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SUMMARY 11 

In this paper, a new method is proposed that extend the classical deterministic isogeometric 12 
analysis (IGA) into a probabilistic analytical framework in order to evaluate the uncertainty in 13 
shape, and aim to investigate a possible extension of IGA in the field of computational 14 
stochastic mechanics. Stochastic isogeometric analysis (SIGA) method for uncertainty in shape 15 
is developed by employing the geometric characteristics of the non-uniform rational basis 16 
spline (NURBS) and the probability characteristics of polynomial chaos expansions (PCE). 17 
The proposed method can accurately and freely evaluate problems of uncertainty in shape 18 
caused by deformation of the structural model. Additionally, we use the intrusive formulation 19 
approach to incorporate PCE into the IGA framework, and the C++ programming language to 20 
implement this analysis procedure. To verify the validity and applicability of the proposed 21 
method, two numerical examples are presented. The validity and accuracy of the results are 22 
assessed by comparing them to the results obtained by Monte Carlo simulation (MCS) based 23 
on the IGA algorithm. 24 
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1. INTRODUCTION 29 

In reality, various uncertainties exist in structural systems, because various the physical 30 
characteristics are not deterministic in the actual engineering application. Such characteristics 31 
include the material properties, boundary conditions and structural shape, etc. These uncertain  32 
 33 
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factors can be investigated by a numerical analysis method, that is commonly known as the 1 
uncertainty analysis method. In recent years, with the rapid development of risk-based rules 2 
and structure design methods, traditional deterministic numerical analysis methods have been 3 
unable to meet the need of analysing the uncertainty and randomness in practical engineering 4 
projects. Therefore, the development of uncertainty analysis methods is currently attracting an 5 
increasing amount of attention. 6 
    Generally, the stochastic finite element method (SFEM) is employed in order to analyse 7 
uncertain problems in the structural systems. The SFEM is an extension of the classical finite 8 
element method (FEM) that is from a deterministic numerical analysis framework to a 9 
stochastic framework. The SFEM has been widely applied in science and engineering as an 10 
important uncertainty analysis method. Initially, Astill and Shinozuka [1] have presented the 11 
Monte Carlo simulation method (MCS), which is a combination of the FEM and MCS. The 12 
latter is the most general and simplest approach for dealing with response variability in the 13 
structural system [2]. However, the MCS requires excessive computational power in 14 
comparison to other stochastic FEMs, and especially for handling complex models involving 15 
several stochastic variables. The perturbation method [3] overcomes this drawback, when the 16 
perturbation of response variability is in the first and second-order. The perturbation method 17 
was developed by applying the Taylor series expansion of the response vector into the physical 18 
system, and the results of the analysis are the distribution-free [4]. This method is limited within 19 
a minute perturbation range that is usually less than 20 or 30 percent of a variable’s mean value. 20 
In recent years, another important branch of the SFEM has been presented by Ghanem and 21 
Spanos [5], namely, the spectral stochastic finite element method (SSFEM). in general, this 22 
method makes use of the Karhunen-Loève (K-L) expansion of the Gaussian random field in 23 
order to represent the uncertain parameters of a problem (such as material properties, nodal 24 
displacement, etc.). For the representation of nodal displacement in the SSFEM, an alternative 25 
approach has been provided and consists of using polynomial chaos expansions (PCE) [6]. 26 
Additionally, the PCE has also been applied to other SFEM. For instance, Honda [7] proposed 27 
spectral stochastic boundary element method (SSBEM) based on PCE and the K-L expansion 28 
in order to analyse the problem of uncertainty in shape in the boundary. Chen et al. [8] 29 
presented a new method of structural analysis for the solution of response uncertainty problems 30 
in the cases involving uncertainty in shape. The proposed method includes a mathematical 31 
formulation, which is a natural extension of the deterministic finite element concept to the 32 
space of random functions by the Hermite polynomial chaos expansion, in order to represent 33 
the uncertainty of shapes and the response surface. Developments have been described in some 34 
key articles [8-10]. 35 
     Recently, isogeometric analysis (IGA) method was proposed by Hughes et al. [11] as an 36 
important alternative technology in computational mechanics. Its core idea was the use of the 37 
smooth geometric basis in CAD as the basis functions for numerical analysis [12]. This method 38 
successfully integrated computer aided design (CAD) and computer aided engineering (CAE) 39 
into a unified process, i.e. parameterizing the CAD objects to obtain an effective computation 40 
domain and generate a mesh, which is applied to the FEM analysis framework [13]. Xu et al. 41 
have done a lot of important work to improve the quality of the parameterization of the 42 
computational domain of CAD objects [14,15].  IGA extended rapidly to other fields of 43 
numerical analysis, including uncertainty analysis. Rossana et al. presented an innovative 44 
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numerical method for computing the stress concentration factors in an isotropic plate with 1 
discontinuities by using IGA and SFEM [16]. Hien and Noh developed a perturbation 2 
technique in conjugation with IGA for the stochastic eigenvalue problem of free vibration of 3 
functionally graded material (FGM) plates with two random parameters for the elastic modulus 4 
and mass density, respectively [17]. Hien and Lam use IGA and MCS to address the bending 5 
of a plate under random load [18].  6 
    Actually, with the rapid development of industry and the improvement of structural design 7 
technology, the geometric shape of structures has become increasingly complex. 8 
Simultaneously, it has brought more new challenges to the field of uncertainty analysis 9 
techniques. Despite classical SFEM has excellent analytical performance and a sound 10 
analytical system, there are still some inevitable limitations. Especially, in the uncertainty 11 
analysis in shape, because of what its use of a geometry approximated by a finite element mesh 12 
(FE-mesh), some of its innate disadvantages have been exposed. In many situations, this 13 
geometry approximated can cause errors in the analytical results during the performing 14 
uncertainty analysis on some complex and sensitive geometric structures. In order to overcome 15 
the shortcomings in the SFEM mentioned above, based on the natural characteristics of 16 
NURBS, we proposed the stochastic isogeometric analysis method to deal with the problem of 17 
uncertainty in shape. The main contributions of this study are as follows: 18 
 19 

 In this study, we proposed to introduce PCE into the IGA analysis framework to address 20 
the uncertainty problems in shape and given a formalization method.  21 

 The numerical solving can be obtained without setting the coefficients of the degree of 22 
change at each node which are needed in the SFEM. Therefore, our work effectively 23 
improves computational efficiency and reduces the complexity of the analysis. 24 

 From the perspective of probabilistic analysis, the random field is directly applied to an 25 
exact geometric entity through the control point, rather than an approximate mesh structure. 26 
Therefore, it is sensitive to geometric shape changes, which effectively reduced geometrical 27 
errors of numerical solving. 28 

