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Abstract. In this paper, for any pair (ζ, ξ) of Newton polygons with ζ ≺ ξ, we
construct a concrete specialization from the minimal p-divisible group of ξ to the
minimal p-divisible group of ζ by a beautiful induction. This in particular gives
the affirmative answer to the unpolarized analogue of a question by Oort on the
boundaries of central streams, and gives another proof of the dimension formula
of the central leaves in the unpolarized case.

1. Introduction

Let p be a rational prime. In this paper, by a p-divisible group we mean a

Barsotti-Tate group in algebraic and arithmetic geometry, i.e., an inductive limit

of finite algebraic group schemes having some properties. The precise definition

of p-divisible groups will be reviewed at the begining of Section 2. We study

p-divisible groups in characteristic p. By the Dieudonné-Manin classification

(cf. [7]), the isogeny classes of p-divisible groups over an algebraically closed field

in characteristic p are classified by Newton polygons, see Definition 2.4 for the

definition of Newton polygons.

Let ξ be a Newton polygon. Among p-divisible groups having Newton polygon

ξ, there is a special p-divisible group which is called minimal. We denote it

by H(ξ). The main reference for minimal p-divisible groups is Oort [12]. As

proposed in the latter part of [11, Question 6.10], H(ζ) was expected to appear

as a specialization of H(ξ) for ζ ≺ ξ, see Definition 2.4 for the notation about

Newton polygons. Our main theorem (Theorem 5.1) implies that the expectation

is true:

COROLLARY 1.1. If ζ ≺ ξ, then H(ζ) appears as a special fiber of a p-divisible

group having H(ξ) as geometric generic fiber.
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The converse of this corollary is also true, which is a consequence of Grothendieck-

Katz [5], Theorem 2.3.1.

Now several proofs of this corollary have been known (cf. [14], Proposition

1.8 and [3], Corollary 5.1), but the authors could not find any known result which

implies Theorem 5.1. Also the proof of Theorem 5.1 has an advantage of giving

a very concrete construction of such specializations. For example it would be

interesting to study relations between the construction and that in the proof in

[3, Corollary 5.1]. The method of our proof is based on the idea of [1], where the

second auther proved the similar result in the polarized case with application to

the theory of stratifications of the moduli space of principally polarized abelian

varieties. Remark that, combining Corollary 1.1 and [2], Theorem 1.1, one can

prove the unpolarized analogue of Oort’s conjecture [11, 6.9], see [3], Corollary

5.2. From Theorem 5.1, we can also give a new proof of the dimension formula

of central leaves in the unpolarized case, see Corollary 5.2.

The essential case for the proof of the main theorem is that ξ consists of two

segments and ζ ≺ ξ is saturated. The case that the slopes of ξ, say λ2 < λ1,

satisfy λ2 < λ1 ≤ 1/2 or 1/2 ≤ λ2 < λ1 has been proved in [1], 8.4. This paper

confirms that the above theorem holds in the remaining case λ2 < 1/2 < λ1.

This paper is organized as follows. In Section 2, we recall the definition of

p-divisible groups and truncated Dieudonné modules of level one (abbreviated

as DM1), which are Dieudonné modules of p-kernels of p-divisible groups. We

also recall the definitions of (DM1-)simple DM1’s, their direct sums and minimal

DM1’s. In Section 3, we recall some facts on specializations of DM1’s. In Section

4, we treat some combinatorics on Newton polygons. In Section 5, we state our

main results. In Section 6, we give a proof of the main theorem (Theorem 5.1)

whose beautiful induction would hopefully influence some future works.

2. Background

Let p be a rational prime, and h a non-negative integer. Let S be a scheme. A

p-divisible group (Barsotti-Tate group) of height h over S is an inductive system

X = (Gν , iν) (ν = 0, 1, 2, · · · ), where Gν is a finite locally free commutative

group scheme over S of order pνh and, for each ν the sequence of commutative

group schemes

0 −−−→ Gν
iν−−−→ Gν+1

pν−−−→ Gν+1

is exact, that is to say, Gν is identified via iν with Ker(pν : Gν+1 → Gν+1).

For a p-divisible group X = (Gν , iν) over S and for a morphism T → S of

schemes, we have a p-divisible group XT over T defined by (Gν ×S T, iν × id). In

particular for a closed point s = Spec(k)→ S the p-divisible group Xs over k is
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called the fiber of X over s. A p-divisible group obtained as the fiber of X over

a closed point is said to be a special fiber of X.

Let S be an Fp-scheme. For any S-scheme T , let Frob be the absolute frobe-

nius on T and Fr : T → T (p) be the relative frobenius.

A truncated Bartotti-Tate group of level one (BT1) over S is a finite locally free

commutative group scheme over S such that Im(Ver : G(p) → G) = Ker(Fr : G→
G(p)) and Ker(Ver : G(p) → G) = Im(Fr : G → G(p)), where G(p) = G ×S,Frob S

and Ver is the Verschebung on G. The p-kernel X[p] := Ker(p : X → X) of a

p-divisible group X is a BT1, and any BT1 over an algebraically closed field is

the p-kernel of a p-divisible group.

Let k be a perfect field of characteristic p. Let W (k) denote the ring of Witt

vectors with coefficients in k. Let σ be the frobenius map on k, and use the

same symbol σ for the frobenius map on W (k). A Dieudonné module over k is

a finite W (k)-module M equipped with σ-linear homomorphism F : M → M

and σ−1-linear homomorphism V : M → M such that F ◦ V and V ◦ F are

equal to the multiplication by p. In this paper we use the covariant Dieudonné

theory. It says that there is an equivalence from the category of p-divisible group

(resp. p-torsion finite commutative group schemes) over k to that of Dieudonné

modules which is free (resp. is of finite length) as W (k)-modules. In this paper,

Dieudonné modules corresponding to BT1’s via the Dieudonné functor is called

DM1’s. The precise definition of them is as follows.

