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Abstract. This is Part V of our series of papers on log abelian varieties. In
this part, we study polarization and projective models of log abelian varieties.
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Introduction

This is Part V of our series of papers on log abelian varieties. For general

ideas of our theory of log abelian varieties, the following references would be

helpful: Introduction of Part I [8], Introduction and Section 1 of Part II [9], and

a survey [14].
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In Part I [8], we studied a complex analytic theory. In Part II [9], we started

to study an algebraic theory. In Part III [10], we illustrated our theory in the

case of log elliptic curves. In Part IV [11], we introduced models for a log abelian

variety and studied proper models. In this Part V, we study projective models

and polarizations on log abelian varieties. In the remaining part of this series,

one of the main subjects should be moduli spaces of log abelian varieties.

The main theorem of this paper is the existence of projective models of a

polarized log abelian variety (Theorem 1.11). The polarization is defined as a

biextension in 1.3. We use the method of theta functions as in the analytic case

(Part I [8], 5.4). To this end, we generalize various theorems of line bundles

on abelian varieties (cf. [12] the theorem of Appel–Humbert, the theorem of the

cube) to log abelian varieties.

The organization of this paper is as follows. In the first two sections, we

summarize our results. In Section 1, we state the results of the existence of pro-

jective models. In later sections, these are proved based on a systematic study of

Gm-torsors, Gm,log-torsors and Gm,log/Gm-torsors on log abelian varieties, which

are summarized in Section 2. Sections 3–8 give the proofs of the results described

in Sections 1–2 in the case of constant degeneration. Based on them, we prove

a large part of the results described in Section 1 on projective models in Section

9. After some preparations in Sections 10–11, we prove the general cases of the

results described in Sections 1–2 (Section 12).
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1. Main results, I (projective models)

In this section, we state our main results concerning the existence of a pro-

jective model of a polarized log abelian variety (Theorem 1.11). The proofs of

the propositions in this section will be given in later sections.

1.1. First we briefly review an outline of the definition of weak log abelian variety.

See [11] Section 1 for the details. We use the same notation there.

Let S be an fs log scheme. A weak log abelian variety over S is a sheaf A of

abelian groups on the big étale site of S satisfying the following three conditions.

(1) Each geometric fiber corresponds to an admissible and nondegenerate log
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1-motif.

(2) Étale locally on S, there is a subsheaf of A represented by a semiabelian

variety G such that the quotient A/G satisfies the condition explained below.

(3) The diagonal morphism A→ A× A is represented by finite morphisms.

The condition on A/G in (2) is as follows: There are finitely generated free

Z-modules X and Y , an admissible pairing

⟨ , ⟩ : X × Y → Gm,log/Gm

on S, and an isomorphism A/G ∼= Q/Y , where Y is the image of Y in

Q := Hom(X,Gm,log/Gm)
(Y ).

See 1.3 of [11] for the definition of the last group, i.e., the (Y )-part of Hom(X,

Gm,log/Gm).

Let X be the image of X in Hom(Y,Gm,log/Gm). Then the induced pairing

⟨ , ⟩ : X × Y → Gm,log/Gm

on S glues globally on S. The G also glues globally and called the semiabelian

part of A (cf. [11] 1.7).

If we replace “admissible and nondegenerate” in the above condition (1) by

“polarizable” ([9] Definition 2.8), we obtain the definition of log abelian variety

([9] Section 4).

1.2. We define a polarization on a weak log abelian variety. First, we discuss the

dual weak log abelian variety in a special case.

Assume that a weak log abelian variety A is with constant degeneration ([11]

1.7). Let M be a log 1-motif corresponding to A via [9] Theorem 8.1. Then, the

dual A∗ of A is defined to be the weak log abelian variety corresponding to the

dual log 1-motif M∗ of M . (We will define the dual weak log abelian variety in

the general case in a forthcoming part of this series of papers.)

1.3. We define a polarization on a weak log abelian variety A as a biextension.

For biextensions, see [7] Exp. VII and VIII, and [4].

First, assume that A is with constant degeneration. Then, we already have

the notion of polarization as the one on the log 1-motif M corresponding to A.

See [9] Definition 2.8 for the definition of a polarization on a log 1-motif. This

notion is interpreted in terms of biextension. In fact, if p is a polarization on

M , it induces a homomorphism A to A∗. But, since A∗ is canonically embedded

into Ext(A,Gm,log) ([9] Theorem 7.4 (3), cf. [9] Remark 7.5 (2)), it gives a homo-

morphism A → Ext(A,Gm,log). Hence, by Proposition 2.3 below (whose case of

constant degeneration is proved in 6.3), it corresponds to a biextension of (A,A)

by Gm,log. This biextension is symmetric.
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We return to the general case. Let A be a weak log abelian variety. Then, a

polarization on A is a symmetric biextension of the pair (A,A) by Gm,log whose

pullback to (fs/s) for any s ∈ S is induced by a polarization on the log 1-motif

corresponding to A×S s as above.

By definition, a polarizable weak log abelian variety is a log abelian variety.

1.4. Our main result says that a polarization yields a special model. To de-

scribe constructions of special models, it is convenient to introduce the following

condition on A.

1.4.1. Étale locally on S, there is a homomorphism ψ : Y → X satisfying the

following three conditions:

(1) ψ is compatible with ⟨ , ⟩ in the sense that ⟨ψ(y), z⟩ = ⟨ψ(z), y⟩ for any
y, z ∈ Y .

(2) ⟨ψ(y), y⟩ ∈MS/O×
S ⊂Mgp

S /O
×
S for any y ∈ Y .

(3) ψ induces an isomorphism Y ⊗Q ≃→ X ⊗Q.

1.4.2 REMARK. This condition is satisfied if A is a log abelian variety. But the

converse is not valid. Further, a weak log abelian variety does not necessarily

satisfy the condition 1.4.1. See 4.14–4.15 for the details.

1.5. Let F be an abelian sheaf on the étale site (fs/S)ét of fs log schemes over

S. Let p be a biextension of (A,A) by F . Let Lp be the F -torsor on A defined

as follows. For any fs log scheme U over S and any morphism a : U → A, the

F -torsor Lp(a) on U is p(a, a) (= the value of the biextension p at (a, a) : U →
A× A).

This construction p 7→ Lp induces a natural homomorphism, called the pull-

back to the diagonal,

Biext(A,A;F )→ H1(A,F ),

which coincides with the homomorphism induced by the diagonal morphism A→
A× A.
1.6 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme S.

Assume that either A is with constant degeneration or A satisfies the condition

1.4.1. Let Hom⟨ , ⟩(Y ,X) be the group of homomorphisms ψ : Y → X which are

compatible with ⟨ , ⟩ (1.4.1 (1)).

(1) There are natural isomorphisms

Hom⟨ , ⟩(Y ,X) ∼= Biextsym(A/G,A/G;Gm,log/Gm) ∼= Biextsym(A,A;Gm,log/Gm).

Here Biextsym means the group of symmetric biextensions.

(2) The pullback to the diagonal

Biext(A,A;Gm,log/Gm)→ H1(A,Gm,log/Gm) (cf. 1.5)
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sends the image of ψ ∈ Hom⟨ , ⟩(Y ,X) by the isomorphism in (1) to the pullback

of the class of the Gm,log/Gm-torsor on A/G = Q/Y , obtained as the quotient of

Q×Gm,log/Gm by the action (h, λ) 7→ (yh, h(ψ(y)−2)⟨ψ(y), y⟩−1λ) (y ∈ Y ) of Y .

Here yh denotes x 7→ h(x)⟨x, y⟩ for x ∈ X.

This is proved in 12.12.

1.6.1 REMARK. There is a choice of the sign in this proposition. See Remark

5.2.1 for the details.

1.7. We review briefly the model of A associated to a fan. See Section 2 of [11]

for details.

We assume that an admissible pairing X × Y → Gm,log/Gm as in 1.1 exists

globally.

Let Ã be the fiber product of

A→ Q/Y ← Q.

Then, we have an exact sequence

0→ G→ Ã→ Q→ 0.

We define certain subsheaves of Ã and A. Étale locally on the base S, we

can take an fs monoid S, a homomorphism S → MS/O×
S , and an S-admissible

pairing

⟨ , ⟩ : X × Y → Sgp

which lifts the above Gm,log/Gm-valued pairing. We assume that they exist and

we fix them.

Let C be the subcone of Hom(S,N)× Hom(X,Z) defined as

C := {(N, l) | l(XKer(N)) = 0}

(cf. [8] 3.4.2). By a finitely generated subcone of C, we mean a finitely generated

submonoid σ of the additive monoid C such that for any a ∈ C satisfying na ∈ σ
for some n ≥ 1, we have a ∈ σ.

If σ is a finitely generated subcone of C, we write

Ã(σ)

for the pullback of V (σ) by Ã → Q and call it the σ-part of Ã, where V (σ) is

the σ-part of Q defined in [11] 2.3.