 Unlike the MCS analysis mechanism, the analytical framework of the proposed method is 29 
constructed using the intrusive method and is therefore very scalable, and the construction 30 
of stochastic response surface does not require multiple simulations, thus it can deliver very 31 
fast results at minimum computational cost. 32 

 Moreover, by inheriting the advantage of IGA, the proposed SIGA method has several 33 
unique advantages compared to SFEM. For instance, using the smoother, highly continuous 34 
basis function, possessing good interactivity with CAD, and the ability to exactly represent 35 
some commonly encountered geometry such as circles and ellipses, etc. 36 
 37 

The remainder of this paper is structured as follows: In Sections 2 and 3, we present some of 38 
the basic concepts of IGA and probability theory associated with this study, respectively. The 39 
formulation of the proposed approach (SIGA) is presented in Section 4. Numerical examples 40 
are provided in Section 5. The future works and conclusions drawn from this study are 41 
presented in Section 6. 42 

 43 
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2. ISOGEOMETRIC ANALYSIS (IGA) 1 

Plenty of approaches have been used to structure the geometric model in CAD. In general, the 2 
non-uniform rational basis spline (NURBS) basis function has been used to build the geometric 3 
model, and has served as shape function in the pre/post processing of isogeometric analysis 4 
[12]. 5 

2.1 B-spline basis and knot vector 6 

In this section, a brief description of the B-spline is given. B-spline is very important for 7 
building the NURBS. The B-splines basis functions are formulated via the Cox-de Boor 8 
recursion formulation [11], as follows: 9 

  1
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i i

i p
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where i is the knot index, i.e., 1, 2, 1i n p   . p is the order of the B-splines basis functions. 11 

 , 0i pN  is the zeroth-order B-splines basis function and ,i pN is the piecewise linear function. 12 

i  are knots of the non-descending knot vector in the parameter space, that can be mapped into 13 

the physical space, and define a physical mesh on the geometric entity by partitioning it into 14 
the elements. The corresponding knot vector is expressed by  15 

                                                     1 2 1, , , n p                                                                  (2) 16 

For 0p  , the basis-functions are defined by the following equation: 17 
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The derivative of the ith-order B-spline basis is expressed by 19 
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                                          (4) 20 

2.2． B-spline curves and B-spline surfaces 21 

In the d-dimensional space d , the pth-order B-spline curve ( )C   is built by   22 

,( ) ( )
n

i p i
i

C N B                                                       (5) 23 

where , ( )i pN   are the B-spline basis functions of order p defined on the open knot vector, 24 

which is nonperiodic and non-uniform. iB represents the control points, which are the vector-25 

valued coefficients of the B-spline basis functions. An example piecewise quadratic B-spline 26 

curve in 2  is shown in Figure 1, where the control points are denoted by red solid circles. 27 
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The dashed line connecting the control points is referred to as the control polygon or control 1 
net, which is a piecewise linear interpolation of the control points. In Figures 1(a) and 1(b), the 2 

two B-spline curves are built from the open knot vector,  0,  0,  0,  1,  2,  2,  3,  4,  4,  4  . 3 

Therefore, the curve is interpolatory at the first and last control points. Additionally, it is also 4 
interpolatory at the fourth control point, since the multiplicity of the knot 2  is equal to the 5 

basis order. Note that the two B-spine curves are built by using the same basis function and 6 
order, with the only difference being that the coordinate of control point 2, i.e., the curve in 7 
Figure 1(b) is obtained by moving the control point 2 in Figure 1(a).    8 

               9 

 10 

 11 

Figure 1:  Piecewise quadratic B-spline curve, control polygon, and control points in 2  . 12 

The B-spline surface is constructed by taking the control net ,{ }, 1, 2, , ; 1, 2, ,i jB i n j m   , 13 

the knot vectors Ξ and Н, and the B-spline basis functions in the direction of the two knot 14 
vectors, as follows: 15 

, , , ,
1 1

( ) ( ) ( )
n m

i p j q i j
i j

S N M B   
 

                                                   (6) 16 

with  17 
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where , ( )i pN  and , ( )j qM  are the basis functions of order p and q, respectively. An example 19 

of the B-spline surface is shown in Figure 2, where the mesh lie in the surfaces are defined by 20 
knots in the knot vectors {0,0,0,0,1/ 7, 2 / 7,3 / 7, 4 / 7,5 / 7,6 / 7,1,1,1,1}  and 21 

{0,0,0,1/ 8,2 / 8,3 / 8, 4 / 8,5 / 8,6 / 8,7 / 8,1,1,1}  , that partitioned the surfaces into the 22 
elements. The element boundaries in the surface are simply the images of knot lines under the 23 
geometric mapping. An initial surface is shown in Figure 2(a), that is plane since all the control 24 
points located in a common plane, and the corresponding control net is offset from the surface 25 
in order to obtain the better visualization. The surface in Figure 2(b) is the image after the 26 
surface in Figure 2(a) was changed, which was obtained by moving the control points B 27 
(marked in the red dot) in the control net.   28 

1 

2 

(a) Shape of curve before moving 
control point 2 

(b) Shape of curve after moving 
control point 2 
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   As described above, one of the important properties of B-splines was shown, that is its ability 1 
to directly change geometrical shape by adjusting the control points. For examples, geometry 2 
in Figures 1and 2, by adjusting the control points, the geometric shape can be easily changed.  3 
Besides, note that due to the modification scheme property and local support property of B-4 
splines [19], the area that each control point can affect is local and controllable. As shown in 5 
Figure 2, if control point B is moved to a new location, it only can affect the shape of the 6 
partially adjacent area on the surface and elsewhere is unaffected. In this study, this property 7 
of the B-spline was fully utilised, and the structural analysis with consideration to the 8 
uncertainty in shape was implemented by importing the parameters of uncertainty (mean and 9 
deviation etc.)  Into the control point coordinates. 10 
 11 

 12 
 13 

 14 
                    Figure 2: The cubic × quadratic surface B-spline surfaces and control nets in 2 . 15 

2.3. NURBS 16 

The NURBS is a more flexible modelling approach based on the B-spline concept, but without 17 
the drawbacks of B-spline; namely, NURBS allows exact the representation of geometrical 18 
shapes with conic sections, such as cylinders, ellipsoids, etc. However, it is impossible to use 19 
the B-spline to represent these simple shapes exactly. The NURBS basis function is defined as 20 
follows:  21 
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where , ( )i PR   represents the piecewise rational functions on the knot vector, and iw are the 23 

weights applied to an affine transformation of the B-spline curves between the high-24 
dimensional and low-dimensional spaces. Correspondingly, the derivatives of the NURBS 25 
basis are given by  26 
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where  28 

