on purely geometric operations, while the analytical model is an abstract 

representation of physical phenomena. From the technical perspective, this difference 

is manifested in the description and calculation method of the model, that is, the 

geometric design model contains complex and fine geometric information, and its 

calculation method is based on the computational geometry method. The geometric 

model in the analysis is a simplified geometric representation, and its calculation 

method is mainly based on finite element methods. 

In order to unify CAD and CAE, and achieve seamless integration between the two, 

T.J.R. Hughes et al. proposed the Isogeometric analysis (IGA) method [2]. This 

method mainly has the following characteristics. 

 The IGA method offers the possibility of integrating classical CAE method and 

geometry design tool CAD for numerical analysis by using the same basis 

functions. That is, the spline basis functions used to structure geometrical 

models in the CAD are also used as shape functions in the analysis process, for 

example, NURBS, T-splines, etc. 

 Analyzing object is the exact geometrical structure. In the traditional FEM 

method, the unknown solution field during the analysis is approximately 

described by dividing the mesh. In the IGA, the geometry of the analytical 

object can be represented exactly, especially for the description of common 

engineering geometries, such as circles, ellipses, etc. 

 In addition, the IGA provides some very perfect refinement methods such as 

order elevation, knot insertion, and k-refinement etc. These refinement types 

greatly improve the accuracy of the analysis results, especially for some 

complex and highly sophisticated components. these refinement methods are 

far superior to the traditional FEM, which maintains high analytical accuracy 
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while greatly reducing the complexity in the subdivision process. For instance, 

the order elevation of IGA is similar to p- refinement in FEM. In finite element 

analysis, adding nodes within an element means increasing the polynomial 

order of the element. However, the order elevation increased in the FEM does 

not improve the continuity of the shape function. In the IGA, along with the 

increase in the number of order elevation, the continuity of the basis function is 

also increased accordingly. 

 It is possible to change the shape without repartitioning the mesh. The IGA 

avoids the complex process of meshing in FEM by dividing the parameter 

domain of the analytical model and the geometric mapping of the parameter 

domain to the physical domain. That greatly reduces the parsing time.  

Besides these, there are some good characteristics unique to Isogeometric analysis. 

For example, since it is also possible to pass the analysis result data back to the CAD, 

it can be applied to the optimized design. Furthermore, the basis functions typically 

used in IGA contain high smoothness and continuity, thus, from the perspective of 

algebra, the analytical results of IGA have higher precision. 

In Table 2.1, the comparison of the FEM method and the IGA method is shown, 

from which we can see that the IGA analysis method is better than FEM in many 

aspects.  

According to the above, we can see that the IGA analysis method overcomes the 

shortcomings of the traditional numerical analysis method FEM, but since IGA is a 

recently developed numerical analysis method, it still has many shortcomings in 

practical applications, so it cannot be widely applied to various engineering fields 

like the FEM. For example, parameterization problem of the computational domain 

[3]; Finding a numerical integration method that suitable for IGA method etc. 
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Table 2.1 Comparison of the IGA and the FEM. 

 FEM IGA 

Shape representation Approximate mesh Surface, solid 

Mesh polygon mesh Control mesh, physical mesh 

Vector for the 

DOFs(1) 

Nodal points Control points 

Shape function Polynomial basis function NURBS basis function 

Control Variables Nodal variables Control variables 

Continuity C0-continuity High continuity 

Shape precision Approximate geometry Exact geometry 

Refinement space hp- refinement space hpk- refinement space 

Basis Basis not necessarily 

positive 

Pointwise positive basis 

 

Convex hull property NO YES 

In the presence of 

discontinuous data 

Oscillatory  Variation diminishing 

Mesh generation Mesh generation required No need to generate a grid. 

1) DOFs: The Degree of freedom. 
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2.2 The concepts of space and knot in the IGA 

First of all, some basic concepts need to be introduced in order to understand 

Isogeometric Analysis method. There are four concepts of space defined in the IGA, 

which are physical space, parameter space, parent space, index space, and these 

spaces are related to each other. In these spaces, various elements and meshes are 

built, for ones, knots play a key role. in this section, from the notion of the knot, the 

concept of these spaces will be briefly introduced. 

2.2.1 Knot vector 

The knot is the basic elements of building parameter spaces. The knots are the points, 

curves, and surface in the one, two, and three dimensional topologies, respectively. 

By arranging knots in ascending order, the knot vector can be constructed. As an 

example, a knot vector is given as  

 0 1, , ,m                                                        (2.1) 

where 

1,i i    

ξi is ith-knot in the knot vector; The half-open interval, [ξi, ξi+1), is called the ith-knot 

span where i denotes the knots index. From Equation (2.1) we can see the knot spans 

are bounded by knots; The length of the knot vector m=n+p+1, where n is the 

number of control points (or basis functions), and the p is the polynomial degree.  

The knot vector can be uniform or non-uniform[4]. If the intervals of all the knots are 

equal, the knot vector is considered to be uniform, otherwise, it can be considered to 

be non-uniform. This non-uniform meaning that the knot value can also take on the 

same value for more than one knot, except taking a different length of knot span. 

non-uniform of knot vector has the peculiar implications for building the basis 

function. By this property, an open knot vector can be defined, that is, first and last 
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knot values in the knot vector are repeated p+1 (order of basis function + 1) times, 

defined as follows 

0 1 1 1 1

1 1

, , , , , , , , , ,p i n n p n

p p

         

 

 
    
  

                             (2.2) 

where 

0 1 1p                                                          (2.3) 

1 1n n p n                                                        (2.4) 

The open vector knot has important implications for IGA. It makes the basis function 

have the property of interpolation. We will discuss this feature in more detail in a 

later section. 

2.2.2 Parameter space  

The parameter space is a special space, this space does not exist in the FEM method. 

The parameter space is constructed from non-zero intervals between knot values and 

partitioned into elements by the knot vector in the different parameter direction. 

These knot values are considered as the coordinates of the parameter space. Based on 

the parameter space constructed, corresponding basis functions can be acquired. In 

Figure 2.1, an example of two-dimensional parameter space is shown, and 

corresponding basis functions are given. The degree of the basis functions in each 

direction is second-degree. This parameter space is created by the knot vectors 

 0,0,0,1/3,2/3,1,1,1   and  0,0,0,1/3,2/3,1,1,1   in different directions, 

respectively. Note that, both of these knot vectors are open. Through Equations (2.2), 

(2.3) and (2.4) we can see that the knot values at both ends of the knot vector are 

repeated 3 times, i.e. the knot value for knot repeated at both ends of the knot vector 

equal first and last knot value of knot vector.  
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Figure 2.1 A two-dimensional parameter space and corresponding basis function in 

the ξ- and η- directions, respectively. They are built by 

 0,0,0,1/3,2/3,1,1,1   and  0,0,0,1/3,2/3,1,1,1  . Note that the 

values of the knots being repeated are only marked once. 
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2.2.3 Index space 

Index space is also built based on the knot vector. What differs in the parameter 

space is that it recognizes every knot, even if it is multiple repeating knot values. The 

import of index spaces is very important for isogeometric analysis. Based on this 

space, many connectivity matrices can be created in the numerical analysis process, 

which is very important for the development of analytical algorithms. An example of 

an index space is shown in Figure 2.2, which is constructed also using the same knot 

vectors as ones used for creating parameter space in Figure 2.1. 

 

 

Figure 2.2 The two-dimensional index space, that is constructed using the same knot 

vectors as ones in Figure 2.1. Note that even knots with the same knot 

value are marked separately. 
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2.2.4 Physical space 

The physical space is the exact representation of the actual shape for the geometry, 

that is the actual geometry exists in this space. The physical space mainly includes 

physical mesh, control point, and control mesh.  

The physical mesh is the partition for the actual geometry. The geometrical structure 

is decomposed into elements. Note that these elements are different from the 

elements in the traditional finite element method, in the IGA, there are two notions 

for elements which are called the knot span and the patch, respectively. The knots 

span is the smallest element in the physical space, so that it may be thought of as the 

basic element. As defined in Section 2.2.1, a knot span is defined by two adjacent 

knots with the different knot values. Thus, the basis on the knot in the parameter 

space, the physical mesh can be built on the geometry, they are points and lines in 

one- and two-dimensional topologies, respectively.  The patch is a subdomain 

composed of multiple knot span, so it may be thought of as a macro element.  For 

simple geometric models, we can use a single patch to represent them, but for 

complex models, we need to use multiple patches. The concept of multiple patches 

will be described in detail in later chapters. Note that, in this study, when we speak of 

“element” without further description, we usually mean knot spans. 

The images of the physical mesh in the case of one and two dimensions are shown in 

Figure 2.2. Firstly, in Figure 2.3 (a), the examples of one dimension is a NURBS 

curve, that was built from the open knot vector 

 0,  0,  0,  1/6,  2/6, 3/6,  4/6,  5/6,  1,  1,  1  , the knots denoted with a red cross. 

The curve is divided into elements (denoted by different colors), whose geometrical 

shape are the curve segments that are identical to the original shape.  Second, the 

image in Figure 2.3 (b) is a quadratic surface built by the knot vectors 

 0,0,0,1/3,2/3,1,1,1   and  0,0,0,1/3,2/3,1,1,1  . In the case of two 

dimensions, the knots are the lines, and they partition the surface into quadrilateral 

elements. As you can see, it is the knots, mapped into the physical space, that 
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partitioned the surface (or curve) into elements, thus forming the physical mesh. So 

the physical mesh is exact decomposition of the actual geometry. 

 

 

(a) Curve and physical mesh denoted by knot locations 

 

 

(b) Surface and physical mesh built by the line. 

Figure 2.3 The physical mesh for cure and surface. 
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In the IGA, geometric models are constructed by taking a linear combination of 

NURBS basis functions, where the vector-valued coefficients of the basis functions 

are referred to as control points. Sometimes it also called weighted control points, 

because coordinates of the control points are homogeneous coordinates. Piecewise 

linear interpolation of the control points gives the so-called control mesh (that is also 

known as the “control net”). The control mesh consists of multilinear elements, in 

one dimension they are line segments, in two dimensions they are bilinear 

quadrilateral elements. The control mesh is different from the traditional finite 

element mesh. In the finite element method, the basis functions are interpolatory and 

are therefore often referred to as shape functions or interpolation functions, the 

corresponding nodes are inserted into the geometric entities. In the isogeometric 

analysis, because the basis-functions are usually no interpolatory, most control points 

are not inserted into geometric entities, and control net does not conform to the 

practical geometric shape. note that, the degrees-of-freedoms (DOFs) called as 

control variables locate at the control points. In Figure 2.4, an example of a one-

dimensional and two-dimensional control mesh is given, respectively. In the one-

dimensional case, the geometric model is the curve that is the same as the one in 

Figure 2.3 (a), the control mesh is a polyline segment constructed by the control 

points, and that is usually called as control polygon. The geometry in Figure 2.4 (b) 

is the surface in Figure 2.3 (b), the constructed control mesh looks like a finite 

element mesh, but it is not attached to the surface. Note that the difference between 

the control mesh shown in Figure 2.4 and the images of the physical mesh shown in 

Figure 2.3. The control mesh (indicated by the dashed line) was constructed from 

piecewise linear interpolation of control points denoted by red dots in Figure 2.4. In 

addition, because of the use of the open knot vector, the control points at both ends 

of the mesh are inserted into the geometric entity. Through the above discussion, we 

may clearly see that, in the isogeometric analysis, there are two notions of mesh i.e. 

control mesh and physical mesh, and two notions of elements i.e. patch and knot 

spans. In finite element, there is one notion of a mesh and one notion of an element. 

Elements are usually defined by their nodal coordinates and the degrees-of-freedoms. 

The finite element mesh is structured from elements connected by nodes.  
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Note that, geometry in Figure 2.3 and Figure 2.4 are described by the open knot 

vectors and basis functions with the 2nd-degree, thus the knot value at the first and 

last knot of knot vector is repeated degree of basis function, p plus 1 time, namely  3 

times. In addition, since the knot vector is open, in one dimension, the control points 

at both ends of the control polygon are inserted at both ends of the curve.  For a 

surface in case of two dimensions, the control points at the boundary of the control 

mesh are also interpolatory.   
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(a) Curve, control points and control mesh 

 

 

 

(b) Surface, control points and control mesh 

Figure 2.4 piecewise quadratic curve and surface with their control mesh. 
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2.2.5. Parent space  

In the process of numerical analysis, in order to perform the numerical integration, 

elements of different shapes must be allowed to take more uniform shapes, namely 

form of the parent element, this is done by using some mapping to transform them. In 

this study, we define the parent element as an independent space, that is, the parent 

space. The parent space is defined with respect to a natural coordinate system. The 

effect of parent space is same as the one in the finite element method and that is 

usually called as isoparametric Elements in the finite element method. The 

configuration of the parent element is depicted in Figure 2.5, where the natural 

coordinates ̂ and ̂  for this parent element the conditions ˆ1 1   and ˆ1 1   . 

 

 

Figure 2.5 Parent space 

 

A schematic illustration of the ideas is shown in Figure 2.5 for Isogeometric space, 

which is built based on Figure 2.1-2.4. And in Table 2.1 a summary of paraphernalia 

employed in the isogeometric analysis is also given. 
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Figure 2.5 Schematic illustration of isogeometric space, that is built from knot 

vectors  0,0,0,1/3,2/3,1,1,1   and  0,0,0,1/3,2/3,1,1,1  .  Note that the 

parameter space plays a very important role in IGA, which is responsible for 

integrating and connecting the spaces. 

 

 

Parent space 
Physical space 

Integrating on the 
parent space   

Index space 

Parameter space 
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Table 2.2 The summary of paraphernalia employed in the isogeometric analysis[5]. 

Index Space 

Control Mesh PHYSICAL MESH 

Multilinear control 

elements 

Patches Knot Spans 

Topology: 

1D: Straight lines defined 

by two consecutive control 

points 

 

 

2D: Bilinear quadrilaterals 

defined by four control 

points 

 

 

 

 

3D: Trilinear hexahedra 

defined by eight control 

points 

Patches: Images of rectangular 

meshes in the parent domain 

mapped into the actual 

geometry. Patches may be 

thought of as macroelements or 

subdomains. 

 

Topology: 

1D: Curves 

2D: Surfaces 

3D: Volumes 

 

 
Patches are decomposed into 
knot spans, the smallest notion 
of an element. 

The topology of knots in 

the parent domain: 

1D: Points 

2D: Lines 

3D: Panes 

 

The topology of knots in 

the physical space: 

1D: Points 

2D: Curves 

3D: Surfaces 

 

The topology of knots 

spans, i.e., “elements”: 

1D: Curved segments 

connecting consecutive 

knots 

2D: Curved quadrilaterals 

bounded by four curves 

3D: Curved hexahedra 

bounded by six curved 

surfaces 
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2.3. B-splines 

Plenty of approaches have been used to structure the geometric model in CAD. In 

general, the non-uniform rational basis spline (NURBS) basis function has been used 

to build the geometric model, and has served as shape function in the pre/post 

processing of isogeometric analysis [2]. In this study, the analysis framework is built 

by the isogeometric analysis based on Non-Uniform Rational B-Spline (NURBS), in 

this chapter, we mainly introduce the definition of the NURBS paraphernalia and 

some of the main features.   

2.3.1 B-splines basis function and the knot vector 

Firstly, we give the definition of the B-splines basis function. The B-spline is very 

important for building the NURBS. The B-splines basis functions are formulated via 

the Cox-de Boor recursion formulation [6], [7], as follows: 

  1
, 0

1

0
i i

i p

if
N

otherwise

  
 



 
 


                                        (2.5) 

where p is the degree of the B-splines basis functions1;
  , 0i pN   

is the th0 -degree 

B-splines basis function and ,i pN is the piecewise linear function;   are the knots of 

the non-descending knot vector in the parameter space, that can be mapped into the 

physical space, and define a physical mesh on the geometric entity by partitioning it 

into the elements. i  is the knot index, i.e. 1, 2, 1i n p   .The corresponding knot 

vector is expressed by a knot vector as follows. 

 1 2 1, , , ,n p                                                  (2.6) 

where the relationship between adjacent knots is  

1,i i                                                           (2.7) 

For 0p  , the basis-functions are defined by the following equation: 
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1

, , 1 1, 1
1 1

( ) ( ) ( ) .i pi
i p i p i p

i p i i p i

N N N
    

   
 

  
   


 

 
                 (2.8) 

In Figure 2.6, the results of applying Equation (2.5) and (2.6) to a uniform knot 

vector are shown. The image for 0th-, 1st-, 2nd- and 3rd -order B-spline basis function 

with the knot vector  1, 2,3, 4,5,6   is presented in Figure 2.6, respectively. Note 

that, in the case where the B-spline basis functions with p = 0 and p = 1, the same 

result as for the linear finite element functions and standard piecewise constant are 

respectively obtained. However, starting from a second or higher B-spline basis 

function is different from their FEA counterparts. For the higher-orders B-spline 

basis function, the basis function has smoother and higher continuity than FEM.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 B-spline basis functions of order 0, 1, 2, 3 for uniform knot vector 

 1, 2,3, 4,5,6  . 

(b) 0th-order B-spline 
basis function  

(a) 1st-order B-spline 
basis function  

(d) 2nd-order B-spline 
basis function   

(c) 3rd-order B-spline 
basis function  
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2.3.2 An example for computing B-spline basis function from a non-
uniform knot vector 

In Figure 2.6, we have given an example for uniform knot vector, but in actual 

analysis, we usually use a non-uniform knot vector such as open knot vector etc. 

Using a non-uniform knot vector can result in a richer behavior than a simple 

uniform knot vector. In this section, a specific example is given in regard to 

computing the quadratic B-spline basis function from the non-uniform knot vector. 

The B-spline basis function is built from the open knot vector 

 0 1 2 3 4 5 6 7 8 9 10, , , , , , , , , ,            {0,0,0,1,2,3,4,4,5,5,5} and the basis 

function order p equal to 2, so that the knot value of first and last at knot vector are 

repeated p+1=3 times. The specific calculation is as follows 

Firstly, beginning with p = 0 and i = 0, and based on Equation (2.5), we have that  

  0 1
0,0

1
.

0

if
N

otherwise

  


 
 


                                       (2.9) 

Since 0 1 0   , there is no  , satisfying the condition, 0  and 1  , and 

therefore  0,0 0N   . Based on the same argument, we can get 

 0,0 0,N                                                       (2.9a) 

 1,0 0.N                                                       (2.9b) 

Following the same logic 

 2,0

1 0 1
,

0
N

otherwise




 
 


                                                 (2.9c) 

 3,0

1 1 2
,

0
N

otherwise




 
 


                                                (2.9d) 
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 4,0

1 2 3
,

0
N

otherwise




 
 


                                                (2.9e) 

 5,0

1 3 4
,

0
N

otherwise




 
 


                                                (2.9f) 

 6,0 0 ,N for                                              (2.9g) 

 7,0

1 4 5
,

0
N

otherwise




 
 


                                                 (2.9h) 

 8,0 0 ,N for                                               (2.9i) 

 9,0 0 ,N for                                               (2.9j) 

Not that, when i = 11, basis functions are zero for all the polynomial order, this is 

because of the length of the knot vector equal to number of the basis function + order 

of basis function +1. In this example, the length of the knot vector is 11, so that the 

number of the basis function is 11 0 1 10   . The nonzero B-spline basis functions 

of (2.9a) - (2.9j) are plotted in Figure 2.7.  

 

 

 

 

 

Figure 2.7 The nonzero zeroth degree B-spline basis functions with the non-uniform 

knot vector {0, 0, 0,1, 2, 3, 4, 4, 5, 5, 5}   

2,0N 3,0N 4,0N 5,0N 7,0N
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Next, the first-order B-spline basis functions are computed by the Equation (2.8). 

The basis function is the linear functions, and its number is 11 1 1 9   . Because we 

have that  

 0,1 0,0 1,0

0 0
0,

0 0 0 0
N N N

   
       

 
               (2.10a) 

 1,1 1,0 2,0

1 0 10 1
,

00 0 1 0
N N N

otherwise

  
   

     
                 (2.10b) 

 2,1 2,0 3,0

0 1
0 2

2 1 2 ,
1 0 2 1

0

N N N

otherwise

 
   

 
         



                 (2.10c) 

Further 

 3,1 3,0 4,0

1 1 2
1 3

3 2 3 ,
2 1 3 2

0

N N N

otherwise

 
   

  
         



                 (2.10d) 

 4,1 4,0 5,0

2 2 3
2 4

4 3 4 ,
3 2 4 3

0

N N N

otherwise

 
   

  
         



                 (2.10e) 

 5,1 5,0 6,0

3 3 43 4
,

04 3 4 4
N N N

otherwise

  
   

     
                 (2.10f) 

  6,1 6,0 7,0

5 4 54 5
,

04 4 5 4
N N N

otherwise

  
   

     
                (2.10g) 

 7,1 7,0 8,0

4 4 54 5
,

05 4 5 5
N N N

otherwise

  
   

     
                (2.10h) 

 8,1 8,0 9,0

5 5
0.

5 5 5 5
N N N

   
       

 
               (2.10i) 
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The non-zero B-spline basis functions are depicted in Figure 2.8. Note that they are 

piecewise linear basis functions in Figure 2.8. In addition, the knot value is repeated 

twice at the position of knot ξ4, and its algebraic representation is different from 

other knots, which is caused by the continuity of the basis function, and which we 

will discuss in detail later in this chapter. 

 

 

Figure 2.8 The non-zero first-degree piecewise linear B-spline basis functions, 

{0, 0, 0,1, 2, 3, 4, 4, 5, 5, 5}   

Finally, the piecewise quadratic functions are computed from (2.11a) - (2.11h). The 

number of basis function is the 11 2 1 8   . We have   

  2
0,2 0,1 1,1

0 1
(1 ) ,

0 0 1 0
N N N

    
        

 
               (2.11a) 

 
 

2

1,2 1,1 2,1 2

32 0 10 2 2 ,
1 0 2 0 1 2 1 22

N N N
   

 

            

                (2.11b) 

 

 

2

2
2,2 2,1 3,1

2

1 0 12
0 3 3 3 1 2 ,22 0 3 1

1 3 2 32

N N N

 
    

 

  


           
  

                (2.11c) 

1,1N 2,1N 3,1N 4,1N

5,1N 6,1N

7,1N
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 

 

 

2

2
3,2 3,1 4,1

2

1 1 1 22
1 4 11 5 2 3 ,23 1 4 2

1 4 3 42

N N N

 
    

 

   


           
  

               (2.11d)

 
 2

4,2 4,1 5,1
2

1 2 2 32 4 2 ,
34 2 4 3 16 10 3 42

N N N
  

  

              

          (2.11e) 

   
 

2

5,2 5,1 6,1 2

3 3 43 5
,

5 3 5 4 5 4 5
N N N

  
 

        
    

               (2.11f) 

    6,2 6,1 7 ,1

4 5
2 4 5 , 4 5

5 4 5 4
N N N

     
      

 
               (2.11g) 

   2

7,2 7,1 8,1

4 5
4 , 4 5 ,

5 4 5 5
N N N

    
     

 
               (2.11h) 

These piecewise quadratic B-spline basis functions are plotted in Figure 2.9. 

 

Figure 2.9 The non-zero second-degree B-spline basis functions 

Remark  

1. Note that the meanings of the terminologies “degree” and “order” are 

deference in the CAD and geometry community. For example, a quadratic 

polynomial in geometry is usually considered as possessing 2nd-degree and 

3rd-order, i.e. order = degree + 1. However, in the analysis community, the 

0,2N

1,2N 2,2N 3,2N
4,2N

5,2N

6,2N

7,2N
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quadratic polynomial will be said as 3rd-order, i.e. the meanings of degree and 

order are the same. In this paper, we will stick to this convention. 