Let σ be a finitely generated Q≥0-submonoid of CQ≥0
. Then, by abuse of

notation, we denote V (σ ∩ C) by V (σ) and Ã(σ∩C) by Ã(σ).
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Let Σ be a fan in C, that is, a fan in Hom(Sgp × X,Q) whose support is

contained in C ⊗Q≥0. We define the subsheaf

Ã(Σ)

of Ã as the union of Ã(σ) (σ ∈ Σ). This coincides with the pullback of Q(Σ) by

Ã→ Q, where

Q(Σ) =
∪
σ∈Σ

V (σ)

Next, assume that Σ is stable under the action of Y on C, where y ∈ Y acts

on C by (N, l) 7→ (N, l +N(⟨−, y⟩)).
Then we define the subsheaf

A(Σ)

of A as the pullback of the image of Q(Σ) in Q/Y by A→ Q/Y .

We call these subsheaves Σ-parts of Ã and A, respectively.

1.8 REMARK. In general, as was explained in [11] Remark 2.7, for a weak log

abelian variety A over an fs log scheme S, the above construction glues and the

sheaf Ã exists globally on S canonically. In the case of constant degeneration, it

coincides with G
(Y )
log ([11] 1.4).

1.9. Assume that there is a homomorphism ψ : Y → X satisfying (1)–(3) in

1.4.1. Then we have a proper model A(ψ) of A as follows.

Étale locally on the base S, take an S-admissible pairing as in 1.7 and a

homomorphism ϕ : Y → X with finite cokernel such that

(1) ⟨ϕ(y), z⟩ = ⟨ϕ(z), y⟩ in Sgp for any y, z ∈ Y ;

(2) ⟨ϕ(y), y⟩ ∈ S for any y ∈ Y

which induces ψ.

For each y ∈ Y , let

C(y) := {(N, l) ∈ C |N(⟨ϕ(z), z⟩) + 2l(ϕ(z)) ≥
N(⟨ϕ(y), y⟩) + 2l(ϕ(y)) for any z ∈ Y }.

Then the cones C(y) for varying y with their faces form a complete fan in C (cf.

[11] 3.1). We call this fan the first standard fan and denote it by Σϕ. As will

be shown in 4.13, the local models A(Σϕ) glue into a proper model A(ψ) over S,

which is described as follows.

Let Hom(X,Gm,log/Gm)
(ψ) =

∪
y∈Y U(y) as a sheaf, where

U(y) = {h ∈ Hom(X,Gm,log/Gm) | h(ψ(y))2⟨ψ(y), y⟩|h(ψ(z))2⟨ψ(z), z⟩
for any z ∈ Y }.
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Let A(ψ) ⊂ A be the inverse image of Hom(X,Gm,log/Gm)
(ψ)/Y ⊂ Hom(X,

Gm,log/Gm)
(Y )/Y under the canonical surjection A→ Hom(X,Gm,log/Gm)

(Y )/Y .

Here, Hom(X,Gm,log/Gm)
(Y ) is the subsheaf of Hom(X,Gm,log/Gm) consisting

of the sections h ∈ Hom(X,Gm,log/Gm)(U) satisfying for any u ∈ U and x ∈
Xu, there are y, y′ ∈ Y u such that ⟨x, y⟩u|hu(x)|⟨x, y′⟩u. When there are an

S-admissible pairing and ϕ at the beginning of this paragraph, this subsheaf is

naturally isomorphic to Hom(X,Gm,log/Gm)
(Y ) (cf. [9] Remark 7.6.1).

The Gm,log/Gm-torsor on A associated to ψ (Proposition 1.6 (2)) has a canon-

ical section on A(ψ) which is given on U(y) by Q → Gm,log/Gm ; h 7→ h(ψ(y)2)

⟨ψ(y), y⟩.
1.10. Let p be a polarization on A.

As the image of −p by the pullback to the diagonal Biext(A,A;Gm,log) →
H1(A,Gm,log) (1.5), we get an element L−p(= L−1

p ) of H1(A,Gm,log).

On the other hand, the image of−p in Biext(A,A;Gm,log/Gm) corresponds via

Proposition 1.6 (1) to a homomorphism ψ : Y → X which satisfies the conditions

(1)–(3) in 1.4.1. The Gm,log/Gm-torsor on A corresponding to ψ (Proposition 1.6

(2)) coincides with the associated Gm,log/Gm-torsor to the above Gm,log-torsor

L−p on A.

In general, a Gm,log-torsor together with a section of the associated Gm,log/

Gm-torsor gives a Gm-torsor. Hence, from the above L−p and the canonical

section of the associated Gm,log/Gm-torsor on A
(ψ) explained in the last part of

1.9, we obtain a Gm-torsor on A(ψ). Consider the invertible sheaf consisting of

the sections of this Gm-torsor.

The next is a main result in this paper and proved in 12.14.

1.11 THEOREM. Let A be a polarized log abelian variety over an fs log scheme

S. Let ψ : Y → X be the induced homomorphism. Then the above invertible

sheaf on A(ψ) is relatively ample over the base S. In particular, A(ψ) is locally

projective over S.

1.12. In the above, we only discuss the first standard fan. There are other

important special fans, which are introduced in Section 4, that is, the second

standard fan and the fan associated to a star (4.6). These fans also produce

projective models, as is shown similarly (cf. Theorem 9.1).

2. Main results, II (torsors)

In this section, we state our results on Gm-torsors, Gm,log-torsors, and Gm,log/

Gm-torsors on a weak log abelian variety A. The main results are Theorem 2.2
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and Proposition 2.4. The proofs of the propositions in this section will be given

in later sections.

2.1 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme S.

Assume that either A is with constant degeneration or A satisfies the condition

1.4.1. For F = Gm, Gm,log, or Gm,log/Gm, we have

H0(A,F ) = F.

Here F on the right-hand-side is regarded as a sheaf on (fs/S)ét, F on the left-

hand-side is regarded as a sheaf on the étale site (fs/A)ét of pairs (S
′, a), where S ′

is an fs log scheme over S and a is an element of A(S ′), and H0(A,−) denotes
the direct image functor from the category of sheaves on (fs/A)ét to the category

of sheaves on (fs/S)ét.

This is proved after Proposition 12.1.

For a section u of A, let

tu : A→ A; v 7→ uv

be the translation by u. (We denote the group law of A multiplicatively.)

The cubic isomorphism of Gm-torsors on abelian varieties ([12]) can be gen-

eralized as follows.

2.2 THEOREM (Cubic isomorphism). Let A be a weak log abelian variety over

an fs log scheme S. We denote the group law of A multiplicatively. Let F = Gm,

Gm,log, or Gm,log/Gm. Let L be an F -torsor on A.

Assume that one of the following conditions (a)–(c) is satisfied.

(a) A is with constant degeneration.

(b) A satisfies the condition 1.4.1 and F = Gm,log/Gm.

(c) A satisfies the condition 1.4.1 and S is noetherian.

Then the following holds.

(1) There is a unique isomorphism

ιS,A,L : s∗{1,2,3}L · s∗{1,2}L−1 · s∗{1,3}L−1 · s∗{2,3}L−1 · s∗{1}L · s∗{2}L · s∗{3}L · s∗∅L−1 ∼= 1

of F -torsors on A×A×A whose pullback on S by the zero section of A×A×A
is the evident one. Here for a subset I of {1, 2, 3}, sI denotes the morphism

A × A × A → A ; (x1, x2, x3) 7→
∏

i∈I xi and 1 on the right-hand-side denotes

the trivial F -torsor on A × A × A. This isomorphism is functorial with respect

to (S,A, L). We have ιS,A,L·L′ = ιS,A,L · ιS,A,L′ for F -torsors L and L′ on A.

(2) For any S ′ → S and a, b ∈ A(S ′), the F -torsor t∗abL · t∗aL−1 · t∗bL−1 · L on

A×S S ′ is trivial étale locally on S ′.
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This is proved in 12.5.

2.3 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme.

Assume that either A is with constant degeneration or A satisfies the condition

1.4.1. Let F = Gm, Gm,log, or Gm,log/Gm. Then we have

Biext(A,A;F )
≃→ Hom(A, Ext(A,F )).

The case of constant degeneration of this is proved in 6.3. The general case

is proved in 12.2.

Let Hi(A,−) (i ∈ Z) be the right derived functor of H0(A,−).
2.4 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme

S. Let F be either Gm, Gm,log or Gm,log/Gm. Suppose that one of the conditions

(a)–(c) in Theorem 2.2 is satisfied. Then we have an exact sequence

0→ Ext(A,F )→ H1(A,F )→ Biextsym(A,A;F )

in which the last arrow is characterized by the following property. The composite

H1(A,F )→ Biextsym(A,A;F )→ Hom(A, Ext(A,F )) is L 7→ (a 7→ t∗aL · L−1).

The composite

Biextsym(A,A;F )→ H1(A,F )→ Biextsym(A,A;F )

is the multiplication by 2, where the first homomorphism is the pullback to the

diagonal (1.5). Consequently, the cokernel of the last arrow of the exact sequence

is killed by 2.

