ON SPECIALIZATIONS OF MINIMAL p-DIVISIBLE GROUPS

By
Nobuhiro Higuchi and Shushi Harashita

(Received August 31, 2017; Revised January 23, 2018)

Abstract

In this paper, for any pair (ζ, ξ) of Newton polygons with $\zeta \prec \xi$, we construct a concrete specialization from the minimal p-divisible group of ξ to the minimal p-divisible group of ζ by a beautiful induction. This in particular gives the affirmative answer to the unpolarized analogue of a question by Oort on the boundaries of central streams, and gives another proof of the dimension formula of the central leaves in the unpolarized case.

1. Introduction

Let p be a rational prime. In this paper, by a p-divisible group we mean a Barsotti-Tate group in algebraic and arithmetic geometry, i.e., an inductive limit of finite algebraic group schemes having some properties. The precise definition of p-divisible groups will be reviewed at the begining of Section 2. We study p-divisible groups in characteristic p. By the Dieudonné-Manin classification (cf. [7]), the isogeny classes of p-divisible groups over an algebraically closed field in characteristic p are classified by Newton polygons, see Definition 2.4 for the definition of Newton polygons.

Let ξ be a Newton polygon. Among p-divisible groups having Newton polygon ξ, there is a special p-divisible group which is called minimal. We denote it by $H(\xi)$. The main reference for minimal p-divisible groups is Oort [12]. As proposed in the latter part of [11, Question 6.10], $H(\zeta)$ was expected to appear as a specialization of $H(\xi)$ for $\zeta \prec \xi$, see Definition 2.4 for the notation about Newton polygons. Our main theorem (Theorem 5.1) implies that the expectation is true:

COROLLARY 1.1. If $\zeta \prec \xi$, then $H(\zeta)$ appears as a special fiber of a p-divisible group having $H(\xi)$ as geometric generic fiber.

[^0]The converse of this corollary is also true, which is a consequence of GrothendieckKatz [5], Theorem 2.3.1.

Now several proofs of this corollary have been known (cf. [14], Proposition 1.8 and [3], Corollary 5.1), but the authors could not find any known result which implies Theorem 5.1. Also the proof of Theorem 5.1 has an advantage of giving a very concrete construction of such specializations. For example it would be interesting to study relations between the construction and that in the proof in [3, Corollary 5.1]. The method of our proof is based on the idea of [1], where the second auther proved the similar result in the polarized case with application to the theory of stratifications of the moduli space of principally polarized abelian varieties. Remark that, combining Corollary 1.1 and [2], Theorem 1.1, one can prove the unpolarized analogue of Oort's conjecture [11, 6.9], see [3], Corollary 5.2. From Theorem 5.1, we can also give a new proof of the dimension formula of central leaves in the unpolarized case, see Corollary 5.2.

The essential case for the proof of the main theorem is that ξ consists of two segments and $\zeta \prec \xi$ is saturated. The case that the slopes of ξ, say $\lambda_{2}<\lambda_{1}$, satisfy $\lambda_{2}<\lambda_{1} \leq 1 / 2$ or $1 / 2 \leq \lambda_{2}<\lambda_{1}$ has been proved in [1], 8.4. This paper confirms that the above theorem holds in the remaining case $\lambda_{2}<1 / 2<\lambda_{1}$.

This paper is organized as follows. In Section 2, we recall the definition of p-divisible groups and truncated Dieudonné modules of level one (abbreviated as DM_{1}), which are Dieudonné modules of p-kernels of p-divisible groups. We also recall the definitions of $\left(\mathrm{DM}_{1}-\right)$ simple DM_{1} 's, their direct sums and minimal DM_{1} 's. In Section 3, we recall some facts on specializations of DM_{1} 's. In Section 4, we treat some combinatorics on Newton polygons. In Section 5, we state our main results. In Section 6, we give a proof of the main theorem (Theorem 5.1) whose beautiful induction would hopefully influence some future works.

2. Background

Let p be a rational prime, and h a non-negative integer. Let S be a scheme. A p-divisible group (Barsotti-Tate group) of height h over S is an inductive system $X=\left(G_{\nu}, i_{\nu}\right)(\nu=0,1,2, \cdots)$, where G_{ν} is a finite locally free commutative group scheme over S of order $p^{\nu h}$ and, for each ν the sequence of commutative group schemes

$$
0 \longrightarrow G_{\nu} \xrightarrow{i_{\nu}} G_{\nu+1} \xrightarrow{p^{\nu}} G_{\nu+1}
$$

is exact, that is to say, G_{ν} is identified via i_{ν} with $\operatorname{Ker}\left(p^{\nu}: G_{\nu+1} \rightarrow G_{\nu+1}\right)$.
For a p-divisible group $X=\left(G_{\nu}, i_{\nu}\right)$ over S and for a morphism $T \rightarrow S$ of schemes, we have a p-divisible group X_{T} over T defined by ($G_{\nu} \times{ }_{S} T, i_{\nu} \times \mathrm{id}$). In particular for a closed point $s=\operatorname{Spec}(k) \rightarrow S$ the p-divisible group X_{s} over k is
called the fiber of X over s. A p-divisible group obtained as the fiber of X over a closed point is said to be a special fiber of X.

Let S be an \mathbb{F}_{p}-scheme. For any S-scheme T, let Frob be the absolute frobenius on T and $\mathrm{Fr}: T \rightarrow T^{(p)}$ be the relative frobenius.

A truncated Bartotti-Tate group of level one $\left(\mathrm{BT}_{1}\right)$ over S is a finite locally free commutative group scheme over S such that $\operatorname{Im}\left(\operatorname{Ver}: G^{(p)} \rightarrow G\right)=\operatorname{Ker}(\operatorname{Fr}: G \rightarrow$ $G^{(p)}$) and $\operatorname{Ker}\left(\operatorname{Ver}: G^{(p)} \rightarrow G\right)=\operatorname{Im}\left(\operatorname{Fr}: G \rightarrow G^{(p)}\right)$, where $G^{(p)}=G \times_{S, \text { Frob }} S$ and Ver is the Verschebung on G. The p-kernel $X[p]:=\operatorname{Ker}(p: X \rightarrow X)$ of a p-divisible group X is a BT_{1}, and any BT_{1} over an algebraically closed field is the p-kernel of a p-divisible group.

Let k be a perfect field of characteristic p. Let $W(k)$ denote the ring of Witt vectors with coefficients in k. Let σ be the frobenius map on k, and use the same symbol σ for the frobenius map on $W(k)$. A Dieudonné module over k is a finite $W(k)$-module M equipped with σ-linear homomorphism $F: M \rightarrow M$ and σ^{-1}-linear homomorphism $V: M \rightarrow M$ such that $F \circ V$ and $V \circ F$ are equal to the multiplication by p. In this paper we use the covariant Dieudonné theory. It says that there is an equivalence from the category of p-divisible group (resp. p-torsion finite commutative group schemes) over k to that of Dieudonné modules which is free (resp. is of finite length) as $W(k)$-modules. In this paper, Dieudonné modules corresponding to BT_{1} 's via the Dieudonné functor is called DM_{1} 's. The precise definition of them is as follows.

DEFINITION 2.1. A truncated Dieudonné module of level one (abbreviated as DM_{1}) over k of height h is a triple (N, F, V) consisting of a k-vector space N of dimension h, a σ-linear homomorphism $F: N \rightarrow N$ and a σ^{-1}-linear homomorphism $V: N \rightarrow N$ satisfying $\operatorname{Ker} F=\operatorname{Im} V$ and $\operatorname{Im} F=\operatorname{Ker} V$.

When k is an algebraically closed field, the following theorem is known (cf. Kraft [6], Oort [10] and Moonen-Wedhorn [9]).

THEOREM 2.2.