2. The use of the knot vector shown in this example is non-uniform, that is, the 

knot values at ξ4 and both ends are repeated 2 and 3 times, respectively. For 

example, in Figure 2.9, in the case where the second-order of the base 

function, the position of ξ4 is C0- continuity, and the other locations are C1- 

continuity. Generally, basis functions of order p have p − mi continuous 

derivatives across knot ξi, where mi is the multiplicity of the value of ξi in the 

knot vector [4]. When the multiplicity of a knot value is exactly p, the basis is 

interpolatory at that knot. When the multiplicity is p + 1, the basis becomes 

discontinuous and the patch boundary is formed. 

2.3.3 Derivatives of B-spline basis functions 

The derivative of the B-spline basis function is effectively represented by a B-spline 

low order basis function. The derivative of the ith-order B-spline basis is expressed 

by 

 , , 1 1, 1

1 1

( ) ( )
,i p i p i p

i p i i p i

dN pN pN

d

  
    

  

   

 
 

                                (2.12) 

where p is the order or B-spline basis function. Based on the Equation (2.12), the 

higher derivative of the B-spline basis function can be defined as  

     1 1
, , 1 1, 1

1 1
1 1

,
k k k

i p i p i p

k k k
i p i i p i

d N d N d Np p

d d d

  
      

 
  

 
   

   
             

    (2.13) 

Equation (2.13) is another form of expression for Equation (2.14), it defines the kth- 

derivative of the B-spline basis function in terms of the functions , ,, ,i p k i k p kN N    

so that we have 

 
   ,

, ,
0

!
,

!

k k
i p

k j i j p kk
j

d N p
N

d p k


 

  



                           (2.14)  
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with 

0,0

1,0
,0

1

1, 1, 1
,

1

1, 1
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1

1,

,

1,..., 1,

.

k
k

i p k i

k j k j
k j

i p j k i j

k k
k k

i p i k

j k
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
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 

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
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






                              

Note that, in the presence of a repeating knot, the denominator of several of these 

coefficients can be zero. As long as this happens, the coefficient is defined as zero. 
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2.4．B-spline curves and B-spline surfaces 

In the d-dimensional space d , the pth-order B-spline curve ( )C   is built by   

,( ) ( ) ,
n

i p i
i

C N B                                                       (2.15) 

where , ( )i pN   are the B-spline basis functions of order p defined on the open knot 

vector, which is non-periodic and non-uniform. iB represents the control points, 

which are the vector-valued coefficients of the B-spline basis functions. The degree, 

p number of control points n, and number or knots m, are related by  

1.m n p                                                             (2.16) 

Through Equation (2.15), we can clearly see that, a fixed point on a B-spline curve is 

obtained from a fixed knot value . Firstly, we need to confirm the knot span in that 

 lies and compute the non-zero B-spline basis functions. Finally, the value of non-

zero B-spline basis functions and the corresponding control points are multiplied. 

An example piecewise quadratic B-spline curve in 2  is shown in Figure 2.9, 

where the control points are denoted by red solid circles. The dashed line connecting 

the control points is referred to as the control polygon or control net, which is a 

piecewise linear interpolation of the control points. In Figures 2.9 (a) and 1(b), the 

two B-spline curves are built from the open knot vector,

 0,  0,  0,  1,  2,  2,  3,  4,  4,  4  ,that the positions of 0   and 4   are repeated 

p+1=3 times. Therefore, the curve is interpolatory at the first and last control points. 

Moreover, it is also interpolatory at the fourth control point, since the multiplicity of 

the knot 2  is equal to the order of basis function.  

Note that the two B-spine curves are built by using the same knot vector, basis 

function and order, with the only difference being that the coordinate of control point 

2, i.e., the curve in Figure 1(b) is obtained by moving the control point 2 in Figure 
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1(a). The corresponding is shown in Table 2.3. Additionally, Since the base function 

, ( )i pN   is a piecewise polynomial, the curve in Figure 2.9 is a piecewise curve. In 

Figure 2.9 (c), we show the B-spline basis functions, and the B-spline curves for the 

corresponding individual knot span, which are marked with different colors. 

Table 2.3 The control point coordinates in Figure 2.9 (a) and (b) 

 Control point coordinates 

in figure 2.9 (a) 

Control point coordinates 

in figure 2.9 (b) 

 x y x y 

1 0.5 3 0.5 3 

2 1.5 5.5 0 5.5 

3 5 6 5 6 

4 3 1.5 3 1.5 

5 7.5 1.5 7.5 1.5 

6 6 4 6 4 

7 9 5 9 5 

 

         

 

 

 

 

 

 

 

 

(a) Shape of curve before moving control point 2 
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(b) Shape of curve after moving control point 2 

 

 

 

 

 

 

 

 

 

 

 

(c) Shape of curve after moving control point 2 

          Figure 2.9:  Piecewise quadratic B-spline curve, control polygon,  
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and control points in 2 . 

The B-spline surface is constructed by taking the two-dimension control net

,{ }, 1,2, ,i jB i n   ; 1, 2, ,j m  , the knot vectors Ξ and Н, and the B-spline basis 

functions in the direction of the two knot vectors, as follows: 

, , ,
1 1

( ) ( ) ( ) ,
n m

i p j q i j
i j

S N M B   
 

,                                  (2.17) 

with 

1 2 1

1 2 1

{ , , , },

{ , , , },

n p

m q

  

  
 

 

 

 




 

where , ( )i pN   and , ( )j qM  are the basis functions in the   and   directions, 

respectively. p and q are the order of basis function. 

For computing a point on a tensor product B-spline surface at fixed parameter 

coordinate ( ) , . We first need to find the knot span in which  and  lies , namely 

 1,i i     and  1,i i    , and then compute the non-zero B-spline basis functions. 

Finally, the value of non-zero B-spline basis functions and the corresponding control 

points are multiplied. Therefore, the matrix form of Equation (2.17) is 

, , ,( ) ( ) ( ) ,
T

k p k h h qS N M            B,                         (2.18) 

with 

;

;

i p k i

j q h j

  
  

 

where , ( )
T

k pN    is a row vector of scalars with 1×(p+1); , ( )h qM     is a column 

vector of scalars with 1×(q+1), and ,k h  B  is a matrix of control points, and its size 

is (p+1) ×(q+1).  An example of the B-spline surface is shown in Figure 2.10, where 
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the mesh lie in the surfaces are defined by knots in the knot vectors 

{0, 0, 0, 0,1 / 7, 2 / 7, 3 / 7, 4 / 7, 5 / 7, 6 / 7,1,1,1,1}  and {0, 0, 0,1 / 8, 2 / 8,   

3 / 8, 4 / 8, 5 / 8, 6 / 8, 7 / 8,1,1,1} ,that partitioned the surfaces into the elements. The 

element boundaries in the surface are simply the images of knot lines under the 

geometric mapping. An initial surface is shown in Figure 2.10 (a), that is a curved 

plane since it has no thickness in the other direction. Besides, in order to obtain the 

better visualization, the corresponding control net is marked with dotted lines and the 

control points are marked with solid red dots. The surface in Figure 2.10 (b) is the 

image after the surface in Figure 2(a) was changed, which was obtained by moving 

the control points A, B and C (marked in Figure 2.10 (b)) in the control net.   

 

 

 

 

 

 
 (a)Original geometry 

 

 

 

 

 

 

(b) Geometry after moving control point B 

Figure 2.10: The cubic × quadratic surface B-spline surfaces and control nets in 2 . 

A 

B C 
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As described above, one of the important properties of B-splines was shown, that is 

its ability to directly change geometrical shape by adjusting the control points. For 

examples, geometry in Figures 2.9 and 2.10, by adjusting the control points, the 

geometric shape can be easily changed.  Besides, note that due to the modification 

scheme property and local support property of B-splines, the area that each control 

point can affect is local and controllable. As shown in Figure 2.10, If control point A, 

B and C are moved to a new location, it only can affect the shape of the partially 

adjacent area on the surface and elsewhere is unaffected. In this study, this property 

of the B-spline was fully utilised, and the structural analysis with consideration to the 

uncertainty in shape was implemented by importing the parameters of uncertainty 

(mean and deviation etc.)  Into the control point coordinates. 
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2.5.  Properties of B-spline 

In this section, some important properties of B-spline are listed, and these properties 

provide a theoretical basis for future numerical calculations. 

i. partition of unity [4], that is, for any knot, the sum of the basis functions must be 

equal to one, as follows 

 ,
1

1
n

i p
i

N  


                                               (2.19) 

And for each knot, its basis function is pointwise non-negative over the entire 

domain, namely  

 , 0i pN                                                  (2.20) 

For example, Let the knot vector  0,0,0,1,2,3,3,4,4,4  . We now calculate 

respectively the B-spline basis function of degree 0, 1, 2, and 3 at 3.5  .  

 6,0 3.5 1;N   

 6,1

0.5
3.5 ;

0.5
N


 


 

 6,2

0.25

3.5 0.5 ;

0.25

N


 



 

 6,3

0.0625

0.4375
3.5 ;

0.375

0.125

N



 



 

From the above calculations, we can observe that for any degree, the value of base 

functions of  knot at 3.5   are all non-negative and their sum is 1. 
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ii. B-spline has the local support property. If knot value  is not in the half-open 

interval, 1,i i p     in case of the one-dimensional topology, its corresponding 

basis functions are all zero, that is  

 
 

, 1

,

0 ,

0 .

i p i i p

i p

N if

N otherwise

   


   


                                 (2.21) 

Through the definition of B-spline basis function Equation (2.5) and (2.6), we 

can observe this character. If a first-order B-spline basis function  ,1iN  is 

calculated, then the zeroth-order B-spline basis function  ,0iN   and  1,0iN   

are required. And the basis functions  ,0iN   and  1,0iN   are non-zero at the 

knot span  1,i i    and  1 2,i i   , respectively, so that the first-order basis 

function  ,1iN  is non-zero on these two knot spans, namely  ,1iN   is the non-

zero on knot interval   2,i i    . By analogy, because second-order B-spline 

basis function  ,2iN  depends on the first-order basis functions  ,1iN   and 

 1,1iN  and because they are respectively non-zero in knot interval  2,i i    

and  1 3,i i   , the second-basis function  ,2iN   is non-zero on knot interval 

 3,i i   . n example of a one-dimensional B-spline base function that prove this 

property is shown in Figure 2.11. 

In addition, in order to determine non-zero knot interval of B-spline basis 

function  ,i pN  , we usually use a triangular computation scheme that as 

shown in Figure 2.12(a). Through this triangular scheme, the non-zero domain of 

B-spline basis function of any order can be traced back until they reach the first 

column in the triangular scheme. The knot interval that is ultimately covered is 

the non-zero domain of this basis function. for instance, suppose we want to 

determine the non-zero domain of the B-spline basis function  0,3N  . Based 

on the triangular schematic diagram in Figure 2.12, starting with  0,3N   , its 
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non-zero domain can be traced back in the direction indicated by the arrow until 

the first column of the triangular scheme is reached, that as shown with the red 

arrows and boxes in Figure 2.12 (b). From these, we can see that the basis 

function  0,3N   is non-zero on the knot span   0 1,  ,  1 2,  ,  2 3,  and 

 3 4,  , respectively, that is, its non-zero domain is on the knot interval 0 4,  ; 

In addition, for the two-dimensional topology follows directly from the one-

dimensional topology, the basis functions are all zero, if parametric variable 

 ,   is outside the rectangle 1 1[ ) [ ), ,i i p j j p       . This property is illustrated 

in Figure 2.13. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 The 3rd -order B-spline basis functions. 
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(a) Triangular schematic diagram 

 

 

 

 

 

 

 

 

 

 

(b) The non-zero domain of the B-spline basis function 

Figure 2.12 The triangular schematic diagram for the local support property of B-

spline 
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Figure 2.13 The local support property for 3rd -order B-spline basis functions in 

the two-dimension.  

 

iii. In any given knot span,  1,i i   , The maximum p+1 B-spline basis functions are 

non-zero, which are 

                         , 2, 1, ,( ), , ( ), ( ), ( )i p p i p i p i pN N N N       

Note that, if there are repeated knot values, the number of base functions is 

exactly the same as the degree p, and the corresponding basis functions are 

, 2, 1,( ), , ( ), ( )i p p i p i pN N N      
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Namely, given any knot span  1,i i   , we can know which B-spline basis 

functions will use this knot span in their calculations. Here we likewise use a 

triangular schematic diagram in order to illustrate this character, that is shown in 

Figure 2.14. Starting with the knot span  1,i i    that located in the first column 

on the left of the triangular schematic diagram, along with the direction 

indicated by the arrow, we can determine the number of non-zero base functions 

on each degree. And all basis functions with degree p that are non-zero on knot 

span  1,i i   are the intersections of arrows. 

 

 

 

 

 

 

 

 

Figure 2.14 The triangular schematic diagram for property 4. 

 Let us look at a concrete example. Suppose we gave an open knot vector, 

 0 1 2 3 4 5 6 7 8 90, 0, 0, 1, 2, 3, 4, 5, 5, 5                      and 

want to find out all third-degree basis functions that are non-zero on knot span 

 3 4,  . As shown in Figure 2.15, we start with this knot span located in the first 

column, and find the non-zero basis functions in the direction indicated by the 

red arrow until they reach the third column in the triangular scheme diagram. In 

the end we can get all the 3rd -degree basis functions,  0,3N  ,  1,3N  , 
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 2,3N  , and  3,3N  , which are non-zero on knot span  3 4,  . In Figure 2.16, 

these non-zero basis functions are depicted by using lines of different colors.  

 

 

 

 

 

 

 

Figure 2.15 The triangular schematic diagram for finding third-degree basis 

functions that are non-zero on knot span,  3 4,   

 

 

 

 

 

 

 

 

 

Figure 2.16 The non-zero basis functions on knot span,  3 4,   
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Moreover , we may apply the same logic to a larger knot interval. For example, 

as shown in Figure 2.17, we want to find all 3rd -degree basis functions that are 

non-zero on knot interval   2 5,  . First of all, on the first column on the left 

side of triangular scheme diagram, we determine the knot interval  2 5,   which 

consists of two knot span  2 3,  , 3 4,  and  4 5,   . Afterwards, starting from 

these two knot spans, the non-zero basis function is determined along the 

direction of the orange arrow until it reaches the column at 3p  . Finally, all 

cubic non-zero basis functions in the knot interval   2 5,  are ,  0,3N  , 

 1,3N  ,  2,3N  ,  3,3N   ,  4,3N  ,and they are depicted in Figure 2.18. Note 

that since the use of open knot vector, there are only three 3rd -degree basis 

function that is non-zero on knot span  2 3,  . 

 

 

 

 

 

 

 

 

Figure 2.17 The triangular schematic diagram for finding third-degree basis 

functions that are non-zero in knot interval,  2 5,   
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Figure 2.16 The non-zero basis functions in knot interval,   2 5,   

 

iv. Endpoint interpolation; Generally, in the CAD, the curve interpolates the control 

points at both ends, and the B-spline surface are interpolations at the control 

points of the four corners. This is because the knot vectors that build these 

geometries are all open in the CAD. An example of a quadratic curve insertion 

endpoint is shown in Figure 2.17, where Both curves are depicted using exactly 

the same control point information. The curve in Figure 2.17 (a) is built from the 

open knot vector  0,0,0,1,2,3,4,5,5,5 , so the curve is inserted into the 

control points at both ends; The curve in Figure 2.17 (b) is built from the knot 

vector  1,2,3,4,5,6,7,8,9,10 . Since the knot vector used is not open, the 

control points at both ends of the curve are not interpolatory. 
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(a) The curve is inserted into the control points at both ends. 

 

 

(b) The control points at both ends of the curve are not interpolatory 

 

Figure 2.17 The quadratic curves 
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v. Affine invariance property; An affine transformation of a B-spline is obtained by 

applying the transformation directly to the control points [4]. Let is a point in 

three-dimensional Euclidean space, 3 , and using   to denote an affine 

transformation, mapping 3 into 3 ,( 3 3:   ), for any 3   [8], we can 

get that 

( ) v   A
                                                (2.22) 

where A is a 3 3 matrix and v is a vector in 3 , For an affine transformations, it 

mainly includes several algebraic representations such as shears, translations, 

rotations, scalings, and uniform stretchings etc. Based on partition of unity 

property of B-spline basis function, the affine invariance property of B-spline 

curve can be defined by  

( ) ( ) ( )

( )

( )

i i i i

i i i

i i

i i

B A B v

AB v

AB v

B

  

 





    

 

 

 

 
 






                 (2.23) 

      where 
3

iB and 0i  ; Similarly, according to the same logic as the 

Equation (2.23),  the affine invariance property of  the B-spline surface can also 

be defined. Let ,i j i jB    ,where 3
,i jB  ,and 1i j    . 

( ) ( ) ( )

( )

( )

i j ij i j ij

i j ij i j

i j ij

i j ij

B A B v

AB v

AB v

B

    

   

 

 

    

 

 

 

   
   
 
 





              (2.24) 
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vi. Strong convex hull property; If we want to draw a B-spline curve, then it must 

be in the convex hull of its control polygon. Namely, if   is in knot span 

 1,i i   , then B-spline curve is in the convex hull formed by control points 

1, ,i p i p iB B B   . This is because this property follows from the non-negativity 

and partition of unity, and local compact support properties of B-spline basis 

function. More specifically, if   is in knot span  1,i i   , From the local support 

property we can know that, there are only p+1 non-zero basis functions i.e., 

     , 1, ,, , ,i p i p p i p pN N N      on this knot span. Because the base functions 

is the coefficient of the corresponding control points, only p+1 control points i.e.

1, ,i p i p iB B B    have non-zero coefficients. In addition, since on this knot span, 

the B-spline basis functions are non-zero and their sum equals 1, the B-spline 

curve must lie in the convex hull formed from control points 1, ,i p i p iB B B   . 

The meaning of "strong" is that while B-spline curve still lies in the convex hull 

formed from all control points, it lies in a much smaller one.  

Here, we consider an example which is a more thoroughgoing review of the 

same example in Cottrell et al.[4]. Figure 2.18 shows such convex hulls for p = 1 

through p = 5. they are defined by a given set of control points. It is important to 

note that t the convex hull for a piecewise linear curve is just the control polygon 

itself. Figure 2.19 shows the corresponding curves that we obtain by pairing 

these control points with the different basis. As the polynomial order increases, 

the curves become smoother and the effect of each individual control point is 

diminished. 
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Figure 2.18  The convex hulls for 1p  through 5p   
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Figure 2.19  B-spline curves for 1p   through 5p   
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vii. local modification scheme property: Due to the compact support of the B-splines 

basis functions, the basis function , ( )i pN  is zero if   is outside of the interval  

1,i i p    in the one-dimensional topology case. The local modification scheme 

property of B-spline surface (two-dimensional topology) follows directly from 

the curve case. From the local modification scheme property, we can know that 

moving a single control point can affect the geometry of no more than 1p 

elements of the curve and ( 1)( 1)p q   elements of the surface (where p and q 

is the degree of basis function), respectively. The example of a surface is shown 

in Figure 2.20, In Figure 2.20(a), the initial surface is flat because all the control 

points lie in a common plane. The corresponding control mesh is offset from the 

surface for better visualization. If control point B marked in the red dot is moved 

to a new location, the Figure 2.20(b) shown that only the neighbouring area on 

the surface of the moved control point changes shapes and elsewhere is 

unchanged.  

 

 

(a) A planar cubic × quadratic surface, {0, 0, 0, 0,1 / 7, 2 / 7, 3 / 7, 4 / 7 , 5 / 7 ,   

6 / 7,1,1,1,1} and   {0, 0, 0,1 / 8, 2 / 8, 3 / 8, 4 / 8, 5 / 8, 6 / 8, 7 / 8,1,1,1}  ; 

B
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(b) The control point B (denoted by a red dot) is moved, influencing only local shape 
on the surface. 

 

Figure 2.20. the B-splines surfaces. 
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2.6. Non-Uniform Rational B-Spline (NURBS) 

In this section, we combine the concepts of the B-spline introduced in the previous 

sections to obtain non-uniform rational B-spline curves and surfaces. The NURBS is 

a more flexible modelling approach based on the B-spline concept, but without the 

drawbacks of B-spline; namely, NURBS allows exact the representation of 

geometrical shapes with conic sections, such as cylinders, ellipsoids, etc. However, it 

is impossible to use the B-spline to represent these simple shapes exactly.  

2.6.1 NURBS curve 

Firstly, a NURBS curve can be defined by 

,( )
n

w
i p i

i

C N  B
                                               

(2.25) 

where , ( )i pN   represents the pth-degree piecewise B-spline basis functions defined 

on the open knot vector  0 1, , m    ; 
w
iB  is not a geometric coordinate in the 

traditional sense. It is a homogeneous coordinate with weight iw , that is to say, the 

geometric coordinates are weighted  

 .

i i

i iw
i

i i

i

w x

w y

w z

w

 
 
 
 
 
 

B

                                                      

(2.26) 

Note that If iw =1, then it is the Cartesian coordinates, namely, fourth component in 

homogeneous coordinate is rewritten as 1 

1

i

i
i

i

x

y

z

 
 
 
 
 
 

B

                                                      

(2.27) 
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We expand the homogeneous coordinate with weight in Equation 2.26 and bring it 

into the Equation 2.25. We can get 

 

 

 

,
0

,
0

, ,
0 0

,
0

,
0

( )

( )

( ) ( ) ( ) ,
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n
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i p i in n
ii iw w

i p i i p n
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i p i i
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 




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   
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 
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 




 





C B

      

(2.28) 

Thus, the point ( )w C  is the original B-spline curve in form of homogeneous 

coordinate. Now, let us convert it back to Cartesian coordinate by dividing ( )w C  

with the fourth coordinate in homogeneous coordinate: 

 
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 
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
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 
 
 
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(2.29) 

Finally, the NURBS curve in Cartesian coordinates is expressed as 

,

1
,1

( )
( )

( )

n i p i
ini

i p ii

N w
C

N w







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

B

                                      

(2.30) 
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Based on Equation 2.30, the NURBS basis function is defined as follows: 

,
,

ˆ ˆˆ ,1

( )
( )

( )

i p i
i p n

i p ii

N w
R

N w








                                           

(2.31) 

where , ( )i PR   represents the piecewise rational functions on the open knot vector. 

From a geometric point of view, the weight iw is applied to an affine transformation 

of the B-spline curves between the high-dimensional and low-dimensional spaces. So 

the so-called NURBS entity in d  is actually a projective transformation of B-spline 

entity in 1d [4] ,where d is the number of geometric dimensions in physical space. 

Figure 2.21 illustrates how a NURBS curve ( )w C  in 2 is built by the projective 

transformation of a quadratic B-spline curve ( )C in 3 .  
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Figure 2.21 A semicircle ( )C  in 2 constructed by the projective transformation of             

a piecewise quadratic B-spline in 3 ; the projective transformation of “projective 

control point” 
w
iB yields control point iB  ; Weight iw  is the z-component of 

w
iB ; 

Projective transformation of the B-spline curve ( )w C  yields the NURBS curve 

( )C . 
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Through the Equation 2.26 and Equation 2.27, we can know that, the relationship 

between control point 
w
iB in homogeneous coordinate and iB in Cartesian coordinate 

is as follows. 

( )
( )

w
i j

i j
iw


B

B                                                   (2.32) 

with 

1( )w
i i dw  B  

where 1, ,j d  . If we would like to apply the same projective transformation to 

every point in the NURBS curve ( )w C , we can define the following weighting 

function to accomplish this one. 