This is proved in 12.6.

2.5. Let A be a weak log abelian variety over an fs log scheme S. We con-

sider more about Gm,log/Gm-torsors on A. In the following, we assume that an

admissible pairing

⟨ , ⟩ : X × Y → Gm,log/Gm

as in 1.1 exists globally on S, and fix such a pairing.

2.6 LEMMA. Let the notation be as in 2.5.

(1) The canonical homomorphism

X → Hom(Hom(X,Gm,log/Gm)
(Y ),Gm,log/Gm)

is an isomorphism.

(2) There is a canonical injective homomorphism

Hom(Y ,Gm,log/Gm)/X → Ext(A/G,Gm,log/Gm).
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(3) Hom(A/G,Gm,log/Gm) = 0.

(4) The canonical homomorphism

Biext(A/G,A/G;Gm,log/Gm)→ Hom(A/G, Ext(A/G,Gm,log/Gm))

is an isomorphism.

This is proved in 5.1.

2.7. By the homomorphisms in Lemma 2.6 (2) and (4) together with A/G ∼=
Hom(X,Gm,log/Gm)

(Y )/Y , we have a homomorphism

Hom⟨ , ⟩(Y ,X)→ Hom(Hom(X,Gm,log/Gm)
(Y )/Y ,Hom(Y ,Gm,log/Gm)/X))

→ Hom(A/G, Ext(A/G,Gm,log/Gm)) ∼= Biext(A/G,A/G;Gm,log/Gm).

This induces a homomorphism

Hom⟨ , ⟩(Y ,X)→ Biextsym(A/G,A/G;Gm,log/Gm),

which is to be the first isomorphism in Proposition 1.6 (1).

3. Preliminaries

We gather general facts on biextensions which will be used later. For general

references, see [7] Exp. VII and VIII, and [4].

Let T be a topos. Let A and F be commutative group objects of T .
The following Lemmas 3.1–3.4 are well-known.

3.1 LEMMA. Assume H0(A,F ) = F . Then Hom(A,F ) = 0.

3.2 LEMMA. Assume H0(A,F ) = F . Then we have an exact sequence

0→ Ext(A,F )→ H1(A,F )→ H0(A,H1(A,F )).

Here the last arrow is L 7→ (a 7→ t∗a(L) · L−1), where ta is the translation by a.

3.3 LEMMA. Assume Hom(A,F ) = 0. Then the canonical map Ext(A,F ) →
H0(e, Ext(A,F )) is an isomorphism. Here e is the final object of T .
3.4 LEMMA. Assume Hom(A,F ) = 0. Then the canonical map Biext(A,A;F )

→ Hom(A, Ext(A,F )) is an isomorphism.

3.5 LEMMA. Assume H0(A,F ) = F . Then the following three conditions are

equivalent. Let L be an F -torsor on A.

(i) (Cubic isomorphism.) There is a unique isomorphism

ιS,A,L : s∗{1,2,3}L · s∗{1,2}L−1 · s∗{1,3}L−1 · s∗{2,3}L−1 · s∗{1}L · s∗{2}L · s∗{3}L · s∗∅L−1 ∼= 1
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of F -torsors on A×A×A whose pullback on S by the zero section of A×A×A
is the evident one. Here, s{1,2,3} etc. are defined in the same way as in Theorem

2.2, and 1 is the trivial F -torsor.

(ii) (i) without the characterized uniqueness.

(iii) For any S ′ ∈ T and for any a, b ∈ A(S ′), the F -torsor t∗abL·t∗aL−1·t∗bL−1·L
on A×S S ′ is isomorphic to 1 locally on S ′.

Proof. First we prove the equivalence of (i) and (ii). Let N be the left-hand-side

of ιS,A,L. If we have a cubic isomorphism ι : N ∼= 1 without the characterizing

condition, we compose three isomorphisms ι, the pullback of e∗(ι−1) : 1 ∼= e∗N (e

is the zero section of A × A × A), and the pullback of the evident isomorphism

e∗N ∼= 1 on S, and get the isomorphism having the characterizing property.

Hence, (i) is equivalent to (ii).

We prove that (i) implies (iii). We call it the universal case the case where

S ′ = A×A, and a, b : A×A→ A are the first and the second projections. Assume

(i). To prove (iii), it is enough to consider the universal case. In this case, the F -

torsor L1 := t∗abL·t∗aL−1 ·t∗bL−1 ·L is nothing but s∗{1,2,3}L·s∗{1,2}L−1 ·s∗{1,3}L−1 ·s∗{1}L
on A× (A×A) = A×S ′, so that (i) means that L1 is isomorphic to 0∗S′L1, where

0S′ is the zero map A× S ′ → A× S ′ over S ′. Since 0S′ factors through the zero

section e : S ′ → A× S ′, L1 comes from S ′. Hence, L1 is locally trivial on S ′.

Finally, assume that the universal case S ′ = A×A of (iii) is valid. Then, L1

is trivial locally on S ′. By the exact sequence 0→ H1(S ′, F )→ H1(A×S ′, F )→
H0(S ′,H1(A× S ′, F )) (which is by the assumption; note that the last A× S ′ is

regarded as an object over S ′), it implies that L1 is isomorphic to the pullback

of some torsor L0 on S
′. Then, we have e∗L1

∼= L0 on S
′ (e is the zero section of

A) and 0∗S′L1
∼= L1, which is a desired cubic isomorphism.

3.6. AssumeH0(A,F ) = F and assume that the equivalent conditions in Lemma

3.5 are satisfied. Then we have the following two facts.

(1) We have an exact sequence

0→ Ext(A,F )→ H1(A,F )→ Hom(A, Ext(A,F )),

where the last arrow is L 7→ (a 7→ t∗a(L) · L−1).

(2) The image of the last arrow in the above exact sequence is contained in

Biext sym(A,A;F ) ⊂ Biext(A,A;F ) ∼= Hom(A, Ext(A,F )).
The first one is a direct consequence of Lemma 3.5 (iii). The second one

is seen as follows. The induced map H1(A,F ) → Biext(A,A;F ) sends L to

(sum∗L) · (pr∗1L)−1 · (pr∗2L)−1 · (0∗L), which is symmetric.

3.7. Next, we consider the pullback to the diagonal Biext(A,A;F )→ H1(A,F ).

Assume H0(A,F ) = F and assume that the equivalent conditions in 3.5 are

satisfied. Then, the composite Biext(A,A;F )→H1(A,F )→Hom(A, Ext(A,F ))
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∼= Biext(A,A;F ) is x 7→ xx∗, where x∗ denotes the transpose of x. In fact,

the above composite sends a biextension L to sum∗diag∗(L) · pr∗1diag∗(L)−1 ·
pr∗2diag

∗(L)−1, which coincides with L · T ∗(L) (see [4] 1.2.8). Here T is the

isomorphism A× A→ A× A; (x, y) 7→ (y, x).

Thus we have

3.8 LEMMA. Assume H0(A,F ) = F and assume that the equivalent conditions

in 3.5 are satisfied. Then, we have an exact sequence

0→ Ext(A,F )→ H1(A,F )→ Biextsym(A,A;F ),

where the last arrow is characterized by the property that the composite H1(A,F )

→ Biextsym(A,A;F ) → Hom(A, Ext(A,F )) is L 7→ (a 7→ t∗aL · L−1). The

composite

Biextsym(A,A;F )→ H1(A,F )→ Biextsym(A,A;F )

is the multiplication by 2. Consequently, the cokernel of the last arrow of the

exact sequence is killed by 2.

The facts in the next lemma are well-known (cf. [3]).

3.9 LEMMA. Let A,B be commutative group objects on T .
(1) Assume that Mor(An, B) = Mor(e,B) for n = 1, 2, where e is the initial

object. Then Ext(A,B)→ H1(A,B) is injective.

(2) Furthermore, assume that Mor(A3, B) = Mor(e,B). Then we have an

exact sequence

0→ Ext1(A,B)→ H1(A,B)
a→ H1(A× A,B),

where a = sum∗ − pr∗1 − pr∗2 (sum, pr1, pr2 : A× A→ A).

3.10 LEMMA. Let X, Y and F be commutative group objects on T . Let ⟨ , ⟩ : X
×Y → F be a bilinear map which is nondegenerate in the sense that the in-

duced maps X → Hom(Y, F ) and Y → Hom(X,F ) are injective. Assume that

H0(Hom(X,F )/Y, F ) = F . Let Hom⟨ , ⟩(Y,X) be the subsheaf of Hom(Y,X)

consisting of the sections ψ satisfying ⟨ψ(y), z⟩ = ⟨ψ(z), y⟩ (y, z ∈ Y ).