There exists a bijection:

$$
\{0,1\}^{h} \longleftrightarrow\left\{\mathrm{DM}_{1} \text { over } k \text { of height } h\right\} / \cong
$$

Before we recall the bijection in this theorem, we give a remark.
REMARK 2.3. Giving a DM_{1} over k is equivalent to giving an F-zip over k with support contained in $\{0,1\}$ with the terminology in [9], where Moonen-Wedhorn used some subsets of the Weyl group of $G L_{h}$ (in this case) as classifying data of them over k. Using the Weyl group as classifying data is quite natural, but
we shall not use the structure of the Weyl group in this paper. We here use $\{0,1\}^{h}$, as classifying data of DM_{1} 's, which has an advantage when we treat decompositions of DM_{1} 's into direct summands often considered in this paper.

We identify $\{0,1\}^{h}$ with the set of maps from $\{1, \ldots, h\}$ to $\{0,1\}$, i.e., with the set of sequences of 0 and 1 with length h. Let A be an element of $\{0,1\}^{h}$, and let $\delta:\{1, \ldots, h\} \ni i \mapsto \delta_{i} \in\{0,1\}$ be the map corresponding to A. Then we express A as the sequence $\delta_{1} \delta_{2} \cdots \delta_{h}$. The bijection in the theorem is defined by the following. To a sequence A, we associate a $\mathrm{DM}_{1} N=k e_{1} \oplus \cdots \oplus k e_{h}$ with F and V defined as follows. We define maps F, V using δ as follows.

$$
F e_{i}= \begin{cases}e_{j}\left(j=\#\left\{t \mid 1 \leq t \leq i ; \delta_{t}=0\right\}\right) & \text { if } \delta_{i}=0 \tag{1}\\ 0 & \text { if } \delta_{i}=1\end{cases}
$$

Let u (resp. v) be the number of 1 (resp. 0) in sequence A. Let $e_{i_{1}}, \ldots, e_{i_{u}}\left(i_{1}<\right.$ $\cdots<i_{u}$) be the set of e_{i} with $\delta_{i}=1$.

$$
V e_{j}= \begin{cases}e_{i_{k}} & \text { for } j>v, k=j-v \tag{2}\\ 0 & \text { for } j \leq v\end{cases}
$$

One can check that the obtained triple (N, F, V) is a DM_{1}.
To express the Dieudonné module associated with $A=\delta_{1} \delta_{2} \cdots \delta_{h}$, the diagram with arrows

is useful, where we used the notation in (1) and (2). This diagram is called the (F, V^{-1})-diagram of A (or of the DM_{1} associated with A). As an example, let us look at the DM_{1} associated with sequence 10100 . Let $N=\left\langle e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\rangle$. The (F, V^{-1})-diagram is

This means

$$
\left\{\begin{array} { l }
{ F e _ { 2 } = e _ { 1 } , \quad F e _ { 1 } = 0 , } \\
{ F e _ { 4 } = e _ { 2 } , \quad F e _ { 3 } = 0 , } \\
{ F e _ { 5 } = e _ { 3 } , }
\end{array} \quad \left\{\begin{array}{l}
V e_{1}=0, \quad V e_{4}=e_{1} \\
V e_{2}=0, \\
V e_{3}=0
\end{array}\right.\right.
$$

It follows from $\operatorname{Ker} F=\operatorname{Im} V=\left\{e_{1}, e_{3}\right\}$ and $\operatorname{Im} F=\operatorname{Ker} V=\left\{e_{1}, e_{2}, e_{3}\right\}$ that (N, F, V) is a DM_{1}.

DEFINITION 2.4. A Newton polygon ξ is a finite multiple set of pairs $\left(m_{i}, n_{i}\right)$ $(i=1, \ldots, t)$ of coprime non-negative integers. Conventionally we write $\xi=$ $\sum_{i=1}^{t}\left(m_{i}, n_{i}\right)$. We call $\sum_{i=1}^{t} n_{i}$ the dimension of ξ and $\sum_{i=1}^{t}\left(m_{i}+n_{i}\right)$ the height of ξ. Put $\lambda_{i}=n_{i} /\left(m_{i}+n_{i}\right)$. We arrange $\left(m_{i}, n_{i}\right)$ so that $\lambda_{i} \geq \lambda_{j}$ for $i<j$. We regard ξ as the downward-convex line graph starting at $(0,0)$ and ending at (h, d) with breaking points $\sum_{i>j}\left(m_{i}+n_{i}, n_{i}\right)$ for $j=0, \ldots, t$. For two Newton polygons ξ and ζ with same ending point, we say $\zeta \prec \xi$ if any point of ζ is above or on ξ. We say that $\zeta \prec \xi$ is saturated if there is no Newton polygon η such that $\zeta \supsetneqq \eta \supsetneqq \xi$.

To each Newton polygon, we assoiate a DM_{1}, which is called minimal:
DEFINITION 2.5. Let m and n be non-negative integers with $\operatorname{gcd}(m, n)=1$. To (m, n), we associate a DM_{1} which corresponds to the sequence

$$
A_{m, n}=\underbrace{11 \cdots 1}_{m} \underbrace{0 \cdots 0}_{n}
$$

by Theorem 2.2, and we write it as $N_{m, n}$. Such DM_{1} 's are called simple (more precisely should be called DM_{1}-simple). A minimal DM_{1} is the direct sum

$$
N_{\xi}:=\bigoplus N_{m_{i}, n_{i}}
$$

for some Newton polygon $\xi=\sum\left(m_{i}, n_{i}\right)$. We may frequently identify a $\mathrm{DM}_{1} N$ and $A \in\{0,1\}^{h}$ if N is the DM_{1} corresponding to A, and we write $A \in\{0,1\}^{h}$ as A_{ξ} if A corresponds to N_{ξ}.

This is the notion of Dieudonné modules of p-kernels of minimal p-divisible groups. Let us recall the definition of minimal p-divisible groups. For each coprime pair (m, n) of non-negative integers, let $H_{m, n}$ be the p-divisible group $H_{m, n}$ over \mathbb{F}_{p} whose Dieudonné module $\mathbb{D}\left(H_{m, n}\right)$ is given by

$$
\mathbb{D}\left(H_{m, n}\right)=\bigoplus_{i=1}^{m+n} \mathbb{Z}_{p} e_{i}
$$

with F, V-operations defined by $F e_{i}=e_{i-m}$ and $V e_{i}=e_{i-n}$, where e_{i} for nonpositive i is inductively defined by $e_{i}=p e_{i+m+n}$. We set

$$
H(\xi)=\bigoplus H_{m_{i}, n_{i}}
$$

for each Newton polygon $\xi=\sum\left(m_{i}, n_{i}\right)$. A minimal p-divisible group is a p divisible group which is isomorphic over an algebraically closed field to $H(\xi)$ for some Newton polygon ξ. Let k be an algebraically closed field. The Dieudonné module of the p-kernel of $H(\xi)_{k}$ is isomorphic to N_{ξ}. The main theorem of [12] says that for any p-divsible group X over k, if $\mathbb{D}(X[p]) \simeq N_{\xi}$, then X is isomorphic to $H(\xi)_{k}$.

Let N_{1} and N_{2} be two DM_{1} 's. Let A and B be the elements of $\{0,1\}^{h_{1}}$ and $\{0,1\}^{h_{2}}$ corresponding to N_{1} and N_{2} respectively. Recall how to get the element of $\{0,1\}^{h_{1}+h_{2}}$ corresponding to the direct sum $N_{1} \oplus N_{2}$. For this, we define a real number $b_{A}(i)$ with $0 \leq b_{A}(i) \leq 1$ for each $i=1, \ldots, h_{1}$. To define $b_{A}(i)$, we consider the $\left(F, V^{-1}\right)$-diagram of A. Running though the arrows in the reverse direction from δ_{i}^{A} we set $b_{l}=0$ if the l-th arrow is F and $b_{l}=1$ if the l-th arrow is V^{-1}. We define $b_{A}(i)$ to be the binary expansion

$$
b_{A}(i)=0 . b_{1} b_{2} \cdots .
$$

In the similar way, we define $b_{B}(j)$ for $j=1, \ldots, h_{2}$. The sequence corresponding to $N_{1} \oplus N_{2}$, written as $A \oplus B$, is obtained by arranging $\delta_{i}^{A}\left(i=1, \ldots, h_{1}\right)$ and $\delta_{j}^{B}\left(j=1, \ldots, h_{2}\right)$ in ascending order of their binary expansions, namely $A \oplus B=\cdots \delta_{i}^{A} \cdots \delta_{j}^{B} \cdots$ if $b_{A}(i)<b_{B}(j)$ and $\cdots \delta_{j}^{B} \cdots \delta_{i}^{A} \cdots$ if $b_{B}(j)<b_{A}(i)$, and so on.