,( ) ( )
n

i p ii
W N w                                              (2.33)  

Therefor, The NURBS basis function can also be expressed as 

, ,
,

ˆ ˆˆ ,1

( ) ( )
( )

( )( )

i p i i p i
i p n

i p ii

N w N w
R

WN w

 





 
                          

 (2.34) 

Finally, the NURBS can be rewritten as a clean form as follows: 

,( )
n

i p i
i

R C B
                                               

(2.35) 

Correspondingly, the derivatives of the NURBS basis are given by 

 
, , ,

2

( ) ( ) ( ) ( ) ( )

( )

i p i p i p
i

dR W N W N
w

d W

    
 

 


                         

(2.36) 

where 

ˆ ˆˆ ,
( ) ( )

n

i p ii
W N w                                             

(2.37) 
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For Higher-order derivatives of the NURBS basis functions, it may be expressed in 

terms of lower-order derivatives as 

( )
( ) ( )

( )
1

( ) ( ) ( )

( ) ,
( )

k jk
k j p

i ik jk
jp

ik

k d
A W R

j dd
R

d W

  



 






 
  

 


                 (2.38) 

where 

( )
,( ) ( ) , ( )

k
k

i i i pk

d
A w N no sum on i

d
 


                        (2.39) 

and 

( ) ( ) ( ) .
k

k
k

d
W W

d
 


                                     (2.40) 

Further 

!
.

!( )!

k k

j j k j

 
   

                                     (2.41) 

2.6.2 NURBS surface 

Similarly, A NURBS surface with pth-degree in the -direction and qth-degree in the 

-direction is defined by the rational basis functions and corresponding control 

points, as follows[9] 

, , ,
1 1

,

ˆ ˆ ,, ,
ˆ ˆ1 1

( ) ( )

( ) ,
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i jn m

i ji p j q
i j

N M w

S
N M w

 
 

 

 

 





B,

                         

(2.42) 

where  ,i jB is a matrix form that construct a bidirectional control net, and  ,i jw are  

weights. ( , )i j are the set of all double-indices of NURBS basis functions, that is 

denoted by 
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    ( , ) : 1,..., , 1,..., .i j i n j m  
                  

 (2.43) 

 , ( )i pN  and  , ( )j qM  is the standard B-spline basis functions defined on the open 

knot vector   and , respectively.  

1 2 1

1 2 1

{ , , , }

{ , , , }

n p

m q

  

  
 

 

 

 




 

Therefore, we can introduce a form of bivariate vector-valued piecewise rational 
basis functions 

, , ,
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ˆ ˆ1 1
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(2.44) 

Accordingly, Equation (2.40) may be written in brevity of notations 

, , , , ,
1 1 1 1

( ) ( ) ( ) ( )
n m n m

i p j q i j i j i j
i j i j

S R R R    
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  B B,
            

(2.45) 
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2.7. Multiple patches 

2.7.1. Characteristic of multiple patch 

A single geometric domain on a geometric model is referred to as the patch, and a 

geometric model composed of multiple geometric domains is referred to as multi-

patch. In fact, in the real work, when engineers use CAD tools to design the 

geometry, they are usually divided into multiple patch to draw. This is because, it is 

difficult to use single NURBS to model the model with complex boundary or internal 

holes. Even if the model is successful, the physical space units generated in the 

process of analysis are often distorted and uneven. In addition, If different materials 

or physical models are used in different parts of the domain, the description of these 

subdomains can be simplified by different patches[4]. Moreover, if different sub-

domains are to be assembled in parallel on multiprocessor machines, it is very 

convenient from the point of view of data structure that there is no need to split 

individual patches between different processors. The most common case is that the 

domain is completely different in topology from the cube. The tensor product 

structure of a patch in parameter space makes it unsuitable for representing complex, 

multi-joined domains. This geometry can usually be handled very simply by using 

multiple patches. An example of a plate with circular hole consisting of multiple 

patches is shown in Figure 2.22, where geometric model is built from the four 

independent patches. From Figure 2.22 (b), we can see that the plate with circular 

hole is exactly and concisely represented by four simple NURBS patches which are 

marked with different colours. The meshes using multiple patches and single patch 

are shown in Figure 2.23 (a) and (b), respectively. Compared with single patch, the 

geometric structure represented by multi-patch exhibits far less distortion and yields 

a much more “natural” mesh.  
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(a) The geometric model represented by a single NURBS patch 
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(b) the plate with circular hole is exactly and concisely represented by four simple 

NURBS patches 

Figure 2.22 A plate with circular hole is represented by a single NURBS patch and 

multiple NURBS patches, respectively. 
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(a) The physical mesh for the single patch 

 

 

(b) The physical network is defined on four patches 

Figure 2.23 The physical mesh of the plate with circular hole 
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Next we describe how to create multiple patch, As a prerequisite, it is assumed that 

the reference patch domain S ( , )base    is connected to patch areas of different nature 

( , )addS   . At this time, although an additional patch domain ( , )addS    and based 

patch domain ( , )baseS    have different properties, but it is assumed as continuous. 

And suppose the other side is connected to a patch area of the same nature. Here, let 

us give a concrete example to illustrate. As shown in the Figure 2.24, we connect the 

additional patch area to the 1Side of the based patch area. Thus, a new multiple patch 

area ( , )comS    can be obtained. When the 3Side  of the based patch area is 

represented by function 0( )uψ , the ( , )comS    can be defined as following. 

0

0

( , ) ( , )

{ (1 ) ( ,0)}

{ (1 ) ( ,1)},

com base

base

add

S S

S

S

   

 

 



  

  

ψ

ψ

                                     (2.46) 

where, 0{ (1 ) ( ,0)}baseS  ψ  is the form of subtracting 1Side  from the base patch 

domain. 0{ (1 ) ( ,1)}addS  ψ  is the form of adding A to the additional patch area 

from the based patch domain. 
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Figure 2.24 The multiple patch domain 
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According to figure 2.24, we can see that the green area and the pink area have 

different properties, so it has different control point position. Therefore, in order to 

unify the control points, we need a unified nature of the patch domain s. Thus, we 

can obtain following equation. 

 

( , ) ( , )

(1 ) ( , 0) (1 ) ( ,1).

com base

base add

S S

S S

   

   



   
                (2.47) 

And, if Equation (2.47) is expressed in the form of B spline basis function, we have 

following form.  

( , ) ( , )

(1 ) ( ,0) (1 ) ( ,1) ,
add

com
A A

A

add
A A A A

A A

R

R R

   

   



 



   



 

S B

B B

φ

φ φ

      (2.48) 

where, ( , )AR    is defined as NURBS basis function in the based patch domain, φ  is 

a set of control points constituting the based patch domain, ( , )add
AR    is defined as 

NURBS basis function in the additional patch domain, a ddφ  is a set of control points 

constituting the additional patch domain. And we deform Equation (2.48) as 

1 2( , ) ( , ) ( , ) ,
add

com com com
A A A A

A A

R R     
 

  S B B
φ φ

                (2.49) 

where, 

 1( , ) ( , ) (1 ) ( ,0)com
A A A A A

A A

R R R     
 

   B B
φ φ

               (2.50) 

 2 ( , ) (1 ) ( ,1)
add add

com add
A A A A

A A

R R   
 

  B B
φ φ

                  (2.51) 

When, co m a d d φ φ φ  is considered, the Equation (2.49) can ultimately be expressed 

as following by product of the shape functions and the control points. 
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1 2

( , ) ( , )

( , ) ( , ) ,

com

add

com com
A A

A

com com
A A A A

A A

R

R R

   

   



 



 



 

S B

B B

φ

φ φ                

(2.52) 

where, ( , )com
AR    is the shape function of the multiple patch domain, co mφ  is a set of 

control points constituting the multiple patch domain. For ( , )com
AR   , it is defined as 

following. 

1

2

( , ) | ( , ),

( , ) | ( , ).add

com com
A A A

com com
A AA

R R

R R

   

   








φ

φ                                       

(2.53) 

And, in the next section, we will give formulas of connected to additional patch 

domain the in the side of 2, 3, 4Side Side Side . 

2.7.2 Definition formula for multiple patch domain 

The multiple patch domain is defined as following form. 

( , ) ( , ) ,
com

com com
A A

A

R   


 S B
φ

                                      (2.54) 

where, ( , )com
AR    is defined as following. 

1

2

( , ) | ( , ),

( , ) | ( , ).add

com com
A A A

com com
A AA

R R

R R

   

   








φ

φ

                                          (2.55) 

For 
1( , )com

AR   ,
2( , )com

AR   , it is dependent on the additional patch area connected to 

an edge of the based patch area. Thus, we have following four situations. 

In the case of connection the additional patch domain in 1Side , 

1

2

( , ) ( , ) (1 ) ( ,0),

( , ) (1 ) ( ,1).

com
A A A

com add
A A

R R R

R R

     

   

  

 
                          (2.56) 
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In the case of connection the additional patch domain in 2Side , 

1

2

( , ) ( , ) (1, ),

( , ) (0, ).

com
A A A

com add
A A

R R R

R R

     

   

 


         (2.57) 

In the case of connection the additional patch domain in 3Side , 

1

2

( , ) ( , ) ( ,1),

( , ) ( ,0).

com
A A A

com add
A A

R R R

R R

     

   

 


                                 (2.58) 

In the case of connection the additional patch domain in 4Side , 

1

2

( , ) ( , ) (1 ) (0, ),

( , ) (1 ) (1, ).

com
A A A

com add
A A

R R R

R R

     

   

  

 
                              (2.59) 
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2.8 Conclusions  

In this section, the isogeometric analysis method is introduced in detail. Some 

important notions which is a key to understanding IGA are described and illustrated 

in detail, including the physical space, parameter space, and knot vector etc. In 

addition, some main paraphernalias employed in isogeometric analysis be given, for 

example, NURBS, B-spline, and basis function etc. Finally, we also focused on some 

of the properties of B-spline, which played a crucial role in the development of later 

algorithms. NURBS, as an extension of B-spline, fully inherits these features. In 

order to better understand how to use NURBS, we understand them geometrically 

and algebraically. The former perspective provides us with insight and intuition that 

are invaluable in designing grids, proving theorems, and many other activities related 

to isogeometric analysis. The latter view is especially useful when designing 

algorithms and creating software, and will be the setting we use most often. Both are 

critical to developing a broad understanding of NURBS technology. 
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3. UNCERTAINTY ANALYSIS 

 

 

 

3.1. Concepts of Uncertainty Analysis 

Stochastic analysis (Uncertainty Analysis) is also known as non-deterministic 

analysis, where the relationship between variables is given as a statistical value. In 

the real world, uncertainty is ubiquitous. For example, tiny particles floating on the 

surface of a liquid move continuously and disorderly, and the position of the particles 

at any time is uncertain; Another example is the shape and size of the electronic 

components or structure (Figure 3.1), which are also uncertain due to solder 

deformation and corrosion. Such uncertain phenomena cannot be grasped on the 

surface. In fact, behind certain uncertainties, there is often a certain probability law 

hidden. Therefore, the stochastic analysis model based on probability and 

mathematical statistics become a solution to such problems. It is one of the most 

effective tools. Here, we give a concept map (Figure 3.2) of the uncertainty analysis. 

When the input is a statistical distribution, the response will also obtain a statistical 

distribution related to the input statistical distribution through a series of analytical 
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methods. That is to say, from a mathematical point of view, the uncertainty 

characteristic of the response 1 2( , )u    is a function of the uncertainty characteristics 

of the input parameters. The response is based on the uncertainty characteristics of 

the input parameters in the space and the time. 

 

(a) Geometrical shape (Randomness in Manufacturing (the pictures cited from 

Reference [1]) 

 

 

(b) Corrosion (Wastage after Years of Exposure in the Operation) (the pictures cited 

from Reference [2]) 

Figure 3.1 Image of Inherent Uncertainty 
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Figure 3.2 Concept Map of Uncertainty Analysis 
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3.2 Type of Uncertainty Analysis 

As a mainstream uncertainty analysis method, it is mainly divided into two large 

parts, one is “the non-intrusion method”, and the other is “the intrusive method”. 

And they all introduce probability variables into an analysis method, such as finite 

element methods, boundary element methods, and so on. The main difference is 

whether to modify the analysis method itself. The so-called non-intrusive method, as 

literally stated, simply introduces the uncertainty parameter into the analysis method 

and does not make any modifications to the analysis method. The intrusion method is 

to express the random variable in some form, introduce to the analysis method, and 

re-edit and normalize the analysis method. It essentially changes the analytical 

method and forms a new uncertainty analysis method with random variables. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Intrusive and Non-Intrusive Formulations 
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3.2.1. The non-intrusion method 

As a representative method of non-invasive methods, Monte Carlo method has been 

applied to uncertainty analysis to date. Here we give a Concept Map of the Monte 

Carlo method. When we assume that the input random variable follows a certain 

distribution (the normal distribution, the logarithmic distribution, etc.), then this 

distribution can be represented by m random samples. When we introduce the m 

samples into the analysis method, the m responses can be obtained, and the m 

responses will also follow a certain distribution to some extent. Thus, when an input 

parameter is considered to contain a random variable, we can obtain a random 

response by calculating multiple samples. 

 

 

 

 

Figure 3.4 Concept Map of Monte Carlo methods 
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3.2.2. The intrusion method 

About the intrusion method, the perturbation method was first developed, but the 

perturbation method can only indicate random variation within a certain small range 

due to the limitation of the method. Therefore, the spectral approach has been widely 

developed in recent years. 

3.2.2.1. The perturbation method 

The perturbation method uses Taylor series expansions to introduce randomness into 

analysis equation. Here we take the finite element method as an example to illustrate. 

When stiffness is considered to contain uncertainty, it can be expressed as the sum of 

an expected value and a variable, as shown below. 

0
1

N

i i
i

K K K 


  ，                                      (3.1) 

where, the 0K  is the expected value, iK
 is partial derivatives, i  is random variables. 

3.2.2.1. Response surface method and Spectral approach 

The spectral method has been introduced by Ghanem and Spanos[3] as an extension 

of the deterministic finite element method. Uncertainty of the Young modulus of a 

structure is described by using the Karhunen–Loève (K–L) expansion. However, K-L 

expansion can only deal with the Gaussian stochastic processes. When the inherent 

uncertainty of a structure is following non-Gaussian stochastic processes, K-L 

expansion method has become infeasible. The polynomial chaos expansion (PCE) 

method can represent not only a Gaussian distribution but also a non-Gaussian 

distribution. Sakamoto and Ghanem[4] proposed a new method to express inherent 

uncertainty of non-Gaussian stochastic processes using PCE method. PCE is the 

primary method used in this study to represent the internal uncertainty of the 

structure, which will be described in detail in the next chapter.  
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Since the intrusion method changes the analysis method internally, it often only 

needs to perform one analysis to get an uncertainty response. Compared to the Monte 

Carlo method, the calculation time and cost are greatly saved. 
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3.3. Polynomial Chaos Expansion (PCE) 

3.3.1 Introduction 

In uncertainty analysis, the stochastic expansion method is a significant alternative 

approach for representing uncertain parameters[5]. The purpose of stochastic 

expansion is to better describe the uncertainty of the system by introducing a series 

of polynomials characterizing the characteristics of the stochastic system.   

In this study, the PCE was employed in order to represent inherent uncertainty in 

structure model. PCE approach uses a random space composed of polynomial bases 

to describe the uncertainty of system with PDF form. The basic idea is to 

approximately represent uncertainty by using the sum of the orthogonal polynomial 

chaos containing independent random variables, and the key step is to determine the 

coefficients of each polynomial. The PCE with multiple random variables for a 

Gaussian random response is defined as follows[6]:  

         

      

1

1 1 1 2 1 2

1 1 2

1 2

1 2 3 1 2 3

1 2 3

0 0 1 2
1 1 1

3
1 1 1

,

, ,

i

i i i i i i
i i i

i i

i i i i i i
i i i

u a a a

a

      

     

 

  



  

     

  

 

  ，

       (3.2) 

where  u  is a random process that can express the input parameter and can 

approximate the response; 
1
, ,

pi ia a  are polynomial coefficients;    
1

, ,
pi i     is 

a set of random variables in the sample space;     1
, ,

pp i i       is a set of 

orthogonal polynomials, which are functions of the random variable  
pi

  .  

Equation (3.2) can be reduced to: 

    
0

q

i i
i

u a  


 


，                                        (3.3) 
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where   


is the random vector built from random variables. q is the number of 

terms of polynomial chaos, and is determined by the following formula: 

( ) !
1

! !

p n
q

p n


  ，                                                (3.4) 

where p is the maximal order of polynomial chaos, and n is the number of random 

variables. According to the Askey-scheme[7], there are different optimal 

polynomials for different probability density functions, i.e., the choice of polynomial 

depends on the probability density function of the random variable. In this study, the 

stochastic response  u   was approximated by using the Hermite polynomials as 

optimal polynomials, because uncertainty in shape was hypothetically defined as 

following the normal random distribution. The multi-dimensional Hermite 

polynomials are expressed as follows: 

 1

1

1 1

2 2, , ( 1) .
p

p

p
p

p i i
i i

e e
   

 
 

 
  

 

   




T T

                (3.5)  

Note that the basis-functions constituting PCE are all orthogonal polynomials. 

Therefore, we used the orthogonal property of polynomials to deal with stiffness 

equations with random variables in this study. The orthogonal property of the 

Hermite polynomials is defined by the inner product of the weight functions as 

follows: 

       , ( ) ! ,m k m k kmD
W d k                         (3.6) 

where km  is the Kronecker delta and D is the domain of the standard normal 

probabilistic variable, and ( )W   is the weight function. Generally, the weight 

function is the same as the probability density function, in order to ensure that the 

PCE converges exponentially to a random variable. For the random variable whose 

probability density function is a Gauss function, the weight function is expressed as 

follows:  
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2-

2
1

( ) ,
2

W e


 
π                                                 

(3.7) 

and ( )m   is derived by the following characteristic: 

  1 0
.

0 0m

m

if m



   

                                      (3.8) 

As mentioned above, if the response surface is obtained by the PCE; then, the mean 

value and standard deviation of the stochastic response can be approximated by the 

following formulas: 

   

   

0

0 0
1

0

P

j j
j

P

j j
j

E u u

u u
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 





 

   






，

                            (3.9) 
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


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 

 
   

 

 





                              (3.10) 

Furthermore, the probability density function can also be obtained by the output 

responses.  

When we assume that a random variable follows a different probability distribution, 

its corresponding orthogonal polynomial is also different[7]. Here, as shown in the 

table 3.1, we give a detailed introduction which includes random variables are 

considered as discrete cases and continuous cases. 

 

Table 3.1 Weiner-Askey Scheme 
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 Random variable Polynomial Support 

Continuous Gaussian Hermite  ,   

 Gamma Laguerre  0,  

 Beta Jacobi  ,a b  

 Uniform Legendre  ,a b  

Discrete Poisson Charlier  0,1,2,  

 Binomial Krawtchouk  0,1, , N  

 Negative Binormial Meixner  0,1,2,  

 Hypergeometric Hahn  0,1, , N  

 

According to the table, we can clearly understand that we should use the Hermite 

polynomial when we assume that the random variable follows the Gaussian 

distribution, we should use the Laguerre polynomial when the random variable 

follows the gamma distribution, and so on. As an example, in the table below, we 

give the form of the Hermite polynomial of the one dimensional and two dimensional, 

respectively 

Table 3.2 One-Dimensional Hermite polynomial chaoses[5] 

i 
Order of the Basis 

function 

ith Basis function 

i  

2
i  

0 0 1 1 

1 1   1 

2 2 2 1   2 

3 3 3 3   6 

4 4 4 26 3    24 
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Table 3.3 Two-Dimensional Hermite polynomial chaoses[5] 

i 
Order of the Basis 

function 

ith Basis function 

i  
2
i  

0 0 1 1 

1 1 1  1 

2  2  1 

3 2 2
1 1   1 

4  1 2   2 

5  2
2 1   2 

6 3 2
1 2 2    2 

7  2
1 2 1    2 

8  3
1 13   6 

9  3
2 23   6 

 

Comparing Table 3.2 with Table 3.3, we can find that when there is one random 

variable, the four order base functions only need five polynomials to achieve. When 

two random variables are considered, the three order base functions require nine 

polynomials. That is, when more random variables are considered, in order to better 

represent random characteristics, we may need to use more polynomials. 

Thus far, some important aspects of PCE have been described with respect to 

uncertainty analysis. In the following chapters, we will introduce the application of 

PCE, and give a practical example to understand application more deeply. 
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3.3.2 Application of Polynomial Chaos 

This section describes the application of polynomial chaos [7]. First, we consider a 

stochastic differential equation that input random variable ( )ζ . 

   ( , ); ( , ) ,u f ζ ζx ζx x ,                                     (3.11) 

where,  is a general differential equation and it can be represented as linear or non-

linear. ( , ) x ζ  represents the input parameter, which is a function of the random 

variable ζ，and  ,u x ζ is the response term, which also contain a random variable 

because the input parameters contain random variables.  ,f x ζ  is the source term 

(such as Load in finite element equation) which may also contain random variables ζ 

or no random variables ζ.  

When we consider that the geometry of the structure, the material properties, etc. 

contain uncertainty, we can introduce this uncertainty into the system. So we can find 

that the response will also contain some uncertainty because the input parameters 

contain uncertainty, and the response  ,u x ζ  can be represented by Polynomial 

Chaos Expansion (PCE) as follows: 

     
0

,
P

i i
i

u u


 ζx x ζ  .                                          (3.12) 

where  iu x are the unknown coefficients of the PCE approximation and P is the 

number of order, and  i ζ are the polynomial basis functions (Table 3.2 and Table 

3.3). Substituting Equation(3.12) into Equation(3.11), the equation is Expressed as 

follows: 

     
0

( , ); ,
P

i i
i

u f


    
 

x θ x θ x θ ,                            (3.13) 
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where, because the polynomial basis functions  i θ  contain polynomial 

orthogonal properties, we can obtain the following equation by multiplying both 

sides of Equation(3.13) by ( ) ( )t W θ θ , and integrating the equation. 

         
0

( ); , ( ) ,
P

i i t t
i

u f


 
    

 
x θ x θ θ x θ θ  .          (3.13) 

When the 0,1,t P  , we can obtain a set of (P + 1) simultaneous equations for 

each unknown coefficients  iu x  as follows.  

 

         

         

         

         

0 0
0

1 1
0

2 2
0

0

( ); , ( ) ,

( ); , ( ) ,

.
( ); , ( ) ,

( ); , ( ) ,

P

i i
i

P

i i
i

P

i i
i

P

i i P P
i

u f

u f

u f

u f









     
 

     
 

     
 

     
 









x θ x θ θ x θ θ

x θ x θ θ x θ θ

x θ x θ θ x θ θ

x θ x θ θ x θ θ











        (3.14)

 

Through Equation (3.14), we can find that this simultaneous equations contains P+1 

unknown coefficients  0u x ,  1u x ,...,  Pu x  and P+1 equations. So we can solve the 

unknown coefficients  0u x ,  1u x ,...,  Pu x  by solving this simultaneous 

equations(Eq.(3.14)). 

In Figure 3.5, we show process of application of polynomial chaos for make the 

application of PCE easier to understand. When the inherent of model contains 

uncertainty and it obeying two different random variables (θ1,θ2), the input 

parameters  H θ is expressed as a polynomial form. And the response  u θ  can be 

approximated as polynomial function about the input random variables 1 2{ , } θ . 

Then we apply the expressed input parameters and the approximated output response 
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to the governing equations, the governing equations will be redefined as 

simultaneous equations, the unknown coefficients ui can be solved. The response 

surface u(θ) can be obtained when the coefficients iu  is determined. And when we 

want to obtain the probability density function of the response, we can bring the M 

samples of standard random variable θ into the resulting response surface u(θ) to 

obtain the probability density function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Process of Application of Polynomial Chaos 

Input parameters Output parameters

1 2

.

The input parameter H is represented

as polynomial form

   
0

P

i i
i

H H


 ζ ζ

.