DEFINITION 2.1. A truncated Dieudonné module of level one (abbreviated

as DM1) over k of height h is a triple (N,F, V ) consisting of a k-vector space

N of dimension h, a σ-linear homomorphism F : N → N and a σ−1-linear

homomorphism V : N → N satisfying KerF = ImV and ImF = KerV .

When k is an algebraically closed field, the following theorem is known (cf.

Kraft [6], Oort [10] and Moonen-Wedhorn [9]).

THEOREM 2.2.

There exists a bijection:

{0, 1}h ←→ {DM1 over k of height h}/ ∼= .

Before we recall the bijection in this theorem, we give a remark.

REMARK 2.3. Giving a DM1 over k is equivalent to giving an F -zip over k with

support contained in {0, 1} with the terminology in [9], where Moonen-Wedhorn

used some subsets of the Weyl group of GLh (in this case) as classifying data

of them over k. Using the Weyl group as classifying data is quite natural, but
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we shall not use the structure of the Weyl group in this paper. We here use

{0, 1}h, as classifying data of DM1’s, which has an advantage when we treat

decompositions of DM1’s into direct summands often considered in this paper.

We identify {0, 1}h with the set of maps from {1, . . . , h} to {0, 1}, i.e., with
the set of sequences of 0 and 1 with length h. Let A be an element of {0, 1}h,
and let δ : {1, . . . , h} ∋ i 7→ δi ∈ {0, 1} be the map corresponding to A. Then we

express A as the sequence δ1δ2 · · · δh. The bijection in the theorem is defined by

the following. To a sequence A, we associate a DM1 N = ke1⊕ · · · ⊕ keh with F

and V defined as follows. We define maps F , V using δ as follows.

Fei =

{
ej (j = #{t | 1 ≤ t ≤ i; δt = 0}) if δi = 0,

0 if δi = 1.
(1)

Let u (resp. v) be the number of 1 (resp. 0) in sequence A. Let ei1 , . . . , eiu (i1 <

· · · < iu) be the set of ei with δi = 1.

V ej =

{
eik for j > v, k = j − v,

0 for j ≤ v.
(2)

One can check that the obtained triple (N,F, V ) is a DM1.

To express the Dieudonné module associated with A = δ1δ2 · · · δh, the dia-

gram with arrows

δj δi,

F

��
δik

V −1 AA
δj (3)

is useful, where we used the notation in (1) and (2). This diagram is called the

(F, V −1)-diagram of A (or of the DM1 associated with A). As an example, let

us look at the DM1 associated with sequence 10100. Let N = ⟨e1, e2, e3, e4, e5⟩.
The (F, V −1)-diagram is

1
V −1

990

F

��
1

V −1

==0

F

{{
0

F

{{

e1 e2 e3 e4 e5

This means
Fe2 = e1, Fe1 = 0,

Fe4 = e2, Fe3 = 0,

Fe5 = e3,


V e1 = 0, V e4 = e1,

V e2 = 0, V e5 = e3,

V e3 = 0.
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It follows from KerF = ImV = {e1, e3} and ImF = KerV = {e1, e2, e3} that

(N,F, V ) is a DM1.

DEFINITION 2.4. A Newton polygon ξ is a finite multiple set of pairs (mi, ni)

(i = 1, . . . , t) of coprime non-negative integers. Conventionally we write ξ =∑t
i=1(mi, ni). We call

∑t
i=1 ni the dimension of ξ and

∑t
i=1(mi + ni) the height

of ξ. Put λi = ni/(mi + ni). We arrange (mi, ni) so that λi ≥ λj for i < j.

We regard ξ as the downward-convex line graph starting at (0, 0) and ending at

(h, d) with breaking points
∑

i>j(mi + ni, ni) for j = 0, . . . , t. For two Newton

polygons ξ and ζ with same ending point, we say ζ ≺ ξ if any point of ζ is above

or on ξ. We say that ζ ≺ ξ is saturated if there is no Newton polygon η such

that ζ ⪵ η ⪵ ξ.

To each Newton polygon, we assoiate a DM1, which is called minimal:

DEFINITION 2.5. Let m and n be non-negative integers with gcd(m,n)=1. To

(m,n), we associate a DM1 which corresponds to the sequence

Am,n = 1 1 · · · 1︸ ︷︷ ︸
m

0 · · · 0︸ ︷︷ ︸
n

by Theorem 2.2, and we write it as Nm,n. Such DM1’s are called simple (more

precisely should be called DM1-simple). A minimal DM1 is the direct sum

Nξ :=
⊕

Nmi,ni

for some Newton polygon ξ =
∑

(mi, ni). We may frequently identify a DM1 N

and A ∈ {0, 1}h if N is the DM1 corresponding to A, and we write A ∈ {0, 1}h
as Aξ if A corresponds to Nξ.

This is the notion of Dieudonné modules of p-kernels of minimal p-divisible

groups. Let us recall the definition of minimal p-divisible groups. For each

coprime pair (m,n) of non-negative integers, let Hm,n be the p-divisible group

Hm,n over Fp whose Dieudonné module D(Hm,n) is given by

D(Hm,n) =
m+n⊕
i=1

Zpei

with F, V -operations defined by Fei = ei−m and V ei = ei−n, where ei for non-

positive i is inductively defined by ei = pei+m+n. We set

H(ξ) =
⊕

Hmi,ni
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for each Newton polygon ξ =
∑

(mi, ni). A minimal p-divisible group is a p-

divisible group which is isomorphic over an algebraically closed field to H(ξ) for

some Newton polygon ξ. Let k be an algebraically closed field. The Dieudonné

module of the p-kernel of H(ξ)k is isomorphic to Nξ. The main theorem of

[12] says that for any p-divsible group X over k, if D(X[p]) ≃ Nξ, then X is

isomorphic to H(ξ)k.