EXAMPLE 2.6.

Here, let us see $N_{3,5} \oplus N_{3,2}$ as an example of direct sum of DM_{1} 's. We write $N_{3,5}$ and $N_{3,2}$ in the following using sequences.

Let $A \in\{0,1\}^{8}$ and $B \in\{0,1\}^{5}$ be the sequences of $N_{3,5}$ and $N_{3,2}$ respectively.
Consider $b_{A}(8)$ for example: we trace vectors in the reverse direction from 0_{8} :

$$
0_{8} \overleftarrow{V^{-1}} 1_{3} \overleftarrow{F} 0_{6} \overleftarrow{V^{-1}} 1_{1} \overleftarrow{F} 0_{4} \overleftarrow{F} 0_{7} \overleftarrow{V^{-1}} 1_{2} \overleftarrow{F} 0_{5} \overleftarrow{F} 0_{8} \overleftarrow{V^{-1}} \cdots
$$

Hence we get $b_{A}(8)=0.10100100 \cdots$. Similarly we have

$$
\begin{array}{ll}
b_{A}(8)=0.10100100 \cdots, & b_{B}(1)=0.01011 \cdots, \\
b_{A}(7)=0.10010100 \cdots, & b_{B}(2)=0.01101 \cdots, \\
b_{A}(6)=0.10010010 \cdots, & b_{B}(3)=0.10101 \cdots, \\
b_{A}(5)=0.01010010 \cdots, & b_{B}(4)=0.10110 \cdots,
\end{array}
$$

By the above, we in particular get:

$$
b_{A}(5)<b_{B}(1)<b_{B}(2)<b_{A}(6)<b_{A}(7)<b_{A}(8)<b_{B}(3)<b_{B}(4) .
$$

Then the sequence A_{ξ} corresponding to $N_{\xi}=N_{3,5} \oplus N_{3,2}$ is

$$
A_{\xi}=1_{1}^{A} \quad 1_{2}^{A} \quad 1_{3}^{A} \quad 0_{4}^{A} \quad 0_{5}^{A}
$$

where, to avoid confusion, we write each elements 1_{i} (resp. 0_{i}) of A as 1_{i}^{A} (resp. 0_{i}^{A}), and we write each elements 1_{j} (resp. 0_{j}) of B as 1_{j}^{B} (resp. 0_{j}^{B}).

More generally we have
LEMMA 2.7. Let $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ with $\lambda_{2}<1 / 2<\lambda_{1}$ where $\lambda_{i}=$ $n_{i} /\left(m_{i}+n_{i}\right)$. The sequence associated with $N_{\xi}=N_{m_{1}, n_{1}} \oplus N_{m_{2}, n_{2}}$ is given by
$\underbrace{1_{1}^{A} \cdots 1_{m_{1}}^{A}}_{m_{1}} \underbrace{0_{m_{1}+1}^{A} \cdots 0_{n_{1}}^{A}}_{n_{1}-m_{1}} \underbrace{1_{1}^{B} \cdots 1_{n_{2}}^{B}}_{n_{2}} \underbrace{0_{n_{1}+1}^{A} \cdots 0_{m_{1}+n_{1}}^{A}}_{m_{1}} \underbrace{1_{n_{2}+1}^{B} \cdots 1_{m_{2}}^{B}}_{m_{2}-n_{2}} \underbrace{0_{m_{2}+1}^{B} \cdots 0_{m_{2}+n_{2}}^{B}}_{n_{2}}$, where A and B are the sequences associated with $N_{m_{1}, n_{1}}$ and $N_{m_{2}, n_{2}}$ respectively.

Proof. See [1], Proposition 4.20.

3. Specializations

We introduce the notion of families of DM_{1} 's (but such a family will be also called a DM_{1} simply), and review some basic facts on specializations of DM_{1} 's.

Let R be a commutative ring of characteristic $p>0$. Let $\sigma: R \rightarrow R$ be the frobenius endomorphism defined by $\sigma(a)=a^{p}$.

DEFINITION 3.1.

A DM_{1} over R of height h is a quintuple $\mathcal{N}=\left(\mathcal{N}, C, D, F, V^{-1}\right)$ where
(1) \mathcal{N} is a free R-module of rank h,
(2) C and D are submodules of \mathcal{N} which are locally direct summands of \mathcal{N},
(3) $F:(\mathcal{N} / C) \otimes_{R, \sigma} R \rightarrow D$ and $V^{-1}: C \otimes_{R, \sigma} R \rightarrow \mathcal{N} / D$ are R-linear isomorphisms.

REMARK 3.2.

(1) In Moonen and Wedhorn [9], DM_{1} 's over R here are called F-zips over R with support contained in $\{0,1\}$.
(2) When R is a perfect field k, to a $\mathrm{DM}_{1}(N, V, F)$ over k with the notation in Definition 2.1 we associate a quintuple ($N, V N, F N, F, V^{-1}$), which
naturally becomes a DM_{1} with the notation in Definition 3.1. By this association, we identify them.

Let k be an algebraically closed field of characteristic p, and let $R=k \llbracket t \rrbracket$ be the ring of formal power series over k. For \mathcal{N} an arbitrary DM_{1} over R, we can consider $\mathcal{N}_{k}:=\mathcal{N} \otimes_{R} k$, which is a DM_{1} over k. Hence we have the canonical map called specialization

$$
\left\{\mathrm{DM}_{1} \text { over } R\right\} \longrightarrow\left\{\mathrm{DM}_{1} \text { over } k\right\} .
$$

sending \mathcal{N} to \mathcal{N}_{k}.
Let K be the fractional field of R. We also consider $\mathcal{N}_{\bar{K}}:=\mathcal{N} \otimes_{R} \bar{K}$, which is a DM_{1} over \bar{K} and is called the geometric generic fiber of \mathcal{N}.

Definition 3.3. Let A and B be elements of $\{0,1\}^{h}$. We say $B \preceq A$ if there exists an DM_{1} over R such that \mathcal{N}_{k} is associated with B and $\mathcal{N}_{\bar{K}}$ is associated with A.

Let A, B be the sequences of N_{1}, N_{2} respectively. We denote by $A \oplus B$ the sequence corresponding to $N_{1} \oplus N_{2}$. It is obvious that if $B \prec A$, then $B \oplus P \prec A \oplus P$ holds for $A, B \in\{0,1\}^{h}$ and $P \in\{0,1\}^{h^{\prime}}$.

DEFINITION 3.4. Let A and B be elements of $\{0,1\}^{h}$. We say $B<A$ if there exist elements $A^{(1)}, \ldots, A^{(\ell-1)}$ of $\{0,1\}^{h}$ with $A^{(0)}:=B$ and $A^{(\ell)}:=A$ such that one can write $A^{(i)}=P^{(i)} \oplus Q^{(i)}$, and $A^{(i-1)}=P^{(i)} \oplus Q^{(i-1)}$ for $i=1, \ldots, \ell$ for some $P^{(i)}$, where $Q^{(i-1)}$ is constructed by exchanging an adjacent subsequence " 01 " in $Q^{(i)}$ for " 10 ".

The following is known, see the proof of [10, Proposition 11.1].

PROPOSITION 3.5.