(1) Let ψ be a section of Hom⟨ , ⟩(Y,X). Then there is an action of the com-

mutative group object Y ×Y on the trivial F -torsor on Hom(X,F )×Hom(X,F )

by

(p, q, f) 7→ (py, qz, p(ψ(z)−1)q(ψ(y)−1)⟨ψ(z), y⟩−1f)

((p, q, f) ∈ Hom(X,F )×Hom(X,F )× F ),

where (y, z) ∈ Y × Y . Let

Bψ ∈ Biext(Hom(X,F )/Y,Hom(X,F )/Y ;F )
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be the biextension defined as the quotient of this trivial F -torsor by this action.

(2) The image of Bψ by the pullback to the diagonal (cf. 1.5)

Biext(Hom(X,F )/Y,Hom(X,F )/Y ;F )→ H1(Hom(X,F )/Y, F )

is described as a quotient of the trivial F -torsor on Hom(X,F ) by the action of

Y , where y ∈ Y acts by

(p, f) 7→ (py, p(ψ(y)−2)⟨ψ(y), y⟩−1f) ((p, f) ∈ Hom(X,F )× F ).

(3) The image of ψ by the composite

Hom⟨ , ⟩(Y,X)→ Hom(Hom(X,F )/Y,Hom(Y, F )/X)

→ Hom(Hom(X,F )/Y, Ext(Hom(X,F )/Y, F ))

coincides with the image of Bψ by the canonical map

Biext(Hom(X,F )/Y,Hom(X,F )/Y ;F )

→ Hom(Hom(X,F )/Y, Ext(Hom(X,F )/Y, F )).

Proof. (1) Let (y, z), (p, q, f) be as in the statement. Let (y′, z′) be another

section of Y × Y . Then it sends (py, qz, p(ψ(z)−1)q(ψ(y)−1)⟨ψ(z), y⟩−1f) to

(pyy′, qzz′, (py)(ψ(z′)−1)(qz)(ψ(y′)−1)⟨ψ(z′), y′⟩−1p(ψ(z)−1)q(ψ(y)−1)⟨ψ(z), y⟩−1f).

Since (py)(ψ(z′)) = p(ψ(z′))⟨ψ(z′), y⟩, (qz)(ψ(y′)) = q(ψ(y′))⟨ψ(y′), z⟩, and

⟨ψ(z′), y⟩⟨ψ(y′), z⟩⟨ψ(z′), y′⟩⟨ψ(z), y⟩ = ⟨ψ(zz′), yy′⟩,

which is by ⟨ψ(y′), z⟩ = ⟨ψ(z), y′⟩, this coincides with

(pyy′, qzz′, p(ψ(zz′)−1)q(ψ(yy′)−1)⟨ψ(zz′), yy′⟩−1f),

which completes the proof of (1).

(2) is deduced from (1) because, in the notation of (1), (y, y) sends (p, p, f)

to

(py, py, p(ψ(y)−2)⟨ψ(y), y⟩−1f).

(3) Fix a section p ∈ Hom(X,F )/Y and take a lift p ∈ Hom(X,F ). Since

Ext(Hom(X,F )/Y, F )) ⊂ H1(Hom(X,F )/Y, F )

(this is by H0(Hom(X,F )/Y, F ) = F and Lemma 3.2), it is enough to compare

the image of p ◦ ψ by Hom(Y, F )→ Ext(Hom(X,F )/Y, F ) ↪→ H1(Hom(X,F )

/Y, F ) and the image of p by the map

Hom(X,F )/Y → Ext(Hom(X,F )/Y, F ) ↪→ H1(Hom(X,F )/Y, F )
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induced by Bψ. The former is the cokernel of Y → Hom(X,F )× F which sends

z to (z, p(ψ(z))−1) = (z, p(ψ(z)−1)). The latter is the quotient of the trivial

F -torsor on Hom(X,F ) by the action of Y , where z ∈ Y acts by

(q, f) 7→ (qz, p(ψ(z)−1)f) (q ∈ Hom(X,F ), f ∈ F ).

They coincide with each other and we are done.

4. Special models

In 1.9, we introduced the first standard fan. Here we define two more special

fans, that is, the second standard fan and the fan associated to a star.

We start with some preliminary observations 4.1–4.4 on how various con-

ditions are effective in yielding these fans. The definitions of the fans are in

4.6.

4.1. Let S be an fs log scheme, and A a weak log abelian variety over S. Let s

be a point of S, and we work at s for a while. Let

Cs := {(N, l) ∈ (MS,s/O×
S,s)

∨ × Hom(Xs,Z) | l((Xs)Ker(N)) = 0},

where (−)∨ = Hom(−,N). Let ψ : Y s → Xs be a homomorphism. For y ∈ Y s,

let

Cs(y) := {(N, l) ∈ (Mgp
S,s/O

×
S,s)

∨ × Hom(Xs,Z) |N(⟨ψ(z), z⟩) + 2l(ψ(z)) ≥
N(⟨ψ(y), y⟩) + 2l(ψ(y)) for any z ∈ Ys}.

Assume that ψ has a finite cokernel, that is, ψ induces an isomorphism ψ : Y s ⊗
Q → Xs ⊗ Q. Under this assumption, we prove Cs(y) ⊂ Cs. It is sufficient to

show Cs(0) ⊂ Cs. Assume (N, l) ∈ C(0), that is,
(1) N(⟨ψ(y), y⟩) + 2l(ψ(y)) ≥ 0 for any y ∈ Ys.

What we have to see is l((Xs)Ker(N)) = 0. Let x ∈ (Xs)Ker(N). Then N(⟨x, y⟩) = 0

for any y ∈ Ys. We may assume x = ψ(w) for some w ∈ Ys. By the case y = w

(resp. y = −w) of (1) and by N(⟨ψ(w), w⟩) = 0, we have l(ψ(w)) ≥ 0 (resp.

l(ψ(w)) ≤ 0). Hence l(ψ(w)) = 0.

4.2. Next, assume further that 1|⟨ψ(y), y⟩ for all y ∈ Y s and that ⟨ψ(y), z⟩ =
⟨ψ(z), y⟩ for all y, z ∈ Y s. Then the union of the cones Cs(y)’s (y ∈ Y s) cover

Cs. To see this, first we prove the following lemma.

4.3 LEMMA. If y ∈ Y s and if ⟨ψ(y), y⟩ = 1, then y = 1.

Proof. Take any z ∈ Y s. Let N : MS,s/O×
S,s → N be any homomorphism. We

have 0 ≤ N(⟨ψ(ymz), ymz⟩) = 2mN(⟨ψ(y), z⟩) + N(⟨ψ(z), z⟩). Varying m, we
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have N(⟨ψ(y), z⟩) = 0. Since this holds for all N , we have ⟨ψ(y), z⟩ = 0. Since

z is any element of Y s, this implies ψ(y) = 1. Hence y = 1.

4.4. We prove the union of the cones Cs(y)’s (y ∈ Y s) contains Cs. We have to

show that for each (N, l) ∈ Cs, the function y 7→ N(⟨ψ(y), y⟩)+2l(ψ(y)) (y ∈ Y s)

attains a minimum. Since y ∈ (Y s)Ker(N) if and only if ψ(y) ∈ (Xs)Ker(N), this

function can be regarded as a function on the quotient space (Y s)/(Y s)Ker(N).

It is enough to show that the first term N(⟨ψ(y), y⟩) is positive-definite on this

quotient space. Let y ∈ Y s. If N(⟨ψ(y), y⟩) = 0, then the argument in the proof

of Lemma 4.3 shows that N(⟨ψ(y), z⟩) = 0 for all z ∈ Y s. By the admissibility,

it implies ψ(y) ∈ (Xs)Ker(N), and y ∈ (Y s)Ker(N). This means that the term

N(⟨ψ(y), y⟩) is positive-definite on the quotient space.

4.5. Now we stop the pointwise consideration.

Let S be an fs log scheme, and A a weak log abelian variety over S. Assume

that there is a homomorphism ψ : Y → X satisfying (1)–(3) in 1.4.1. Then

there always exist étale locally on S the data X,Y,S, ⟨ , ⟩ : X × Y → Sgp,

S → MS/O×
S , and ϕ for (A,ψ) as in 1.7 and 1.9. In particular, ϕ satisfies the

following two conditions.

(1) ⟨ϕ(y), z⟩ = ⟨ϕ(z), y⟩ in Sgp for any y, z ∈ Y ;

(2) ⟨ϕ(y), y⟩ ∈ S for any y ∈ Y.

In the following, we assume that such data exist globally on S.

4.6. We give special fans in C.

First recall the first standard fan defined in 1.9.

This is determined by

C(y) := {(N, l) ∈ C |N(⟨ϕ(z), z⟩) + 2l(ϕ(z)) ≥
N(⟨ϕ(y), y⟩) + 2l(ϕ(y)) for any z ∈ Y }, (y ∈ Y ).

We remark that C(y) is defined also as {(N, l) ∈ S∨ ×Hom(X,Z) | the same

condition}. This fact is proved similarly as in 4.1. The fact that the first standard

fan is complete is proved similarly as in 4.4.