The response can be assumed

as polynomial form

   
0

P

i i
i

u u


 ζ ζ

Response uncertainty

Governing equations

solving unknown coefficients iu

( )obtained response surface u ζ
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3.3.3 Numerical Example 

In this section, we give a simple numerical example of a continuous free-standing 

beam deflection problem for a better understanding of the application of polynomial 

chaos. The deflection problem of a beam is discussed considering Young’s modulus 

with uncertainty. The governing differential equation (Equation(3.15)) of this 

problem is give follow, and 3
3EI

L corresponding to ( , ) x ζ of Eq.(3.11),  

corresponding to ( , )u x ζ  of Eq.(3.11) and P  corresponding to  ,f x ζ  of Eq.(3.11). 

And we can see that P (  ,f x ζ ) does not contain uncertainty in this simple example. 

3

3
,

EI
P

L


                                                   (3.15) 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Free-standing beam 
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
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where I  is moment of inertia of area, we consider it as solid cylinder, then I is

4

4

R
I


 , the R is radius of the solid cylinder. And L is the length of beam,  is the 

maximum deflection, P is load. They are all considered as deterministic parameters. 

As uncertainty parameters, the elastic modulus E is assumed to following Gaussian 

distribution with mean E  and standard deviation of E . So the E can be expressed 

as follows: 

,E E E                                                    (3.16) 

where,   is a standard normal random variable. In other words, Young's modulus 

can be represented as follows by Hermite polynomial of 1st order because of 

 0 1  ,  0    (From Table 3.2). 

   

 

0 1

1

0

= i i
i

E E E

E

  




   


                                     (3.17) 

In this problem, the maximum deflection () is considered as response of the system.  

It will contain some uncertainty because we assume that there is uncertainty in 

Young's modulus. So that the response   can be approximate by using a one 

dimensional PCE of the random variable   of n order, and show following. 

   
0

n

i i
i

   


  ，                                         (3.18) 

where  i   are the orthogonal basis function which is Hermite polynomials of the 

variables ( ) , and i  are the unknown coefficients of PCE,   is a Gaussian 

random variable. The main idea to approximate the response     by using 

orthogonal polynomials with unknown coefficients i . At this point, it is quite 
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obvious that we need to estimate i  for to obtain statistics of the response 

completely. This can be achieved as described following.  

First we substitute Equation(3.17) and Equation(3.18) into Equation(3.15) as follows. 

             
1

3
0 0

3
,

n

i i i i
i i

I
E P

L
  

 

                                      (3.19) 

And consider the orthogonality of polynomials, we multiply both sides of 

Equation(3.19) by ( ) ( )t w  , and integrating the equation, the following equations 

are obtained. 

       
1

3
0 0

3
,

n

i j i j t t
i j

I
E P

L
    

 

                   (3.20) 

where the Young's modulus E is approximated by 1th order polynomial as shown in 

Equation(3.17). Thus, in this problem, we can assume that the order (n) of PCE 

approximation of Equation(3.18) is 1. And the 0,1t  , we can obtain the 

simultaneous equations, it can be derived as follows: 

     

     

 
 

1 1

03
0 0 0

1 1
1

13
0 0

3

= ,
3

i j i j
i j

i j i j
i j

I
E

PL

I P
E

L

   


   

 

 

         
       
 




           (3.21) 

We can see that there are two equations with two unknowns 0 1 ， . Therefore, we 

can find that we can be obtained the response surface     by solving only two 

deterministic equations. When we need to know more statistics, such as the mean and 

standard deviation, this information can be obtained by Eq.(3.9) and Eq.(3.10) when the 

response surface is obtained. Moreover, when we need to get the probability distribution 

function of the response, it can be obtained by using large number of realizations of standard 

normal random variable ( ) and plugging them into Equation(3.18). Therefore, we can 

clearly understand that this method avoids the multiple computations of MCS very 

well, because this method directly obtains the response surface with random 
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variables. 

And for clarity we show first order PCE (n=1). The inner product values are shown 

in the following tables:  

 

 

 

Table 3.4 Inner Products 

     0i j      

      i 

   j 
0 1 

0 1 0 

1 0 1 

 

 

     1i j      

      i 

   j 
0 1 

0 0 1 

1 1 0 
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Here, we try to give the specific values of deterministic parameters and uncertain 

parameters to evaluate the uncertainty of maximum deflection. 

 

2

4

1000

( 205800 , 1000 )

1 /

1 ( )
4

X X

L mm

E Normal MPa MPa

q MPa mm

R mm I mm

 




  



 

 

When Table3.4 is considered, we can obtain the following equation. 

 

 

0 0 1 13

1 0 0 13

3
+ = ,

3
+ =0 .

I
E E P

L
I

E E
L

 

 
                                              (3.22) 

Bring in parameter values to the equation Eq.(3.22) 

 

 

0 13

0 13

3
205800 +1000 =1 ,

1000 4
3

1000 +205800 =0 .
1000 4

  

  
                                 (3.23) 

We can get 0  and 1  by solving this simultaneous equations.  

0

0

2062.38

10.0209






 
 

Thus, the response surface     can be written as following. 

 =2062.38 10.0209 .                                      (3.24) 

And he following Table shows the mean and standard deviation of the response 

    which is obtained from MCS and PCE and Eq.(3.9) and Eq.(3.10). The result 

of MCS is obtained by running 10000 simulations of the deterministic problem in 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

108 
 

 

regard to the Young's modulus of a given 10,000 samples. And, the result of PCE is 

obtained by introducing 10,000 random variables into Eq.(3.24). We can find that the 

results of MCE and PCE are very similar, and the mean and standard deviation 

equations calculated according to polynomial statistical Eq.(3.9) and Eq.(3.10) are 

also close to MCS to some extent. Therefore, when we get the response surface, we 

can easily and quickly calculate the statistical properties through Eq.(3.9) and 

Eq.(3.10). And we can find that this method avoids multiple calculations of MCS and 

greatly saves costs. 

 

Table 3.4 Comparative statistics of response     

Statistics of     
MCS 

(10000 samples) 

PCE 

(10000 samples) 

PCE 

(By Eq.) 

Mean (mm) 2062.26 2062.33 2062.38 

Standard dev. (mm) 10.10 10.10 10.02 

 

 

In Figure 3.7, the probability density distribution is shown by MCS and PCE. We can 

be find that PCE is shown to prove that the results are well consistent with MCS 

results. And we can easily get the probability distribution density function by using 

this method. 
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Figure 3.7: The probability density distributions  
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3.4. Conclusions 

In this chapter, we mainly describe the relevant knowledge of stochastic analysis, 

including the concept of stochastic analysis, the types of stochastic analysis, and the 

knowledge of the current mainstream polynomial expansion method. 

We can learn from this chapter that stochastic analysis is mainly divided into two 

categories: intrusive method and non-intrusive method. For stochastic analysis, 

intrusion method will become the main development direction because it saves 

computation time and cost more effectively. In recent years, polynomial expansion 

methods have often been used to represent the inherent randomness of structures. It 

is applied to analytical methods, and a new method is formulated. In this chapter, the 

properties, types, applications, and specific examples of polynomial expansion 

methods are given. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

111 
 

 

Reference 

[1] Point of management for steel frame construction, Japan Federation of 

Construction Contractors, 2015. (In Japanese) 

[2] M. M. Htun, Y. Kawamura, and M. Ajiki, ‘A Study on Random Field Model for 

Representation of Geometry of Corroded Plates and Estimation of Stochastic 

Properties of Their Strength’, J. Jpn. Soc. Nav. Archit. Ocean Eng., vol. 18, pp. 

91–99, 2013. 

[3] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral 

Approach. Courier Corporation, 2003. 

[4] Sakamoto Shigehiro and Ghanem Roger, ‘Polynomial Chaos Decomposition for 

the Simulation of Non-Gaussian Nonstationary Stochastic Processes’, J. Eng. 

Mech., vol. 128, no. 2, pp. 190–201, Feb. 2002. 

[5] S.-K. Choi, R. V. Grandhi, and R. A. Canfield, Reliability-based structural 

design. London: Springer, 2007. 

[6] D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow . . . 2002. 

[7] D. Xiu and G. Karniadakis, ‘The Wiener--Askey Polynomial Chaos for 

Stochastic Differential Equations’, SIAM J Sci Comput, vol. 24, pp. 619–644, 

Oct. 2002. 

 

 

 

 

 

 

 

 

 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

112 
 

 

 

 

4. STOCHASIC ISOGEOMETRIC 
ANALYSIS (SIGA) METHOD FOR 
UNCERTAINY IN SHAPE 

 

 

4.1. Overview 

There are various uncertainties in the field of contemporary engineering, such as 

corrosion surfaces, material properties, and geometric shapes. These uncertainties 

may be caused by the analytic object itself or by external causes. Therefore, many 

analytical methods for the problem of uncertainty have been developed[1]–[3]. 

However, in these analytical methods, it is rarely aimed at the analysis and research 

of uncertainty in shape. 

However, the shape uncertainty problem is an inherent problem that is inevitable in 

actual engineering design and has a great impact on the safety of the engineering 

structure. In figure 4.1, an example of a hole that is drilled in a flat metal sheet is 

given. Because of the processing technique, the hole drilled has inherent uncertainty 
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in shape. This uncertainties in shape caused by such processing will cause great 

potential safety hazards in the operation of machinery and equipment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 A hole is drilled in a flat metal sheet 

 

Actually, there are many more examples like this one with regard to generating shape 

uncertainty in the process of product development and design such as shape 

uncertainty caused by corrosion, and shape errors that occur during processing, etc. 

Therefore, this study focuses on the development of analytical methods for 

uncertainty in shape. We make full use of the geometric characteristics of the control 

points, that is, the geometric shapes can be manipulated freely and accurately by 

Inherent 
Uncertainty 
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moving the control points. And the structural analysis with consideration to the 

uncertainty in shape was implemented by importing the parameters of uncertainty 

(mean and deviation etc.) into the control point coordinates. Thus, the Stochastic 

isogeometric analysis method for uncertainty in shape is developed. This study 

explored one possible extension of IGA method in the field of computational 

stochastic mechanics, that is the extension of classical deterministic isogeometric 

analysis method into a probabilistic analytical framework to evaluate the uncertainty 

in shape.  

In the previous two chapters we introduced the NURBS as a pre-analysis tool and 

some of the main stochastic analysis techniques employed in this study, in detail. 

These important concepts and knowledge will become important tools for building 

stochastic isogeometric analysis framework. More specifically, we use NURBS in 

IGA to construct analytic geometry model and isogeometric space and 

parameterization etc. The stochastic analysis techniques are utilized to achieve the 

uncertainty represent in shape. A schematic illustration of the ideas is presented in 

Figure 4.2 in regard to the stochastic isogeometric analysis method for uncertainty in 

shape. The random variable as the input data is introduced control point in CAD, and 

the NURBS is applied to numerical analysis frameworks and geometric designs as 

shape functions and basis functions, respectively. Finally, the parameters of the 

computational domain are used to analyze the uncertainties in shape.  
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Figure 4.2 Schematic illustration of the stochastic isogeometric analysis method for 

uncertainty in shape 
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4.2. Establishment of analytical viewpoints 

In this study, we combined IGA method and the stochastic methodology in order to 

create a new method for estimating the uncertainty in shape. Moreover, in this 

section, we use two terminologies (“physically-based” and “FEA-based”) in order to 

describe the different analytic viewpoint between the proposed method and the 

SFEM. These two terminologies have been used in earlier methods integrating FEM 

and computational geometry [4]. Attempts by early engineering technicians to 

combine finite element method with computer aided geometric design are referred to 

as physically-based modeling. And try to connect them to solve the actual 

engineering problems[5]–[7]. In this study, we redefine this proper noun, namely 

uncertainty in shape was considered from a physically-based point of view, instead 

of the classic FEA-based point of view. The following sections briefly discuss the 

application of these two analytic points of view within uncertainty analysis 

framework, respectively. Subsequently, the formulation of SIGA for uncertainty in 

shape will be defined. 

4.2.1. Classic FEA-based Point of View for Uncertainty Analysis 

In general, the use of traditional SFEM to discuss uncertainty in shape is based on 

the FEA-based point of view, i.e. the SFEM is built from the analytical framework of 

the classic FEM [8-10]. Thus, it inherits all the characteristics of FEA in the term of 

geometry and algebra. However, this kind of inheritance is always a double-edged 

sword, which has both advantageous advantages and inevitable limitations. SFEM 

inherits a stable analytical framework and a relatively complete theoretical basis in 

traditionally deterministic finite elements. But it is regrettable that the some of the 

characteristics inherited may hinder the further development of SFEM in terms of 

uncertainty in shape, although they may not have any impact on the numerical 

analysis in the FEM or other SFEM. Among them, a major development bottleneck 

is the geometric representation of the analysis object. The requirements for the 

performance of the geometric shapes are usually relatively high in analyzing 
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uncertainty in shape, especially for complex geometric structures. However, 

throughout the probability analysis process, SFEM use a geometry approximated by 

FE-mesh to represent the uncertainty in shape, namely, the random field is actually 

acted upon an approximate geometry instead of an actual geometric structure, so that 

leads to geometric errors, inevitably. Notwithstanding, through some mesh 

refinement methods inherited from the FEM, the analytical object can be as much as 

possible conform to the actual geometric structure, but this typical geometric error 

cannot be reduced indefinitely. Moreover, the analytical model is partitioned into the 

elements connected by nodes, and through linear interpolation shape functions to 

achieve interpolation within the elements. Therefore, all the information is tied to the 

finite element mesh, in the SFEM, the uncertain parameter information is introduced 

into nodal coordinates as well, in order to represent the uncertainty in shape. As the 

position of the corresponding node changes, the shape of the mesh and elements also 

changes. Thus, in order to avoid affecting the accuracy of the analytical results, the 

appropriate FE-mesh must be restructured by remeshing, repeatedly. This increases 

the difficulty and time of analysis. Furthermore, the FE-mesh is usually insensitive to 

detecting shape changes at the geometrical boundaries containing surface or curve, or 

even failing to represent the deformation process. For instance, there is a plate with a 

circular hole and we assume that the random field is acted on the location of the 

circular hole. At present, within the SFEM analytical framework, the uncertainty at 

hole can only be considered as changes in the size of the radius [8]. If we want to 

assume that the uncertainty representation is the shape change from circular to other 

irregularities, which is difficult to be achieved in the current SFEM analytical 

framework, let alone more complex geometric structures. If it is in the case of FEM, 

the geometric shape can be artificially and arbitrarily changed by the geometric 

visualization tools, and then repartition it into the FE mesh. However, in the actual 

analysis and formulation, the shape of the analytical object cannot be controlled 

artificially and visually, instead, use the algebraic method to deal with the analysis 

process. Therefore, in the analysis process of SFEM, the uncertainty representation 

in shape cannot be achieved simply by changing the coordinates of nodes with 

uncertain parameters, and also need to consider its influence on other elements and 
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nodes. This influence is difficult to be controlled and determined for complex 

uncertainty representation. In Reference [8-10], Chen et al. by setting the coefficients 

of the degree of change at each node to represent the uncertainty in shape and gave 

the corresponding algorithm, but that cannot perform well for geometric structures 

with curves and surfaces due to the drawbacks inherited from the FEM mentioned 

above. Besides, these coefficients of the degree of change also there is an impact on 

the analytical results to a certain degree. Namely, if the bad coefficients are 

determined, a bad FE-mesh will be generated, resulting in an inaccuracy result that 

may be obtained [11]. 

Through the discussion of the above classic FEA-based point of view, we can know 

that despite the powerful FEM has been widely expanded and applied to various 

engineering fields, and has achieved prominent achievements. However, for the 

uncertainty analysis in shape based on FEM analysis framework, some inherent 

characteristics of FEM limit its development and greatly increase the difficulty and 

cost of analysis, Therefore, in order to break these bottlenecks, in this study we 

introduced the physically-based analytical point of view to deal with the uncertainty 

in shape. 

4.2.2 .Physically-based point of view for uncertainty analysis 

In this study, a novel method is proposed in the aspect of reliability analysis for 

uncertainty in shape, and it is carried out from a physically-based point of view, i.e. 

the entire probability analysis uses an actual geometric structure to represent 

uncertainty in shape instead of an approximate one. Similarly, the SIGA for 

uncertainty in shape is an extension from the classical isogeometric analysis 

framework. Some of the characteristics inherited from IGA make up for the 

shortcomings of traditional SFEM on the uncertainty analysis in shape. The SIGA 

takes full advantage of these the native characteristics of IGA, that is using the same 

geometry description in engineering design and analysis processes, respectively; 

Thus the random field is acted upon the geometric entity, the geometric errors are 

eliminated to the utmost, especially, the more complex the geometry, the more 
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obvious this advantage, for example, circle and ellipse, and irregular geometry, etc. 

And, since a physical mesh on the geometric entity is used for discretization in the 

uncertainty analysis process, it does not need to be like FEM the mesh repartition due 

to shape change and determining coefficients of the degree of shape at each node, so 

the calculation load is reduced. In addition, because the NURBS basis function is 

used as the shape function of the analytic part in this study, the shape function used 

in this study is smoother and more continuous than the one in SFEM. In Figure 4.3, 

we show,1st ,2nd , 3rd and 4th -degree NURBS base functions defined by knot vector 

0, 0,1,1, 2, 3, 4,{ 4,5}  . We can observe that the 2nd - degree NURBS basis function 

is 1C continuity, although it is repeated at position 1  and 4  . And with the 

increase of the number of degree, its continuity and smoothness are higher. In FEM, 

the continuity of the base function is always 0C , which is similar to the NURBS base 

function of the first degree. 
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Degree 1                                     Degree 2 

 

Degree 3                                   Degree 4 

Figure 4.3 1st -,2nd -, 3rd -and 4th -degree NURBS base functions defined by knot 

vector 0, 0,1,1, 2, 3, 4,{ 4,5}   
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Another major advantage of the physically-based point of view, besides being 

precision in representing the complex geometric structure and its less 

computationally expensive, is that it can define the analytical boundaries flexibly, 

exactly and easily. This advantage follows from the fact that the local support 

property and the local modification scheme property of NURBS [12], coupled with 

the power of NURBS which ability to directly manipulate the geometric shape by 

adjusting the control points. These features of NURBS have been described in detail 

in Chapter 2. Therefore, the uncertainty in shape can be represented arbitrarily, and 

region and degree of shape change can be controlled easily, flexibly and exactly. The 

specific example shown in Figure 4.4 consists of one-quarter of a circular disk with a 

circular hole at the centre. It was assumed that the shape of the circular hole entails 

uncertainty. As shown in Figure 4.4(a), the control points 1,2, and 3 control the shape 

of the hole directly, and any one of them can import uncertain parameters to 

represent the uncertainty in shape at the circular hole. Therefore, the determination 

and control of the analytical boundary for the region of interest became dramatically 

easier. We do not need to consider moving other control points to represent 

uncertainty in shape and the impact on the ones. 
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(a)   Control points 1, 2 and 3 for controlling circular hole at the centre. 

 

(b)  Shape of circular hole at centre is changed by moving control point 1 to 1෠. 

Figure 4 .4: One quarter of circular disk with circular hole at centre 

3 2 

1 

3 2 

1෠  1  
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Through the above discussion, it is obvious that the natural geometric features of 

NURBS provides great convenience for uncertainty analysis in shape. Here, it should 

be mentioned again that the ability of control points manipulating geometric shape 

intuitively and freely was adequately exploited to achieve representation of 

uncertainty in shape in this study. Thereby, degrees of freedom and uncertain 

parameters are located at the control points. And based on an affine invariance 

property that follows from the partition of unity property in the NURBS [12,13], 

ensures that the random field acts precisely on the geometric entity through the 

control points, in spite of the fact that the control points are commonly not 

interpolatory in NURBS, unlike in standard stochastic FEM. 

4.2.3. Identifying degree and regions of the actual domain influenced by 
each of control points. 

In this study, part of the power of NURBS was utilized, that is the ability to 

intuitively change their shape by adjusting the control points. However, compared 

with nodal uncertainty in SFEM, the identification of uncertainty of control points in 

SIGA is a challenging problem. This is because control points do not typically lie on 

the shape. In this study, we utilize several properties of NURBS (i.e. partition of 

unity property, local support property and the local modification scheme property) to 

process identification of uncertainty of control points in SIGA. A complete 

discussion of these properties is beyond the scope of this chapter, but a good 

introduction in the context of NURBS can be found in Chapter 2. Next, let us 

elaborate on how we identified the uncertainty of control points in this study. In 

Chapter 2 of this paper, we have introduced the definition of NURBS curves and 

surfaces and their properties. A geometric model in the physical space is constructed 

by taking a linear combination of NURBS basis functions. Note that the elements 

and mesh are also constructed while building geometric models. Note also that for 

the definition of element and mesh, the SFEM and SIGA are the difference. In 

stochastic finite element method, there is one notion of a mesh and one notion of an 
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element. Elements are usually defined by their nodal coordinates and the degrees-of-

freedom, that is, if we move a node, it can only affect the geometric shape of the 

element it is in. The FE mesh is structured from elements connected by nodes, and 

the random field acts directly on the FE mesh as the object of analysis. Therefore, for 

SFEM, the identification of shape uncertainty is easy. However, in NURBS, there are 

two notions of mesh, the control mesh (that is also known as the “control net”) and 

the physical mesh. Piecewise linear interpolation of the control points gives the so-

called control mesh. The control mesh consists of multilinear elements, in one 

dimension they are line segments, in two dimensions they are bilinear quadrilateral 

elements. The control mesh has the look of a typical finite element mesh of 

multilinear elements, but the control mesh does not conform to the actual geometry. 

The physical mesh is constructed based on the knot span and it is in line with the 

geometric entities in physical space, namely the knots in the parameter space, by 

geometric mapping, partition the geometric entity into elements. Thus, the elements 

have representations in both a parameter space and physical space. Note that these 

elements are the smallest geometric entities in physical space we deal with, and so 

they also are thought of as micro-element. Note also that, when we talk about 

"elements" without further description, we usually mean the elements defined by the 

knot span in physical mesh. In this study, we introduce uncertain parameters into the 

control points to implement shape uncertainty analysis, but these control points are 

usually inserted into the control mesh, not in the physical mesh. Therefore, we must 

confirm the relationship between the control point and the physical mesh in order to 

identify the effect of the control point containing the random variable on the actual 

geometric shape. Namely, we should know the regions of the actual domain where 

control point with uncertainty can influence. 

Let's take a closer look at how does uncertainty in shape of geometry represent if the 

parameters of uncertainty are introduced a control point. In NURBS, the control 

points are usually not interpolatory, unlike in standard finite element analysis. 

However, uncertainty parameters in this study and degrees of freedom are thought to 

as control variables are located at the control points, and the information located at 
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the control points can be precisely mapped by the affine transformations into the 

geometric entity. This is because the NURBS possess an affine invariance property 

following from the partition of unity property [12], i.e. an affine transformation is 

applied to the geometric entity by applying it directly to the control points. Affine 

transformations include translations, rotations, scalings, and uniform stretchings and 

shearings. And based on the affine invariance property, ensures that the random field 

acts precisely on the geometric entity through the control points. This property is 

very important for our work. Based on this property we can exactly represent 

uncertainty in actual geometry through introduce uncertainty into the control points. 

Additionally, from a geometric point of view, we can consider that the control points 

imported uncertainty can be expressed in the form of a randomly varying geometric 

vector. Therefore, it needs to be discussed from two aspects of direction and distance 

how the uncertainty introduced into the control point is identified on the actual 

geometry. For the convenience of explanation, this part is mainly discussed based on 

the NURBS curve, and the NURBS surfaces follow directly from the curve case.  