(a) Original geometry (b) Geometry after moving control point B 

B
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ˆ ˆˆ ,
( ) ( )

n

i p ii
W N w                                                    (10) 1 

The NURBS curve and surface are defined by the rational basis functions and corresponding 2 
control points, as follows 3 
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 6 

3. STOCHASTIC REPRESENTATION FOR SIGA 7 

This section focuses on the stochastic analysis techniques employed in this study. The idea of 8 
SIGA with uncertainty in shape proceeds mainly as follows: (1) The inherent randomness of a 9 
system is considered as an input, which is defined by the probability density function (PDF) of 10 
the random variable. (2) IGA is used in conjunction with the PCE of the Gaussian random field 11 
describing the analysis process. (3) The responses of the system are obtained by assuming that 12 
is a function for inputting random variables. The role of the PCE in this study is very important, 13 
since it is used to represent uncertain parameters. Thus, the PCE properties employed in this 14 
study are discussed below.    15 

3.1.  Representation of SIGA input 16 

Firstly, the representation of input within the framework of uncertainty analysis is given, which 17 
usually consists of inherent randomness of the structural system, such as, shape, loads, 18 
properties of materials etc. In this study, the uncertainty in shape was considered as a random 19 
variable. In addition, the PCE was used to represent this uncertain parameter and taken as an 20 
input parameter. When the input parameter followed a normal distribution, the input parameter21 

( ) was defined as follows: 22 

( )                                                            (13) 23 

where  is the mean value of the input parameter.  is the standard deviation for the inherent 24 

randomness of the system, and   is the standard normal probabilistic variable. 25 

3.2.  Polynomial chaos expansion (PCE) 26 

In uncertainty analysis, the stochastic expansion method is a significant alternative approach 27 
for representing uncertain parameters [20]. The purpose of stochastic expansion is to better 28 
describe the uncertainty of the system by introducing a series of polynomials characterizing 29 
the characteristics of the stochastic system.   30 
    In this study, the PCE was employed in order to represent inherent uncertainty in structure 31 
model. PCE approach uses a random space composed of polynomial bases to describe the 32 
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uncertainty of system with PDF form. The basic idea is to approximately represent uncertainty 1 
by using the sum of the orthogonal polynomial chaos containing independent random variables, 2 
and the key step is to determine the coefficients of each polynomial. The PCE with multiple 3 
random variables for a Gaussian random response is defined as follows [21]:  4 
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                  (14) 5 

where  u  is a random process that can express the input parameter and can approximate the 6 

response; 
1
, ,

pi ia a  are polynomial coefficients;    
1

, ,
pi i     is a set of random 7 

variables in the sample space;     1
, ,

pp i i       is a set of orthogonal polynomials, 8 

which are functions of the random variable  
pi

  .  9 

Equation (14) can be reduced to: 10 

    
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q
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                                                    (15) 11 

where   


is the random vector built from random variables. q is the number of terms of 12 

polynomial chaos, and is determined by the following formula: 13 

( )!
1

! !

p n
q

p n


                                                            (16)          14 

where p is the maximal order of polynomial chaos, and n is the number of random variables. 15 
According to the Askey-scheme [22], there are different optimal polynomials for different 16 
probability density functions, i.e., the choice of polynomial depends on the probability density 17 

function of the random variable. In this study, the stochastic response  u   was approximated 18 

by using the Hermite polynomials as optimal polynomials, because uncertainty in shape was 19 
hypothetically defined as following the normal random distribution. The multi-dimensional 20 
Hermite polynomials are expressed as follows: 21 
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                        (17)  22 

Uncertainty in shape was assumed to be the only random variable in this study. Thus, the single-23 
variable version of the Hermite polynomials is given by Equation (17) [20] 24 

    2 3 4 2 5 31, , 1, 3 , 6 3, 10 15 ,p                                (18) 25 
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Note that the basis-functions constituting PCE are all orthogonal polynomials. Therefore, we 1 
used the orthogonal property of polynomials to deal with stiffness equations with random 2 
variables in this study. The orthogonal property of the Hermite polynomials is defined by the 3 
inner product of the weight functions as follows: 4 

       , ( ) !m k m k kmD
W d k                                 (19) 5 

where km  is the Kronecker delta and D is the domain of the standard normal probabilistic 6 

variable, and ( )W   is the weight function of the Hermite polynomials. Generally, the weight 7 

function is the same as the probability density function, in order to ensure that the PCE 8 
converges exponentially to a random variable. For the random variable whose probability 9 
density function is a Gauss function, the weight function is expressed as follows:  10 

                                
π

2-

2
1
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W e


                                                          (20) 11 

and ( )m   is derived by the following characteristic: 12 
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                                                  (21) 13 

As mentioned above, if the response surface is obtained by the PCE; then, the mean value and 14 
standard deviation of the stochastic response can be approximated by the following formulas: 15 
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Furthermore, the probability density function can also be obtained by the output responses. 18 
Thus far, some important aspects of PCE have been described with respect to uncertainty 19 
analysis. These properties will be used in the formulation presented in the next chapter. 20 

 21 

4. FORMULATION OF STOCHASTIC ISOGEOMETRIC ANALYSIS FOR 22 
UNCERTAINTY IN SHAPE 23 

In this study, we combined IGA and the stochastic methodology in order to create a new 24 
method for estimating the uncertainty in shape. Moreover, in this section, we use two 25 
terminologies (“physically-based” and “FEA-based”) in order to describe the different analytic 26 
viewpoint between the proposed method and the SFEM. These two terminologies have been 27 
used in earlier methods integrating FEM and computational geometry [12].  In this study, 28 
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uncertainty in shape was considered from a physically-based point of view, instead of the 1 
classic FEA-based point of view. The following sections briefly discuss the application of these 2 
two analytic points of view within uncertainty analysis framework, respectively. Subsequently, 3 
the formulation of SIGA for uncertainty in shape will be defined. 4 