Let N1 and N2 be two DM1’s. Let A and B be the elements of {0, 1}h1 and

{0, 1}h2 corresponding to N1 and N2 respectively. Recall how to get the element

of {0, 1}h1+h2 corresponding to the direct sum N1 ⊕ N2. For this, we define a

real number bA(i) with 0 ≤ bA(i) ≤ 1 for each i = 1, . . . , h1. To define bA(i), we

consider the (F, V −1)-diagram of A. Running though the arrows in the reverse

direction from δAi we set bl = 0 if the l-th arrow is F and bl = 1 if the l-th arrow

is V −1. We define bA(i) to be the binary expansion

bA(i) = 0.b1b2 · · · .

In the similar way, we define bB(j) for j = 1, . . . , h2. The sequence corresponding

to N1 ⊕ N2, written as A ⊕ B, is obtained by arranging δAi (i = 1, . . . , h1)

and δBj (j = 1, . . . , h2) in ascending order of their binary expansions, namely

A ⊕ B = · · · δAi · · · δBj · · · if bA(i) < bB(j) and · · · δBj · · · δAi · · · if bB(j) < bA(i),

and so on.

EXAMPLE 2.6.

Here, let us see N3,5 ⊕N3,2 as an example of direct sum of DM1’s. We write

N3,5 and N3,2 in the following using sequences.

N3,5 : 11 8812 8813 8804
}}

05
}}

06
}}

07
}}

08
}}

, N3,2 : 11 BB12 BB13 BB04
}}

05
}}

Let A ∈ {0, 1}8 and B ∈ {0, 1}5 be the sequences of N3,5 and N3,2 respectively.

Consider bA(8) for example: we trace vectors in the reverse direction from 08:

08 ←−−
V −1

13 ←−−
F

06 ←−−
V −1

11 ←−−
F

04 ←−−
F

07 ←−−
V −1

12 ←−−
F

05 ←−−
F

08 ←−−−
V −1

· · · .

Hence we get bA(8) = 0.10100100 · · · . Similarly we have

bA(8) = 0.10100100 · · · , bB(1) = 0.01011 · · · ,
bA(7) = 0.10010100 · · · , bB(2) = 0.01101 · · · ,
bA(6) = 0.10010010 · · · , bB(3) = 0.10101 · · · ,
bA(5) = 0.01010010 · · · , bB(4) = 0.10110 · · · .
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By the above, we in particular get:

bA(5) < bB(1) < bB(2) < bA(6) < bA(7) < bA(8) < bB(3) < bB(4).

Then the sequence Aξ corresponding to Nξ = N3,5 ⊕N3,2 is

Aξ = 1A1 1A2 1A3 0A4 0A5 1B1 1B2 0A6 0A7 0A8 1B3 0B4 0B5 ,

where, to avoid confusion, we write each elements 1i (resp. 0i) of A as 1Ai (resp.

0Ai ), and we write each elements 1j (resp. 0j) of B as 1Bj (resp. 0Bj ).

More generally we have

LEMMA 2.7. Let ξ = (m1, n1) + (m2, n2) with λ2 < 1/2 < λ1 where λi =

ni/(mi + ni). The sequence associated with Nξ = Nm1,n1 ⊕Nm2,n2 is given by

1A1 · · · 1Am1︸ ︷︷ ︸
m1

0Am1+1 · · · 0An1︸ ︷︷ ︸
n1−m1

1B1 · · · 1Bn2︸ ︷︷ ︸
n2

0An1+1 · · · 0Am1+n1︸ ︷︷ ︸
m1

1Bn2+1 · · · 1Bm2︸ ︷︷ ︸
m2−n2

0Bm2+1 · · · 0Bm2+n2︸ ︷︷ ︸
n2

,

where A and B are the sequences associated with Nm1,n1 and Nm2,n2 respectively.

Proof. See [1], Proposition 4.20.

3. Specializations

We introduce the notion of families of DM1’s (but such a family will be also

called a DM1 simply), and review some basic facts on specializations of DM1’s.

Let R be a commutative ring of characteristic p > 0. Let σ : R → R be the

frobenius endomorphism defined by σ(a) = ap.

DEFINITION 3.1.

A DM1 over R of height h is a quintuple N = (N , C,D, F, V −1) where

(1) N is a free R-module of rank h,

(2) C and D are submodules of N which are locally direct summands of N ,

(3) F : (N /C)⊗R,σ R → D and V −1 : C ⊗R,σ R → N /D are R-linear isomor-

phisms.

REMARK 3.2.

(1) In Moonen and Wedhorn [9], DM1’s over R here are called F -zips over R

with support contained in {0, 1}.
(2) When R is a perfect field k, to a DM1 (N, V, F ) over k with the nota-

tion in Definition 2.1 we associate a quintuple (N, V N, FN, F, V −1), which
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naturally becomes a DM1 with the notation in Definition 3.1. By this as-

sociation, we identify them.

Let k be an algebraically closed field of characteristic p, and let R = k[[t]] be

the ring of formal power series over k. For N an arbitrary DM1 over R, we can

consider Nk := N ⊗R k, which is a DM1 over k. Hence we have the canonical

map called specialization

{DM1 over R} −→ {DM1 over k}.
sending N to Nk.

Let K be the fractional field of R. We also consider NK := N ⊗R K, which

is a DM1 over K and is called the geometric generic fiber of N .

DEFINITION 3.3. Let A and B be elements of {0, 1}h. We say B ⪯ A if there

exists an DM1 over R such that Nk is associated with B and NK is associated

with A.

Let A,B be the sequences of N1, N2 respectively. We denote by A ⊕ B

the sequence corresponding to N1 ⊕ N2. It is obvious that if B ≺ A, then

B ⊕ P ≺ A⊕ P holds for A, B ∈ {0, 1}h and P ∈ {0, 1}h′
.

DEFINITION 3.4. Let A and B be elements of {0, 1}h. We say B < A if there

exist elements A(1), . . . , A(ℓ−1) of {0, 1}h with A(0) := B and A(ℓ) := A such that

one can write A(i) = P (i) ⊕ Q(i), and A(i−1) = P (i) ⊕ Q(i−1) for i = 1, . . . , ℓ for

some P (i), where Q(i−1) is constructed by exchanging an adjacent subsequence

“0 1” in Q(i) for “1 0”.