The local modification scheme property discussed on an earlier section states that 

changing the position of the control point iB  only affects 1p  elements at actual 

geometry, where p is the degree of a NURBS curve. In fact, the shape change is 

translational in the direction of the control point being moved. The Figure 4.5 

illustrated this effect. Both the curve in Figure 4.5(a) and (b) are the NURBS curves 

of degree 2 described by 9 control points (denoted by the red dots), and the knots 

(marked with red crosses). These knots defined 7 knot spans (elements) were denoted 

in figure 4.5 using 7 different colored curve segments. The Figure 4.5 (a) showed the 

original curve. If the control point  5B at the original curve is moved to a new 

position  5B  as indicated by the red vector in Figure 4.5(b), the curve is moved in 

the same direction. The results were shown in Figure 4.5(b), we took respectively 

two points located in the knots 3 / 7   and 4 / 7  on the curve as the reference 

for better visualization. It is obvious that  3/ 7C  and  4 / 7C  are moved in the 
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same direction to  3/ 7C and  4/7C , as shown by both the blue vectors. Note, as 

you can see, moving the control point  5B only affects elements 3, 4 and 5 on the 

curve, their position is changed to curve segments 3 ' , 4 '  and 5 ' . The elements 1, 2, 

6 and 7 are not affected. 

 

 

 

 

(a) original curve is defined by knot vector  

3 5 61 2 4{0, 0, 0, , , , , , ,1,1,1}7 7 7 7 7 7   and 9 control points. The curve is 

partitioned into elements, are denoted by the curve segments of different colours. 
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(a) The shape of curve is changed by the moving the control point B (5 )  to 

B '(5) . 

Figure 4.5. The piecewise quadratic NURBS curve. 

 

Let us take a look at some details from the algebraic perspective. Through Equation 

(2.35) in the Chapter 2, a piecewise-polynomial NURBS curve of degree p can be 

given as follows: 

,( ) ( )
n

i p i
i

C R B 
                                      

(by 2.35) 
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Let control point Bk be introduced uncertainty, i.e. the control point Bk is moved to a 

new position kB v


, where v

is randomly varying geometric vector, that gives both 

the direction and length of this move. Since the new NURBS curve is defined 

0 1, , , , ,k nB B B v B
  by its equation '( )C   is the following. 

1

, , ,
0 1

, ,
0

,

'( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )

k n

i p i k p k i p i
i i k

n

i p i k p
i

k p

C R B R B v R B

R B R v

C R v

   

 

 



  



   

 

 

 








                    

(4.1) 

 

Therefore, only the k-th term uses a control point containing uncertainty, kB v


, after 

regrouping we know that the new curve is the sum of the original curve and a 

randomly varying geometric vector , ( )k pR v  . Since , ( )k pR  is non-zero on the interval

1,i i p    , i.e. if   outside this interval, this extra term is zero (local support 

property of NURBS basis function), moving a control point only affects the shape of 

a section of the given curve. 

In the above, if control point Bi is moved in certain direction to a new position 'iB , 

then a point on a NURBS curve at a fixed ξ value, where ξ is in 1,i i p    , will be 

moved in the same direction from Bi to 'iB . However, the distance moved is 

different from points on the original curve to ones on the new curve, i.e. the degree 

of curve change in 1,i i p     is different. We can clearly know from the Equation 

(4.1) that the moved distance of any point on the curve is the , ( )k pR v  . More 

precisely, give a, we have fixed point ( )C  on the original curve and ( )C  on the 

new curve, and   ,'( ) i pC C R v  


. Since v


 gives the direction of movement, 

'( )C  is the result of moving ( )C   in the same direction as the moved direction of 
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control point. The length of this translation is, of course, the length of vector 

, ( )k pR v  . Therefore, when , ( )k pR   reaches its maximum, the change of curve is the 

largest. For example, let us calculate the distance between C(3/7) and '(3 / 7)C , that 

is the length of vector 5,2(3/ 7) 0.5R v v
 

 where v


 is the vector containing 

parameters of uncertainty and 5,2(3 / 7)R is solved by Equation(2.34) in the Chapter 2, 

i.e. 

 

,
,

ˆ ˆˆ ,1

(3 / 7)
( ) .

(3 / 7)

i p i
i p n

i p ii

N w
R

N w





                                        

(4.2) 

 

Therefore, the distance moved from (3 / 7)C  to '(3 / 7)C  is about 50% of the 

distance between the original control point (5)B  and the new control point (5)B  as 

shown in Figure 4.5 (b). The distance at any point on the curve is calculated in the 

same way, scilicet, the corresponding point of   on the new curve is obtained by 

translating the corresponding point of   on the original curve in the direction of 

vector v


 with a distance of , ( )k pR v  . 

Next, let us discuss the case of NURBS surfaces. For better illustrative on this point, 

we suppose a two-dimensional geometry was structured from the Equation (2.42), 

and the let control point Bk,h be introduced uncertainty, i.e. the control point Bk,h was 

moved to a new position ,k hB v


, where v


 is randomly varying geometric vector 

used to represent uncertainty in shape. Since the new NURBS geometric structure 

was defined by 1,1 , ,, , , , ,k h n mB B v B
  as follows: 
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,
     

(4.3) 

It can be clearly known from Equation (4.3), only the k,h-th term used a control point 

containing uncertainty, ,k hB v


, after regrouping, the new geometric structure is the 

sum of the original one and a , ,( ) ( )k p h qR R v   . Furthermore, the randomly varying 

geometric vector v


can be expressed by coordinates of the movement of control 

point 

ˆ ˆ( , )v x x y y  


，                                                (4.4) 

where x and y are the control point coordinates before the shape change. x̂ and ŷ are 

the coordinates after the shape change. And its representation form regard with 

uncertainty can specifically be given by coordinate of the corresponding control 

points and a linear function with a random variable,  , as follows: 

 
0

ˆ ,
i

n

x x
i

x x L x L 


    
                                   

(4.5) 

 
0

ˆ
i

n

y y
i

y y L y L 


     ,                                  (4.6) 

where   is the polynomial (Hermite polynomials) chaos with random variables. 

xL and yL are the deviation lengths in the x- and y-direction, respectively.  In this 

study, the representation of uncertainty in shape is assumed to follow a normal 

distribution, such that the deviation lengths ( xL and yL ) can be rewritten as: 
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 
0

,
i

n

x x x x
i

L L L L  


   
                                  

(4.7) 

 
0

i

n

y y y y
i

L L L L  


    ，
                                   

(4.8) 

where xor yL and xor yL are the mean and standard deviation, respectively, the 

subscripts x and y represent the x- and y-direction in the coordinate space. Figure 4.4 

(b) shows an example of uncertainty representation with regard to geometrical shape. 

We assumed that the deformation of structure model occurs along the inner circular 

hole. In this example, the uncertainty in shape of the model was represented by 

introducing the uncertain parameter into control point 1, which is denoted by the 

hollow circle. Control point 1̂(red solid node) is the location of control point 1 after 

shape changed, and the bidirectional arrow (in black) indicates the deviation length 

(L). As shown in Figure 4.4 (b), we can see that the shape of the inner circular hole 

can be changed simply by moving control point 1, and without having to move other 

points. Additionally, the deviation length (L) is introduced directly into the 

coordinate of the control point in order to geometrically represent the uncertainty in 

shape.  

We can know through the above discussion. In order to identify uncertainty of 

control points and can successfully represent this uncertainty in the actual geometry. 

We first made use of knot span to structure the mesh in the actual geometry. And 

then through affine invariance property of NURBS, we can know that the probability 

characteristics is not changed in the affine transformation from control points to 

actual geometry. We utilize the local modification scheme property of NURBS to 

determine the region of the actual domain where control point with uncertainty can 

influence. In addition, the degree of influence of the control point containing 

uncertainty on the actual geometry can be determined from both a geometric 

perspective and an algebraic one. The former viewpoint gives us insight and intuition 

that will prove invaluable in designing geometric models, identifying uncertainty, 

and a host of other activities related to stochastic isogeometric analysis. The latter 
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viewpoint is particularly useful in designing algorithms, and will be the setting in 

which we most frequently work. In the design algorithms, we use the connectivity 

arrays to link the control points, element and knots etc., in order to implement the 

introduction of uncertainty and exactly control uncertainty representation in the 

actual domain. 
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4.3. Preprocessing for formalization of stochastic 
isogeometric analysis (SIGA) method for uncertainty in 
shape 

In this study, the SIGA framework was developed by utilising the intrusive method. 

The formulation of SIGA was defined by incorporating the PCE into the original 

IGA formulation framework. Therefore, Stiffness equation in original IGA 

formulation was redefined in the form of PCE. In this section, the formulation of 

SIGA is given with respect to a two-dimensional linear elasticity problem with a 

single random variable. Therefore, Before describing the stochastic isogeometric 

analysis method for uncertainty in shape, it is necessary to review the basic equations 

of linear elastic mechanics and the related energy principles. 

4.3.1. Basic equation of linear elastic mechanics 

 

Figure 4.6 Model of an elastic body 
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It is considered that the number sdn  of space dimension of the problem is 2. A 

general point is denoted by x. we will identify the point x with its position vector 

emanating. The unit outward normal vector to   is denoted by n. 

Firstly, the equilibrium equation for two-dimensional elastic problem is defined by 

2
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(4.9) 

where xF and yF are body forces. x , y and xy  are the only non-zero stress 

compoonents; u  and vare the displacement component; 
2

2

u

t
 


 and 
2

2

v

t
 


 are the 

inertia forces, in the static balance, they are zero, that is  
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(4.10) 

Secondly, geometric equation; The relationship between strain   and displacement 

at any point in the elastomer is expressed as follows 

,
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(4.11) 

Let ,x

u
u

x





 and , y

u
u

y





, then the matrix form of Equation (4.11) is 
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(4.12) 

The following relationship exists between the three strain components of Equation 

(4.11), called the deformation coordination condition, which is  

2 22

2 2
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x y x y

  
 

                                                
(4. 13) 

Assuming no initial stress or strains, stresses   are related to strains   as follow 

2

1 0

1 0 .
1

0 0 1 2(1 )

x x

y y

xy xy

E
  
  


  

    
                  

σ Dε

                         

(4.14) 

Where D is the constitutive matrix of plane stress, E is the elastic modulus and   is 

the Poisson’s ratio. If the problem is in a state of plane strain, E is replaced by 

  

1 0

1 0 .
1 1 2

0 0 1 2(1 2 )

E
 

 
 



 
    
  

D

                            

(4.15) 

In linear elastic problem, boundary conditions are classified into stress boundary 

conditions, displacement boundary conditions, or a mixture of the two. If the surface 

forces xF  and yF  are known, the stress boundary conditions can be written. 

.

x x yx

y xy y

F l m

F l m

 

 

 

 

，

                                                   

(4.16) 

If the displacement at the surface of the object is known, it is called the displacement 

boundary condition and can be written 
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, ,u u v v                                                       (4.17) 

Generally, for a correct solution to an elastic mechanics problem, all equations and 

boundary conditions of Equations (4.9) to (4.17) above should be satisfied. In this 

study we will also refer to these formulas for normalization. 

 

4.3.2. Principle of Virtual Work 

In the process of formalization, we need to use the principle of virtual work to 

construct the element matrix. Investigate the static equilibrium state of a deformed 

body under the action of external force. If the object is under the action of another 

new force system, a new deformation and displacement corresponding to the 

constraint condition is generated, which is called virtual displacement. The so-called 

"virtual" means that the displacement is not generated by the original force system. 

In this way, the original external force and internal force must work on the virtual 

displacement, which is called virtual work. According to the condition that the 

resultant force is zero when all the forces acting on any element in an elastic body 

are balanced, the condition that the sum of virtual work is zero is derived. Therefore, 

the definition of a virtual work principle for a suitable structural mechanics is as 

follows. 

   * * * *

* * * .

x y x y

x x y y xy xy

q u q v dS F u F v dV

dV     

  

  

 


                          (4.18) 

where *u and *v  are principle of virtual displacements; *
x , *

y and *
xy  are principle of 

virtual strain; The surface integral of the first term of the Equation (4.18) is the 

external force virtual work exerted by the surface force xq and yq on the surface S  of 

the elastomer. The second term represents the external force virtual work by the 

volumetric force xF and yF ; the right side of the formula represents the sum of the 

internal forces and virtual work inside the elastomer. According to Equation (4.18), 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

137 
 

 

we can know that if the object is in equilibrium under the action of external force, the 

external force virtual work acting on the elastic body is equal to the internal force 

virtual work. For the convenience of application, the Equation (4.18) can also be 

written in a matrix form. The following matrix symbols are introduced 

  [ ] ,T
x yq q q

                                                        
(4.19) 

  [ ] ,T
x yP F F

                                                     
(4.20) 

 * * *[ ]Tu v 
                                                          

(4.21) 

  [ ] ,T
x y xy                                               (4.22) 

 * * * *[ ] .T
x y xy                                                (4.23) 

Then the formula (4.18) can be abbreviated as 

           * * * .
T T T

q dS P dV dV                            
(4.24) 

 

4.3.3. Structural Domain  

Firstly, we need to define a domain posed over a NURBS geometry to be calculated 

in the linear static elastic problem. In this thesis, we use   to represent a whole 

computational domain. If the computational domain is composed of multiple patches, 

the corner mark ,P i  will be added, i.e. ,P i where i is the patch number. The entire 

computational domain for multiple patches is represented by 

,

1

n num
M P i
num

i





   ，
                                                

(4.25) 

where subscript num is the total number of patches. specifically, as shown in Figure 

4.7.   
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(a) A computational domain defined by single patch 

 

 

 

 

(b) A computational domain consisting of multiple patches. 

Figure 4.7 computational domain posed over a NURBS geometry 
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In addition, the smallest computational domain on the NURBS geometry entity (i.e 

element defined by physical mesh) can be marked as ,E j ,where subscript E is the 

meaning of the element, and j represents the number of elements. If the 

computational domain is composed of multiple patches, the element is represented as 

,
,

P i
E j . Therefore, the relationships between different computational domains are   

, ,
,

1 1 1

n num n num m eum
M P i P i
num E j

i i j

  

  

      
                                

(4.25) 

where eum is the total number of elements in each patch. An example of element 

partitioning over a NURBS geometry entity is shown in Figure 4.8. These elements 

are divided from the knot vector  1p n    and  1p n   in the   and   direction, 

respectively.  

 

 

(a) The notation ,E j ; 1, 2 9j   is used to represent elements defined by span in a 

single patch. 
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(b) The elements in multiple patches are represented by symbol ,
,

P i
E j ,where 

1, , 4; 1,2 9;i j    

Figure 4.8 Elements are marked in single patch and multiple patches,respectively. 

 

NURBS geometric entity actually has two coordinate systems, one is homogeneous 

coordinate and the other is parametric coordinate. homogeneous coordinates are 

standard spatial coordinates, and parametric coordinates conform to geometric entity. 

Therefore, the boundaries of NURBS geometric entities are defined by parametric 

coordinates. As shown in Figure 4.9, we want to define the boundary on the right 

side of the NURBS geometry, ie, the BD sides. Then the boundary BD is defined by 

the parameter coordinates  ,   as follows  

1 1 1,p n q m                                         (4.26) 

By Equation 2.42, boundary BD on geometric entities is defined by 
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,
, ,

1 1

,
,

1 1

( , ) ( ) ( )

1 ( )

( ).

n m
i j

i p j q
i j

n m
i j

j q
i j

N M

M

   





 

 



 







S B

B

S                                       

(4.27) 

 

 

Figure 4.9 The boundary BD on geometric entities 

 

By Equation 4.27, we can know that the two-dimensional surface equation ( , ) S  

eventually becomes a formula with a single variable. Applying the same logic to the 

remaining three boundaries of NURBS entity, the boundary CD is  

1 1 1,p n       
                                           

(4.28) 

with 
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( , ) ( )  S S                                               (4.29) 

The boundary AC 

1 1 1, q m                                               (4.30) 

( , ) ( )  S S                                              (4.31) 

and boundary AB is defined by 

1 1 1,p n q m         
                                    

(4.32) 

( , ) ( )  S S                                             (4.33) 

In Figure 4.10, we give a more detailed example. 

 

 

Figure 4.10 Geometric boundary on NURBS entity 
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4.3.4. Boundary value problems (BVPs)  

In the linear static elasticity problem, the domain to be calculated is defined as  , 

and the boundary of the domain is set as  (specifically, see Figure 4.11). However, 

the displacement constraint condition which is the boundary condition of the 

displacement is represented by g  and the load condition which is the boundary 

condition of the load is indicated by the symbol h . 

 

 

Figure 4.11 The boundary condition for load and displacement. 

 

When the region is two-dimensional, the stress is defined as follows (planar stress 

state is considered) 

11 12

21 22

x xy

yx y

   
   
   

   
  

                                       (4.34) 
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Displacement and volume force are expressed as follows. 

 1 2u uu                                                  (4.35) 

 1 2f ff
                                                 

(4.36) 

By Hooke's Law, the following equations can be defined. 

ij ijkl klc u                                                     (4.37) 

Based on equilibrium conditional equations of stress 

, 0 ( )ij j if in   
                                       

(4.38) 

The boundary conditions of displacement and load are defined by 

( )
ii i gu g on 

                                          
(4.39) 

( )
ii i gu g on 

                                          
(4.40) 

The corresponding vector form is 

 1 2g gg
                                               

(4.41) 

 1 2h hh
                                               

(4.42) 

 

4.3.5. Establish weak formulation 

In section 4.3.3, the strong form for the 2D linear elasticity is derived. In this section, 

we will derive the weak form by the strong form. 

Here, the strong form in the x-direction, + + =0xyx
xb

x y

 
 

, is multiplied by an 

arbitrary weight function ( , )xw x y  and integrated over the domain: 
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+ + =0.xyx
x x x xw d w d w b d

x y



  


  

                            (4.43) 

We expand Equation (4.43), and the Equation (4.44) can be obtained as show 

following. 

+ + =0.x x
x x x x x xy y xy x x

w w
w n d d w n d d w b d

x y
   

    

 
     

          (4.44) 

The x-component of the traction vector, t, was given by following equation.  

.x x x xy y

y xy x y y

t n n

t n n

 
 

   
       

t                                        (4.45)                              

This makes it possible to write the above equation as. 

 + =0.x x
x x x xy x x

w w
w t d d w b d

x y
 

   

  
      

                   (4.46) 

Analogous manipulations are carried out for the strong form in the y-direction, and 

hereby the equation for y-directions is given: 

+ =0.y y
y y y xy y y

w w
w t d d w b d

y x
 

   

  
      

                  (4.47) 

We can obtain a new equation by addition of the two equations. 

   + + +

+ =0.

x x y y x x y y

y yx x
x xy y xy

w t w t d w b w b d

w ww w
d

x y y x
   

 

   

 

   
    

    

 

   
          (4.48) 

We can use the following vectors. 
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x

y

b

b

 
  
 

b ,  
x

y

w

w

 
  
 

w ,  

x

y

yx

w

x
w

y

ww

x y

 
 

 
     

 
 

 
   

w ,  .
x

x

xy





 
   
 
 

σ              (4.49) 

The Equation (4.4) can be written as the weak form of the equilibrium equations in 

matrix notation: 

 T T T ,d d d
  

       w σ w t w b                                (4.50) 

where, the term T d


w t  is boundary loads, the term T d


w b  is volume loads. 

Here, since Equation (4.50) is cumbersome, it is rewritten in an easy-to-understand 

manner using matrix notation. For the left side of the Equation (4.50), we have 

 T
( ) ( )

( , ).

Td d

a


    



 w σ w D u

w u
Ω

ε ε Ω

                           

(4.51) 

The right side of the equation (4.50) is rewritten to 

T ( , )d


  w b w f
                                  

(4.52) 

T ( , )d


  w t w h Γ

                                       
(4.53) 

The final Equation (4.50) is simplified to 

Γ),(),(),( hwfwuw a                                 (4.54) 

In later chapters, we usually use Equation (4.54) to define the matrix form. 
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4.3.6. Galerkin approximation 

In this section, we will use Galerkin approximation for weak forms. In order to make 

it easier to understand, we first give the approximate form of each function and the 

weak form of the approximate form. 

Approximation of displacement: 

.h h h  u u v g                                             (4.55) 

Approximation of weight: 

1 2 3{ , , }.h h h hw w w w w                                      (4.56) 

where, hg  is defined according to boundary conditions. hv  is the item which is need 

solved. hg  and 
hv  are given as following. 

1 2 3{ , , },h h h hv v vv                                          (4.57) 

1 2 3{ , , }.h h h hg g gg                                         (4.58) 

Thus, we can be approximated weak form by using Equation (4.57) and (4.58). 

( , ) ( , ) ( , ) ,a  w u w f w h Γ                                    (4.59) 

( , ) ( , ) ( , ) ( , ).h h h h h ha a  w v w f w h w gΓ                       (4.60) 

In the following sections, we will elaborate on the approximation methods of each 

function. 

 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

148 
 

 

4.3.7. Approximation of displacement hu u  

The displacement is approximated by using shape function. Where, we use sdn  to 

represent the spatial dimension of the object domain. When 2sdn  , it is considered 

as a plane stress problem.  

Displacement: 

1 2{ , },u uu                                                 (4.61) 

Body Forces: 

1 2{ , },f ff                                                  (4.62) 

Surface Force: 

1 2{ , },h hh                                                  (4.63) 

Virtual Displacement: 

1 2{ , }.w ww                                               (4.64)                 

Then, Approximation of displacement u  can be shown in following. 

1 2{ , }.h h hu uu                                            (4.65) 

The hu  can be presented as following by using B-spline basis function. 

, ,h
i i A A i

A

u u R d


 
φ                                       

(4.66) 

where, the AR  is shape function, ,A id  is the degree of freedom corresponding to the 

control point of B-spline. A  is the DOF number corresponding to the control point. 

φ  is a set of degrees of freedom corresponding to all control points of domain Ω . 

We can find that we can define h
iu  when all ,A id  constituting domain Ω  is given. 
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4.3.8. Definition of hg , hv  

As shown in the boundaries assumed in Section 4.3.3, the displacement constraints 

are expressed by the following equations bases on hu u . 

( ).gi
i i onu g Γ　                                               (4.67) 

It can be written in the following form. 

( ).gi

h
i i onu g 　 Γ　                                            (4.68) 

  

When the following functions i  are considered, we have: 

2( ) .
gi

i i iu g d  
Γ

Γ                                     (4.69) 

When 0i  , we can find that displacement constraints can be fully satisfied. And  

when i  is very small, the conditions close to displacement constraints can also be 

applied to iu . Thus the Equation (4.69) can be transformed into the following forms. 

2

2 2

2

2
, ,

( )

2

{ ( ) 2 ( ) } .

gi

gi

g gi igi

i i i

i i i i

A i A A i A i i
A A

u g d

u u g g d

R d R d g g d
  

  

  

 
    

 





 

Γ

Γ

Γ

Γ

Γ

　 ・ ・ Γ

     (4.70) 

For ,i Bd whose DOF number is B, we consider i to be the smallest. 

,

0.i

i Bd





                                                (4.71)                                       

According to Equation (4.70), we have: 
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,
,

,

{2 ( ) 2 }

2 2 ,

gigi

gi

i
A i A B B i

Ai B

A B i A B i
A

R d R R g d
d

R R d R g










 



     




Γ

　 Γ

                            (4.72) 

where, 
gi

A AR d R 
Γ

Γ ,
gi

i ig d g 
Γ

Γ ,
,i A

gi

A i A i dR g d R g  （ は定数）

Γ

Γ 　 . 

Thun, the ,i Bd  should satisfy the following conditions.       

, .
gi

A B i A B i
A

R R d R g


                                      (4.73) 

The set of degree of freedom corresponding to the control point of boundary giΓ  is 

expressed by giφ . When the number of degrees of freedom is ig noden , it is equivalent 

to the displacement constraint in the whole range of giBφ . The matrix can be 

written in the following form. 