4.1. Classic FEA-based point of view for uncertainty analysis 5 

In general, the use of traditional SFEM to discuss uncertainty in shape is based on the FEA-6 
based point of view, i.e. the SFEM is built from the analytical framework of the classic FEM 7 
[8-10]. Thus, it inherits all the characteristics of FEA in the term of geometry and algebra. It is 8 
regrettable that the some of the characteristics inherited may hinder the further development of 9 
SFEM in terms of uncertainty in shape, although they may not have any impact on the 10 
numerical analysis in the FEM or other SFEM. Among them, a major development bottleneck 11 
is the geometric representation of the analysis object. The requirements for the performance of 12 
the geometric shapes are usually relatively high in analyzing uncertainty in shape, especially 13 
for complex geometric structures. However, throughout the probability analysis process, 14 
SFEM use a geometry approximated by FE-mesh to represent the uncertainty in shape, namely, 15 
the random field is actually acted upon an approximate geometry instead of an actual geometric 16 
structure, so that leads to geometric errors, inevitably. Notwithstanding, through some mesh 17 
refinement methods inherited from the FEM, the analytical object can be as much as possible 18 
conform to the actual geometric structure, but this typical geometric error cannot be reduced 19 
indefinitely. Moreover, the analytical model is partitioned into the elements connected by 20 
nodes, and through linear interpolation shape functions to achieve interpolation within the 21 
elements. Therefore, all the information is tied to the finite element mesh, in the SFEM, the 22 
uncertain parameter information is introduced into nodal coordinates as well, in order to 23 
represent the uncertainty in shape. As the position of the corresponding node changes, the shape 24 
of the mesh and elements also changes. Thus, in order to avoid affecting the accuracy of the 25 
analytical results, the appropriate FE-mesh must be restructured by remeshing, repeatedly. This 26 
increases the difficulty and time of analysis. Furthermore, the FE-mesh is usually insensitive 27 
to detecting shape changes at the geometrical boundaries containing surface or curve, or even 28 
failing to represent the deformation process. For instance, there is a plate with a circular hole 29 
and we assume that the random field is acted on the location of the circular hole. At present, 30 
within the SFEM analytical framework, the uncertainty at hole can only be considered as 31 
changes in the size of the radius [8]. If we want to assume that the uncertainty representation 32 
is the shape change from circular to other irregularities, which is difficult to be achieved in the 33 
current SFEM analytical framework, let alone more complex geometric structures. If it is in 34 
the case of FEM, the geometric shape can be artificially and arbitrarily changed by the 35 
geometric visualization tools, and then repartition it into the FE mesh. However, in the actual 36 
analysis and formulation, the shape of the analytical object cannot be controlled artificially and 37 
visually, instead, use the algebraic method to deal with the analysis process. Therefore, in the 38 
analysis process of SFEM, the uncertainty representation in shape cannot be achieved simply 39 
by changing the coordinates of nodes with uncertain parameters, and also need to consider its 40 
influence on other elements and nodes. This influence is difficult to be controlled and 41 
determined for complex uncertainty representation. In Reference [8-10], Chen et al. by setting 42 
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the coefficients of the degree of change at each node to represent the uncertainty in shape and 1 
gave the corresponding algorithm, but that cannot perform well for geometric structures with 2 
curves and surfaces due to the drawbacks inherited from the FEM mentioned above. Besides, 3 
these coefficients of the degree of change also there is an impact on the analytical results to a 4 
certain degree. Namely, if the bad coefficients are determined, a bad FE-mesh will be generated, 5 
resulting in an inaccuracy result that may be obtained [23]. 6 
  Through the discussion of the above classic FEA-based point of view, we can know that 7 

despite the powerful FEM has been widely expanded and applied to various engineering fields, 8 
and has achieved prominent achievements. However, for the uncertainty analysis in shape 9 
based on FEM analysis framework, some inherent characteristics of FEM limit its development 10 
and greatly increase the difficulty and cost of analysis. Therefore, in order to break these 11 
bottlenecks, in this study we introduced the physically-based analytical point of view to deal 12 
with the uncertainty in shape.  13 

4.2. Physically-based point of view for uncertainty analysis 14 

In this study, a novel method is proposed in the aspect of reliability analysis for uncertainty in 15 
shape, and it is carried out from a physically-based point of view, i.e. the entire probability 16 
analysis uses an actual geometric structure to represent uncertainty in shape instead of an 17 
approximate one. Similarly, the SIGA for uncertainty in shape is an extension from the classical 18 
isogeometric analysis framework. Some of the characteristics inherited from IGA make up for 19 
the shortcomings of traditional SFEM on the uncertainty analysis in shape. The SIGA takes 20 
full advantage of these the native characteristics of IGA, that is using the same geometry 21 
description in engineering design and analysis processes, respectively [12]; Thus the random 22 
field is acted upon the geometric entity, the geometric errors are eliminated to the utmost, 23 
especially, the more complex the geometry, the more obvious this advantage, for example, 24 
circle and ellipse, and irregular geometry, etc. And, since a physical mesh on the geometric 25 
entity is used for discretization in the uncertainty analysis process, it does not need to be like 26 
FEM the mesh repartition due to shape change and determining coefficients of the degree of 27 
shape at each node, so the calculation load is reduced.  28 
   Another major advantage of the physically-based point of view, besides being precision in 29 
representing the complex geometric structure and its less computationally expensive, is that it 30 
can define the analytical boundaries flexibly, exactly and easily. This advantage is obtained 31 
based on local support property and the local modification scheme property of NURBS [19], 32 
coupled with the power of NURBS which ability to directly manipulate the geometric shape 33 
by adjusting the control points. Therefore, the uncertainty in shape can be represented 34 
arbitrarily, and region and degree of shape change can be controlled easily, flexibly and exactly. 35 
The specific example shown in Figure 3 consists of one-quarter of a circular disk with a circular 36 
hole at the centre. It was assumed that the shape of the circular hole entails uncertainty. As 37 
shown in Figure 3(a), the control points 1,2, and 3 control the shape of the hole directly, and 38 
any one of them can import uncertain parameters to represent the uncertainty in shape at the 39 
circular hole. Therefore, the determination and control of the analytical boundary for the region 40 
of interest became dramatically easier. We do not need to consider moving other control points 41 
to represent uncertainty in shape and the impact on the ones. 42 
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   Through the above discussion, it is obvious that the natural geometric features of NURBS 1 
provides great convenience for uncertainty analysis in shape. Here, it should be mentioned 2 
again that the ability of control points manipulating geometric shape intuitively and freely was 3 
adequately exploited to achieve representation of uncertainty in shape in this study. Thereby, 4 
degrees of freedom and uncertain parameters are located at the control points. And based on 5 
an affine invariance property that follows from the partition of unity property in the NURBS 6 
[12,19], ensures that the random field acts precisely on the geometric entity through the control 7 
points, in spite of the fact that the control points are commonly not interpolatory in NURBS, 8 
unlike in standard FEM. Let us look at some details from the algebraic perspective. For better 9 
illustrative on this point, we suppose a two-dimensional geometry was structured from the 10 
Equation (12), and the let control point Bk,h be introduced uncertainty, i.e. the control point Bk,h 11 

was moved to a new position ,k hB v


, where v


 is randomly varying geometric vector used to 12 

represent uncertainty in shape. Since the new NURBS geometric structure was defined by 13 