If $B \leq A$, then $B \preceq A$ holds.
We want to know relations between $\mathcal{N} \otimes_{R} \bar{K}$ and $\mathcal{N} \otimes_{R} k$. The aim of this paper is to show the existence of \mathcal{N} satisfying $\mathcal{N} \otimes_{R} \bar{K} \cong N_{m_{1}, n_{1}} \oplus N_{m_{2}, n_{2}}=N_{\xi}$ and $\mathcal{N} \otimes_{R} k \cong N_{m_{1}^{\prime}, n_{1}^{\prime}} \oplus N_{m_{2}^{\prime}, n_{2}^{\prime}} \oplus \cdots \oplus N_{m_{i}^{\prime}, n_{i}^{\prime}}=N_{\zeta}$ for any $\zeta \prec \xi$. Before dealing with the general case, let us see as an example the case of $\zeta=(2,3)+4(1,1) \prec$ $\xi=(3,5)+(3,2)$.

EXAMPLE 3.6.

We consider $N_{\xi}=N_{3,5} \oplus N_{3,2}$. As seen in Example 2.6, the sequence corresponding to N_{ξ} is

$$
A_{\xi}=1110 \underline{01} 1000100 .
$$

Let A_{ξ}^{-}be the sequence obtained by exchanging 0 and 1 of the above underline part. Then another subsequence 01 appears, see the double-underline part below:

$$
A_{\xi}^{-}=111 \underline{\underline{01}} 01000100 .
$$

Let A_{ξ}^{--}be the sequence obtained by exchanging 0 and 1 of the double-underline part:

$$
A_{\xi}^{--}=1111001000100 .
$$

The $\left(F, V^{-1}\right)$-diagram of N_{ξ}^{--}associated with A_{ξ}^{--}is

The right direct summand 11000 is the sequence of $N_{2,3}$, and the left direct summand $A^{\prime}:=11010100$ can be specialized to $B:=11110000$ by exchanging repeatedly 01 for 10 . Note that B is the sequence of $N_{1,1}^{\oplus 4}$. Hence we get a specialization from N_{ξ} to $N_{\zeta}=N_{2,3} \oplus N_{1,1} \oplus N_{1,1} \oplus N_{1,1} \oplus N_{1,1}$. The figure of ξ and ζ is as follows.

Put $\xi^{\prime}=(1,2)+(3,2)$. Then

$$
A_{\xi^{\prime}}=100 \oplus 11100=1 \underline{011} 10100 .
$$

We define $A_{\xi^{\prime}}^{-}$in the similar way as when we defined A_{ξ}^{-}from A_{ξ}, i.e.,

$$
A_{\xi^{\prime}}^{-}=11010100 .
$$

We observe that $A_{\xi^{\prime}}^{-}$is equal to A^{\prime} above. The key step of our proof is to show that such phenomenon always occurs. As the height of ξ^{\prime} is less than that of ξ, this allows us to prove the main theorem by induction.

4. Combinatorics of Newton polygons

We show some combinatorial facts on Newton polygons, which will be used later on.

For Newton polygons $\zeta \prec \xi$ of height h we set

$$
\begin{equation*}
c(\zeta, \xi)=2 \sum_{i=1}^{h}(\zeta(i)-\xi(i)) \tag{4}
\end{equation*}
$$

where we regard Newton polygons (line graphs in the $x y$-plane) as functions on $\{x \in \mathbb{R} \mid 0 \leq x \leq h\}$. There is a relationship between $c(\zeta, \xi)$ and the number of segments of ζ in a special case:

Proposition 4.1. Let ξ be a Newton polygon consisting of two segments. Let $\zeta \prec \xi$ be a saturated pair of Newton polygons. Then $c(\zeta, \xi)$ is equal to the number of segments of ζ.

Proof. First note that $c(\zeta, \xi)$ is equal to the area of the part which is surrounded by ζ and ξ.

We prove the proposition by induction on the number c of the segments of ζ. The case of $c=1$ is obvious from Lemma 4.2 below. Assume $c \geq 2$. Write $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ and $\zeta=\left(m_{1}^{\prime}, n_{1}^{\prime}\right)+\cdots+\left(m_{c}^{\prime}, n_{c}^{\prime}\right)$. We set $\zeta^{\prime}=$ $\left(m_{2}^{\prime}, n_{2}^{\prime}\right)+\cdots+\left(m_{c}^{\prime}, n_{c}^{\prime}\right)$ and $\xi^{\prime}=\left(m_{1}-m_{1}^{\prime}, n_{1}-n_{1}^{\prime}\right)+\left(m_{2}, n_{2}\right)$ if $m_{1} \geq m_{1}^{\prime}$ and $n_{1} \geq n_{1}^{\prime}$ or $\zeta^{\prime}=\left(m_{1}^{\prime}, n_{1}^{\prime}\right)+\cdots+\left(m_{c-1}^{\prime}, n_{c-1}^{\prime}\right)$ and $\xi^{\prime}=\left(m_{1}, n_{1}\right)+\left(m_{2}-m_{c}^{\prime}, n_{2}-n_{c}^{\prime}\right)$ otherwise. We write a proof only in the former case, as the same argument works for the latter case. The figure in the former case is as follows.

We have $\zeta^{\prime} \prec \xi^{\prime}$ and this is saturated. By the hypothesis of induction, the number of segments of ζ^{\prime} is equal to $c\left(\zeta^{\prime}, \xi^{\prime}\right)$, and therefore the number of segments of ζ is equal to $c\left(\zeta^{\prime}, \xi^{\prime}\right)+1$. Considering the areas we have the following.

$$
c(\zeta, \xi)=c\left(\zeta^{\prime}, \xi^{\prime}\right)+n_{1} m_{1}^{\prime}-m_{1} n_{1}^{\prime}
$$

We have to show that $n_{1} m_{1}^{\prime}-m_{1} n_{1}^{\prime}=1$ under the assumption that there is no lattice point in the region surrounded by $\left(m_{1}^{\prime}, n_{1}^{\prime}\right), \xi$ and ξ^{\prime}. This follows from the lemma below.

For vectors $\vec{a}=\left(a_{1}, a_{2}\right)$ and $\vec{b}=\left(b_{1}, b_{2}\right)$, we set $\langle\vec{a}, \vec{b}\rangle=a_{1} b_{2}-a_{2} b_{1}$.

LEMMA 4.2. Let $\vec{a}=\left(a_{1}, a_{2}\right), \vec{b}=\left(b_{1}, b_{2}\right)$ with $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$ and $\langle\vec{a}, \vec{b}\rangle>0$. Assume that there exists no lattice point in the interior of the triangle that is the convex hull of $(0,0), \vec{a}$ and \vec{b}. Then $\langle\vec{a}, \vec{b}\rangle=1$.

Proof. Assume $v:=\langle\vec{a}, \vec{b}\rangle \geq 2$, and lead a contradiction. Choose $\vec{x}=(x, y)$ with $\langle\vec{a}, \vec{x}\rangle=1$ and $x, y \in \mathbb{Z}$. Choose $r \in \mathbb{Z}, s, t \in \mathbb{Q}$ such that $\vec{x}+r \vec{a}=s \vec{a}+t \vec{b}$ with $0 \leq s \leq 1$. Taking $\langle-, \vec{a}\rangle$ on the both sides, we have $\langle\vec{a}, \vec{x}\rangle+r\langle\vec{a}, \vec{a}\rangle=$ $s\langle\vec{a}, \vec{a}\rangle+t\langle\vec{a}, \vec{b}\rangle$, whence $1=t v$. We have $\vec{x}+r \vec{a}=s \vec{a}+(1 / v) \vec{b}$. As $s \in(1 / v) \mathbb{Z}$ with $0 \leq s<1$, we have $s+(1 / v) \leq 1$. This means that $\vec{x}+r \vec{a}$ is a lattice point in the interior of the triangle that is the convex hull of $(0,0), \vec{a}$ and \vec{b}. This is a contradiction.