Next, for each x ∈ X, let

C(x) := {(N, l) ∈ C |N(⟨w, ϕ−1(w)⟩) + 2l(w) ≥
N(⟨x, ϕ−1(x)⟩) + 2l(x) for any w ∈ X}.

Here ϕ−1(w) is taken in Y ⊗Q (so N(⟨w, ϕ−1(w)⟩) is defined over Q). We remark

that C(x) is defined also as {(N, l) ∈ S∨×Hom(X,Z) | the same condition}. The
cones C(x) for varying x with their faces form a complete fan in C. The proofs
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are similar to the case of the first standard fan. We call this fan the second

standard fan. This fan is used in [1] and [5].

Third, let I be a finite subset of X satisfying the following (i)–(iii):

(i) I generates the abelian group X;

(ii) If x ∈ I, then x−1 ∈ I;
(iii) 1 ∈ I.

Such an I is called a star in X ([13]). Assume further that ⟨ϕ(y)α, y⟩ ∈ S for

any α ∈ I and y ∈ Y as in [13]. For α ∈ I and y ∈ Y , let

C(α, y) := {(N, l) ∈ C |N(⟨ϕ(z)β, z⟩) + l(ϕ(z)2β) ≥
N(⟨ϕ(y)α, y⟩) + l(ϕ(y)2α) for any β ∈ I and z ∈ Y }.

We remark that C(α, y) is defined also as {(N, l) ∈ S∨ × Hom(X,Z) | the same

condition}. The cones C(α, y) for varying (α, y) (α ∈ I, y ∈ Y ) with their faces

form a complete fan in C. The proofs are also similar. We call this fan the fan

associated to the star I.

Further, we remark the following. As in [8] 5.4, we can construct more fans.

Let a : Y → Sgp be a map satisfying a(y) ∈ S for all but finitely many y ∈ Y
and a(yz) = a(y)a(z)⟨ϕ(y), z⟩ for any y, z ∈ Y. Note that y 7→ ⟨ϕ(y), y⟩ gives an
example of such an a for the square ϕ2 instead of ϕ itself. (Cf. the verification of

the cocycle condition in 4.8.) Then, as in [8] 5.4.3, we can define the associated

first standard fan. The second standard fan and the fan associated to a star in

this context also can be defined.

4.7. We prove that the above three fans are stable under the action of Y .

Let Σ be either the first standard fan of C (we call this the case 1), the second

standard fan of C (we call this the case 2) or the fan associated to a star I in X

(we call this the case 3).

In the case 1 (resp. case 2, resp. case 3), for any y, z ∈ Y (resp. x ∈ X and

z ∈ Y , resp. y, z ∈ Y and α ∈ I), we will see

z∗C(y) = C(z−1y)

(resp. z∗C(x) = C(ϕ(z)−1x), resp. z∗C(α, y) = C(α, z−1y))

in the below, where z∗ denotes the action of z. These will show that Σ is Y -stable.

4.8. To see the above equality, first consider the dual action of Y on Sgp
Q ×XQ

via which y ∈ Y maps (µ, x) ∈ Sgp
Q ×XQ to (⟨x, y⟩µ, x). Note that it is indeed

the dual of the action of Y on Cgp = Hom(Sgp,Z) × Hom(X,Z) (1.7), which is

seen as N(⟨x, y⟩µ) + l(x) = N(µ) + (l +N(⟨−, y⟩))(x).
Let

cy = (⟨ϕ(y), y⟩, ϕ(y)2) ∈ SQ≥0
×XQ
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for each y ∈ YQ. Then we have the following cocycle condition:

z∗cy · cz = czy,

where z∗ denotes the (dual) action of z. It is seen as

z∗cy · cz = (⟨ϕ(y)2, z⟩ · ⟨ϕ(y), y⟩, ϕ(y)2) · (⟨ϕ(z), z⟩, ϕ(z)2)
= (⟨ϕ(y), z⟩ · ⟨ϕ(z), y⟩ · ⟨ϕ(y), y⟩ · ⟨ϕ(z), z⟩, ϕ(y)2ϕ(z)2)
= (⟨ϕ(zy), zy⟩, ϕ(zy)2) = czy.

Further, let α ∈ X and let cα,y = cy · (⟨α, y⟩, α) ∈ SQ≥0
× XQ for y ∈ YQ.

Then we have

z∗cα,y · cz = cα,zy.

This is deduced from the above cocycle condition together with the equality

z∗(⟨α, y⟩, α) = (⟨α, z⟩ · ⟨α, y⟩, α) = (⟨α, zy⟩, α).
4.9. In the case 1 (resp. case 2, resp. case 3), we prove

z∗C(y) = C(z−1y)

(resp. z∗C(x) = C(ϕ(z)−1x), resp. z∗C(α, y) = C(α, z−1y)).

By the remark after the definition of C(y) (resp. C(x), resp. C(α, y)), the cone

C(y) (resp. C(x), resp. C(α, y)) ⊂ Hom(Sgp,Z)× Hom(X,Z) is the dual of the

subset

S(y) :=
{
cy′

cy

∣∣∣ y′ ∈ Y }
(
resp. S(x) :=

{
cϕ−1(x′)
cϕ−1(x)

∣∣∣ x′ ∈ X}
, resp. S(α, y) :=

{
cα′,y′

cα,y

∣∣∣ α′ ∈ I, y′ ∈ Y
})

of Sgp
Q × XQ. Hence z∗C(y) (resp. z∗C(x), resp. z∗C(α, y)) is the dual cone of

the subset (z−1)∗S(y) (resp. (z−1)∗S(x), resp. (z−1)∗S(α, y)). By the cocycle

condition in 4.8, we have

(z−1)∗(cy′/cy) =
(
cz−1y′

cz−1

)/(
cz−1y

cz−1

)
=

cz−1y′

cz−1y(
resp. (z−1)∗(cϕ−1(x′)/cϕ−1(x)) =

cz−1ϕ−1(x′)
cz−1ϕ−1(x)

=
cϕ−1(ϕ(z−1)x′)
cϕ−1(ϕ(z−1)x)

,

resp. (z−1)∗(cα′,y′/cα,y) =
(
cα′,z−1y′

cz−1

)/(
cα,z−1y

cz−1

)
=

cα′,z−1y′

cα,z−1y

)
.

Therefore, (z−1)∗S(y) (resp. (z−1)∗S(x), resp. (z−1)∗S(α, y)) coincides with the

subset

S(z−1y) =
{

cy′

cz−1y

∣∣∣ y′ ∈ Y }
(
resp. S(ϕ(z)−1x) =

{
cϕ−1(x′)

cϕ−1(ϕ(z−1)x)

∣∣∣ x′ ∈ X}
,

resp. S(α, z−1y) =
{

cα′,y′

cα,z−1y

∣∣∣ α′ ∈ I, y′ ∈ Y
})

.
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Taking the dual, we conclude

z∗C(y) = C(z−1y)

(resp. z∗C(x) = C(ϕ(z)−1x), resp. z∗C(α, y) = C(α, z−1y)).

4.10. By the Y -stability of Σ shown in the above, the model Ã(Σ) is Y -stable.

We can see this last fact by a different understanding as follows. In the case 1

(resp. case 2, resp. case 3), let y ∈ Y (resp. x ∈ X, resp. α ∈ I, y ∈ Y ). Let

U(y)

(resp. U(x), resp. U(α, y))

be the C(y)-part (resp. C(x)-part, resp. C(α, y)-part) of Ã (1.7). Then, as is

shown below, this subfunctor of Ã satisfies the following.

z∗U(y) = U(z−1y) for any y, z ∈ Y
(resp. z∗U(x) = U(ϕ(z)−1x) for any x ∈ X, z ∈ Y ,

resp. z∗U(α, y) = U(α, z−1y) for any α ∈ I, y, z ∈ Y ),

which implies that Ã(Σ) is Y -stable.

4.11. We prove the above formulas. As a preliminary, first observe that any

element (µ, x) of (Sgp)Q × XQ gives a section of the trivial (Gm,log/Gm) ⊗Z Q-

torsor over Hom(X,Gm,log/Gm)
(Y ) by h 7→ µh(x). This construction gives a

homomorphism

(Sgp)Q ×XQ → Hom(Hom(X,Gm,log/Gm)
(Y ), (Gm,log/Gm)⊗Z Q);

(µ, x) 7→ (h 7→ µh(x)).

Further, this construction of the sections is compatible with the action of Y in the

sense that for any z ∈ Y , the element z∗(µ, x) ((µ, x) ∈ Sgp×X) gives the section

obtained by the pullback of the section that (µ, x) gives by the action of z on

the space Hom(X,Gm,log/Gm)
(Y ). This is seen as (⟨x, z⟩µ)h(x) = µ(h⟨−, z⟩)(x).

4.12. By 4.11, the element cy (y ∈ Y ) (resp. cy (y ∈ YQ), resp. cα,y (α ∈ I, y ∈
Y )) in 4.8 gives a section

c(y) (resp. c(y), resp. c(α, y)).