1,1 , ,, , , , ,k h n mB B v B
  as follows: 14 

,

,

1 1

, , , , , , , , ,
1 1 1 1

, , , , , ,
1 1

, ,

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )

k h n m

i p j q i j k p h q k h i p j q i j
i j i k j h

n m

i p j q i j k p h q k h
i j

k p h q

S R R B R R B v R R B

R R B R R B v

S R R v

       

   

   

 

     

 

    

  

 

  








(24) 15 

It can be clearly known from Equation (24), only the k,h-th term used a control point containing 16 

uncertainty, ,k hB v


, after regrouping, the new geometric structure is the sum of the original 17 

one and a , ,( ) ( )k p h qR R v  
. Furthermore, the randomly varying geometric vector v


can be 18 

expressed by coordinates of the movement of control point, ˆ ˆ( , )v x x y y  


, where x and y 19 

are the control point coordinates before the shape change. x̂ and ŷ are the coordinates after the 20 

shape change. And its representation form regard with uncertainty can specifically be given by 21 
coordinate of the corresponding control points and a linear function with a random variable, 22 
 , as follows: 23 

 
0

ˆ
i

n

x x
i

x x L x L 


                                                        (25)  24 

 
0

ˆ
i

n

y y
i

y y L y L 


                                                        (26)       25 

where   is the polynomial (Hermite polynomials) chaos with random variables. xL and yL26 

are the deviation lengths in the x- and y-direction, respectively.  In this study, the representation 27 
of uncertainty in shape is assumed to follow a normal distribution, such that the deviation 28 

lengths ( xL and yL ) can be rewritten as: 29 
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   
0

i

n

x x x x
i

L L L L  


                                                      (27) 1 

 
0

i

n

y y y y
i

L L L L  


                                                      (28) 2 

where xor yL and xor yL are the mean and standard deviation, respectively, the subscripts x and y 3 

represent the x- and y-direction in the coordinate space. Figure 3(b) shows an example of 4 
uncertainty representation with regard to geometrical shape. We assumed that the deformation 5 
of structure model occurs along the inner circular hole. In this example, the uncertainty in shape 6 
of the model was represented by introducing the uncertain parameter into control point 1, which 7 

is denoted by the hollow circle. Control point 1̂ (red solid node) is the location of control point 8 
1 after shape changed, and the bidirectional arrow (in black) indicates the deviation length (L). 9 
As shown in Figure 3(b), we can see that the shape of the inner circular hole can be changed 10 
simply by moving control point 1, and without having to move other points. Additionally, the 11 
deviation length (L) is introduced directly into the coordinate of the control point in order to 12 
geometrically represent the uncertainty in shape.  13 

 14 

 15 

 16 

Figure 3:    One quarter of circular disk with circular hole at centre 17 

4.3. Incorporating PCE into IGA Formulation 18 

In this study, the SIGA framework was developed by utilising the intrusive method. The 19 
formulation of SIGA was defined by incorporating the PCE into the original IGA formulation 20 
framework. Therefore, Stiffness equation in original IGA formulation was redefined in the 21 
form of PCE. In this section, the formulation of SIGA is given with respect to a two-22 
dimensional linear elasticity problem with a single random variable.  23 

(a)   Control points 1, 2 and 3 for 
controlling circular hole at the centre. 

(b)  Shape of circular hole at centre is 

changed by moving control point 1 to 1෠. 

3 2 

1 

3 2 

1෠  1 L  



14 | P a g e  
 

   Firstly, an abstract weak form is given by using the Galerkin’s method in the finite-1 
dimensional subspaces of the trail solution space S and by weighting function space W [12,24], 2 

these subspaces are denoted by hS  and hW , respectively. The Galerkin approximation of the 3 
weak formulation is as follows: given body-force :f     and boundary conditions 4 

:r   , find h hu S ,such that for all h hw W  5 

( , ) ( , ) ( , )h h h ha w u w f w r                                                  (29) 6 

where the  ,a   and  ,  denote the bilinear form and inner-product form, respectively (see [11] 7 

and [24] for more details). In this study, the finite-dimensional subspaces hS and hW are 8 

constructed from NURBS. Therefore, hu  and hw  can be written as  9 

1

n
h

A A
A

u c R


                                                            (30) 10 

1

n
h

B B
B

w d R


                                                            (31) 11 

where Ac  and Bd  are the control variables. Then, the matrix equation can be constructed as 12 

follows:  13 

Kd = F                                                               (32)  14 

where K is the global stiffness matrix, F is the global force vector, and d is the unknown 15 
displacement response in this formulation. The global analysis system is assembled from the 16 

local stiffness matrices ek and force vectors ef  established over the elements e .  17 

In the SIGA formulation, the local stiffness matrix containing the random variables   is 18 

expressed as follows: 19 

      ( )
e

T e
e d   


 k B DB J                                  (33) 20 

where  B  and  J  are the strain matrix and the Jacobian matrix which involve random 21 

variable  ,respectively, D is the material property matrix.  22 

   In conventional SFEM, the element stiffness matrix in the physical space is directly mapped 23 
to the parent space in order to perform numerical integration. However, in SIGA framework, 24 
three space transformations need to be considered, i.e., an affine mapping from the parent space 25 

to the parameter space ( ˆf : ); a geometrical mapping from the parameter space to the 26 

physical space ( ˆ:g   ). Then, these two mappings are combined to constitute space 27 

mapping from the parent space into the physical space ( : f g  ). The mapping processes in 28 

the SIGA are illustrated in Figure 4. For a more detailed and thorough discussion of these space 29 
concepts, see [12]. 30 
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 1 
Figure 4: Diagram of mappings in analysis process. Dashed line with arrowhead denotes the               2 

inverses of the mappings. 3 

To integrate Equation (33) numerically, the mapping, : f g  was calculated by using the 4 

Jacobian determinant including the random variable. Thus, Jacobian determinant for this 5 
mapping is expressed by  6 

 
   

   

0 0

0 0

ˆ ˆx x

ˆ ˆy y

i i
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n n
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n n

y y
i i

x L x L

y L y L

    
    


         

 

 

                         
          

              

 

 

 

  

J       (34) 7 

where x̂ and ŷ are the coordinates involving the random variable  in the physical space (see 8 

Equations (25) and (26)).   and  are the parametric coordinates in the parameter space, and 9 

are obtained by the knot vectors and parent element coordinates of the Gauss points, as follows: 10 

 1 1( ) ( )

2

i i i i    
    



                                             (35) 11 

 1 1( ) ( )

2
i i i i    

    