1 ,11 1 1 2 1

,22 1 2 2 2 2

1 2 ,

...

...
.

...

...

g nodei

g nodei

g nodeg node g node g nodeii i ig node g nodei i

in i

i in

ii nn n nn n

R R dR R R R R g

dR R R R R R R g

dR R R R R gR R

         
                 
                

  (4.74) 

We can obtain the value of  ,1 ,2 ,
, , ...., g nodei

T

i i i n
d d d by solving the Equation (4.74). 

And in order to distinguish, we use  ,1 ,2 ,
, , ...., g nodei

g g g T
i i i n

d d d  form. 

Especially when the displacement is completely constrained ( ( )0
gi

h
i i onu g  　 Γ　 ), 

Eq.(4.74) is considered as the following form, and we can find that it is completely 

satisfied with Form 0i  . 

 ,1 ,2 ,
, , ...., .g nodei

T
i i i n

d d d  0                                       (4.75) 
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As a result, we can judge from the constraints that it only needs to satisfy Equation 

(4.75). 

According to the above conclusion, we can decompose the displacement into “the 

part solved according to the boundary conditions h
ig ” and “the part of freedom that 

should be solved h
iv ”. It can be written in the following form. 

, ,

g gi i

h g
i A i A A i A

A A

h h
i i

u R d R d

v g

  

 

 

 
φ φ φ

・

，

                              (4.76) 

where, φ  is the set of degrees of freedom corresponding to the control points 

constituting domain Ω . giφ  is the set of degrees of freedom corresponding to the 

control points on boundary giΓ . 

4.3.9. Approximation of Virtual Displacement 
hw w  

In the same way as displacement u , we use B-spline basis function to approximate 

the virtual displacement w . 

1 2 3{ , , }.h h h hw w w w w                                 (by 4.56) 

When we use giφ , we have: 

,

,

0

,

g gi i

gi

h
i A i A A

A A

A i A
A

w R c R

R c

  

 

  



 



φ φ φ

φ φ

                                  (4.77) 

where, Aic ,  is a constant. And it satisfies the following equation. 

( )0 .
gi

h
i onw  　 Γ　                                             (4.78) 
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4.3.10. Space transformation 

In Chapter 2, we have introduced the concepts and definitions of parameter, physical, 

index and parent space in detail, and given the relationships that exist between each 

(see figure 2.5). In this section, in order to better understand the discretization 

process for the computational domains, we will briefly introduce how the 

relationships between these spaces are constructed. Usually, we connect these spaces 

through mapping (i.e. changing the variables and coordinate system). In conventional 

SFEM, the elements divided by FE-mesh in the physical space is directly mapped to 

the parent space, as shown in Figure 4.12. The parent space is an uniformized parent 

elements and parent element has its own mapping from the element in FE-mesh.  

 

 

Figure 4.12 the mapping is performed from the parent space to element in FE-mesh 
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In the SIGA, the discretization of the computational domain located on the NURBS 

geometric entity is performed using the knot vector in the parameter space. Moreover, 

the elements partitioned by the physical mesh in the physical space are in one-to-one 

correspondence with the knot spans in the parameter space (specifically, refer to 

Figure 4.13). For the NURBS entity constructed by multiple patch, each patch has its 

own separate parameter space. The definition of multi-patch mapping is shown in 

Figure 4.14. 

when the domain Ω is surrounded by two functions 1( )uψ , 2( )uψ , using the mapping 

function definition domain is the most simple to define transfinite mappings. 

1 2( , ) (1 ) ( ) ( ),P u v v u v u  ψ ψ                                 (4.79) 

where, for the random variable ,u v , it needs to satisfy the following conditions. 

| | 1, | | 1.u v                                              (4.80) 

Ultimately, we can use Equation (4.79) to define a multiple patch domain. 
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(a) A single B-spline map takes the patch from the parameter space to the physical 

space. 

 

 

(b) The multi- patch NURBS entity possess multiple separate parameter space 

Figure 4.13 the NURBS geometric entity is discretized by the parameter space 
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From the above discussion, we can see that in the process of discretization of 

NURBS geometric entities using SIGA method, an additional space needs to be 

considered, that is, parameter space, which does not exist in classical FEM method. 

Therefore, in SIGA framework, three space transformations need to be considered, 

i.e., an affine mapping from the parent space to the parameter space ( ˆf : ); a 

geometrical mapping from the parameter space to the physical space ( ˆ:g   ). 

Then, these two mappings are combined to constitute space mapping from the parent 

space into the physical space ( : f g  ). The mapping processes in the SIGA are 

illustrated in Figure 4.14. For a more detailed and thorough discussion of these space 

concepts, see [4]. 

 

 

Figure 4.14 Diagram of mappings in analysis process. Dashed line with arrowhead 

denotes the inverses of the mappings. 
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4.4. Formulation of Stochastic Isogeometric Analysis For 
Uncertainty In Shape 

In this study, the SIGA framework was developed by utilising the intrusive method. 

The formulation of SIGA was defined by incorporating the PCE into the original 

IGA formulation framework. Therefore, Stiffness equation in original IGA 

formulation was redefined in the form of PCE. In this section, the formulation of 

SIGA based on NURBS is given with respect to a two-dimensional linear elasticity 

problem with a single random variable.   

For the sake of actual calculation, we convert the weak form shown in Equation 4.54 

into a matrix form.  

First of all, the unit vector ie  for two-dimension is defined as follows (this unit 

vector will be used without further notice). 

2

1 0
,

0 1

   
    
   

1e e
                                              

(4.81) 

Through this unit vector, each function (vector form) can be rewritten as follows 

according to the summation rule. 

,h h

i iww e                                                  (4.82) 

,h h

i ivv e
                                                 (4.83) 

.h h

i igg e
                                                  (4.84) 

As shown in Section 4.3.7, each component of the virtual displacement 
hw  is 

expressed as follows. 

, .
g i

h

i A i A
A

w R c
 

 
φ φ                                         

(4.85) 
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Further, 
hv and 

hg can be rewritten as 

, ,
gi

h

i A i A
A

v R d
 

 
φ φ

・
                                            

(4.86) 

, ,
gi

h g

i A i A
A

g R d


 
φ

・
                                             

(4.87) 

where φ is the set of degrees of freedom corresponding to the control points 

constituting the computational domain; giφ is a set of degrees of freedom 

corresponding to the control points related to the boundary condition on the 

boundary giΓ . From the above, the Equation (4.54) can be transformed as follows by 

the Equations (4.85), (4.86) and (4.87). 

,
1

,
1

( ( , ) ) ( , ) ( , )

( ( , ) ).

sd

g j

sd

gi

n

A i B j j B A i A i
j B

n
g

A i B j j B
j B

a R R d R R

a R R d

  

 

 



 

 

e e e f e h

e e

Γ
φ φ

φ    

(4.88) 

Ultimately, the matrix equation can be constructed as follows:  

,Kd = F                                                           (4.89) 

where 

( , ) ,T T
A i B j i A B ja R R d  K e e e B DB e

Ω

Ω
                              

(4.90) 

,
1

( , ) ( , ) ( ( , ) ),
j

nsd
g

A i A i A i B j j B
j B g

R R a R R d
 

   F e f e h e eΓ
φ               

(4.91) 
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and K is the global stiffness matrix, F is the global force vector, and d is the 

unknown displacement response in this formulation. Note that global stiffness 

equation is defined in the whole computational domains  .  

We can apply the same logic to define patch stiffness equation. The patch matrix 

form will be used when the computational domain composed of multiple patches is 

analyzed. The patch stiffness equation in computational domain ,P i  can be defined 

by     

,P P Pk d f                                               (4.92) 

where Pk is the patch stiffness matrix, Pf is the patch force vector, and Pd is the 

unknown displacement response in this formulation. Note that A single patch can be 

considered as a special form of multiple patches. Finally, the patch analysis system is 

assembled from the local stiffness matrices ek and force vectors ef  established over 

the elements E . 

In the SIGA formulation, the local stiffness matrix containing the random variables 

  is expressed as follows: 

     ( )
e

T e
e d   


 k B DB J

                         
(4.93) 

where  B  and  J  are the strain matrix and the Jacobian matrix which involve 

random variable  ,respectively, D is the material property matrix.  

We have given the definition of each spatial transformation in Section 4.3.9, and the 

mapping between them is achieved by using the Jacobian determinant. Therefore, in 

the SIGA. the mapping relationship between the coordinate system  ,x y  in the 

physical space and the coordinate system  ,  in the parameter space can be 

defined by the Jacobian determinant including the random variable, as follows  
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 

   

   

0 0

0 0

ˆ ˆx x

ˆ ˆy y

,
i i

i i

n n

x x
i i

n n

y y
i i

x L x L

y L y L

 
   


 

   

  
   

  
   

 

 

   
   


   
   

      
            

      
            

 

 

J
 

 

 

 

      

(4.94) 

 

where x̂ and ŷ are the coordinates involving the random variable  in the physical 

space (see Equations (4.5) and (4.6)).   and  are the parametric coordinates in the 

parameter space, and are obtained by the knot vectors and parent element coordinates 

of the Gauss points, as follows: 

 1 1( ) ( )
,

2

i i i i    
    



                                  (4.95) 

 1 1( ) ( )
,

2
i i i i    

    



                                 (4.96)  

where  and are the parent element coordinates. In practice, the Equations (4.95) 

and (4.96) involves a mapping which from the parent space to the parameter space

ˆf : . Additionally, the mapping from the parameter space to the physical space 

ˆ:g    is calculated from the NURBS basis functions and the control point 

coordinates. The transformation matrix for mapping ˆ:g    is represented by 

Equations (2.30), (4.5) and (4.6)  
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 

   

   

1 0 1 0

1 0 1 0

ˆ ˆ

ˆ ˆ

,

e e

j j

e e

j j

g

n nn n
i i

i x i x
i j i j

n nn n
i i

i y i y
i j i j

x x

y y

R R
x L x L

R R
y L y L

 


 

 
 

 
 

   

   

  
   
  

   
     

                               

   

   

J

   

 (4.97)            

where en is the number of the nonzero NURBS basis function over element e, which 

is equal to 2( 1)p   in this formulation, and where p  is the order of the basis function. 

The associated Jacobian determinant for this mapping is denoted as  g J . Thus, 

the matrix form of Equation (4.94) is represented by 

 

   

   

1 0 1 0

1 0 1 0

ˆ ˆ

ˆ ˆ

e e

j j

e e

j j

n nn n
i i

i x i x
i j i j

n nn n
i i

i y i y
i j i j

x x

y y

R R
x L x L

R R
y L y L

 
  


 

  

  
  

  
  

   

   

    
    
    

    
      

            
     

           

   

   

 

 

 

 

J





 
 
 

( 4.98) 

Note that, in this study, uncertainty in shape is considered as the variable random, 

and represented by introducing PCE into the control points coordinates in the 

physical space. Therefore, uncertainty representation exists in this mapping process. 

In addition, the orthogonal property of PCE is needed to be used in order to perform 

the formulation. Therefore, the  J needs to be rewritten as Hermite polynomial 

form, and obtained by the following procedure: substituting Equations (4.7) and (4.8) 

into Equation (4.98), solving the Jacobian determinant, and then combining like 

terms with respect to  . Finally, the  J is expressed as: 
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  0 1
0

( ),
n

n
n

i

   


     J J J J J
                    

(4.99) 

where n is the polynomial order. it is equal to 2, since, in this study, the 

representation of uncertainty in shape was assumed to follow a normal distribution.  

Here, the implementation of polynomial transforms of 
0 0

( )
n ni

i ii i
 

 
  J J  

is based on the algorithm of paper [11], which we refer to as follows. 

 

 Chen [11] developed an algorithm to realize automatic transformation from 

the general polynomial form to the Hermite polynomial form. Here, as an 

example, the polynomial transforms of the m order will be explained such as 

the following equation. 

0 0

( )
m m

i
i i i

i i

a b  
 

  .                                 (4.100) 

Table 4.1 The Coefficients ijt of θ of Hermite Polynomial  i   

     j 

  i 

θ0 θ 1 θ 2 θ 3 ... 

0 1 0 0 0  

1 0 1 0 0  

2 -1 0 1 0  

3 0 -3 0 1  

...      
 

Here, the coefficients ( 1,2, )ia i m  and the coefficients ( 1, 2, )ib i m  of 

Equation(4.100) represents an arbitrary coefficient, and the θ represents an 

arbitrary random variable. And a table is also shown in which i is order of 
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polynomial,  j is the jth power of θ, and the values ijt  is coefficients of j in 

each order, it is corresponding to the basis function of Table 2.1. The 

coefficient ib of the Equation (4.100) can be computed by the following 

procedure. 

(i) 

Combined the Table 3.3, firstly, the coefficient ma of the highest order term 

( m ) is considered. The 
m

ma   can be expressed as follows. 

1

0
( )

mm j
m m m m mjj

a a a t   


                           (4.101) 

where, m mb a . However, it is find that Equation (4.101) has a remainder term 

1

0

m j
m mjj

a t 

 . This coefficient need be added to ( 0,1, 1)ja j m   that is, the 

coefficient ja  will be rewritten as follows. 

( 0,1, 1)j j m mja a a t j m    .                        (4.102) 

For example: when m=3 is considered, the 
3

3a can be rewritten as  

3 3
3 3 3( 3 ) 3a a a       in which 

3
3( ) 3     , that is 30 0t   , 31 3t   ,

32 0t  . By adding the remainder term 33a   to the coefficient 1a  of 1 on the 

left side of Equation (4.100), a new coefficient 1 1 33a a a  will be obtained 

and execute the following steps. 

 

(ii) 

Secondly ，  the coefficient  1ma   of second highest order term 1m   is 

considered. By using the same method as (ⅰ), 1 1m mb a   can be obtained.  Thus, 
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the coefficient ja  on the left side of Equation (4.100) can be expressed as 

1 1 ( 0,1,2, 2)j j m m ja a a t j m    ，  because terms less than m-2 is remained. 

(iii) 

Finally, the coefficients of  ( 2,3, )m j j m     can be obtained in order by 

reducing the order. 

Thus, we can find that by the above algorithm, the polynomial of n order can 

be automatically transformed into Hermite polynomial. 

 

 Moreover, in order to obtain the strain matrix  B , the derivatives of the basis-

functions with respect to the physical coordinates must be calculated. Thus, we first 

used Equations (4.95) and (4.96) to calculate the parametric coordinates with respect 

to the quadrature points in the parent space. subsequently, the derivatives of the 

basis-functions with respect to the parameter coordinates were calculated by 

Equation (2.31). Finally, the derivatives in the physical space were obtained by 

applying the chain-rule, as follows: 

( , )
,

ˆ ˆ ˆ
R R R

x x x

   
 

    
 

                                        
(4.103) 

( , )
,

ˆ ˆ ˆ
R R R

y y y

   
 

    
 

                                        
(4.104) 

where x̂  , ŷ  are obtained by calculating the inverse of the mapping from the 

parameter space to the physical space, and the inverse of this mapping is denoted by 

 1/ g J . In this expression, the denominator contains the random variable  ; 

therefore, it cannot be directly calculated by applying the PCE. However,  1/ g J

can be derived approximately by using orthogonally of Hermite polynomials, as 

follows 
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   1

0

,
r

g a a
a

 




  J
                                 

(4.105) 

where  a  represents the pth-order Hermite polynomials, and a represents the 

unknown coefficients with respect to the approximate polynomials. We used an 

algorithm based on literature [11] in order to calculate the unknown coefficients. 

Here, we will briefly describe the methods described in literature  [11]. 

Here, it is assumed that  1 g J  can be approximated by Hermite PCE as 

follows. 

   
0

1 r

j j
j


 

  
J

 ,                             (4.106)                                  

where, j  are unknown coefficients of approximated polynomial,  j   are 

the basis functions, represented by Hermite polynomial. The unknown 

coefficients j  can be decided as follows. Firstly, Equation (4.106) is 

rewritten as follows  

 
0 0

( ) 1
n r

i j j
i j

 
 

     J ,                          (4.107) 

Multiplying ( ) ( )t w   to both sides of Equation (4.107), and integrating the 

equation, we can be obtained following equation. 

 
0 0

( ) ( ) ( ) 1 ( ) ( ) .
n r

i i j j t t
i j

w d w d       
 

  

        J (4.108)
 

when the  (Equation) ( ) ( ) (Equation) ( )t tD
w d       is considered, this 

equation can be depicted as follows 
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0 0

( ) ( ) ( ) ( )
n r

i j i j t t
i j

   
 

      J .                (4.109) 

Thus, the following simultaneous equations about the coefficients j  are 

obtained when the t=0, ..., r or n (t=r when r<n, t=n when n<r). 

000 01 0

110 11 1

0 1

1

0

0

n

n

nn n nn

J J J

J J J

J J J

       
            
     
            



    


,                         (4.110) 

where jtJ  is 
0

( ) ( ) ( )
n

i i j t
i

  


   J . Here, ( ) ( ) ( )i j t     can be 

evaluated by numerical integration (Equation (4.111a)) or by using Equation 

(4.111b) [15]  

( ) ( ) ( ) ( ) ( ) ( ) ( )i j t i j t

D

w d              ,       (4.111a) 

0 , max( ) s
( ) ( ) ( ) ! ! !

( )
( )!( )!( )! 2

i j t

i j t odd i, j,t

i j t i j t
otherwise s

s i s j s t

  
    
      

   

.    

(4.111b) 

Then the unknown coefficients of approximation polynomial, j , is derived by 

solving simultaneous equations. And, we apply it to the solution of matrix  B in 

Equation (4.93). Thus,  B is expressed by Equations (4.103), (4.104) and (4.105), 

as follows: 

 

 

 

   

 

   
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       
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, ,, 00
ˆ

, , ,
0 0 .
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ˆ ˆ
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y
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y x

    
 

     
 

 
          
   



           
    
    

    
            
          

B J  (4.112) 
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We substituted Equation (4.104) into Equation (4.105) in order to rewrite the strain 

matrix  B as PCE form with respect to the random variable : 

 
       0 1

0

1 1 1 1
.

r
a

a a
ag g g g

   
    

          B B B B B
J J J J

   (4.113) 

Recall that in the above equations, the strain matrix and Jacobian matrix were all 

expressed in PCE form. Therefore, we were able to obtain the PCE representation 

form of Equation (4.93) as follows: 

   ,
0

.
n r

e e j j
j

 




 k k
                                  

(4.114)                                  

Subsequently, we assembled the local stiffness matrix ek into the global stiffness 

matrix K and rewrote it in PCE form, as follows:  

 
0

.
n r

j
j






 K K                                     (4.115)                                            

Similarly, the local force vector is expressed as follows: 

    ( ) ,
e

e
e eR J d  


f =                           (4.116)                                             

where e is the surface force vector. The PCE form is denoted as:  

   ,
0

n

e e i i
i

 


 f f
                                    

(4.117)                                  

The derivation process of Equation (4.117) was the same as that of Equation (4.114); 

however, due to the applied loads on the single-side, the ef was the obtained by the 

one-dimensional NURBS basis functions. Then, the global force vector was 

assembled and represented in PCE form, as follows:   

 
0

.
n

i
i




 F F
                                         

(4.118)                                                        
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Moreover, the unknown displacement response vector d in Equation (4.89) could 

also be derived approximately by utilising orthogonal property of Hermite 

polynomials. Thus, we first represented it in PCE form: 

 
0

.
n r

k k
k






 d d
                                        

(4.119)                                                         

Note that the order of PCE for Equation (4.119) is assumed in accord with that of 

global stiffness matrix (see Equation (4.115)), which is needed in order to solve the 

global stiffness matrix later. The substitution of Equations (4.115), (4.118), and 

(4.119) into Equation (32), yields: 

     
0 0 0

.
n r n r n

j k k i
j k i

  
 

  

      K d F
                   

(4.120)                                

To solve Equation (4.120), we utilised the same algorithm used to solve Equation 

(4.105). According to the algorithm [11], the orthogonal property of PCE was 

utilised in order to solve the unknown displacement response vector d. First the two-

sides of Equation (4.120) were multiplied by    ( )m W  and were then integrated, 

simultaneously. Thereby, we obtained: 

         
0 0 0

( ) ( ) .
n r n r n

j k k m i m
j k i

W d W d        
  

   

         K d F (4.121) 

Thus, the inner-product form can be given by   

         
0 0 0

,
n r n r n

k m j k i m
j k i

    
 

  

       K d F      (4.122) 

where 

         ( ) ( ) ,m a i m i aD
W d                    (4.123) 

where  m   is calculated by the Equation (3.8).  
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Subsequently, Equation (4.120) could be rewritten in a form of simultaneous 

equations by Equation (4.121), (4.122), and (4.123), as follows  

 

0,0 0,1 0, 0 0

1,0 1,1 1, 1 1

,0 ,1 ,

,

n r

n r

n r n r n r n r n r n r





     

       
            
    
              

K K K d F

K K K d F

K K K d F




     


            (4.124)                                 

where   denotes the inner-product with respect to PCE. Finally, the stochastic 

response of the displacement representing uncertainty in shape was obtained by 

Equation (4.124).  

After we find the displacement based on the Equations (4.119) and (4.120), the 

corresponding strain and stress can be calculated by 

,ε = Bu                                                     (4.125) 

.σ = DBu                                                   (4.126) 

The corresponding forms of uncertainty are as follows 

       

 

1

0 0 0

1

0

,

n r

u j j i i
u j i
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i
i
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

  

 



    
      

    

 

  



u

i

ε = B u
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(4.127) 
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i i
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 




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
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σ Dε

D B u
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(4.128) 
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In this study, we used the C++ programming language in order to implement the 

formulation of proposed method. Moreover, all C++ program flow charts have been 

added to Appendix A. 

Remark  

(1) In this formulation, the uncertain parameters were only imported into some 

specific control points in order to represent the uncertainty in shape. These specific 

control points were determined according to geometrical shape and range that needed 

to be analysed in the structure model, and these control points had ability to 

intuitively change shape within this range. Therefore, the uncertainty in shape for 

structure model could be accurately presented by just importing the uncertain 

parameters into one or more control points. In this context, this method greatly 

reduces the computational cost. 

(2) The role of PCE is important in the intrusive SIGA formulation procedure. 

Recalling that the stiffness matrix, force vector and displacement were all rewritten 

as a representation form of PCE, because we needed to use the orthogonal property 

of PCE to solve the global stiffness equation. 

(3) Note that the algorithms developed so far only apply to Gaussian stochastic 

fields and processes, and that program of SIGA formulation is implemented based on 

a single-patch. 

 

 

 

 

 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

170 
 

 

4.5. CONCLUSIONS 

In this section, we describe in detail the formalization process for stochastic 

isogeometric analysis method for uncertainty in shape. The formalization constructed 

is an intrusive formulation procedure. The deterministic isogoemetric analysis 

framework was rewritten as an uncertainty form based on PCE, and the orthogonal 

properties of PCE were fully utilised in order to solve the stiffness matrix.  

The idea of SIGA with uncertainty in shape proceeds mainly as follows: 

(1) The inherent randomness of a system is considered as an input, which is defined 

by the probability density function (PDF) of the random variable. 

(2) IGA is used in conjunction with the PCE of the Gaussian random field describing 

the analysis process.  

(3) The responses of the system are obtained by assuming that it is a function for 

inputting random variables.  

Note that, the role of the PCE in this study is very important, since it is used to 

represent uncertain parameters. 