Since C(y) (resp. C(x), resp. C(α, y)) is the dual of the subset S(y) (resp. S(x),

resp. S(α, y)) in 4.9, by definition, the C(y)-part (resp. C(x)-part, resp. C(α, y)-

part) of Hom(X,Gm,log/Gm)
(Y ) is the part where

c(y)|c(y′) for any y′ ∈ Y
(resp. c(ϕ−1(x))|c(ϕ−1(x′)) for any x′ ∈ X,

resp. c(α, y)|c(α′, y′) for any α′ ∈ I, y′ ∈ Y ).
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Hence, its translation by z∗ (z ∈ Y ) is the part where (z−1)∗c(y)|(z−1)∗c(y′)

for any y′ ∈ Y (resp. (z−1)∗c(ϕ−1(x))|(z−1)∗c(ϕ−1(x′)) for any x′ ∈ X, resp.

(z−1)∗c(α, y)|(z−1)∗c(α′, y′) for any α′ ∈ I, y′ ∈ Y ). Here (z−1)∗ means the

pullback by the action of z−1 on the space Hom(X,Gm,log/Gm)
(Y ).

By the cocycle condition in 4.8 together with the facts in 4.11, we have

(z−1)∗c(y) = c(z−1y)
c(z−1)

(resp. (z−1)∗c(ϕ−1(x)) = c(z−1ϕ−1(x))
c(z−1)

, resp. (z−1)∗c(α, y) = c(α,z−1y)
c(z−1)

).

Therefore, the translation is the part where

c(z−1y)
c(z−1)

∣∣∣ c(z−1y′)
c(z−1)

for any y′ ∈ Y

(resp. c(z−1ϕ−1(x))
c(z−1)

∣∣∣ c(z−1ϕ−1(x′))
c(z−1)

for any x′ ∈ X,

resp. c(α,z−1y)
c(z−1)

∣∣∣ c(α′,z−1y′)
c(z−1)

for any α′ ∈ I, y′ ∈ Y ),

which coincides with the part where

c(z−1y)|c(z−1y′) for any y′ ∈ Y ,

(resp. c(z−1ϕ−1(x))|c(z−1ϕ−1(x′)) for any x′ ∈ X,

resp. c(α, z−1y)|c(α′, z−1y′) for any α′ ∈ I, y′ ∈ Y ),

that is, the C(z−1y)-part (resp. C(ϕ(z)−1x)-part, resp. C(α, z−1y)-part). Hence,

we have the above formulas.

4.13. Let S be an fs log scheme, and A a weak log abelian variety over S. Let

ψ : Y → X be a homomorphism satisfying (1)–(3) in 1.4.1. Then the above

description of the subfunctor U(y) (resp. U(x), resp. U(α, y)) also shows that

this subfunctor can be defined stalkwise, defined only by ψ, and independent of

the choices of ϕ, so that the model A(Σ) glues globally on the base S. We denote

this glued model on the base by A(ψ).

4.14. Here we describe the details of Remark 1.4.2.

First a homomorphism ψ : Y → X at a point of S satisfying (1)–(3) in 1.4.1

induces ψ satisfying (1)–(3) in 1.4.1 on some étale neighborhood (see 12.13 for

the proof).

In particular, a log abelian variety satisfies the condition 1.4.1. In fact, for a

log abelian variety A, by definition, there is a polarization p on the associated

log 1-motif at each point, and p gives a ψ satisfying (1)–(3) in 1.4.1 at that point.

Hence A satisfies the condition 1.4.1 by the above fact. On the other hand, a

weak log abelian variety does not necessarily satisfy the condition 1.4.1 and a

weak log abelian variety satisfying the condition 1.4.1 is not necessarily a log

abelian variety. See examples in 4.15 below.

In [11] Corollary 9.5, we proved that any weak log abelian variety A locally

comes from a weak log abelian variety A0 over some noetherian base. Another
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consequence of the above fact is that the above A0 can be taken to satisfy the

condition 1.4.1 whenever the original A satisfies it.

4.15. Here we include examples mentioned in the above 4.14. That is, we give

an example of weak log abelian variety which does not satisfy the condition 1.4.1

and an example of weak log abelian variety satisfying the condition 1.4.1 but not

being a log abelian variety.

First, let S =
(
SpecC, (N2 = ⟨q1, q2⟩)a

)
. Consider Gm,log = Gm,log,S and

regard q1, q2 as sections of it. Let Y = Z2 = ⟨e1, e2⟩, where (ei)i is the canonical

base. Then we claim that the weak log abelian variety on S associated with the

log 1-motif defined by Y → G2
m,log; e1 7→ (q1q2, 1), e2 7→ (q2, q1q2) does not satisfy

the condition 1.4.1.

Second, let S =
(
SpecC, (N = ⟨q⟩)a

)
. Consider Gm,log = Gm,log,S and regard

q as a section of it. Let Y = Z2 = ⟨e1, e2⟩, where (ei)i is the canonical base. Then
we claim that the weak log abelian variety on S associated with the log 1-motif

defined by Y → G2
m,log; e1 7→ (2q, 1), e2 7→ (2, 2q) is not a log abelian variety but

satisfies the condition 1.4.1.

We prove the above claims based on the fact that for any positive-definite

real symmetric matrix A, the product A ( 1 1
0 1 ) is not symmetric.

First, we prove that the first example does not satisfy the condition 1.4.1.

Let X = Hom(G2
m,Gm) = Z2. Then the associated pairing X × Y → (N2)gp is

represented by a pair of matrices I := ( 1 0
0 1 ) and S := ( 1 1

0 1 ). If the condition 1.4.1

is satisfied, there is another real square matrix A whose determinant is not zero

such that both AI = A and AS are symmetric and semipositive-definite. This is

impossible by the above fact.

As for the second example, the pairing moduloGm is the standard one and the

identity ψ : Y → X = Hom(G2
m,Gm) = Z2 satisfies the condition 1.4.1. We prove

that, however, it is not a log abelian variety. For this, observe that the associated

pairing X × Y → Gm,log factors as (I, S) : X × Y → Z2 = qZ · 2Z ⊂ Gm,log. If it

is a log abelian variety, by definition, there is a polarization, which implies that

there is another real square matrix A whose determinant is not zero such that

both AI = A and AS are symmetric and such that A is positive-definite. This

is impossible again by the above fact.

5. Special torsors

In the previous section, we define some special models of a weak log abelian

variety A. Here we consider special Gm-torsors on these models when a polar-

ization on A is given.
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5.1. First we prove Lemma 2.6.

Let A be a weak log abelian variety over an fs log scheme. Assume that either

A is with constant degeneration or A satisfies the condition 1.4.1. Assume also

that an admissible pairing

⟨ , ⟩ : X × Y → Gm,log/Gm

as in 1.1 is given globally on S.

We prove Lemma 2.6 (1). Let F =Hom(Hom(X,Gm,log/Gm)
(Y ), Gm,log/Gm).

We prove that the natural map X → F is injective. Let T be an fs log scheme

over S. Let x ∈ X(T ). Assume that the image of x in F (T ) is zero. Then

⟨xt, y⟩t = 0 for any t ∈ T and y ∈ Y t. Hence xt = 0 for any t ∈ T and x = 0.

Next let Hom(X,Gm,log/Gm)
(Y ) → Gm,log/Gm = Hom(Z,Gm,log/Gm) be a

section of F . Then, we can prove that it is induced by some homomorphism

Z → X by the same method as in [9] 7.26. Hence, X → F is also surjective,

which completes the proof of Lemma 2.6 (1).

We prove Lemma 2.6 (2) and (3). From the exact sequence

(∗) 0→ Y → Hom(X,Gm,log/Gm)
(Y ) → A/G→ 0

together with Lemma 2.6 (1), we obtain an exact sequence

0→ Hom(A/G,Gm,log/Gm)

→ X → Hom(Y ,Gm,log/Gm)→ Ext(A/G,Gm,log/Gm).

This gives the injection in Lemma 2.6 (2) and the vanishing Lemma 2.6 (3).

Lastly, Lemma 2.6 (4) is by Lemma 3.4 and Lemma 2.6 (3), which completes

the proof of Lemma 2.6.

5.2. Let A be a weak log abelian variety over an fs log scheme S. Let the notation

be as in 1.1. Assume that we are given a homomorphism

ψ : Y → X

satisfying the conditions (1)–(3) in 1.4.1.

In general, giving a Gm,log/Gm-torsor on A/G = Y \Hom(X,Gm,log/Gm)
(Y )

is equivalent to giving a Gm,log/Gm-torsor on Hom(X,Gm,log/Gm)
(Y ) endowed

with an action of Y which is compatible with the canonical action of Y on

Hom(X,Gm,log/Gm)
(Y ).

Now, the Gm,log/Gm-torsor Lψ on A/G which is the image of ψ by the homo-

morphism Hom⟨ , ⟩(Y ,X)→ Biextsym(A/G,A/G;Gm,log/Gm)→ H1(A/G,Gm,log

/Gm) induced by Lemma 2.6 (cf. 2.7), just proved, is described as follows.