                                             (36)  12 
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where  and are the parent element coordinates. In practice, the Equations (35) and (36) 1 

involves a mapping which from the parent space to the parameter space ˆf : . 2 

Additionally, the mapping from the parameter space to the physical space ˆ:g    is 3 

calculated from the NURBS basis functions and the control point coordinates. The 4 

transformation matrix for mapping ˆ:g    is represented by Equations (11), (25) and (26)  5 

 
   

   
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e e
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 
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                                                      

   

   
J    (37)            6 

where en is the number of the nonzero NURBS basis function over element e, which is equal to 7 
2( 1)p   in this formulation, and where p  is the order of the basis function. The associated 8 

Jacobian determinant for this mapping is denoted as  g J . Thus, the matrix form of 9 

Equation (34) is represented by 10 
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                (38) 11 

Note that, in this study, uncertainty in shape is considered as the variable random, and 12 
represented by introducing PCE into the control points coordinates in the physical space. 13 
Therefore, uncertainty representation exists in this mapping process. 14 
    In addition, the orthogonal property of PCE is needed to be used in order to perform the 15 

formulation. Therefore, the  J needs to be rewritten as Hermite polynomial form, and 16 

obtained by the following procedure: substituting Equations (27) and (28) into Equation (38), 17 
solving the Jacobian determinant, and then combining like terms with respect to  . Finally, 18 

the  J is expressed as: 19 

  0 1
0

( )
n

n
n

i

   


     J J J J J                                (39) 20 

where n is the polynomial order. it is equal to 2, since, in this study, the representation of 21 
uncertainty in shape was assumed to follow a normal distribution.  22 
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    Moreover, in order to obtain the strain matrix  B , the derivatives of the basis-functions 1 

with respect to the physical coordinates must be calculated. Thus, we first used Equations (35) 2 
and (36) to calculate the parametric coordinates with respect to the quadrature points in the 3 
parent space. subsequently, the derivatives of the basis-functions with respect to the parameter 4 
coordinates were calculated by Equation (9). Finally, the derivatives in the physical space were 5 
obtained by applying the chain-rule, as follows: 6 

( , )
ˆ ˆ ˆ

R R R

x x x

   
 

    
 

    
                                                (40) 7 

( , )
ˆ ˆ ˆ

R R R

y y y

   
 

    
 

    
                                                (41)          8 

where x̂  , ŷ  are obtained by calculating the inverse of the mapping from the 9 

parameter space to the physical space, and the inverse of this mapping is denoted by  1/ g J . 10 

In this expression, the denominator contains the random variable  ; therefore, it cannot be 11 

directly calculated by applying the PCE. However,  1/ g J can be derived approximately by 12 

using orthogonally of Hermite polynomials, as follows 13 

   1

0

r

g a a
a

 




  J                                                  (42) 14 

where  a  represents the pth-order Hermite polynomials, and a represents the unknown 15 

coefficients with respect to the approximate polynomials. We used an algorithm based on the 16 
orthogonal property of the Hermite polynomials in order to calculate the unknown coefficients. 17 
More details about the algorithm can be found in [10]. After the unknown coefficients were 18 

calculated, we were able to determine  1/ g J , and the applied it to the solution of matrix19 

 B in Equation (33). Thus,  B is expressed by Equations (40), (41) and (42), as follows: 20 
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B J            (43) 21 

We substituted Equation (42) into Equation (43) in order to rewrite the strain matrix  B as 22 

PCE form with respect to the random variable : 23 

 
       0 1
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1 1 1 1 r
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                   (44) 24 
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Recall that in the above equations, the strain matrix and Jacobian matrix were all expressed in 1 
PCE form. Therefore, we were able to obtain the PCE representation form of Equation (33) as 2 
follows: 3 

   ,
0

n r

e e j j
j

 




 k k                                                      (45) 4 

Subsequently, we assembled the local stiffness matrix ek into the global stiffness matrix K and 5 

rewrote it in PCE form, as follows:  6 

 
0

n r

j
j






 K K                                                          (46) 7 

Similarly, the local force vector is expressed as follows: 8 

   = ( )
e

e
e eR J d  


 f                                               (47) 9 

where e is the surface force vector. The PCE form is denoted as:  10 

   ,
0

n

e e i i
i

 


 f f                                                       (48)  11 

The derivation process of Equation (48) was the same as that of Equation (45); however, due 12 
to the applied loads on the single-side, the ef was the obtained by the one-dimensional NURBS 13 

basis functions. Then, the global force vector was assembled and represented in PCE form, as 14 
follows:   15 

 
0

n

i
i




 F F                                                         (49) 16 

Moreover, the unknown displacement response vector d in Equation (32) could also be derived 17 
approximately by utilising orthogonal property of Hermite polynomials. Thus, we first 18 
represented it in PCE form: 19 

 
0

n r

k k
k






 d d                                                          (50) 20 

Note that the order of PCE for Equation (50) is assumed in accord with that of global stiffness 21 
matrix (see Equation (46)), which is needed in order to solve the global stiffness matrix later. 22 
The substitution of Equations (46), (49), and (50) into Equation (32), yields: 23 

     
0 0 0

n r n r n

j k k i
j k i

  
 

  

      K d F                                      (51) 24 

To solve Equation (51), we utilised the same algorithm used to solve Equation (42). According 25 
to the algorithm [10], the orthogonal property of PCE was utilised in order to solve the 26 
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unknown displacement response vector d. First the two-sides of Equation (51) were multiplied 1 

by    ( )m W  and were then integrated, simultaneously. Thereby, we obtained: 2 

         
0 0 0

( ) ( )
n r n r n

j k k m i m
j k i

W d W d        
  

   

         K d F       (52) 3 

Thus, the inner-product form can be given by   4 

         
0 0 0

n r n r n

k m j k i m
j k i

    
 

  

       K d F                           (53) 5 

where 6 

         ( ) ( )m a i m i aD
W d                                         (54) 7 

where  m   is calculated by the Equation (21).  8 

Subsequently, Equation (51) could be rewritten in a form of simultaneous equations by 9 
Equation (52), (53), and (54), as follows  10 

 

0,0 0,1 0, 0 0

1,0 1,1 1, 1 1

,0 ,1 ,

n r

n r

n r n r n r n r n r n r





     

       
            
    
              

K K K d F

K K K d F

K K K d F




     


                                  (55) 11 

where   denotes the inner-product with respect to PCE. Finally, the stochastic response of the 12 

displacement representing uncertainty in shape was obtained by Equation (55).  13 
    In this study, we used the C++ programming language in order to implement the formulation 14 
of proposed method. Figure 5 shows a flowchart of program of the SIGA for uncertainty in 15 
shape. Clearly, the SIGA program architecture is similar to the IGA program architecture, and 16 
the different portions of the program are the those shown in blue in Figure 5. The program 17 
begins with the READ INPUT box that read the information containing the geometrical data, 18 
stochastic parameter, etc. After the pre-processing steps are completed, the PCE is introduced 19 
into element loop and assembly of system, and that plays an important role in these algorithms. 20 
Then, the calculation results in regard to displacement response surface and normal probability 21 
distribution, etc. are recorded. 22 
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 1 