The following is known, see the proof of [10, Proposition 11.1].

PROPOSITION 3.5.

If B ≤ A, then B ⪯ A holds.

We want to know relations between N ⊗R K and N ⊗R k. The aim of this

paper is to show the existence of N satisfying N ⊗R K ∼= Nm1,n1 ⊕Nm2,n2 = Nξ

and N ⊗R k ∼= Nm′
1,n

′
1
⊕Nm′

2,n
′
2
⊕· · ·⊕Nm′

i,n
′
i
= Nζ for any ζ ≺ ξ. Before dealing

with the general case, let us see as an example the case of ζ = (2, 3) + 4(1, 1) ≺
ξ = (3, 5) + (3, 2).

EXAMPLE 3.6.

We consider Nξ = N3,5 ⊕ N3,2. As seen in Example 2.6, the sequence corre-

sponding to Nξ is

Aξ = 1 1 1 0 0 1 1 0 0 0 1 0 0.
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Let A−
ξ be the sequence obtained by exchanging 0 and 1 of the above underline

part. Then another subsequence 0 1 appears, see the double-underline part

below:

A−
ξ = 1 1 1 0 1 0 1 0 0 0 1 0 0.

Let A−−
ξ be the sequence obtained by exchanging 0 and 1 of the double-underline

part:

A−−
ξ = 1 1 1 1 0 0 1 0 0 0 1 0 0.

The (F, V −1)-diagram of N−−
ξ associated with A−−

ξ is

N−−
ξ : 1 ;;1 ;;0

��
1 ??0

~~
1 DD0

{{
0

{{ ⊕ 1 @@1 @@0
��

0
��

0
��

.

The right direct summand 1 1 0 0 0 is the sequence of N2,3, and the left direct

summand A′ := 1 1 0 1 0 1 0 0 can be specialized to B := 1 1 1 1 0 0 0 0 by

exchanging repeatedly 0 1 for 1 0. Note that B is the sequence of N⊕4
1,1 . Hence

we get a specialization from Nξ to Nζ = N2,3 ⊕ N1,1 ⊕ N1,1 ⊕ N1,1 ⊕ N1,1. The

figure of ξ and ζ is as follows.

ξ

ζ

ξ′

Put ξ′ = (1, 2) + (3, 2). Then

Aξ′ = 1 0 0⊕ 1 1 1 0 0 = 1 0 1 1 0 1 0 0.

We define A−
ξ′ in the similar way as when we defined A−

ξ from Aξ, i.e.,

A−
ξ′ = 1 1 0 1 0 1 0 0.

We observe that A−
ξ′ is equal to A′ above. The key step of our proof is to show

that such phenomenon always occurs. As the height of ξ′ is less than that of ξ,

this allows us to prove the main theorem by induction.

4. Combinatorics of Newton polygons

We show some combinatorial facts on Newton polygons, which will be used

later on.
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For Newton polygons ζ ≺ ξ of height h we set

c(ζ, ξ) = 2
h∑

i=1

(ζ(i)− ξ(i)), (4)

where we regard Newton polygons (line graphs in the xy-plane) as functions on

{x ∈ R | 0 ≤ x ≤ h}. There is a relationship between c(ζ, ξ) and the number of

segments of ζ in a special case:

PROPOSITION 4.1. Let ξ be a Newton polygon consisting of two segments. Let

ζ ≺ ξ be a saturated pair of Newton polygons. Then c(ζ, ξ) is equal to the number

of segments of ζ.

Proof. First note that c(ζ, ξ) is equal to the area of the part which is surrounded

by ζ and ξ.

We prove the proposition by induction on the number c of the segments

of ζ. The case of c = 1 is obvious from Lemma 4.2 below. Assume c ≥ 2.

Write ξ = (m1, n1) + (m2, n2) and ζ = (m′
1, n

′
1) + · · · + (m′

c, n
′
c). We set ζ ′ =

(m′
2, n

′
2) + · · ·+ (m′

c, n
′
c) and ξ′ = (m1 −m′

1, n1 − n′
1) + (m2, n2) if m1 ≥ m′

1 and

n1 ≥ n′
1 or ζ

′ = (m′
1, n

′
1)+· · ·+(m′

c−1, n
′
c−1) and ξ′ = (m1, n1)+(m2−m′

c, n2−n′
c)

otherwise. We write a proof only in the former case, as the same argument works

for the latter case. The figure in the former case is as follows.

ξξ′

ζ

ζ ′

(m′
1, n

′
1)

(m1, n1)

We have ζ ′ ≺ ξ′ and this is saturated. By the hypothesis of induction, the number

of segments of ζ ′ is equal to c(ζ ′, ξ′), and therefore the number of segments of ζ

is equal to c(ζ ′, ξ′) + 1. Considering the areas we have the following.

c(ζ, ξ) = c(ζ ′, ξ′) + n1m
′
1 −m1n

′
1

We have to show that n1m
′
1 −m1n

′
1 = 1 under the assumption that there is no

lattice point in the region surrounded by (m′
1, n

′
1), ξ and ξ′. This follows from

the lemma below.

For vectors a⃗ = (a1, a2) and b⃗ = (b1, b2), we set ⟨⃗a, b⃗⟩ = a1b2 − a2b1.
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LEMMA 4.2. Let a⃗ = (a1, a2), b⃗ = (b1, b2) with a1, a2, b1, b2 ∈ Z and ⟨⃗a, b⃗⟩ > 0.

Assume that there exists no lattice point in the interior of the triangle that is the

convex hull of (0, 0), a⃗ and b⃗. Then ⟨⃗a, b⃗⟩ = 1.