The corresponding Gm,log/Gm-torsor on Hom(X,Gm,log/Gm)
(Y ) is the trivial
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Gm,log/Gm-torsor Gm,log/Gm, and the action of y ∈ Y is given by the multi-

plication by c(y)−1, where

c(y) := ⟨ψ(y), y⟩ · ψ(y)2.

(In the situation where ϕ exists as in 4.5, this c(y) is the image of the c(ỹ) in

4.11, where ỹ is a lift of y.) This description is claimed in Proposition 1.6 (2)

and is seen by Lemma 3.10.

Though the fact that the above description indeed gives an action of Y can

be seen by Lemma 3.10, here we directly show this and observe that this fact

relates to the cocycle condition in 4.8. The most explicitly, this fact is shown as

follows. Let y, z ∈ Y , h ∈ Hom(X,Gm,log/Gm)
(Y ). Then we have

(yh)(ψ(z)−2)⟨ψ(z), z⟩−1h(ψ(y)−2)⟨ψ(y), y⟩−1

= h(ψ(zy)−2)⟨y, ψ(z)⟩−2⟨ψ(z), z⟩−1⟨ψ(y), y⟩−1

= h(ψ(zy)−2)⟨ψ(zy), zy⟩−1,

which shows that the above gives an action.

This calculation is equivalent to

c(z)−1(yh)c(y)−1(h) = c(zy)−1(h),

and to

(∗∗) y∗(c(z)−1) · c(y)−1 = c(yz)−1 for y, z ∈ Y .

The last one can be checked also as

y∗(c(z)−1)=y∗(⟨ψ(z), z⟩−1)· y∗(ψ(z)−2)=⟨ψ(z), z⟩−1 · (ψ(z)·⟨ψ(z), y⟩)−2,

y∗(c(z)−1) · c(y)−1=⟨ψ(z), z⟩−1 · ψ(z)−2 · ⟨ψ(z), y⟩−2 · ⟨ψ(y), y⟩−1 · ψ(y)−2

=⟨ψ(yz), yz⟩−1 · ψ(yz)−2 = c(yz)−1,

and also can be deduced from

y∗(c(z)−1) · c(y)−1 = c(yz)−1 for y, z ∈ Y,

which already appeared in 4.12. Thus the fact that the above description gives

an action relates to the cocycle condition in 4.8.

5.2.1 REMARK. In the above, we adopt the sign convention that the boundary

map Hom(Y ,Gm,log/Gm)→ Ext(A/G,Gm,log/Gm) associated to the short exact

sequence (∗) in 5.1, which gives a part of the proof of Proposition 1.6, should be

(h 7→ the extension obtained by the pushout by h from (∗) in 5.1). Provided if we
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adopt the opposite convention (h 7→ the extension obtained by the pushout by

h−1 from (∗) in 5.1), then the resulting first isomorphism in Proposition 1.6 (1)

would become the (−1)-times of ours and the action in Proposition 1.6 (2) would

become (h, λ) 7→ (yh, h(ψ(y)2)⟨ψ(y), y⟩λ). Note that, to make our constructions

and proofs more understandable, we adopt the similar convention in this paper

except 8.5–8.12. See, for example, the proof of Lemma 3.10 (3). (In 8.5–8.12,

the sign convention is not compatible with that in the other parts. Cf. Remark

8.5.1.)

5.3. Let the situation be as in 4.5. Let Σ be as in 4.7, and A(Σ) the corresponding

model of A.

Let p be a polarization on A. Let L−p be the Gm,log-torsor which is the image

of −p by the pullback to the diagonal Biext(A,A;Gm,log)→ H1(A,Gm,log).

Assume that ψ is compatible with −p in the sense that the image of ψ in

Biextsym(A,A;Gm,log/Gm) by the map

Hom⟨ , ⟩(Y ,X)→ Biextsym(A,A;Gm,log/Gm)

in 2.7 coincides with the image of −p. Let Lψ be the Gm,log/Gm-torsor which is

the image of this last image of ψ by the pullback to the diagonal

Biextsym(A,A;Gm,log/Gm)→ H1(A,Gm,log/Gm).

Then Lψ is induced by L−p.

In the case 1, let n = 1. In the case 2, let n be an integer ≥ 1 which kills the

cokernel of ϕ : Y → X. In the case 3, let n = 1.

We define a special Gm-torsor on A(Σ) which is inside the pullback of the

Gm,log-torsor L
⊗n
−p on A to A(Σ).

Giving such a Gm-torsor is equivalent to giving a section of the Gm,log/Gm-

torsor on A(Σ) induced by L⊗n
ψ . So, it is defined by a section of the Gm,log/Gm-

torsor on A(Σ)/G = Y \Hom(X,Gm,log/Gm)
(Σ) induced by L⊗n

ψ , where Hom(X,

Gm,log/Gm)
(Σ) is defined similarly to Q(Σ) in 1.7. Furthermore, it is given by a

section of the trivial torsor Gm,log/Gm on Hom(X,Gm,log/Gm)
(Σ) which is com-

patible with the action c(y)−n (y ∈ Y ) of Y (cf. 5.2). We define the last one as

follows.

First consider the case 1. Let s be the section of Gm,log/Gm onHom(X,Gm,log

/Gm)
(Σ) which is given by ⟨ϕ(z), z⟩ · ϕ(z)2 on the part of Hom(X,Gm,log/Gm)

(Σ)

corresponding to C(z) (z ∈ Y ). Then s is compatible with the action of Y

given by c(y)−1 (y ∈ Y ), that is, we have y∗(s) = s · c(y)−1 for y ∈ Y . Here

y∗ is the pullback of the translation of y. We prove this. Since the action of y

sends the part of Hom(X,Gm,log/Gm)
(Σ) corresponding to C(z) (z ∈ Y ) to the

part corresponding to C(z ·y−1) (cf. 4.12), on the part of Hom(X,Gm,log/Gm)
(Σ)
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corresponding to C(z), y∗(s) coincides with

y∗(⟨ϕ(z · y−1), zy−1⟩ · ϕ(z · y−1)2)

= ⟨ϕ(z · y−1), zy−1⟩ · ϕ(z · y−1)2 · ⟨ϕ(z · y−1)2, y⟩
= ⟨ϕ(z), z⟩ · ϕ(z)2 · ⟨ϕ(y), y⟩−1 · ϕ(y)−2

= s · c(y)−1.

(This can be seen also by the equation (∗∗) in 5.2.)

Next consider the case 2. Let s be the section of Gm,log/Gm onHom(X,Gm,log

/Gm)
(Σ) which is given by ⟨x, ϕ−1(xn)⟩·x2n on the part of Hom(X,Gm,log/Gm)

(Σ)

corresponding to C(x) (x ∈ X). Then s is compatible with the action of Y given

by c(y)−n (y ∈ Y ), that is, we have y∗(s) = s · c(y)−n for y ∈ Y . We prove this.

Since the action of y sends the part of Hom(X,Gm,log/Gm)
(Σ) corresponding

to C(x) to the part corresponding to C(x · ϕ(y)−1) (cf. 4.12), on the part of

Hom(X,Gm,log/Gm)
(Σ) corresponding to C(x), y∗(s) coincides with

y∗(⟨x · ϕ(y)−1, ϕ−1(xn)y−n⟩ · (x · ϕ(y)−1)2n)

= ⟨x · ϕ(y)−1, ϕ−1(xn)y−n⟩ · (x · ϕ(y)−1)2n · ⟨(x · ϕ(y)−1)2n, y⟩
= ⟨x, ϕ−1(xn)⟩ · x2n · ⟨ϕ(y), y⟩−n · ϕ(y)−2n

= s · c(y)−n.

Lastly consider the case 3. Let s be the section ofGm,log/Gm onHom(X,Gm,log

/Gm)
(Σ)which is given by ⟨ϕ(z)α, z⟩·ϕ(z)2α on the part ofHom(X,Gm,log/Gm)

(Σ)

corresponding to C(α, z) (α ∈ I, z ∈ Y ). Then s is compatible with the action

of Y given by c(y)−1 (y ∈ Y ), that is, we have y∗(s) = s · c(y)−1 for y ∈ Y .

We prove this. Since the action of y sends the part of Hom(X,Gm,log/Gm)
(Σ)

corresponding to C(α, z) to the part corresponding to C(α, z · y−1) (cf. 4.12),

on the part of Hom(X,Gm,log/Gm)
(Σ) corresponding to C(α, z), y∗(s) coincides

with

y∗(⟨ϕ(zy−1)α, zy−1⟩ · ϕ(zy−1)2α)

= ⟨ϕ(zy−1)α, zy−1⟩ · ϕ(zy−1)2α · ⟨ϕ(zy−1)2α, y⟩
= ⟨ϕ(z)α, z⟩ · ϕ(z)2α · ⟨ϕ(y), y⟩−1ϕ(y)−2

= s · c(y)−1.