Figure 5:    Flowchart of program for stochastic isogeometric analysis for uncertainty in 2 
shape, which applies to single-patch.  Routines in blue denote differences from IGA program. 3 

Remark  4 

(1) In this formulation, the uncertain parameters were only imported into some specific 5 
control points in order to represent the uncertainty in shape. These specific control 6 
points were determined according to geometrical shape and range that needed to be 7 
analysed in the structure model, and these control points had ability to intuitively 8 
change shape within this range. Therefore, the uncertainty in shape for structure 9 
model could be accurately presented by just importing the uncertain parameters into 10 
one or more control points. In this context, this method greatly reduces the 11 
computational cost. 12 

(2) The role of PCE is important in the intrusive SIGA formulation procedure. Recalling 13 
that the stiffness matrix, force vector and displacement were all rewritten as a 14 
representation form of PCE, because we needed to use the orthogonal property of 15 
PCE to solve the global stiffness equation. 16 

(3) Note that the algorithms developed so far only apply to Gaussian stochastic fields 17 
and processes, and that program of SIGA formulation is implemented based on a 18 
single-patch. 19 

 20 
 21 
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5. NUMERICAL EXAMPLES 1 

In this section, we apply the stochastic isogeometric analysis framework to a cantilever beam 2 
model and a localized corrosion problem. We used chosen examples in order to demonstrate 3 
the accuracy and convergence of the proposed method. In all cases, the model problems 4 
considered here were linear-elastic problems.  Their solutions compare directly to that of MCS 5 
used as a reference value. The all calculations are implemented using C++ programming 6 
language, and timed on a Windows 10 pro 64bit with Intel(R) CPU E5-2603 v3 @ 1.6 GHz 7 
processor (12 CPUs) and 64GB RAM. Additionally, in the figure, the Poisson’s ratio and 8 
Young’s modulus are denoted by  and E , respectively.  9 

5.1 Example 1: quarter-circular cantilever beam 10 

First, we present a verification example with regard to a quarter-circular cantilever beam. In 11 
the setup of problem illustrated in Figure 6, the hash marks on the bottom edge denote the 12 
Dirichlet boundary conditions. Additionally, the beam was subjected to a uniform pressure 13 
( 21N/mmxP  ) on its left-edge. The inner and outer radii of the circular beam are denoted as14 

inR , outR , respectively. The control points used when building the model are plotted in Figure 15 

6(b), while xL and yL denote the deviation length of control point 2 in the x- and y-direction, 16 

respectively.    17 
   In this two-dimensional example, we assumed that the changes in shape take place in the 18 
inner circle. As shown in Figure 6(b), moving any one of the control points 1, 2, and 3 can 19 
change the shape of the inner circle. Here, we imported the uncertainty parameters into the 20 
coordinate of control point 2 in order to intuitively manipulate the shape of the inner circle. 21 

The corresponding standard deviation and mean xL and yL in control point 2 were set to 0.5 22 

and 0, respectively.    23 

  24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

Figure 6: Quarter-circular cantilever beam problem 34 

(a) Problem definition for verification 
example. 

(b) Control points and control net. 
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In this example, we present the analysis results for the displacement response surface in the 1 
position of control point A, which is a stress concentration position, and compare them to the 2 
analysis results obtained by the MCS and the IGA methods, respectively.  3 
     First, in order to demonstrate the accuracy of the analysis results obtained by the proposed 4 
method, the results of SIGA and IGA were compared, as shown in Figure 7, which shows that 5 
the proposed method had very high precision. The x-axis in Figure 7 represents the stochastic 6 
variable  , while the y-axis represents the corresponding displacement value. The numerical 7 

results of IGA were obtained by modifying coordinate of control point 2 in the x- and y- 8 
direction as indicated in Table 1. The response surface of SIGA was computed by using 9 
Equation (50). In this example, the order of the Hermite polynomials used to calculate the 10 
respond surface was taken as the fourth-order. The polynomial coefficients within the range of 11 
0th to 8th-order are shown in Table 2 and denoted by ai. They were derived by Equation (55) 12 
in Section 4. Thus, the response surface in this example was obtained by: 13 

     
     

3 6
0 1

7 9 10
2 3 4

d 1. 10 9.83 10

1.21 10 2.1 10 3.31 10

  

  

 

  

      

                       (56) 14 

 15 

Figure 7: Displacement response obtained by SIGA and numerical results of IGA 16 

In fact, the obtained response surface converged to an exact optimal solution as the order of 17 
the polynomial increased. Figure 8, shows error between the analysis results of IGA and SIGA. 18 
It can be seen that their errors are very small from the fourth-order of polynomials onwards. 19 
Thereby, the demand for precision of analysis results is met and this method is shown to be 20 
feasible and accurate. Additionally, the polynomial coefficients of response surface are also 21 
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very small from fourth-order onwards and can be ignored (see Table 2). Based on these 1 
considerations, the polynomials in Equation (55) is only computed to the fourth-order.  2 

Table 1:  Moving distances for control point 2, and corresponding displacement of control 3 
point A, indicated in Figure 6(b). 4 

Moving 
distances 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

x-coordinate 8.00 8.50 9.00 9.50 10.00 10.5 11 11.5 12 
y-coordinate 8.00 8.50 9.00 9.50 10.00 10.5 11 11.5 12 
Displacement 

( 410 ) 
9.67 9.76 9.85 9.94 10.04 10.14 10.24 10.34 10.45 

 5 
Table 2:  Polynomial coefficients of response surface, (ai). 6 

 7 

 8 

Figure 8: Error measured by numerical results of IGA and SIGA. 9 

Additionally, the statistical characteristics of the proposed method were investigated by 10 
comparing with Monte-Carlo simulation. In Figure 9, we present the displacement probability 11 
density functions for the control point A in the x-direction. The reference values (gray clustered 12 
column) were obtained by repeatedly performing Monte Carlo simulations with 10,000 model 13 
samples and the degrees of freedom in a single sample are 36. The average running time of the 14 
program for MSC is 99.196 second. For SIGA, the probability density function of the system 15 
was computed by substituting 10,000 random variables  into the Equation (56). The degrees 16 

of freedom are 324 and the average running time of the program is the 0.093 second. The 17 

Order 
(ith) 