5. Main results

Our main theorem is the following.

THEOREM 5.1.

Let ζ and ξ be Newton polygons of height h with $\zeta \prec \xi$. Set $M_{0}:=N_{\zeta}$ and $M_{c}:=N_{\xi}$ with $c=c(\zeta, \xi)$. Then there exist DM_{1} 's M_{1}, \ldots, M_{c-1} such that $A^{(0)}<A^{(1)} \cdots<A^{(c-1)}<A^{(c)}$, where $A^{(i)} \in\{0,1\}^{h}$ are the sequences corresponding to $M_{i}(0 \leq i \leq c)$.

The proof will be given in the next section. Let us see that this theorem implies Corollary 1.1 in Introduction.

Proof of Corollary 1.1. It suffices to show the case that ζ contains no étale segment $(1,0)$. Indeed write $\zeta=f(1,0)+\zeta^{\prime}$ and $\xi=f(1,0)+\xi^{\prime}$ for $f \in$ $\mathbb{Z}_{\geq 0}$, where ζ^{\prime} has no étale segment $(1,0)$. If there exists a specialization from $H\left(\xi^{\prime}\right)$ to $H\left(\zeta^{\prime}\right)$, then considering the direct sum of it and $H(f(1,0))$ we have a specialization from $H(\xi)$ to $H(\zeta)$.

Assume that ζ has no étale segment $(0,1)$. Let k be an algebraically closed field. Theorem 5.1 in particular says that there exists a $\mathrm{DM}_{1} \mathcal{N}$ over $R=k \llbracket t \rrbracket$ such that \mathcal{N}_{k} is isomorphic to N_{ζ} and \mathcal{N}_{K} is isomorphic to N_{ξ} over an algebraically closed field. There exists a lifting of DM_{1} to a display \mathcal{M} over R (cf. [2], Lemma 4.1). Thanks to the theory of display by Zink [16, Theorem 103 on p. 221], we get the p-divisible group \mathcal{X} associated with \mathcal{M}, which is a specialization from $H(\xi)$ to $H(\zeta)$. Indeed by [12] the special fiber \mathcal{X}_{k} is isomorphic to $H(\zeta)$ and the generic fiber \mathcal{X}_{K} is isomorphic to $H(\xi)$ over an algebraically closed field.

Here is another corollary. Consider a p-divisible group X over k. Let $\operatorname{Def}(X)=$
$\operatorname{Spf}(\Gamma)$ be the local deformation space in characteristic p (cf. [13, 1.9]). Set $D(X)=\operatorname{Spec}(\Gamma)$ and let $\mathcal{X} \rightarrow D(X)$ be the p-divisible group over $D(X)$ obtained via the category equivalence obtained in [4, 2.4.4]. For a p-divisible group $\mathcal{Y} \rightarrow S$ over a scheme S and for a p-divisible group Y over k, we consider
$\mathcal{C}_{Y}(S)=\left\{s \in S \mid \mathcal{Y}_{s}\right.$ is isomorphic to Y over an algebraically closed field $\}$.
To the dimension formula of $\mathcal{C}_{X}(D(X))$, Oort gave three proofs in [13]. This paper gives the fourth proof.

COROLLARY 5.2. Let X be a p-divisible group of Newton polygon ξ of height h and of dimension d, we have

$$
\operatorname{dim} \mathcal{C}_{X}(D(X))=c(\xi)
$$

where we set $c(\xi):=c(\sigma, \xi)$ with $\sigma=(h-d, d)$.
Proof. Let $\mathcal{S}_{Y[p]}(D(Y))$ be the Ekedahl-Oort stratum on $D(Y)$, i.e., the locally closed subset consisting of points whose p-kernel types are the same as that of $Y[p]$ (cf. [13], 1.6). We consider it as a locally closed subscheme of $D(Y)$ by giving it the induced reduced structure. By Oort [13], 7.19 and 7.9, we have

$$
\operatorname{dim} \mathcal{C}_{X}(D(X))=\operatorname{dim} \mathcal{C}_{H(\xi)}(D(H(\xi)))=\operatorname{dim} \mathcal{S}_{H(\xi)[p]}(D(H(\xi)))
$$

Combining Wedhorn $[15,6.10]$ and Moonen [8, 2.1.2], $\operatorname{dim} \mathcal{S}_{Y[p]}(D(Y))$ this is equal to the length $\ell(A)$ of the type A of $Y[p]$, where $\ell(A)=\#\{(i, j) \mid i<$ $\left.j, \delta_{i}=0, \delta_{j}=1\right\}$ for $A=\delta_{1} \cdots \delta_{h}$. Let $\chi=(h-d)(1,0)+d(0,1)$. By Theorem 5.1, we have

$$
\ell\left(A_{\sigma}\right)+c(\sigma, \xi) \leq \ell\left(A_{\xi}\right) \leq \ell\left(A_{\chi}\right)-c(\xi, \chi) .
$$

The corollary follows from the obvious cases $\ell\left(A_{\sigma}\right)=0=c(\sigma)$ and $\ell\left(A_{\chi}\right)=$ $(h-d) d=c(\chi)$, using the formula $c(\zeta, \xi)=c(\xi)-c(\zeta)$.

REMARK 5.3. In the proof of Corollary 5.2, we used the dimension formula of Ekedahl-Oort strata due to Wedhorn [15, 6.10] and Moonen [8, 2.1.2], but, as type A in the proof is combinatorially complicated (no explicit general form of A is known), determinining $\ell(A)$ is a non-trivial problem.

6. Proof

In this section, we prove Theorem 5.1. The essential case is that ξ consists of two segments, i.e., $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ with $\operatorname{gcd}\left(m_{1}, n_{1}\right)=1$ and
$\operatorname{gcd}\left(m_{2}, n_{2}\right)=1$. Here we treat the case of $\lambda_{2}<1 / 2<\lambda_{1}$, where $\lambda_{i}=n_{i} /\left(m_{i}+n_{i}\right)$ for $i=1,2$, since the other case $\lambda_{2}<\lambda_{1} \leq 1 / 2$ or $1 / 2 \leq \lambda_{2}<\lambda_{1}$ has already been studied in [1], 8.4.

Let $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ with $\lambda_{2}<1 / 2<\lambda_{1}$, until Proof of Theorem 5.1. Let N_{ξ} be the minimal DM_{1} of ξ, and we denote the sequence associated with N_{ξ} as A_{ξ}. In Lemma 2.7, we have seen that the sequence A_{ξ} is described as

$$
\underbrace{1_{1}^{A} \cdots 1_{m_{1}}^{A}}_{m_{1}} \underbrace{0_{m_{1}+1}^{A} \cdots 0_{n_{1}}^{A}}_{n_{1}-m_{1}} \underbrace{1_{1}^{B} \cdots 1_{n_{2}}^{B}}_{n_{2}} \underbrace{0_{n_{1}+1}^{A} \cdots 0_{m_{1}+n_{1}}^{A}}_{m_{1}} \underbrace{1_{n_{2}+1}^{B} \cdots 1_{m_{2}}^{B}}_{m_{2}-n_{2}} \underbrace{0_{m_{2}+1}^{B} \cdots 0_{m_{2}+n_{2}}^{B}}_{n_{2}} .
$$

For a sequence S of 0 and 1 , let S^{-}denote the sequence obtained by exchanging "first" adjacent subsequence " 01 " for " 10 " in S. To simplify, we write $\left(A_{\xi}^{-}\right)^{-}=$ A_{ξ}^{--}. Note $A_{\xi}^{--}<A_{\xi}^{-}<A_{\xi}$. Let N_{ξ}^{-}and N_{ξ}^{--}be the DM_{1} 's associated with A_{ξ}^{-}and A_{ξ}^{--}respectively. We shall prove Theorem 5.1 by induction, using the following three propositions.