Proof. Assume v := ⟨⃗a, b⃗⟩ ≥ 2, and lead a contradiction. Choose x⃗ = (x, y) with

⟨⃗a, x⃗⟩ = 1 and x, y ∈ Z. Choose r ∈ Z, s, t ∈ Q such that x⃗ + ra⃗ = sa⃗ + t⃗b

with 0 ≤ s ≤ 1. Taking ⟨−, a⃗⟩ on the both sides, we have ⟨⃗a, x⃗⟩ + r⟨⃗a, a⃗⟩ =
s⟨⃗a, a⃗⟩ + t⟨⃗a, b⃗⟩, whence 1 = tv. We have x⃗ + ra⃗ = sa⃗ + (1/v)⃗b. As s ∈ (1/v)Z
with 0 ≤ s < 1, we have s+ (1/v) ≤ 1. This means that x⃗+ ra⃗ is a lattice point

in the interior of the triangle that is the convex hull of (0, 0), a⃗ and b⃗. This is a

contradiction.

5. Main results

Our main theorem is the following.

THEOREM 5.1.

Let ζ and ξ be Newton polygons of height h with ζ ≺ ξ. Set M0 := Nζ

and Mc := Nξ with c = c(ζ, ξ). Then there exist DM1’s M1, . . . ,Mc−1 such

that A(0) < A(1) · · · < A(c−1) < A(c), where A(i) ∈ {0, 1}h are the sequences

corresponding to Mi (0 ≤ i ≤ c).

The proof will be given in the next section. Let us see that this theorem

implies Corollary 1.1 in Introduction.

Proof of Corollary 1.1. It suffices to show the case that ζ contains no étale

segment (1, 0). Indeed write ζ = f(1, 0) + ζ ′ and ξ = f(1, 0) + ξ′ for f ∈
Z≥0, where ζ ′ has no étale segment (1, 0). If there exists a specialization from

H(ξ′) to H(ζ ′), then considering the direct sum of it and H(f(1, 0)) we have a

specialization from H(ξ) to H(ζ).

Assume that ζ has no étale segment (0, 1). Let k be an algebraically closed

field. Theorem 5.1 in particular says that there exists a DM1 N over R = k[[t]]

such thatNk is isomorphic toNζ andNK is isomorphic toNξ over an algebraically

closed field. There exists a lifting of DM1 to a displayM over R (cf. [2], Lemma

4.1). Thanks to the theory of display by Zink [16, Theorem 103 on p. 221], we

get the p-divisible group X associated with M, which is a specialization from

H(ξ) to H(ζ). Indeed by [12] the special fiber Xk is isomorphic to H(ζ) and the

generic fiber XK is isomorphic to H(ξ) over an algebraically closed field.

Here is another corollary. Consider a p-divisible groupX over k. Let Def(X) =
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Spf(Γ) be the local deformation space in characteristic p (cf. [13, 1.9]). Set

D(X) = Spec(Γ) and let X → D(X) be the p-divisible group over D(X) ob-

tained via the category equivalence obtained in [4, 2.4.4]. For a p-divisible group

Y → S over a scheme S and for a p-divisible group Y over k, we consider

CY (S) = {s ∈ S | Ys is isomorphic to Y over an algebraically closed field}.

To the dimension formula of CX(D(X)), Oort gave three proofs in [13]. This

paper gives the fourth proof.

COROLLARY 5.2. Let X be a p-divisible group of Newton polygon ξ of height

h and of dimension d, we have

dim CX(D(X)) = c(ξ),

where we set c(ξ) := c(σ, ξ) with σ = (h− d, d).

Proof. Let SY [p](D(Y )) be the Ekedahl-Oort stratum on D(Y ), i.e., the locally

closed subset consisting of points whose p-kernel types are the same as that of

Y [p] (cf. [13], 1.6). We consider it as a locally closed subscheme of D(Y ) by

giving it the induced reduced structure. By Oort [13], 7.19 and 7.9, we have

dim CX(D(X)) = dim CH(ξ)(D(H(ξ))) = dimSH(ξ)[p](D(H(ξ))).

Combining Wedhorn [15, 6.10] and Moonen [8, 2.1.2], dimSY [p](D(Y )) this is

equal to the length ℓ(A) of the type A of Y [p], where ℓ(A) = #{(i, j) | i <

j, δi = 0, δj = 1} for A = δ1 · · · δh. Let χ = (h− d)(1, 0) + d(0, 1). By Theorem

5.1, we have

ℓ(Aσ) + c(σ, ξ) ≤ ℓ(Aξ) ≤ ℓ(Aχ)− c(ξ, χ).

The corollary follows from the obvious cases ℓ(Aσ) = 0 = c(σ) and ℓ(Aχ) =

(h− d)d = c(χ), using the formula c(ζ, ξ) = c(ξ)− c(ζ).

REMARK 5.3. In the proof of Corollary 5.2, we used the dimension formula of

Ekedahl-Oort strata due to Wedhorn [15, 6.10] and Moonen [8, 2.1.2], but, as

type A in the proof is combinatorially complicated (no explicit general form of

A is known), determinining ℓ(A) is a non-trivial problem.

6. Proof

In this section, we prove Theorem 5.1. The essential case is that ξ con-

sists of two segments, i.e., ξ = (m1, n1) + (m2, n2) with gcd(m1, n1) = 1 and
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gcd(m2, n2) = 1. Here we treat the case of λ2 < 1/2 < λ1, where λi = ni/(mi+ni)

for i = 1, 2, since the other case λ2 < λ1 ≤ 1/2 or 1/2 ≤ λ2 < λ1 has already

been studied in [1], 8.4.

Let ξ = (m1, n1) + (m2, n2) with λ2 < 1/2 < λ1, until Proof of Theorem 5.1.

Let Nξ be the minimal DM1 of ξ, and we denote the sequence associated with

Nξ as Aξ. In Lemma 2.7, we have seen that the sequence Aξ is described as

1A1 · · · 1Am1︸ ︷︷ ︸
m1

0Am1+1 · · · 0An1︸ ︷︷ ︸
n1−m1

1B1 · · · 1Bn2︸ ︷︷ ︸
n2

0An1+1 · · · 0Am1+n1︸ ︷︷ ︸
m1

1Bn2+1 · · · 1Bm2︸ ︷︷ ︸
m2−n2

0Bm2+1 · · · 0Bm2+n2︸ ︷︷ ︸
n2

.