 In addition, we propose a new analytical perspective to deal with the shape 

uncertainty problem in engineering analysis, namely, in this study, a novel method is 

proposed in the aspect of reliability analysis for uncertainty in shape, and it is carried 

out from a physically-based point of view. Because, the uncertainty in shape of 

structure model was represented by directly introducing stochastic parameters into 

the control points in the physical space, the new analytical viewpoint overcomes 

many shortcomings of the traditional SFEM method.    
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5. NUMERICAL EXAMPLES 

 

 

 
In this chapter, we apply the stochastic isogeometric analysis framework to deal with 

two-dimensional static elastic problems. Four numerical examples are thoroughly 

explored within this section. For the first numerical example which is a quarter-

circular cantilever beam model, the freshly proposed generalized stochastic 

isogeometric analysis based polynomial chaos expansion is rigorously verified 

against the well-established theoretical results. Subsequently, the proposed stochastic 

isogeometric analysis framework is further implemented for the stochastic static 

analysis of localized corrosion in the second example. The NURBS geometric 

models in the above two examples are all built with a single patch. For multi-patch 

NURBS geometry, we give examples of the infinite plate with a circular hole and 

butt joint，respectively. These examples fully verify the stability of the multi-patch 

SIGA analytical framework and the possibility of its application to more practical 

engineering problems. In all cases, the model problems considered here were linear-

elastic problems.  Their solutions compare directly to that of MCS used as a 

reference value. The all calculations are implemented using C++ programming 

language, and timed on a Windows 10 pro 64bit with Intel(R) CPU E5-2603 v3 @ 

1.6 GHz processor (12 CPUs) and 64GB RAM. Additionally, in the figure, the 

Poisson’s ratio and Young’s modulus are denoted by  and E , respectively.  
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5.1. Example 1: quarter-circular cantilever beam 

First, we present a verification example with regard to a quarter-circular cantilever 

beam shown in Figure 5.1. The analytical model is designed based on NURBS 

geometric modeling tool in CAD. The relevant model design dimensions are shown 

in Figure 5.2, where the inner and outer radii of the circular beam are 10 (mm) and 

30 (mm), they are denoted as inR , outR , respectively. In addition, the setup of the 

static elasticity problem is also illustrated in Figure 5.2, the hash marks on the 

bottom edge denote the Dirichlet boundary conditions. The beam was subjected to a 

uniform pressure ( 21N/mmxP  ) on its left-edge. Additionally, the material 

properties of the quarter-circular cantilever beam Poisson's ratio   and elastic 

coefficient E are also marked in Figure 5.2, respectively. The NURBS base used in 

shape design and analysis is constructed from the knot vector  and  in  - and  -

direction, respectively，as follows  

{0,0, 0,1,1,1}   

{0,0,0,0.250671,  0.501018 , 0.750020,1,1,1}   

The control mesh of the geometric model is shown in Figure 5.3, and the 

corresponding control point coordinates are listed in Table 5.1. 

In this two-dimensional example, we assumed that the changes in shape take place in 

the inner circle. As shown in Figure 5.4, moving any one of the control points 1, 2, 

and 3 can change the shape of the inner circle. Here, we imported the uncertainty 

parameters into the coordinate of control point 2 in order to intuitively manipulate 

the shape of the inner circle, as Figure 5.5, while xL and yL denote the deviation 

length of control point 2 in the x- and y-direction, respectively. The corresponding 

standard deviation and mean of xL and yL in control point 2 were set to 0.5 and 0, 

respectively. 
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Figure 5.1 The geometry of the circular beam. 

 

 

 

 

 

 

 

 

 

Figure 5.2  The geometry of the circular beam with material properties, boundary 

conditions and uniform pressure ( 21N/mmxP  ) 

 

 

  

x

y
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Figure 5.3   Control points and control net of quarter-circular cantilever beam 

 

Table 5.1 Control point coordinates for quarter-circular cantilever beam 

i j Bij wij 

1 1 (0, 10) 1 

2 2 (10, 10) 0.707 

3 3 (10, 0) 1 

1 4 (0, 12.5) 1 

2 5 (12.5,12.5) 0.707 

3 6 (12.5, 0) 1 

1 1 (0, 17.5) 1 

2 2 (17.5, 17.5) 0.707 

3 3 (17.5, 0) 1 

1 4 (0, 22.5) 1 

2 5 (22.5, 22.5) 0.707 

3 6 (22.5, 0) 1 

1 1 (0, 27.5) 1 

2 2 (27.5, 27.5) 0.707 

3 3 (27.5, 0) 1 

1 4 (0, 30) 1 

2 5 (30, 30) 0.707 

3 6 (30, 0) 1 
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(a) Moving control point 1 

 

(b) Moving control point 2 

 

(c) Moving control point 3 

Figure 5.4 Moving the control points 1, 2, 3, on the NURBS geometry 

1 2 

3 

1 2 

3 

1 2 

3 
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Figure 5.5 The uncertainty parameters are introduced into the coordinate of control 

point 2 

In this example, we present the analysis results for the displacement response surface 

in the position of control point A in the position of control point 3 (see, Figure 5.5), 

which is the position with the largest displacement, and compare them to the analysis 

results obtained by the MCS and the IGA methods, respectively.  

First, in the following, we give the deformation of the structure and the 

corresponding displacement results of IGA. In this case, the stochastic shape at the 

circular hole is arbitrary and controllable by introducing stochastic parameters to the 

corresponding control points. As shown in Figure 5.5, the stochastic parameters are 

introduced into coordinate of control point 2 in the x and y directions to represent the 

uncertainty. According to the stochastic parameters (the standard deviation and mean 

were 0.5 and 0, respectively) setting of Figure 5.5. In the Figure 5.6 to Figure 5.14, 

we respectively give stochastic shapes with the stochastic variables of -4, -3, -2, -1, 0, 

1, 2, 3 and 4. That is the deformation distances are -2.0mm, -1.5mm, -1.0mm, -

0.5mm, 0mm, 0.5mm, 1.0mm, 1.5mm, 2.0mm, respectively.  According to these 

figures, we can find that when the circular hole expands outward, the displacement of 

point A becomes larger. In reality, for the normal distribution, the values less than 

one standard deviation away from the mean account for 68.27% of the set; while two 

standard deviations from the mean account for 95.45%; and three standard deviations 

account for 99.73%. Therefore, the probability of four standard deviations appearing 

is very small.  
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(a) The deformation 

 

(b) The corresponding displacement results of IGA 

Figure 5.6 The deformation distance -2.0mm 
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(a) The deformation 

 

(b) The corresponding displacement results of IGA 

Figure 5.7 The deformation distance -1.5mm 
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(a) The deformation 

 

(b) The corresponding displacement results of IGA 

Figure 5.8 The deformation distance -1.0mm 
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(a) The deformation 

 

(b) The corresponding displacement results of IGA 

Figure 5.9 The deformation distance -0.5mm 
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(a) The deformation 

 

(b) The corresponding displacement results of IGA 

Figure 5.10 The deformation distance 0mm 
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(a) The deformation 

 

(b) The corresponding displacement results of IGA 

Figure 5.11 The deformation distance 0.5mm 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

185 
 

 

 

(a) The deformation 

 

(b) The corresponding displacement results of IGA 

Figure 5.12 The deformation distance 1.0mm 
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(a) The deformation 

 

(b) The corresponding displacement results of IGA 

Figure 5.13 The deformation distance 1.5mm 
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(a) The deformation 

 

(b) The corresponding displacement results of IGA 

Figure 5.14 The deformation distance 2.0mm 
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In order to demonstrate the accuracy of the analysis results obtained by the proposed 

method, the results of SIGA and IGA were compared, as shown in Figure 5.15, 

which shows that the proposed method had very high precision. The x-axis in Figure 

5.15 represents the stochastic variable  , while the y-axis represents the 

corresponding displacement value. The numerical results of IGA were obtained by 

modifying coordinate of control point 2 in the x- and y- direction as indicated in 

Table 5.2. The response surface of SIGA was computed by using Equation (4.119). 

In this example, the order of the Hermite polynomials used to calculate the respond 

surface was taken as the fourth-order. The polynomial coefficients within the range 

of 0th to 8th-order are shown in Table 5.3 and denoted by ia . They were derived by 

Equation (4.124) in Section 4. Thus, the response surface in this example was 

obtained by: 

     
     

3 6
0 1

7 9 10
2 3 4

d 1. 10 9.83 10

1.21 10 2.1 10 3.31 10

  

  

 

  

      

       
             (5.1) 

 

Figure 5.15 Displacement response obtained by SIGA and numerical results of IGA 
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In fact, the obtained response surface converged to an exact optimal solution as the 

order of the polynomial increased. Figure 5.16, shows error between the analysis 

results of IGA and SIGA. It can be seen that their errors are very small from the 

fourth-order of polynomials onwards. Thereby, the demand for precision of analysis 

results is met and this method is shown to be feasible and accurate. Additionally, the 

polynomial coefficients of response surface are also very small from fourth-order 

onwards and can be ignored (see Table 5.3). Based on these considerations, the 

polynomial of Equation (4.124) is only computed to the fourth-order.  

 

 

Table 5.2:  Moving distances for control point 2, and corresponding displacement of 

control point A, indicated in Figure 6(b). 

Moving 

distances 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

x-coordinate 8.00 8.50 9.00 9.50 10.00 10.5 11 11.5 12 

y-coordinate 8.00 8.50 9.00 9.50 10.00 10.5 11 11.5 12 

Displacement 

( 410 ) 

9.67 9.76 9.85 9.94 10.04 10.14 10.24 10.34 10.45 

 

Table 5.3:  Polynomial coefficients of response surface, (ai). 

 

 

Order 

(ith) 

0 1 2 3 4 5 6 7 8 

ai 1.0×10-3 9.8×10-6 1.2×10-7 -2.1×10-9 -3.3×10-10 -2.1×10-11 -2.2×10-12 2.5×10-12 -1.5×10-13 
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Figure 5.16 Error measured by numerical results of IGA and SIGA. 

Additionally, the statistical characteristics of the proposed method were investigated 

by comparing with Monte-Carlo simulation. In Figure 5.17, we present the 

displacement probability density functions for the control point A in the x-direction. 

The reference values (gray clustered column) were obtained by repeatedly 

performing Monte Carlo simulations with 10,000 model samples and the degrees of 

freedom in a single sample are 36. The average running time of the program for 

MSC is 99.196 second. For SIGA, the probability density function of the system was 

computed by substituting 10,000 random variables  into the Equation (5.1). The 

degrees of freedom are 324 and the average running time of the program is the 0.093 

second. The comparison of these results to those obtained by MCS revealed that the 

probability distribution obtained by SIGA is almost the same as that of MCS, but at a 

much lower computational cost. Moreover, the mean and standard deviation from 

these two methods and PCE are listed in Table 5.4. It can be easily seen that they are 

almost equal. Note that the mean and standard deviation of PCE are derived by 

Equations (3.9) and (3.10).   
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Table 5.4 Statistics of the displacement  

 SIGA MCS PCE 

MEAN (10-4) 9.5393 9.5392 9.5405 

STDEV (10-5) 1.0363 1.0468 1.0378 

 

Figure 5.17: Displacement probability density functions for the control point A in the 

x-direction  

Similarly, in the next part, we will give the stress situation for the control point 3 in 

the y-direction. In the Figure 5.18, we respectively give stochastic shapes with the 

stochastic variables of -4, -3, -2, -1, 0, 1, 2, 3 and 4. That is the deformation distances 

are -2.0mm, -1.5mm, -1.0mm, -0.5mm, 0mm, 0.5mm, 1.0mm, 1.5mm, 2.0mm, 

respectively.  And in order to demonstrate the accuracy of the analysis results 

obtained by the proposed method, the results of SIGA and IGA were compared, as 
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shown in Figure 5.19, which shows that the proposed method had very high precision. 

We can find that when the random variable changes from - 4 to 4, that is, the 

deformation distance changes from – 2mm to 2mm, the stress along the Y axis of 

point 3 tends to decrease. 

 

 

 

 

 

(a) The deformation distance -2.0mm 
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(b) The deformation distance -1.5mm 

 

(c) The deformation distance -1.0mm 
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(d) The deformation distance -0.5mm 

 

(e) The deformation distance 0.0mm 
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(f) The deformation distance 0.5mm 

 

(g) The deformation distance 1.0mm 
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(h) The deformation distance 1.5mm 

 

(i) The deformation distance 2.0mm 

Figure 5.18 The corresponding displacement results of IGA  
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Figure 5.19 Stress response obtained by SIGA and numerical results of IGA 

Additionally, the statistical characteristics of the proposed method were investigated 

by comparing with Monte-Carlo simulation. In Figure 5.20, we present the stress 

probability density functions for the control point 3 in the y-direction. The reference 

values (gray clustered column) were obtained by repeatedly performing Monte Carlo 

simulations with 10,000 model samples. The average running time of the program 

for MSC is 4940.52 second. For SIGA, the probability density function of the system 

was computed by substituting 10,000 random variables into the stress response 

equation. The average running time of the program is the 1.236 second. The 

comparison of these results to those obtained by MCS revealed that the probability 

distribution obtained by SIGA is almost the same as that of MCS, but at a much 

lower computational cost. Moreover, the mean and standard deviation from these two 

methods and PCE are listed in Table 5.5. It can be easily seen that they are almost 

equal. Note that the mean and standard deviation of PCE are derived by Equations 

(3.9) and (3.10).   
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Figure 5.20: Stress probability density functions for the control point 3 in the y-

direction  

 

Table 5.5 Statistics of the Stress 

 SIGA MCS PCE 

MEAN  6.4363 6.4440 6.4637 

STDEV  0.4164 0.4183 0.4179 

 

The results in this case provide a possibility for uncertainty estimation of the 

response using the proposed method. And we also can find that the stress for the 
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control point 3 in the y-direction is reduced when the radius of point 2 becomes 

larger, the stress is reduced from 8.5Mpa to 5Mpa. 
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5.2. Example 2:  localized corrosion 

The second example involves a potential application of this method to the problem of 

uncertainty in shape caused by localized corrosion. The controllability and scalability 

of proposed method are demonstrated by this example. The relevant setup of the 

boundary conditions and material properties is illustrated in Figure 5.21(a), where the 

analysis model was subjected to a uniform tensile force ( 2100N/mmxT  ) in the x-

direction on the right edge. The corresponding control net and control points is 

shown in Figure 5.21 (b) where m
yL  and n

yL are the deviation lengths of the control 

points m and n in the y-direction, respectively. 

 

 (a) Problem description and data.  

 

 

(b) Control net and control points. Rectangular region indicates location where 
localized corrosion phenomena occurred. 

Figure 5.21: Localized corrosion problem 

In this example, we assumed that localized corrosion phenomena appeared on the 

surface of region   shown in Figure 5.21 (b).  The uncertainty in shape in region   

m n 
B 

  

 
 

x

y
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can be represented through the introduction of the uncertainty parameters into the 

control points m and n, since these two control points have the ability to directly 

change the geometry of this area (see Figure 5.21 (b)). The corresponding stochastic 

parameters are shown in Table 4, where acceptable different values are assigned to 

the mean and standard deviation for the y-coordinate of control points m and n, 

respectively.  

Table 5.6:  Stochastic parameters ( m
yL  and n

yL  ) for the region   with uncertainty 

 

 

In what follows, we present the displacement nephogram under different deformation 

distance in Figure 5.22 and the shape variables of the red box in figure B can be 

observed. It is obtained by using IGA methods. In Table 5.7, we present the 

coefficients of displacement response obtained from proposed method in the x-

direction for the position of B point. By these coefficients, we computed the 

displacement response surface shown in Figure 5.23 and denoted by the solid grey 

line, while the red-dots denote the reference values obtained by determinate IGA 

method. by comparing the displacements obtained by SIGA and IGA. It can be easily 

seen that the analysis results of SIGA are in good agreement with the reference 

values.  

 

Table 5.7: Coefficients of displacement response, (ai). 

Order(ith) 0 1 2 3 

ai 5.1×10-2 -1.6×10-3 1.0×10-4 -5.0×10-6 

4 5 6 7 8 

2.0×10-7 -6.8×10-9 1.9×10-10 -2.9×10-11 2.0×10-12 

 

y-direction Mean Standard deviation 
m
yL (control point 

m) 

0 0.5 

n
yL (control point n) 0 0.6 
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(a) The random variable ζ=-4 

 

(b) The random variable ζ=-3 
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(c) The random variable ζ=-2 

 

(d) The random variable ζ=-1 
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(e) The random variable ζ=0 

 

(f) The random variable ζ=1 
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(g) The random variable ζ=2 

 

(h) The random variable ζ=3 
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(i) The random variable ζ=4 

Figure 5.22 The corresponding displacement results of IGA  

 

Figure 5.23: Displacement response from SIGA and numerical results of IGA 
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Furthermore, in Figure 5.24, we provide the probability density functions of 

displacement in the x-direction in the position of B point, they were obtained by 

MCS and SIGA methods, respectively. The results of MCS obtained by running for 

10,000 iterations are denoted by the grey-column in Figure 5.24. The results of SIGA 

were obtained by generating 10,000 random variables   in the same Gaussian 

random field as MCS, and then introducing the response surface. In comparison to 

MCS, the performance of SIGA was better in terms of computational efforts. 

Moreover, the mean and standard deviation for MCS ，SIGA and PCE are also 

shown in Table 5.8, where it can be seen that their degree of dispersion is almost the 

same. 

This example demonstrates flexibility of the proposed method. In the SFEM analysis 

framework, we may need to consider the deformation of the mesh and possible 

interference between the adjacent nodes, because these factors can affect the 

accuracy of the analytical results. The SIGA overcame these problems, we could 

choose the analysis positions and range of model freely and flexibly according to the 

actual situation during the process of analysing uncertainty. Especially, for dealing 

with complicacy geometry entity, this flexibility and efficiency is even more 

important. 
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Figure 5.24: Displacement probability density functions for B point position in x-

direction. Mean and standard deviation for MCS ，SIGA and PCE. 

Table 5.8 Statistics of the Displacement 

 SIGA MCS PCE 

MEAN(10-2)  5.1008 5.1037 5.1058 

STDEV(10-3)  1.5680 1.5775 1.5750 

 

Similarly, in the next part, we will give the stress situation for the point B in the x-

direction. In order to demonstrate the accuracy of the analysis results obtained by the 

proposed method for calculating stress, the results of SIGA and IGA were compared, 

as shown in Figure 5.25, which shows that the proposed method had very high 
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precision. We can find that when the random variable changes from - 4 to 4, the 

stress along the X axis of point B tends to increase and it also shows a linear change. 

 

 

Figure 5.25: Stress response from SIGA and numerical results of IGA 

 

Additionally, the statistical characteristics of the proposed method were investigated 

by comparing with Monte-Carlo simulation. In Figure 5.26, we present the stress 

probability density functions for the control point B in the x-direction. The reference 

values (gray clustered column) were obtained by repeatedly performing Monte Carlo 

simulations with 10,000 model samples. The average running time of the program 

for MSC is 28424.1 second. For SIGA, the probability density function of the system 

was computed by substituting 10,000 random variables into the stress response 

equation. The average running time of the program is the 4.977 second. The 
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comparison of these results to those obtained by MCS revealed that the probability 

distribution obtained by SIGA is almost the same as that of MCS, but at a much 

lower computational cost. Moreover, the mean and standard deviation from these two 

methods and PCE are listed in Table 5.9. It can be easily seen that they are almost 

equal. Note that the mean and standard deviation of PCE are derived by Equations 

(3.9) and (3.10).   

 

 

Figure 5.26: Stress probability density functions for B point position in x-direction. 
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Table 5.9 Statistics of the Stress 

 SIGA MCS PCE 

MEAN  302.61 302.54 302.66 

STDEV  3.8053 3.8144 3.8153 

 

The results in this case provide a possibility for uncertainty estimation of the 

response using the proposed method. And we also can find that the stress for the 

control point B in the x-direction is increased with the deepening of corrosion depth. 
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5.3. Example 3:  A Plate with a Circular Hole 

As a multi-patch example, we present a verification example with regard to quarter-

circular a plate with a circular hole shown in Figure 5.27. According to the properties 

of multi-patch, we can find that quarter-circular a plate with a circular hole model is 

actually composed of two patches. The analytical model is designed based on 

NURBS geometric modeling tool in CAD. The relevant model design dimensions are 

shown in Figure 5.28, where the radii of the plate with a circular hole are 1mm, and 

the length and width of the plate with a circular hole are 5mm. In addition, the setup 

of the static elasticity problem is also illustrated in Figure 5.28, the hash marks on the 

bottom edge and right edge denote the symmetry boundary condition. The plate was 

subjected to a uniform tension (Py) on its upper-edge. Additionally, the material 

properties of the plate with a circular hole Poisson's ratio υ and elastic coefficient E 

are also marked in Figure 5.28, respectively. The NURBS base used in shape design 

and analysis is constructed from the knot vector  and  in  - and -direction, 

respectively，as follows  

{0, 0, 0, 0.5,1,1,1}   

{0, 0, 0, 0.5,1,1,1}   

The control network of the geometric model is shown in Figure 5.29. 

In this two-dimensional example, we assumed that the changes in shape take place in 

the inner circle. As illustrated in Example 1, moving any control point around the 

circular hole can change the shape of the circular hole. In this example, as shown in 

Figure 5.30, we move point 1 to change the shape of the circular hole. Here, we 

imported the uncertainty parameters into the coordinate of control point 1 in order to 

intuitively manipulate the shape of the inner circle, as Figure 5.30 while xL  denote 

the deviation length of control point 1 in the x-direction. The corresponding mean 

and standard deviation of xL  in control point 1 were set to 0 and 0.12, respectively. 
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Figure 5.27 The geometry of a plate with a circular hole. 

 

1Patch

2Patch

x

y
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Figure 5.28  The geometry of a plate with a circular hole with material properties, 

boundary conditions and uniform pressure ( 270N/mmyP  ) 

 

Figure 5.29   Control points and control net of the plate with a circular hole 
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Figure 5.30 Moving the control points 1, on the NURBS geometry 

In this example, we present the analysis results for the displacement response surface 

of the position of control point A and stress response surface of the position of 

control point 1 in y-direction, which is a stress concentration position, and compare 

them to the analysis results obtained by the MCS and the IGA methods, respectively.  

First, similarly, in the following, we give the displacement results under different 

deformation conditions of IGA. In this case, the stochastic shape at the circular hole 

is arbitrary and controllable by introducing stochastic parameters to the 

corresponding control points. As shown in Figure 5.30, the stochastic parameters are 

introduced into coordinate of control point 1 in the x directions to represent the 

uncertainty. According to the stochastic parameters (the mean and standard deviation 

were 0 and 0.12, respectively) setting of Example 3, in the Figure 5.31, we 

respectively give stochastic shapes with the stochastic variables  of -4, -3, -2, -1, 0, 1, 

2, 3 and 4. That is the deformation distances are -0.48mm, -0.36mm, -0.24mm, -

0.12mm, 0mm, 0.12mm, 0.24mm, 0.36mm, 0.48mm, respectively.  According to the 

figure, we can find that the deformation of the circular hole is quite obvious when we 

move the control point A in the x-direction. And in order to demonstrate the accuracy 

1
xL

A
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of the analysis results obtained by the proposed method, the results of SIGA by using  

the response surface Equation (5.2) and IGA were compared, as shown in Figure 

5.32, which shows that the proposed method had very high precision. We can find 

that when the random variable changes from - 4 to 4, that is, the deformation distance 

changes from – 0.48mm to 0.48mm, the displacement along the Y axis of point A 

tends to increase, and it tends to be flat. 

 

 

(a) The deformation distance -0.48mm 
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(b) The deformation distance -0.36mm 

 

(c) The deformation distance -0.24mm 
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(d) The deformation distance -0.12mm 

 

(e) The deformation distance 0.0mm 
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(f) The deformation distance 0.12mm 

 

(g) The deformation distance 0.24mm 
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(h) The deformation distance 0.36mm 

 

(i) The deformation distance 0.48mm 

Figure 5.31 The corresponding displacement results of IGA  
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Figure 5.32 Displacement response obtained by SIGA and numerical results of IGA 

Additionally, the statistical characteristics of the proposed method were investigated 

by comparing with Monte-Carlo simulation. In Figure 5.33, we present the 

displacement probability density functions for the control point A in the y-direction. 