Proposition 6.1. If one of the following conditions
(1) $n_{1}-m_{1}>1$ and $n_{2}>0$,
(2) $n_{1}-m_{1}=1$ with $m_{1}>0$ and $n_{2}=1$,
(3) $n_{2}=0$ and $m_{1}>1$
holds, then we have

$$
N_{\xi}^{--}=N_{\xi^{\prime}}^{-} \oplus N_{\rho},
$$

with $\rho=(a, b)$ and $\xi^{\prime}=\left(m_{1}-a, n_{1}-b\right)+\left(m_{2}, n_{2}\right)$, where ρ is uniquely determined by ξ so that the area of the region surrounded by ξ, ξ^{\prime} and ρ in the picture below is one.

Proof. First, let us see the case (1). Since $\operatorname{gcd}\left(m_{1}, n_{1}\right)=1$, we have $m_{1}>0$. The sequences $A=A_{m_{1}, n_{1}}$ and $B=A_{m_{2}, n_{2}}$ associated with $N_{m_{1}, n_{1}}$ and $N_{m_{2}, n_{2}}$
are

$$
\begin{aligned}
& A=\underbrace{1_{1}^{A} \cdots 1_{m_{1}}^{A}}_{m_{1}} \underbrace{0_{m_{1}+1}^{A} \cdots 0_{n_{1}}^{A}}_{n_{1}-m_{1}} \underbrace{0_{n_{1}+1}^{A} \cdots 0_{m_{1}+n_{1}}^{A}}_{m_{2}}, \\
& B=\underbrace{1_{1}^{B} \cdots 1_{n_{2}}^{B}}_{m_{2}-n_{2}} \underbrace{1_{n_{2}+1}^{B} \cdots 1_{m_{2}}^{B}}_{n_{2}} \underbrace{0_{m_{2}}^{B}}_{m_{2}+1 \cdots 0_{m_{2}+n_{2}}^{B}}
\end{aligned}
$$

respectively. By Lemma 2.7, the sequence $A \oplus B$ of $N_{\xi}=N_{m_{1}, n_{1}} \oplus N_{m_{2}, n_{2}}$ is

Here, we write only arrows of F and V^{-1} which are necessary to check the structure of N_{ξ}. Of course the $\left(F, V^{-1}\right)$-diagram of $A \oplus B$ consists of the cycles of A and B :

where $h_{1}=m_{1}+n_{1}$ and $h_{2}=m_{2}+n_{2}$. The $\mathrm{DM}_{1} N_{\xi}^{-}$is obtained by exchanging $0_{n_{1}}^{A}$ and 1_{1}^{B} in A_{ξ}. The sequence A_{ξ}^{-}corresponding to N_{ξ}^{-}is described as
$1_{1}^{A} \cdots 1_{m_{1}}^{A} 0_{m_{1}+1}^{A} \cdots 0_{n_{1}-1}^{A} \underline{1_{1}^{B}} 0_{n_{1}}^{A} 1_{2}^{B} \cdots 1_{n_{2}}^{B} 0_{n_{1}+1}^{A} \cdots 0_{h_{1}}^{A} 1_{n_{2}+1}^{B} \cdots 1_{m_{2}}^{B} 0_{m_{2}+1}^{B} \cdots 0_{h_{2}}^{B}$.
We claim that N_{ξ}^{-}consists of one cycle. Indeed, by the exchange of $0_{n_{1}}^{A}$ and 1_{1}^{B}, the destination of the vector from $0_{m_{2}+1}^{B}$ is changed to $0_{n_{1}}^{A}$, and the destination of the vector from $0_{m_{1}+n_{1}}^{A}$ is changed to 1_{1}^{B}. The claim follows from the diagram of N_{ξ}^{-}:

We get the $\mathrm{DM}_{1} N_{\xi}^{--}$by exchanging $0_{n_{1}-1}^{A}$ and 1_{1}^{B} in A_{ξ}^{-}. The sequence A_{ξ}^{--} corresponding to N_{ξ}^{--}is described as

We shall use these arrows to check the structure of cycles of N_{ξ}^{--}. To consider the cycles of N_{ξ}^{--}, we rewrite the $\left(F, V^{-1}\right)$-cycle of N_{ξ}^{-}as follows:

We claim that N_{ξ}^{--}consists of two cycles. By the exchange of $0_{n_{1}-1}^{A}$ and 1_{1}^{B}, the destination of the vector from $0_{h_{1}}^{A}$ is changed to $0_{n_{1}-1}^{A}$, and the destination of the vector from $0_{h_{1}-1}^{A}$ is changed to 1_{1}^{B}. The claim follows from the diagram:

Let C_{1} be the cycle containing $0_{h_{1}}^{A}$, and let C_{2} be the cycle containing 1_{1}^{B}. It suffices to show the following properties:
(a) C_{1} is the $\left(F, V^{-1}\right)$-diagram of N_{ρ},
(b) C_{2} is the $\left(F, V^{-1}\right)$-diagram of $N_{\xi^{\prime}}^{-}$.

As C_{1} is a part of the cycle of simple $\mathrm{DM}_{1} N_{m_{1}, n_{1}}$, the sequence corresponding to C_{1} is written as follows:

$$
\underbrace{1^{A} \cdots 1^{A}}_{a} \underbrace{0^{A} \cdots 0_{m_{1}+n_{1}}^{A}}_{b}
$$

Since this cycle coincides with the cycle obtained from A by applying [1], Lemma 5.6 to the adjacent $0_{n_{1}-1}^{A} 0_{n_{1}}^{A}$, we have $a n_{1}-b m_{1}=1$. Hence the property (a) holds.

Next we consider the cycle C_{2}. We can write C_{2} as follows.

Let L be the sequence associated to C_{2}, and let L^{\prime} be the sequence constructed by exchanging 1_{1}^{B} and $0_{n_{1}}^{A}$ in L. Then we have

$$
L^{\prime}=\underbrace{1^{A} \cdots 1^{A}}_{m_{1}-a} \underbrace{0^{A} \cdots 0_{n_{1}}^{A}}_{\left(n_{1}-b\right)-\left(m_{1}-a\right)} \underbrace{1_{1}^{B} \cdots 1^{B}}_{n_{2}} \underbrace{0^{A} \cdots 0^{A}}_{m_{1}-a} \underbrace{1^{B} \cdots 1^{B}}_{m_{2}-n_{2}} \underbrace{0^{B} \cdots 0^{B}}_{n_{2}} .
$$

By Lemma 2.7, we see that this sequence is decomposed into two simple DM_{1} 's as follows:

$$
\underbrace{1^{A} \cdots 1^{A}}_{m_{1}-a} \underbrace{0^{A} \cdots 0_{n_{1}}^{A} 0^{A} \cdots 0^{A}}_{n_{1}-b} \oplus \underbrace{\underbrace{B}_{1} 1^{B} \cdots 1^{B}}_{m_{2}} \underbrace{0^{B} \cdots 0^{B}}_{n_{2}}=A_{m_{1}-a, n_{1}-b} \oplus A_{m_{2}, n_{2}} .
$$

It is clear that L^{\prime} corresponds to $N_{\xi^{\prime}}$ with $\xi^{\prime}=\left(m_{1}-a, n_{1}-b\right)+\left(m_{2}, n_{2}\right)$, whence the property (b) holds.

Let us see the case (2). In this case, for A_{ξ}^{-}given by exchanging the subsequence $0_{n_{1}}^{A} 1_{1}^{B}$ for $1_{1}^{B} 0_{n_{1}}^{A}$, we construct A_{ξ}^{--}by the exchange of $0_{h_{1}}^{A}$ and 1_{2}^{B} with $h_{1}=m_{1}+n_{1}$. The sequence A_{ξ}^{--}consists of two cycles. The cycle containing $0_{h_{1}}^{A}$ is associated with $N_{1,1}$. In fact, the sequence of this cycle is $1_{1}^{B} 0_{h_{1}}^{A}$. Moreover, for the other cycle, one can check that this cycle is associated with $N_{\xi^{\prime}}^{-}$with $\xi^{\prime}=\left(m_{1}-1, n_{1}-1\right)+\left(m_{2}, n_{2}\right)$ by exchanging $1_{m_{1}}^{A}$ and $0_{n_{1}}^{A}$.