For a sequence S of 0 and 1, let S− denote the sequence obtained by exchanging

“first” adjacent subsequence “0 1” for “1 0” in S. To simplify, we write (A−
ξ )

− =

A−−
ξ . Note A−−

ξ < A−
ξ < Aξ. Let N−

ξ and N−−
ξ be the DM1’s associated with

A−
ξ and A−−

ξ respectively. We shall prove Theorem 5.1 by induction, using the

following three propositions.

PROPOSITION 6.1. If one of the following conditions

(1) n1 −m1 > 1 and n2 > 0,

(2) n1 −m1 = 1 with m1 > 0 and n2 = 1,

(3) n2 = 0 and m1 > 1

holds, then we have

N−−
ξ = N−

ξ′ ⊕Nρ,

with ρ = (a, b) and ξ′ = (m1−a, n1−b)+(m2, n2), where ρ is uniquely determined

by ξ so that the area of the region surrounded by ξ, ξ′ and ρ in the picture below

is one.

ξ

ξ′

ρ = (a, b)

(m1, n1)

(m2, n2)

Proof. First, let us see the case (1). Since gcd(m1, n1) = 1, we have m1 > 0.

The sequences A = Am1,n1 and B = Am2,n2 associated with Nm1,n1 and Nm2,n2
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are

A = 1A1 · · · 1Am1︸ ︷︷ ︸
m1

0Am1+1 · · · 0An1︸ ︷︷ ︸
n1−m1

0An1+1 · · · 0Am1+n1︸ ︷︷ ︸
m1

,

B = 1B1 · · · 1Bn2︸ ︷︷ ︸
n2

1Bn2+1 · · · 1Bm2︸ ︷︷ ︸
m2−n2

0Bm2+1 · · · 0Bm2+n2︸ ︷︷ ︸
n2

respectively. By Lemma 2.7, the sequence A⊕B of Nξ = Nm1,n1 ⊕Nm2,n2 is

Nξ : 1A1 55··· 1Am1
0Am1+1

��
··· 0An1

1B1 66··· 1Bn2
0An1+1 ··· 0Am1+n1

xx
1Bn2+1 ··· 1Bm2

0Bm2+1

uu
··· 0Bm2+n2

tt
.

Here, we write only arrows of F and V −1 which are necessary to check the

structure of Nξ. Of course the (F, V −1)-diagram of A⊕ B consists of the cycles

of A and B:

Nm1,n1 :

0Am1+1

��

· · ·oo 0An1
oo

Nm2,n2 :

0Bm2+1

��

· · ·oo 1Bn2
oo

1A1 // · · · // 0Ah1
,

OO

1B1 // · · · // 0Bh2
,

OO

where h1 = m1 + n1 and h2 = m2 + n2. The DM1 N
−
ξ is obtained by exchanging

0An1
and 1B1 in Aξ. The sequence A−

ξ corresponding to N−
ξ is described as

1A1 · · · 1Am1
0Am1+1 · · · 0An1−1 1

B
1 0An1

1B2 · · · 1Bn2
0An1+1 · · · 0Ah1

1Bn2+1 · · · 1Bm2
0Bm2+1 · · · 0Bh2

.

We claim that N−
ξ consists of one cycle. Indeed, by the exchange of 0An1

and 1B1 ,

the destination of the vector from 0Bm2+1 is changed to 0An1
, and the destination

of the vector from 0Am1+n1
is changed to 1B1 . The claim follows from the diagram

of N−
ξ :

N−
ξ :

0Am1+1

��

· · ·oo 0An1
o o 0Bm2+1

×
��

oo · · ·oo 1Bn2
oo

1A1 // · · · // 0Ah1

×

OO

// 1B1 // · · · // 0Bh2
.

OO

(⋆)

We get the DM1 N−−
ξ by exchanging 0An1−1 and 1B1 in A−

ξ . The sequence A−−
ξ

corresponding to N−−
ξ is described as

1A1 66··· 1Am1
0Am1+1

��
··· 0An1−2 1B1 99

0An1−1 0An1
1B2 ··· 1Bn2

0An1+1··· 0Ah1

xx
1Bn2+1 ··· 1Bm2

0Bm2+1

uu
··· 0Bh2

vv
.



ON SPECIALIZATIONS OF MINIMAL p-DIVISIBLE GROUPS 15

We shall use these arrows to check the structure of cycles of N−−
ξ . To consider

the cycles of N−−
ξ , we rewrite the (F, V −1)-cycle of N−

ξ as follows:

N−
ξ :

•

��

· · ·oo 0An1−1
oo 0Ah1−1

oo · · ·oo 0An1
oo

• // · · · // 0Ah1
// 1B1 // · · · // 0Bm2+1.

OO

We claim that N−−
ξ consists of two cycles. By the exchange of 0An1−1 and 1B1 , the

destination of the vector from 0Ah1
is changed to 0An1−1, and the destination of the

vector from 0Ah1−1 is changed to 1B1 . The claim follows from the diagram:

N−−
ξ :

•

��

· · ·oo 0An1−1
oo 0Ah1−1

×oo

��

· · ·oo 0An1
oo

• // · · · // 0Ah1
× //

OO

1B1 // · · · // 0Bm2+1.

OO

Let C1 be the cycle containing 0Ah1
, and let C2 be the cycle containing 1B1 . It

suffices to show the following properties:

(a) C1 is the (F, V −1)-diagram of Nρ,

(b) C2 is the (F, V −1)-diagram of N−
ξ′ .