The reference values (gray clustered column) were obtained by repeatedly 

performing Monte Carlo simulations with 10,000 model samples. For SIGA, the 

probability density function of the system was computed by substituting 10,000 

random variables  into the Equation (5.2). The comparison of these results to those 

obtained by MCS revealed that the probability distribution obtained by SIGA is 

almost the same as that of MCS to some extent because we can see that the 

probability density function of the right part of the mean has a slight error. We 
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investigate the error and find that when the random variable ζ is greater than 0, the 

change rate of the response surface becomes very small (see Figure 5.32). That is to 

say, when the deformation of the circular hole continues to increase in the direction 

of radius, the change of displacement at point A is very small. So the response 

surface has a different trend. This is taken into account that the probability density 

function begins to show errors when it is larger than the average value. Moreover, 

the mean and standard deviation from these two methods and PCE are listed in Table 

5.10. It can be found that the mean value is almost equal but the standard deviation 

of MCS is slightly larger than that of SIGA. Note that the mean and standard 

deviation of PCE are derived by Equations (3.9) and (3.10).   

 

 

Table 5.10 Statistics of the displacement  

 SIGA MCS PCE 

MEAN (10-3) 1.1479 1.1479 1.1479 

STDEV (10-6) 2.1166 2.1567 2.1359 
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Figure 5.33: Displacement probability density functions for the control point A in the 

x-direction  

Similarly, in the next part, we will give the stress situation for the control point 1 in 

the y-direction. In the Figure 5.34, we respectively give stochastic shapes with the 

stochastic variables of -4, -3, -2, -1, 0, 1, 2, 3 and 4, respectively.  Comparing with 

Figure 5.34, we can find that the maximum stress point moves upward from point 1 

as the random variable increases. That is, with the change of the circular hole, the 

maximum stress point also changes. 

And in order to demonstrate the accuracy of the analysis results obtained by the 

proposed method, the results of SIGA and IGA were compared, as shown in Figure 

5.35, which shows that the proposed method had very high precision. But we can 

find that when the random variables are -4 and 4, the results of the two methods are 

not very consistent. Observing Figure 5.34(a), (i), the circular hole deformation in 

these two cases is very large, and when the random variable is 4(the deformation 

distance 0.48mm), the stress value of point1 is negative in the y direction. We 
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consider that the method has some errors in accuracy for relatively large deformation. 

However, we consider that the probability of occurrence of the random variable 4 

and -4 is almost absent, so it does not have any influence on the probability 

characteristics. 

 

 

 

 

(a) The deformation distance -0.48mm 
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(b) The deformation distance -0.36mm 

 

(c) The deformation distance -0.24mm 

Y
-S

tr
e

ss
 

Y
-S

tr
e

ss
 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

226 
 

 

 

(d) The deformation distance -0.12mm 

 

(e) The deformation distance 0.0mm 

Y
-S

tr
e

ss
 

Y
-S

tr
e

ss
 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

227 
 

 

 

(f) The deformation distance 0.12mm 

 

(g) The deformation distance 0.24mm 
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(h) The deformation distance 0.36mm 

 

(i) The deformation distance 0.48mm 

Figure 5.34 The corresponding displacement results of IGA  

Y
-S

tr
e

ss
 

Y
-S

tr
e

ss
 



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

229 
 

 

 

Figure 5.35 Stress response obtained by SIGA and numerical results of IGA 

Additionally, the statistical characteristics of the proposed method were investigated 

by comparing with Monte-Carlo simulation. In Figure 5.36, we present the stress 

probability density functions for the control point 1 in the y-direction. The reference 

values (gray clustered column) were obtained by repeatedly performing Monte Carlo 

simulations with 10,000 model samples. The average running time of the program 

for MSC is 6828.59 second. For SIGA, the probability density function of the system 

was computed by substituting 10,000 random variables into the stress response 

equation. The average running time of the program is the 1.126 second. The 

comparison of these results to those obtained by MCS revealed that the probability 

distribution obtained by SIGA is almost the same as that of MCS, but at a much 

lower computational cost. Moreover, the mean and standard deviation from these two 

methods and PCE are listed in Table 5.11. It can be easily seen that they are almost 

equal. Note that the mean and standard deviation of PCE are derived by Equations 

(3.9) and (3.10).   
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Figure 5.36: Stress probability density functions for the control point 1 in the y-

direction  

 

Table 5.11 Statistics of the Stress 

 SIGA MCS PCE 

MEAN  187.19 189.05 187.42 

STDEV  95.886 97.843 97.128 

 

The results in this case provide a possibility for uncertainty estimation of the 

response using the proposed method. And we also can find that the stress for the 
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control point 1 in the y-direction is reduced when the radius of point 1 becomes small, 

the stress is reduced from 1000Mpa to 0Mpa because the position of stress 

concentration changes with the deformation of circular hole. 
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5.4. Example 4:  A Butt Joint 

As other multi-patch example, we present a verification example with regard to a 

butt joint shown in Figure 5.37. According to the properties of multi-patch, we can 

find that a butt joint model is actually composed of three patches. The analytical 

model is designed based on NURBS geometric modeling tool in CAD. The relevant 

model design dimensions are shown in Figure 5.37, where the length and width of 

the butt joint are 55mm and 10mm, respectively. In addition, the setup of the static 

elasticity problem is also illustrated in Figure 5.38, the hash marks on the left edge 

denote the symmetry boundary condition and the point at the lower left is fixed. The 

plate was subjected to a uniform tension (Px) on its right-edge. Additionally, the 

material properties of the plate with a circular hole Poisson's ratio υ and elastic 

coefficient E are also marked in Figure 5.38, respectively. The NURBS base used in 

shape design and analysis is constructed from the knot vector  and  in - and -

direction, respectively，as follows  

{0, 0, 0, 0.5,1,1,1}   

{0, 0, 0, 0.5,1,1,1}   

The control network of the geometric model is shown in Figure 5.39. 

In this two-dimensional example, we assumed that the changes in shape take place in 

the welding part, moving any control point around the welding part can change the 

shape of the welding part. In this example, as shown in Figure 5.30, we move point 1 

to change the shape of the welding part. Here, we imported the uncertainty 

parameters into the coordinate of control point 1 in order to intuitively manipulate 

the shape of the welding part, as Figure 5.40 while yL  denote the deviation length of 

control point 1 in the y-direction. The corresponding mean and standard deviation of 

yL  in control point 1 were set to 0 and 0.5, respectively. 
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Figure 5.37 The geometry of a butt joint.  
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Figure 5.38  The geometry of the butt joint with material properties, boundary 

conditions and uniform pressure ( 25 0 N /m mxP  ) 

 

 

Figure 5.39   Control points and control net of the butt joint 
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y



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

235 
 

 

 

Figure 5.40 Moving the control points 1, on the NURBS geometry 

In this example, we present the analysis results for the displacement response surface 

of the position of control point B and stress response surface of the position of 

control point A in x-direction, which is a stress concentration position, and compare 

them to the analysis results obtained by the MCS and the IGA methods, respectively.  

First, similarly, in the following, we give the displacement results under different 

deformation conditions of IGA. In this case, the stochastic shape at the butt joint is 

arbitrary and controllable by introducing stochastic parameters to the corresponding 

control points. As shown in Figure 5.40, the stochastic parameters are introduced into 

coordinate of control point 1 in the y directions to represent the uncertainty. 

According to the stochastic parameters (the mean and standard deviation were 0 and 

0.5, respectively) setting of Example 4. In the Figure 5.41, we respectively give 

stochastic shapes with the stochastic variables of -4, -3, -2, -1, 0, 1, 2, 3 and 4. That 

is the deformation distances are -2.0mm, -1.5mm, -1.0mm, -0.5mm, 0mm, 0.5mm, 

1.0mm, 1.5mm, 2.0mm, respectively.  According to these figures, we can find that 

the deformation of the welding part is quite obvious when we move the control point 

1 in the y-direction. And in order to demonstrate the accuracy of the analysis results 

obtained by the proposed method, the results of SIGA by using the response surface 

Equation (5.3) and IGA were compared, as shown in Figure 5.42, which shows that 

the proposed method had very high precision. We can find that when the random 

1
yL

A

B
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variable changes from - 4 to 4, that is, the deformation distance changes from - 

2.0mm to 2.0mm, the displacement along the X axis of point A tends to increase, and 

it shows nonlinearity. 

     
     

2 5
0 1

6 7 8
2 3 4

d 1.39 10 3.12 10

3.27 10 2.47 10 1.45 10

  

  

 

  

      

                     (5.3) 

 

 

 

(a) The deformation distance -2mm 
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(b) The deformation distance -1.5mm 

 

(c) The deformation distance -1.0mm 
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(d) The deformation distance -0.5mm 

 

(e) The deformation distance 0.0mm 
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(f) The deformation distance 0.5mm 

 

(g) The deformation distance 1.0mm 
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(h) The deformation distance 1.5mm 

 

(i) The deformation distance 2.0mm 

Figure 5.41 The corresponding displacement results of IGA  
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Figure 5.42 Displacement response obtained by SIGA and numerical results of IGA 

Additionally, the statistical characteristics of the proposed method were investigated 

by comparing with Monte-Carlo simulation. In Figure 5.43, we present the 

displacement probability density functions for the control point B in the x-direction. 

The reference values (gray clustered column) were obtained by repeatedly 

performing Monte Carlo simulations with 10,000 model samples. For SIGA, the 

probability density function of the system was computed by substituting 10,000 

random variables  into the Equation (5.3). The comparison of these results to those 

obtained by MCS revealed that the probability distribution obtained by SIGA is 

almost the same as that of MCS. Moreover, the mean and standard deviation from 

these two methods and PCE are listed in Table 5.12. It can be found that the mean 

value is almost equal but the standard deviation of MCS is slightly larger than that of 

SIGA. Note that the mean and standard deviation of PCE are derived by Equations 

(3.9) and (3.10).   
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Table 5.12 Statistics of the displacement  

 SIGA MCS PCE 

MEAN (10-2) 1.3977 1.3977 1.3977 

STDEV (10-5) 3.1362 3.1666 3.1563 

 

 

Figure 5.43: Displacement probability density functions for the control point B in the 

x-direction  

And in order to demonstrate the accuracy of the analysis results obtained by the 

proposed method, the results of SIGA and IGA were compared, as shown in Figure 

5.44, which shows that the proposed method had very high precision.  
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Figure 5.44 Stress response obtained by SIGA and numerical results of IGA 

Additionally, the statistical characteristics of the proposed method were investigated 

by comparing with Monte-Carlo simulation. In Figure 5.45, we present the stress 

probability density functions for the control point A in the x-direction. The reference 

values (gray clustered column) were obtained by repeatedly performing Monte Carlo 

simulations with 10,000 model samples. The average running time of the program 

for MSC is 6967.7 second. For SIGA, the probability density function of the system 

was computed by substituting 10,000 random variables into the stress response 

equation. The average running time of the program is the 1.547 second. The 

comparison of these results to those obtained by MCS revealed that the probability 

distribution obtained by SIGA is almost the same as that of MCS, but at a much 

lower computational cost. Moreover, the mean and standard deviation from these two 

methods and PCE are listed in Table 5.13. It can be easily seen that they are almost 

equal. Note that the mean and standard deviation of PCE are derived by Equations 

(3.9) and (3.10).   



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

244 
 

 

 

Figure 5.45: Stress probability density functions for the control point 1 in the y-

direction  

Table 5.13 Statistics of the Stress 

 SIGA MCS PCE 

MEAN  56.751 56.737 56.759 

STDEV  0.7175 0.7249 0.7223 

 

The results in this case provide a possibility for uncertainty estimation of the 

response using the proposed method. And we also can find that the stress for the 

control point 1 in the y-direction is reduced when the radius of point 1 becomes small, 
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the stress is reduced from 1000Mpa to 0Mpa because the position of stress 

concentration changes with the deformation of circular hole. 
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5.5. Conclusions 

In this chapter, in order to demonstrate the applicability, accuracy and effectiveness 

of the proposed SIGA analysis scheme, for numerical examples are thoroughly 

explored within this section. Firstly, a numerical example for quarter-circular 

cantilever beam is given. In this example, the freshly proposed generalized stochastic 

isogeometric analysis based polynomial chaos expansion is rigorously verified 

against the well-established theoretical results. Subsequently, the proposed stochastic 

isogeometric analysis analysis framework is further implemented for the stochastic 

static analysis of a localized corrosion in the second example. In order to apply to 

more complex analytical models, we present examples of two multi-patch NURBS 

geometry models i.e. infinite plate with circular hole and butt joint, these ones fully 

demonstrate the ability of SIGA to handle multiple patch geometries. In addition, in 

these example, the validity and accuracy of the results are assessed by comparing 

them to the results obtained by Monte Carlo simulation (MCS) based on the IGA 

algorithm.  In addition, we give the calculation time of each analytical example in 

detail. By comparison, we can see that the proposed method is superior to the 

traditional MCS method in terms of computational cost and efficiency. 
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6. CONCLUSION 

 

 

 

 
This paper presented an innovative numerical method for estimating uncertainty in 

shape by conjugating the isogoemetric analysis framework and probability theory. In 

this study, the uncertainty in shape was estimated from a “physically-based” point of 

view, rather than from the classic “FEA-based” point of view, namely, the 

uncertainty in shape of structure model was represented by directly introducing 

stochastic parameters into the control points in the physical space. The proposed 

method effectively overcomes some of the classical SFEM. Despite classical SFEM 

has excellent analytical performance and a sound analytical system, there are still 

some inevitable limitations. Especially, in the uncertainty analysis in shape, because 

of what its use of a geometry approximated by a finite element mesh (FE-mesh), 

some of its innate disadvantages have been exposed. In many situations, this 

geometry approximated can cause errors in the analytical results during the 

performing uncertainty analysis on some complex and sensitive geometric structures. 

In order to overcome the shortcomings in the SFEM mentioned above, based on the 

natural characteristics of NURBS, we proposed the stochastic isogeometric analysis 
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method to deal with the problem of uncertainty in shape. Firstly, throughout the 

probabilistic analysis, an exact geometric entity was used to represent uncertainty in 

shape, which effectively reduced errors in terms of geometry. From the algebraic 

aspect, the NURBS basis function used for discretization is a smoother, highly 

continuous basis function, thus that greatly improved the accuracy and reliability of 

the analysis. Furthermore, unlike typically FE-mesh in the classical SFEM, usually, 

the NURBS uses the control points to manipulate geometric shape, and consequently, 

the problem of mesh repartitioning does not need to be considered, the costs and 

difficulty of the analysis were diminished, significantly. Secondly, based on excellent 

geometric properties of NURBS, the boundaries of the analytical region containing 

random field can be identified exactly, easily and flexibly. Finally, this study 

explored one possible extension of IGA in the field of computational stochastic 

mechanics, that is the extension of classical deterministic IGA into a probabilistic 

analytical framework to evaluate the uncertainty in shape. 

Additionally, we elaborated on the formulation of SIGA, which is an intrusive 

formulation procedure. The deterministic isogoemetric analysis framework was 

rewritten as an uncertainty form based on PCE, and the orthogonal properties of PCE 

were fully utilised in order to solve the stiffness matrix. Ultimately In the 

formulation process, the global stiffness matrix is newly defined as a Hermite 

polynomial form. Moreover we used the C++ programming language to implement 

this formulation, and obtained the response surface for the displacement stress. In 

order to demonstrate the validity and practical value of the proposed method, the four 

numerical examples were offered. By these two numerical examples, it could be seen 

that the numerical solutions from the SIGA were in good agreement with those 

obtained by IGA and MCS. And, the calculation time is far superior to the traditional 

MCS method, which greatly reduces the computational cost. Moreover, these 

examples allowed us to investigate the scalability and applicability of the proposed 

method to very large problems in two- and three-dimensions as well as in parallel 

implementations. 
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Additionally, at present, this research is just in its infancy, so there are still many 

limitations. For the proposed analytical method, there are mainly the following 

limitations in the actual uncertainty analysis. 

 For the current research, all the analytical models we use are built in two-

dimensional geometric space, and are not suitable for three-dimensional 

geometric structure. However, based on the defined two-dimensional 

formalization framework, we can easily extend the method to multi-

dimensional space. 

 In this research, as a first step of SIGA that can deal with uncertainty in shape, 

the formulation was defined by assuming that shape uncertainty is 

represented by one random variable. In addition, by referring to the 

formalization process of the current single random variable, we can know that 

the proposed method can be applied to the probability problem with multiple 

random variables, but it is necessary to import different polynomials and 

change the current program. 

 In this study, we assume that the shape uncertainty of the geometry is based 

on a normal distribution. For non-normal distribution we can do this by 

introducing different polynomials. 

 At the present stage of research, the formulation method developed can only 

be applied to two-dimensional static linear-elastic problems, but not to other 

numerical analysis problems. 

The analysis framework of IGA is developed from FEM and it has become an 

important branch in the field of numerical analysis. Although IGA has some good 

performance in numerical analysis, there are still many shortcomings. Because of this, 

IGA is still in a stage to be perfected, and it cannot be like classic FEM what is 

widely used and brings remarkable advantages and benefits to modern engineering 

applications at present stage. For example, the idea of using spline control points to 

parameterize the shapes is not necessarily always an advantage. The problem of 

parameterization is also a major bottleneck restricting the development of IGA 

technology and many researchers have done a lot of work to make up for this 
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deficiency. In this study, we just explored one possible extension of IGA in the field 

of computational stochastic mechanics, that is incorporating of classical response 

surface methodology into the IGA analytical framework to evaluate the uncertainty 

problem in shape in stochastic analysis. Therefore, there are still many deficiencies, 

which are largely inherited from IGA. In the subsequent research work, overcoming 

these shortcomings and perfecting our analytical methods is our main research 

direction.    

In future research work, we plan to apply this method to more complex analytical 

models, especially for the handing of multi-patch and complex CAD boundaries 

problems, such as multi-patch Coons etc. Therefore, it is indispensable to construct 

an analysis-suitable parameterization method for SIGA. On the other aspect, we will 

introduce more stochastic variables into the analytical model in order to represent the 

more complex stochastic shape. In addition. normally, in the IGA, the stiffness 

matrix is the band matrix, therefore, it is easy to store and assembling. But in this 

study, the stiffness matrix is not a band matrix, this is because the order of PCE 

approximate is introduced into the equation as a parameter. And we use the same 

Gauss' elimination method as IGA to solve the stiffness equation, we think this is not 

a good solution for solving matrix in the SIGA. In the current research, we have not 

optimized the algorithm in this aspect, so SIGA is higher in time and space 

complexity than a single IGA program. 
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Appendix A 

C++ code for stochastic isogeometric 
analysis based on NURBS 

 

 

A.1. Overview 

 

In this study, we used the C++ programming language in order to implement the 

formulation of proposed method and use the program compilation tool Visual Studio 

2017 to execute the code written. This program is only applicable to the 2-

dimensional static elasticity problem under normal conditions. And it can handle the 

single patch and multi-patched NURBS geometry well. Here we mainly give the 

flow chart of the main program and some sub-function programs. Here we mainly 

give the flow charts of the main program and some sub-function programs. Based on 
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these flow charts, users can write programs for different linear elasticity problems, 

and can rewrite programs with code they are good at. 
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A.2. Code architecture for determinate isogeometric 
Analysis 

First of all, let us consider the architecture of a determinate isogeometric Analysis 

programe. The flowchart for a typical example of determinate isogeometric Analysis 

is given in Figure A1. The C++ program begins with the data “Read input data ” that 

including the boundary value problem, and all of the geometrical data being read 

from files. These basic data are usually read from external files and geometrical data 

from the CAD. Once the data has been read, it is possible to connect the associated 

information by establishing a connection matrix and allocate memory for all major 

global matrices, which is then initialized to zero. After completing these pre-

processing steps, the modules of the program begin to assemble, and a basic loop 

begins with all the elements in the physical mesh. In each element, the element 

stiffness matrix and the element force vector are initialized, and then the code enters 

the loop through the trapezoidal box as shown in Figure A1. for each quadrature 

point, it calls a routine to compute all the basis functions and any necessary 

derivatives. The number of basis functions is the same as the control points, and their 

calculation methods and steps are the same as the geometry design software. We 

need a separate routine to get these values when needed. After calculating these 

values, we can continue to build the local stiffness matrix and force vector. With 

each quadrature point, the local arrays can be assembled. At this point, the 

information is sequentially added to the global stiffness matrix and the force vector 

using the connectivity matrix, and the program automatically loops to the next 

element. After all of the elements are assembled, the global arrays are complete. We 

then solve the program system, Output result to a file, perform post-processing, then 

the whole analysis is finished. In addition, in Figure A2, we also give the 

corresponding multi-patch program flow chart. Throughout the program, a sub-loop 

of patch is added. 
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 Start

 Read input data

 Build connectivitise and allocate global arrays

 0 0and K F

 Loop through elements

 0 0e eand K F

 Loop through quadrature points

 Evaluate basis functions and derivatives

 e eAdd contributions to andK F

 End loop over quadrature points

 e eAssemble and K K F F

 End loop over elements

 Solve Kd F

 Write output data

 Stop

Figure A1 Flowchart of a determinate single-patch 
isogeometric Analysis programe 
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Figure A2  Flowchart of a determinate multi-patch isogeometric Analysis programe 

 Start

 Read global input data
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allocate global arrays
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 End loop over quadrature points
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 End loop over elements

 Solve Kd F

 Write output data

 Stop

 Read Patch input data

 Loop through elements

on the current patch

 End loop over elements

on the current patch



 
 
 
                                     STOCHASTIC ISOGEOMETRIC ANALYSIS 
 

256 
 

 

A.3. Code architecture for stochastic isogeometric analysis 
based on a single patch.  

Appendix A.1 shows a flowchart of program of the single patch SIGA for 

uncertainty in shape. Clearly, the SIGA program architecture is similar to the IGA 

program architecture, and the different portions of the program are the those shown 

in blue in Figure A3. We convert an existing a single-patch isogeometric analysis 

based on NURBS code to SIGA isogeometric analysis code, the only portions of the 

code that require modification. The program begins with the READ INPUT box that 

read the information containing the geometrical data, stochastic parameter, etc. After 

the pre-processing steps are completed, the PCE is introduced into element loop and 

assembly of system, and that plays an important role in these algorithms. Then, the 

calculation results in regard to displacement response surface and normal probability 

distribution, etc. are recorded. 
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Figure A3 Flowchart of program for 
stochastic isogeometric analysis for 
uncertainty in shape, which applies 
to single-patch.  Routines in blue 
denote differences from IGA 
program. 
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A.4. Code architecture for multi-patch SIGA 

A multi-patch stochastic isogeometric analysis code can be made to conform with the 

flowchart in Figure A3. In practice, the design flow of the whole program is based on 

the flow chart of a single patch shown in Figure A3.  In the multi-patched SIGA 

analysis program, we need to enter enough associated information, especially for 

multiple patches. The entire program patch begins to loop, rather than starting with 

elements as before. It should be noted here that each control point containing the 

uncertainty parameter variable is only associated with one patch when executing a 

patch loop. We can enter these associated information in each patch loop and only 

read the information related to the patch we are currently using. After entering the 

patch loop, the element loop in the patch is started. At the beginning of this step, 

everything is analyzed as in the case of a single patch. Finally, we assemble the patch 

stiffness matrix based on each patch, and then pass these patch stiffness matrix is 

assembled into a total stiffness matrix and the matrix is solved. 
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Figure A4 Flowchart of program for 
stochastic isogeometric analysis for 
uncertainty in shape, which applies 
to multi-patch.  Routines in blue 
denote differences from IGA 
program. 