For the case (3), since $\operatorname{gcd}\left(m_{2}, n_{2}\right)=1$, we have $m_{2}=1$. In this case, we have only one subsequence " 01 " in A_{ξ}, which is $0_{h_{1}}^{A} 1_{1}^{B}$. We construct A_{ξ}^{-}by exchanging this subsequence for $1_{1}^{B} 0_{h_{1}}^{A}$. We exchange $0_{h_{1}-1}^{A}$ and 1_{1}^{B} to construct A_{ξ}^{--}. Then A_{ξ}^{--}consists of two cycles. The cycle containing $0_{h_{1}-1}^{A}$ is associated with $N_{a, b}$ as this cycle consists of some terms of A. Since this cycle coincides with the cycle obtained from A by applying [1], Lemma 5.6 to the adjacent $0_{h_{1}-1}^{A} 0_{h_{1}}^{A}$, we see $a n_{1}-b m_{1}=1$. One can check that the other cycle is associated with $N_{\xi^{\prime}}^{-}$ with $\xi^{\prime}=\left(m_{1}-a, n_{1}-b\right)+\left(m_{2}, n_{2}\right)$ by exchanging 1_{1}^{B} and $0_{h_{1}}^{A}$.

Example 6.2. We have dealt with the case of $\xi=(3,5)+(3,2)$ in Example 3.6, where we observed that

$$
N_{(3,5)+(3,2)}^{--}=N_{(1,2)+(3,2)}^{-} \oplus N_{2,3}
$$

holds.
PROPOSITION 6.3. If $n_{1}-m_{1}=1$ and $n_{2}>1$, then we have

$$
N_{\xi}^{--}=N_{\xi^{\prime}}^{-} \oplus N_{\rho},
$$

with $\rho=(a, b)$ and $\xi^{\prime}=\left(m_{1}, n_{1}\right)+\left(m_{2}-a, n_{2}-b\right)$, where ρ is uniquely determined by ξ so that the area of the region surrounded by ξ, ξ^{\prime} and ρ in the picture below is one.

Proof. In this hypothesis, we have $0_{m_{1}+1}^{A}=0_{n_{1}}^{A}$. The sequence A_{ξ}^{-}is obtained by exchanging $0_{n_{1}}^{A}$ and 1_{1}^{B}. Then we obtain the same $\left(F, V^{-1}\right)$-diagram as (\star). For the sequence A_{ξ}^{-}:

$$
1_{1}^{A} \cdots 1_{m_{1}}^{A} 1_{1}^{B} \underline{0_{n_{1}}^{A} 1_{2}^{B} \cdots 1_{n_{2}}^{B} 0_{n_{1}+1}^{A} \cdots 0_{m_{1}+n_{1}}^{A} 1_{n_{2}+1}^{B} \cdots 1_{m_{2}}^{B} 0_{m_{2}+1}^{B} \cdots 0_{m_{2}+n_{2}}^{B}},
$$

to construct A_{ξ}^{--}, we exchange $0_{n_{1}}^{A}$ and 1_{2}^{B}. Then A_{ξ}^{--}consists of two cycles. The $\mathrm{DM}_{1} N_{\xi}^{--}$is described as follows:

Let C_{1} (resp. C_{2}) be the cycle of A_{ξ}^{--}containing $0_{n_{1}}^{A}$ (resp. 1_{2}^{B}). Since the cycle C_{2} consists of some terms of B, this cycle corresponds to a minimal $\mathrm{DM}_{1} N_{\rho}$ with $\rho=(a, b)$. Since this cycle coincides with the cycle obtained from B the adjacent $1_{1}^{B} 1_{2}^{B}$, by [1], Lemma 5.6, we have $b m_{2}-a n_{2}=1$. Let us see that C_{1} corresponds to $N_{\xi^{\prime}}^{-}$for a Newton polygon ξ^{\prime}. Let L be the sequence corresponding to C_{1}, and let L^{\prime} be the sequence constructed by exchanging 1_{1}^{B} and $0_{n_{1}}^{A}$ in L. Then we have

$$
L^{\prime}=\underbrace{1_{1}^{A} \cdots 1_{m_{1}}^{A}}_{m_{1}} 0_{n_{1}}^{A} \underbrace{1_{1}^{B} \cdots 1^{B}}_{n_{2}-b} \underbrace{0_{n_{1}+1}^{A} \cdots 0_{m_{1}+n_{1}}^{A}}_{m_{1}} \underbrace{1^{B} \cdots 1^{B}}_{\left(m_{2}-a\right)-\left(n_{2}-b\right)} \underbrace{0^{B} \cdots 0^{B}}_{n_{2}-b} .
$$

It implies that L^{\prime} is associated with $N_{\xi^{\prime}}$ for $\xi^{\prime}=\left(m_{1}, n_{1}\right)+\left(m_{2}-a, n_{2}-b\right)$.
Let us see an example of this specialization.
EXAMPLE 6.4. We consider $N_{\xi}=N_{2,3} \oplus N_{4,3}$. By Lemma 2.7, the sequence of N_{ξ} is

$$
A_{\xi}=1_{1}^{A} 1_{2}^{A} \quad 0_{3}^{A} \quad 1_{1}^{B} \quad 1_{2}^{B} \quad 1_{3}^{B} \quad 0_{4}^{A} 0_{5}^{A}
$$

By exchanging $0_{3}^{A} 1_{1}^{B}$ for $1_{1}^{B} 0_{3}^{A}$, we obtain A_{ξ}^{-}. Moreover, by exchanging $0_{3}^{A} 1_{2}^{B}$ for $1_{2}^{B} 0_{3}^{A}$, we obtain A_{ξ}^{--}. The sequence associated with N_{ξ}^{--}can be decomposed into two cycles as follows.

Let $\xi^{\prime}=(2,3)+(3,2)$. We have then $A_{\xi^{\prime}}=\begin{array}{lllllllll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0\end{array} 0$ and $A_{\xi^{\prime}}^{-}=$

1110100100 . One verifies that $A_{\xi^{\prime}}^{-}$coincides with the left direct summand of (a).

The final proposition treats the remaining case:
Proposition 6.5. We have
(1) If $m_{1}=n_{2}=0$, then $N_{\xi}^{-}=N_{1,1}$;
(2) If $m_{1}=0$ and $n_{2}=1$, then $N_{\xi}^{--}=N_{1,1} \oplus N_{m_{2}-1,1}$;
(3) If $m_{1}=1$ and $n_{2}=0$, then $N_{\xi}^{--}=N_{1, n_{1}-1} \oplus N_{1,1}$.

Proof. In the case (1), N_{ξ} is expressed by

We construct N_{ξ}^{-}by exchanging 0 and 1 in N_{ξ}, then we get

Hence $N_{\xi}^{-}=N_{1,1}$.
In the case (2), we exchange the subsequence $0_{1}^{A} 1_{1}^{B}$ to construct A_{ξ}^{-}. Moreover, we construct A_{ξ}^{--}by exchanging the subsequence $0_{1}^{A} 1_{2}^{B}$ for $1_{2}^{B} 0_{1}^{A}$. Then A_{ξ}^{--}consists of two cycles. The cycle containing 0_{1}^{A} is associated with $N_{1,1}$ since the sequence of this cycle is $1_{1}^{B} 0_{1}^{A}$. Moreover, the other cycle is associated with $N_{m_{2}-1,1}$.