As C1 is a part of the cycle of simple DM1 Nm1,n1 , the sequence corresponding

to C1 is written as follows:

1A · · · 1A︸ ︷︷ ︸
a

0A · · · 0Am1+n1︸ ︷︷ ︸
b

Since this cycle coincides with the cycle obtained from A by applying [1], Lemma

5.6 to the adjacent 0An1−1 0An1
, we have an1 − bm1 = 1. Hence the property (a)

holds.

Next we consider the cycle C2. We can write C2 as follows.

1A 99··· 1A 990A
��

··· 0A 1B1 99
0An1

1B ··· 1B 0A ··· 0A 0Ah1−1

||
1Bn2+1 ··· 1B

BB
0Bm2+1

xx
0B

ww
··· 0Bh2

ww

Let L be the sequence associated to C2, and let L′ be the sequence constructed

by exchanging 1B1 and 0An1
in L. Then we have

L′ = 1A · · · 1A︸ ︷︷ ︸
m1−a

0A · · · 0An1︸ ︷︷ ︸
(n1−b)−(m1−a)

1B1 · · · 1B︸ ︷︷ ︸
n2

0A · · · 0A︸ ︷︷ ︸
m1−a

1B · · · 1B︸ ︷︷ ︸
m2−n2

0B · · · 0B︸ ︷︷ ︸
n2

.
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By Lemma 2.7, we see that this sequence is decomposed into two simple DM1’s

as follows:

1A · · · 1A︸ ︷︷ ︸
m1−a

0A · · · 0An1
0A · · · 0A︸ ︷︷ ︸

n1−b

⊕ 1B1 1B · · · 1B︸ ︷︷ ︸
m2

0B · · · 0B︸ ︷︷ ︸
n2

= Am1−a,n1−b ⊕ Am2,n2 .

It is clear that L′ corresponds to Nξ′ with ξ′ = (m1−a, n1−b)+(m2, n2), whence

the property (b) holds.

Let us see the case (2). In this case, for A−
ξ given by exchanging the subse-

quence 0An1
1B1 for 1B1 0An1

, we construct A−−
ξ by the exchange of 0Ah1

and 1B2 with

h1 = m1+n1. The sequence A
−−
ξ consists of two cycles. The cycle containing 0Ah1

is associated with N1,1. In fact, the sequence of this cycle is 1B1 0Ah1
. Moreover,

for the other cycle, one can check that this cycle is associated with N−
ξ′ with

ξ′ = (m1 − 1, n1 − 1) + (m2, n2) by exchanging 1Am1
and 0An1

.

For the case (3), since gcd(m2, n2) = 1, we have m2 = 1. In this case, we

have only one subsequence “0 1” in Aξ, which is 0Ah1
1B1 . We construct A−

ξ by

exchanging this subsequence for 1B1 0Ah1
. We exchange 0Ah1−1 and 1B1 to construct

A−−
ξ . Then A−−

ξ consists of two cycles. The cycle containing 0Ah1−1 is associated

with Na,b as this cycle consists of some terms of A. Since this cycle coincides with

the cycle obtained from A by applying [1], Lemma 5.6 to the adjacent 0Ah1−1 0
A
h1
,

we see an1− bm1 = 1. One can check that the other cycle is associated with N−
ξ′

with ξ′ = (m1 − a, n1 − b) + (m2, n2) by exchanging 1B1 and 0Ah1
.

EXAMPLE 6.2. We have dealt with the case of ξ = (3, 5) + (3, 2) in Example

3.6, where we observed that

N−−
(3,5)+(3,2) = N−

(1,2)+(3,2) ⊕N2,3

holds.

PROPOSITION 6.3. If n1 −m1 = 1 and n2 > 1, then we have

N−−
ξ = N−

ξ′ ⊕Nρ,

with ρ = (a, b) and ξ′ = (m1, n1)+(m2−a, n2−b), where ρ is uniquely determined

by ξ so that the area of the region surrounded by ξ, ξ′ and ρ in the picture below

is one.

ξξ′

ρ = (a, b) (m2, n2)

(m1, n1)
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Proof. In this hypothesis, we have 0Am1+1 = 0An1
. The sequence A−

ξ is obtained by

exchanging 0An1
and 1B1 . Then we obtain the same (F, V −1)-diagram as (⋆). For

the sequence A−
ξ :

1A1 · · · 1Am1
1B1 0An1

1B2 · · · 1Bn2
0An1+1 · · · 0Am1+n1

1Bn2+1 · · · 1Bm2
0Bm2+1 · · · 0Bm2+n2

,

to construct A−−
ξ , we exchange 0An1

and 1B2 . Then A−−
ξ consists of two cycles.

The DM1 N−−
ξ is described as follows:

N−−
ξ :

•

��

· · ·oo 0An1
oo 0Bm2+1×oo

��

· · ·oo 1Bn2
oo

• // · · · // 0Bm2+2 × //

OO

1B2 // · · · // 0Bm2+n2
.

OO

Let C1 (resp. C2) be the cycle of A
−−
ξ containing 0An1

(resp. 1B2 ). Since the cycle

C2 consists of some terms of B, this cycle corresponds to a minimal DM1 Nρ with

ρ = (a, b). Since this cycle coincides with the cycle obtained from B the adjacent

1B1 1B2 , by [1], Lemma 5.6, we have bm2−an2 = 1. Let us see that C1 corresponds

to N−
ξ′ for a Newton polygon ξ′. Let L be the sequence corresponding to C1, and

let L′ be the sequence constructed by exchanging 1B1 and 0An1
in L. Then we have

L′ = 1A1 · · · 1Am1︸ ︷︷ ︸
m1

0An1
1B1 · · · 1B︸ ︷︷ ︸

n2−b

0An1+1 · · · 0Am1+n1︸ ︷︷ ︸
m1

1B · · · 1B︸ ︷︷ ︸
(m2−a)−(n2−b)

0B · · · 0B︸ ︷︷ ︸
n2−b

.

It implies that L′ is associated with Nξ′ for ξ
′ = (m1, n1) + (m2 − a, n2 − b).

Let us see an example of this specialization.