0 1 2 3 4 5 6 7 8 

ai 1.0×10-3 9.8×10-6 1.2×10-7 -2.1×10-9 -3.3×10-10 -2.1×10-11 -2.2×10-12 2.5×10-12 -1.5×10-13 
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comparison of these results to those obtained by MCS revealed that the probability distribution 1 
obtained by SIGA is almost the same as that of MCS, but at a much lower computational cost. 2 
Moreover, the mean and standard deviation from these two methods and PCE are listed in Table 3 
3. It can be easily seen that they are almost equal. Note that the mean and standard deviation 4 
of PCE are derived by Equations (22) and (23).   5 

Table 3:  Mean and standard deviation from SIGA, MCS, and PCE. 6 

 7 

 8 

Figure 9: Displacement probability density functions for the control point A in the x-direction  9 

Example 2:  localized corrosion 10 

The second example involves a potential application of this method to the problem of 11 
uncertainty in shape caused by localized corrosion. The controllability and scalability of 12 
proposed method are demonstrated by this example. The relevant setup of the boundary 13 
conditions and material properties is illustrated in Figure 10 (a), where the analysis model was 14 

subjected to a uniform tensile force ( 2100N/mmxT  ) in the x-direction on the right edge. The 15 

corresponding control net and control points is shown in Figure 10 (b) where m
yL  and n

yL are 16 

the deviation lengths of the control points m and n in the y-direction, respectively. 17 

 SIGA MCS PCE 
MEAN (10-3) 1.0041 1.0039 1.0041 
STDEV (10-6) 9.8175 9.8163 9.8319 
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 1 

(a) Problem description and data. 2 

 3 

 4 

(b) Control net and control points. Rectangular region indicates location where localized 5 
corrosion phenomena occurred. 6 

Figure 10: Localized corrosion problem 7 

In this example, we assumed that localized corrosion phenomena appeared on the surface of 8 
region   shown in Figure 10 (b).  The uncertainty in shape in region   can be represented 9 
through the introduction of the uncertainty parameters into the control points m and n, since 10 
these two control points have the ability to directly change the geometry of this area (see Figure 11 
10 (b)). The corresponding stochastic parameters are shown in Table 4, where acceptable 12 
different values are assigned to the mean and standard deviation for the y-coordinate of control 13 
points m and n, respectively.  14 

Table 4:  Stochastic parameters ( m
yL  and n

yL  ) for the region   with uncertainty 15 

 16 

 17 

In what follows, we present the displacement in the x-direction for the position of B point 18 
which is highlighted by red circle shown in Figure 10 (b). They were obtained by using IGA, 19 
SIGA methods, respectively. In Table 5, we present the coefficients of displacement response 20 
obtained from proposed method (see Section 4). By these coefficients, we computed the 21 
displacement response surface shown in Figure 11 and denoted by the solid grey line, while 22 
the red-dots denote the reference values obtained by determinate IGA method. by comparing 23 

y-direction Mean Standard deviation 
m
yL (control point m) 0 0.5 
n
yL (control point n) 0 0.6 

 
 

m n 
B 
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the displacements obtained by SIGA and IGA. It can be easily seen that the analysis results of 1 
SIGA are in good agreement with the reference values.  2 
 3 

Table 5: Coefficients of displacement response, (ai). 4 
Order(ith) 0 1 2 3 4 5 6 7 8 

ai 4.5×10-2 -1.8×10-3 2.6×10-4 -2.6×10-5 1.3×10-6 7.5×10-8 -1.6×10-9 -1.8×10-8 2.4×10-9 

 5 

 6 

Figure 11: Displacement response from SIGA and numerical results of IGA 7 

Furthermore, in Figure 12, we provide the probability density functions of displacement in the 8 
x-direction in the position of B point, they were obtained by MCS and SIGA methods, 9 
respectively. The results of MCS obtained by running for 10,000 iterations are denoted by the 10 
grey-column in Figure12. The degrees of freedom in a single sample are 100. The average 11 
running time of the program for MSC is 338.482 second. The results of SIGA were obtained 12 
by generating 10,000 random variables   in the same Gaussian random field as MCS, and 13 

then introducing the response surface. For the SIGA proposed, the degrees of freedom are 1800, 14 
and the average running time of the program is the 4.816 second. In comparison to MCS, the 15 
performance of SIGA was better in terms of computational efforts. Moreover, the mean and 16 
standard deviation for MCS ，SIGA and PCE are also shown in Figure 12, where it can be 17 

seen that their degree of dispersion is almost the same. 18 
   This example demonstrates flexibility of the proposed method. In the SFEM analysis 19 
framework [8-10], we may need to consider the deformation of the mesh and possible 20 
interference between the adjacent nodes, because these factors can affect the accuracy of the 21 
analytical results. The SIGA overcame these problems, we could choose the analysis positions 22 
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and range of model freely and flexibly according to the actual situation during the process of 1 
analysing uncertainty. Especially, for dealing with complicacy geometry entity, this flexibility 2 
and efficiency is even more important. 3 

 4 

Figure 12: Displacement probability density functions for B point position in x-direction. 5 
Mean and standard deviation for MCS ，SIGA and PCE. 6 

 7 

6.CONCLUSIONS 8 

This paper presented an innovative numerical method for estimating uncertainty in shape by 9 
conjugating the isogoemetric analysis framework and probability theory. In this study, the 10 
uncertainty in shape was estimated from a “physically-based” point of view, rather than from 11 
the classic “FEA-based” point of view, namely, the uncertainty in shape of structure model was 12 
represented by directly introducing stochastic parameters into the control points in the physical 13 
space. Additionally, we elaborated on the formulation of SIGA, which is an intrusive 14 
formulation procedure. The deterministic isogoemetric analysis framework was rewritten as an 15 
uncertainty form based on PCE, and the orthogonal properties of PCE were fully utilised in 16 
order to solve the stiffness matrix. Finally, we used the C++ programming language to 17 
implement this formulation, and obtained the response surface for the displacement. In order 18 
to demonstrate the validity and practical value of the proposed method, the two numerical 19 
examples were offered. By these two numerical examples, it could be seen that the numerical 20 
solutions from the SIGA were in good agreement with those obtained by IGA and MCS. 21 
Moreover, the two examples allowed us to investigate the scalability and applicability of the 22 
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proposed method to very large problems in two- and three-dimensions as well as in parallel 1 
implementations. 2 
    In future research work, we plan to apply this method to more complex analytical models, 3 
especially for the handing of multi-patch and complex CAD boundaries problems, such as 4 
multi-patch Coons etc [25,26]. Therefore it is indispensable to construct an analysis-suitable 5 
parameterization method for SIGA [27]. On the other aspect, we will introduce more stochastic 6 
variables into the analytical model in order to represent the more complex stochastic shape. 7 
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