In the case (3), The sequence A_{ξ}^{-}is constructed by exchanging $0_{h_{1}}^{A} 1_{1}^{B}$ for $1_{1}^{B} 0_{h_{1}}^{A}$ with $h_{1}=m_{1}+n_{1}$. We exchange the subsequence $0_{h_{1}-1}^{A} 1_{1}^{B}$ for $1_{1}^{B} 0_{h_{1}-1}^{A}$, and we construct A_{ξ}^{--}. Then A_{ξ}^{--}consists of two cycles. The cycle containing 1_{1}^{B} is associated with $N_{1,1}$. In fact, the sequence of this cycle is $1_{1}^{B} 0_{h_{1}}^{A}$. The other cycle is associated with $N_{1, n_{1}-1}$. This completes the proof.

Finally, we see that Propositions 6.1, 6.3 and 6.5 imply Theorem 5.1.
Proof of Theorem 5.1. It suffices to show the essential case that $\zeta \prec \xi$ is saturated and ξ consists of two segments. Put $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ and assume $\zeta \prec \xi$ is saturated. Set $\lambda_{1}=n_{1} /\left(m_{1}+n_{1}\right)$ and $\lambda_{2}=n_{2} /\left(m_{2}+n_{2}\right)$. The case that the slopes of ξ, say $\lambda_{2}<\lambda_{1}$, satisfy $\lambda_{2}<\lambda_{1} \leq 1 / 2$ and $1 / 2 \leq \lambda_{2}<\lambda_{1}$ has been proved in [1], 8.4. As it suffices to prove the remaining case, we assume $\lambda_{2}<1 / 2<\lambda_{1}$. We claim that there exist $A^{(1)}, \ldots, A^{(c-2)}$ with $c=c(\zeta, \xi)$ such that $A_{\zeta}=: A^{(0)}<\cdots<A^{(c-2)}<A^{(c-1)}:=A_{\xi}^{-}$. This claim implies the theorem by $A_{\xi}^{-}<A_{\xi}$. Recall that for a sequence S we denote by S^{-}the sequence obtained by exchanging the first adjacent subsequence " 01 " in S for " 10 ", and S^{--}means
$\left(S^{-}\right)^{-}$. We use induction on $h=m_{1}+n_{1}+m_{2}+n_{2}$. The claim is clear when h is smallest, i.e., $h=2$ with $\zeta=(1,1) \prec \xi=(0,1)+(1,0)$, see the case of $m_{1}=n_{2}=0$ in Proposition 6.5. Assume $h>2$. Note that ξ with $h>2$ belongs to either of the following six cases.
(i) $n_{1}-m_{1}>1$ and $n_{2}>0$,
(ii) $n_{1}-m_{1}=1$ with $m_{1}>0$ and $n_{2}=1$,
(iii) $n_{2}=0$ and $m_{1}>1$,
(iv) $n_{1}-m_{1}=1$ and $n_{2}>1$,
(v) $m_{1}=0$ and $n_{2}=1$,
(vi) $m_{1}=1$ and $n_{2}=0$.

In the case of (i), (ii) and (iii), we get $N_{\xi}^{--}=N_{\xi^{\prime}}^{-} \oplus N_{\rho}$ by Proposition 6.1, where $\zeta=\zeta^{\prime}+\rho$ and $\zeta^{\prime} \prec \xi^{\prime}$ is saturated. In the case of (iv), we get $N_{\xi}^{--}=N_{\xi^{\prime}}^{-} \oplus N_{\rho}$ by Proposition 6.3, where $\zeta=\zeta^{\prime}+\rho$ and $\zeta^{\prime} \prec \xi^{\prime}$ is saturated. By the hypothesis of induction, there exist $B^{(1)}, \ldots, B^{(c-3)}$ such that $A_{\zeta^{\prime}}=: B^{(0)}<\cdots<B^{(c-3)}<$ $B^{(c-2)}:=A_{\xi^{\prime}}^{-}$. Here we note that $c\left(\zeta^{\prime}, \xi^{\prime}\right)=c(\zeta, \xi)-1$ holds by Proposition 4.1. Hence putting $A^{(i)}=B^{(i)} \oplus A_{\rho}(i=0, \ldots, c-2)$, we have

$$
A_{\zeta}=A_{\zeta^{\prime}} \oplus A_{\rho}=A^{(0)}<\cdots<A^{(c-2)}=A_{\xi^{\prime}}^{-} \oplus A_{\rho}=A_{\xi}^{--}<A_{\xi}^{-} .
$$

In the case of (v) and (vi), we get $N_{\xi}^{--}=N_{\rho} \oplus N_{\rho^{\prime}}$ by Proposition 6.5, where $\zeta=\rho+\rho^{\prime}$ and $\zeta \prec \xi$ is saturated, whence we have $A_{\zeta}=A_{\xi}^{--}<A_{\xi}^{-}$. Thus we have proved the claim for all the cases.

Acknowledgement. The authors thank the referee for careful reading and helpful comments. This research is supported by JSPS Grant-in-Aid for Scientific Research (C) 17K05196.

References

[1] S. Harashita, Configuration of the central streams in the moduli of abelian varieties. Asian J. Math. 13(2009), 215-250.
[2] S. Harashita, The supremum of Newton polygons of p-divisible groups with a given p-kernel type. Geometry and Analysis of Automorphic Forms of Several Variables, Proceedings of the international symposium in honor of Takayuki Oda on the occasion of his 60th birthday, Series on Number Theory and Its Applications, 7 (2011), 41-55.
[3] S. Harashita, On p-divisible groups with saturated Newton polygons. Nagoya Mathematical Journal, 1-25. doi: 10.1017/nmj.2017.22.
[4] A. J. de Jong, Crystalline Dieudonne module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math., 82 (1995), 5-96 (1996).
[5] N. M. Katz, Slope filtration of F-crystals. Journ. Géom. Alg. Rennes, Vol. I, Astérisque, 63 (1979), Soc. Math. France, 113-164.
[6] H. Kraft, Kommutative algebraische p-Gruppen. Sonderforschungsbereich. Bonn, September 1975. Ms. 86 pp .
[7] Yu. I. Manin, Theory of commutative formal groups over fields of finite characteristic. Uspehi Mat. Nauk, 18(114) (1963), 3-90.
[8] B. Moonen, A dimension formula for Ekedahl-Oort strata. Ann. Inst. Fourier, 54 (2004), 666-698.
[9] B. Moonen and T. Wedhorn, Discrete invariants of varieties in positive characteristic. Int. Math. Res. Not., 72 (2004), 3855-3903.
[10] F. Oort, A stratification of a moduli space of abelian varieties. in: Moduli of Abelian Varieties (Eds. C. Faber, G. van der Geer, and F. Oort), Progr. Math., 195, Birkhäuser, Basel, 2001, 345-416.
[11] F. Oort, Foliations in moduli spaces of abelian varieties. J. Amer. Math. Soc., 17(2004), 267-296.
[12] F. Oort, Minimal p-divisible groupe. Ann. of Math., 161(2005), 1021-1036.
[13] F. Oort, Foliations in moduli spaces of abelian varieties and dimension of leave. Progr. Math., 270, Birkhäuser Boston, Inc., Boston, MA, 2009.
[14] E. Viehmann and T. Wedhorn, Ekedahl-Oort and Newton strata for Shimura varieties of PEL type. Math. Ann., 356 (2013), 1493-1550.
[15] T. Wedhorn, The dimension of Oort strata of Shimura varieties of PEL-type. Moduli of abelian varieties. (Eds. C. Faber, G. van der Geer, and F. Oort). Progress in Math., 195, Birkhäuser Verlag 2001, 441-471.
[16] Th. Zink, The display of a formal p-divisible group. Cohomologies p-adiques et applications arithmétiques, I. Astérisque, 278 (2002), 127-248.

Graduate School of Environment and Information Sciences, Yokohama National University,
79-1 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 Japan
E-mail: higuchi-nobuhiro-tc@ynu.jp
E-mail: harasita@ynu.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary: 14L15 Group schemes; Secondary: 14L05 formal groups, p-divisible group; 14K10 algebraic moduli, classification.

 Key words and phrases: p-divisible groups; deformation space; Newton polygons.