EXAMPLE 6.4. We consider Nξ = N2,3⊕N4,3. By Lemma 2.7, the sequence of

Nξ is

Aξ = 1A1 1A2 0A3 1B1 1B2 1B3 0A4 0A5 1B4 0B5 0B6 0B7 .

By exchanging 0A3 1B1 for 1B1 0A3 , we obtain A−
ξ . Moreover, by exchanging 0A3 1B2

for 1B2 0A3 , we obtain A−−
ξ . The sequence associated with N−−

ξ can be decomposed

into two cycles as follows.

N−−
ξ : 1 991 991 990

~~
1 ;;0

{{
0

{{
1 DD0

yy
0

yy ⊕ 1 JJ0
		

(a)

Let ξ′ = (2, 3) + (3, 2). We have then Aξ′ = 1 1 0 1 1 0 0 1 0 0 and A−
ξ′ =



18 N. HIGUCHI AND S. HARASHITA

1 1 1 0 1 0 0 1 0 0. One verifies that A−
ξ′ coincides with the left direct summand

of (a).

The final proposition treats the remaining case:

PROPOSITION 6.5. We have

(1) If m1 = n2 = 0, then N−
ξ = N1,1;

(2) If m1 = 0 and n2 = 1, then N−−
ξ = N1,1 ⊕Nm2−1,1;

(3) If m1 = 1 and n2 = 0, then N−−
ξ = N1,n1−1 ⊕N1,1.

Proof. In the case (1), Nξ is expressed by

Nξ : 0
��

1 YY.

We construct N−
ξ by exchanging 0 and 1 in Nξ, then we get

N−
ξ : 1 HH0

��
.

Hence N−
ξ = N1,1.

In the case (2), we exchange the subsequence 0A1 1B1 to construct A−
ξ . More-

over, we construct A−−
ξ by exchanging the subsequence 0A1 1B2 for 1B2 0A1 . Then

A−−
ξ consists of two cycles. The cycle containing 0A1 is associated with N1,1 since

the sequence of this cycle is 1B1 0A1 . Moreover, the other cycle is associated with

Nm2−1,1.

In the case (3), The sequence A−
ξ is constructed by exchanging 0Ah1

1B1 for

1B1 0Ah1
with h1 = m1 + n1. We exchange the subsequence 0Ah1−1 1B1 for 1B1 0Ah1−1,

and we construct A−−
ξ . Then A−−

ξ consists of two cycles. The cycle containing

1B1 is associated with N1,1. In fact, the sequence of this cycle is 1B1 0Ah1
. The other

cycle is associated with N1,n1−1. This completes the proof.

Finally, we see that Propositions 6.1, 6.3 and 6.5 imply Theorem 5.1.

Proof of Theorem 5.1. It suffices to show the essential case that ζ ≺ ξ is saturated

and ξ consists of two segments. Put ξ = (m1, n1) + (m2, n2) and assume ζ ≺ ξ

is saturated. Set λ1 = n1/(m1 + n1) and λ2 = n2/(m2 + n2). The case that

the slopes of ξ, say λ2 < λ1, satisfy λ2 < λ1 ≤ 1/2 and 1/2 ≤ λ2 < λ1 has

been proved in [1], 8.4. As it suffices to prove the remaining case, we assume

λ2 < 1/2 < λ1. We claim that there exist A(1), . . . , A(c−2) with c = c(ζ, ξ) such

that Aζ =: A(0) < · · · < A(c−2) < A(c−1) := A−
ξ . This claim implies the theorem

by A−
ξ < Aξ. Recall that for a sequence S we denote by S− the sequence obtained

by exchanging the first adjacent subsequence “0 1” in S for “1 0”, and S−− means
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(S−)−. We use induction on h = m1 + n1 + m2 + n2. The claim is clear when

h is smallest, i.e., h = 2 with ζ = (1, 1) ≺ ξ = (0, 1) + (1, 0), see the case of

m1 = n2 = 0 in Proposition 6.5. Assume h > 2. Note that ξ with h > 2 belongs

to either of the following six cases.

(i) n1 −m1 > 1 and n2 > 0,

(ii) n1 −m1 = 1 with m1 > 0 and n2 = 1,

(iii) n2 = 0 and m1 > 1,

(iv) n1 −m1 = 1 and n2 > 1,

(v) m1 = 0 and n2 = 1,

(vi) m1 = 1 and n2 = 0.

In the case of (i), (ii) and (iii), we get N−−
ξ = N−

ξ′ ⊕Nρ by Proposition 6.1, where

ζ = ζ ′ + ρ and ζ ′ ≺ ξ′ is saturated. In the case of (iv), we get N−−
ξ = N−

ξ′ ⊕Nρ

by Proposition 6.3, where ζ = ζ ′ + ρ and ζ ′ ≺ ξ′ is saturated. By the hypothesis

of induction, there exist B(1), . . . , B(c−3) such that Aζ′ =: B(0) < · · · < B(c−3) <

B(c−2) := A−
ξ′ . Here we note that c(ζ ′, ξ′) = c(ζ, ξ)− 1 holds by Proposition 4.1.

Hence putting A(i) = B(i) ⊕ Aρ (i = 0, . . . , c− 2), we have

Aζ = Aζ′ ⊕ Aρ = A(0) < · · · < A(c−2) = A−
ξ′ ⊕ Aρ = A−−

ξ < A−
ξ .

In the case of (v) and (vi), we get N−−
ξ = Nρ ⊕ Nρ′ by Proposition 6.5, where

ζ = ρ + ρ′ and ζ ≺ ξ is saturated, whence we have Aζ = A−−
ξ < A−

ξ . Thus we

have proved the claim for all the cases.
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tions arithmétiques, I. Astérisque, 278 (2002), 127–248.

Graduate School of Environment and Information Sciences,
Yokohama National University,
79-1 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 Japan
E-mail: higuchi-nobuhiro-tc@ynu.jp
E-mail: harasita@ynu.ac.jp