6. Case of constant degeneration, I

In Sections 6–8, we prove the results in Section 1 for weak log abelian varieties

with constant degeneration. We also prove an important Theorem 8.5, which

gives a description of H1(A,Gm,log).

In this section, we prove some basic results.
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6.1. Let A be a weak log abelian variety with constant degeneration over an fs log

scheme S. Let G be the semiabelian part and [Y → Glog] be the corresponding

log 1-motif. In particular, we have A = G
(Y )
log /Y . Let T and B be the torus and

abelian part of G, respectively. Thus we have an exact sequence 0→ T → G→
B → 0. Let X = Hom(T,Gm) and let ⟨ , ⟩ : X×Y → Gm,log/Gm be the induced

canonical pairing. We have Ã = G
(Y )
log in this case (cf. Remark 1.8).

The next proposition gives the proof of Proposition 2.1 in this case (i.e., in

the case of constant degeneration).

6.2 PROPOSITION. (1) H0(A,Ga) = H0(S,Ga) and H
0(A,Gm) = H0(S,Gm).

(2) H0(A,Gm,log)=H
0(S,Gm,log) and H

0(A,Gm,log/Gm)=H
0(S,Gm,log/Gm).

6.3. As a corollary, we see that Proposition 2.3 holds in the case of constant

degeneration by Lemmas 3.1 and 3.4.

6.4. For the proof of Proposition 6.2, we first prove the following facts. Let

g : Ã→ B be the canonical morphism. Then we have

6.4.1. g∗Ga = Ga, g∗Gm = Gm.

6.4.2. g∗(Gm,log/Gm) ≃ X ⊕ (Gm,log/Gm)B canonically.

6.4.3. g∗(Gm,log) ≃ X ⊕Gm,log,B canonically.

Proof. Since Ã is a T
(Y )
log -torsor on B, we have only to show the case where B is

trivial. In this case, first 6.4.2 is proved by [9] Proposition 7.9 (2). Second, [9]

Proposition 7.9 (3) shows g∗Ga = Ga and g∗Gm = Gm (6.4.1). Then we have a

commutative diagram with exact rows

1 −−−→ Gm −−−→ X ⊕Gm,log −−−→ X ⊕ (Gm,log/Gm) −−−→ 1y|≀
y y|≀

1 −−−→ g∗Gm −−−→ g∗(Gm,log) −−−→ g∗(Gm,log/Gm),

from which we have 6.4.3.

6.5. We prove Proposition 6.2. Note that for F = Ga,Gm,Gm,log, or Gm,log/Gm,

H0(A,F ) is the Y -invariant part of H0(Ã, F ). For F = Ga or Gm, 6.4.1 shows

that H0(Ã, F ) coincides with H0(B,F ) = H0(S, F ) proving Proposition 6.2 (1).

Next we prove Proposition 6.2 (2). For x ∈ X and y ∈ Y , we have

t∗y(x mod Gm) = (x mod Gm) · ⟨x, y⟩,

where we regard x as a global section of Gm,log/Gm on Ã. Since the pairing ⟨ , ⟩
is nondegenerate, this shows that the Y -invariant part of H0(Ã,Gm,log/Gm)

= H0(B,X) ⊕ H0(B,Gm,log/Gm) (6.4.2) coincides with H0(B,Gm,log/Gm) =

H0(S,Gm,log/Gm). Hence H0(A,Gm,log/Gm) = H0(S,Gm,log/Gm). Together
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with H0(A,Gm) = H0(S,Gm), we also see H0(A,Gm,log) = H0(S,Gm,log) by

localizing S.

6.6 PROPOSITION. (1) R1g∗(Gm,log) = {1}.
(2) R1g∗(Gm,log/Gm) = {1}.

Proof. The fact that Ã is a T
(Y )
log -torsor on B reduces (1) and (2) to

H1(T
(Y )
log ,Gm,log) = 0 and H1(T

(Y )
log ,Gm,log/Gm) = 0,

respectively. The former was seen by the argument in the fifth paragraph of [9]

7.17, which is a part of the proof of ibid. Theorem 7.3 (2). After replacing Gm,log

by Gm,log/Gm, the same argument works and the latter is also seen.

6.7. Let H be the sheaf of abelian groups on (fs/S)ét defined by

H = {(ψ, a) |ψ is a homomorphism Y → X and a is a map Y → Gm,log/Gm

such that a(yz)a(y)−1a(z)−1 = ⟨ψ(y), z⟩ for all y, z ∈ Y }.

6.8. We define a natural homomorphism

H → H1(A,Gm,log/Gm).

Let (ψ, a) be a section ofH. Consider the quotient of Ã×Gm,log/Gm by the action

of Y given by (m,λ) 7→ (ym, λa(y)−1m(ψ(y)−1)) (y ∈ Y,m ∈ Ã, λ ∈ Gm,log/Gm),

where the last m represents the image of m in Ã/G ∼= Hom(X,Gm,log/Gm)
(Y )

by abuse of notation. Then this quotient gives a Gm,log/Gm-torsor on A, which

is defined as the image of (ψ, a).

Let X → H be a homomorphism sending x ∈ X to (0, ⟨x,−⟩). It is injective
and we identify X with the image of this injection. Then the above homomor-

phism H → H1(A,Gm,log/Gm) factors through H/X because m 7→ (m,m(x−1))

gives a section of the torsor on A associated to x ∈ X.

6.9 THEOREM. We have the following isomorphisms and the commutative dia-

gram with exact rows.

(1) Hom(Y,Gm,log/Gm)/X
≃→ Ext(A/G,Gm,log/Gm)

≃→ Ext(A,Gm,log/Gm).

(2) H/X
≃→ H1(A/G,Gm,log/Gm)

≃→ H1(A,Gm,log/Gm).

(3)

0 −−−→ Hom(Y,Gm,log/Gm)/X −−−→ H/X −−−→ Hom⟨ , ⟩(Y,X)y|≀
y|≀

y|≀

0 −−−→ Ext(A,Gm,log/Gm) −−−→ H1(A,Gm,log/Gm) −−−→ Biext sym(A,A;Gm,log/Gm).

This is proved in 6.14–6.18.
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6.10. We interpret the above homomorphism H → H1(A,Gm,log/Gm) in 6.8 in

terms of H1(Y,H0(Ã,Gm,log/Gm)).

First, a section of H can be regarded as a cocycle of the inhomogeneous

cochain complex associated with the Y -module X ⊕ (Gm,log/Gm)S, where the

action of y ∈ Y on X ⊕ (Gm,log/Gm)S is

(x, c) 7→ (x, c⟨x, y⟩).

In fact, a cocycle is a map (ψ, a) : Y → X ⊕ (Gm,log/Gm)S satisfying

(ψ(yz), a(yz)) = z(ψ(y), a(y)) · (ψ(z), a(z)) = (ψ(y)ψ(z), a(y)⟨ψ(y), z⟩a(z)),

which is nothing but a section of H.

Next, Hom(X,Gm,log/Gm)
(Y ) ∼= Ã/G gives a natural homomorphism

X ⊕ (Gm,log/Gm)S → H0(Ã,Gm,log/Gm),

which is in fact an isomorphism by 6.5. Hence there is a natural homomorphism

H → H1(Y,X ⊕ (Gm,log/Gm)S)→ H1(Y,H0(Ã,Gm,log/Gm)).

On the other hand, the canonical homomorphism

H1(Y,H0(Ã,Gm,log/Gm))→ H1(A,Gm,log/Gm)

is described as follows. Let f(y)(m) (y ∈ Y,m ∈ Ã) be a cocycle of the inho-

mogeneous cochain complex associated with the Y -module H0(Ã,Gm,log/Gm).

Consider the quotient of Ã × Gm,log/Gm by the action of Y given by (m,λ) 7→
(ym, λf(y)(m)−1) (y ∈ Y,m ∈ Ã, λ ∈ Gm,log/Gm). Then this quotient gives a

Gm,log/Gm-torsor on A, which is the image of f .

Therefore the composite of the above homomorphisms

H → H1(Y,H0(Ã,Gm,log/Gm))→ H1(A,Gm,log/Gm)

coincides with the homomorphism in 6.8.

6.11 LEMMA. Let f : H → S be a surjective morphism of schemes with geomet-

rically connected fibers. Let F be a sheaf of abelian groups on Sét.Then we have

the following.

(1) Assume that either f is smooth or f has a section. Then f∗f
∗F = F.

(2) Assume that étale locally on S, there is a finite decomposition of S by

subschemes such that the restriction of F to each subscheme is constant with

torsion-free value. Assume further that there are a noetherian scheme S0, a sur-

jective smooth morphism f0 : H0 → S0 of schemes with geometrically connected

fibers, and a morphism g : S → S0 such that the base-changed morphism f0 with

respect to g is isomorphic to f over S. Then R1f∗f
∗F = 0.
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Proof. (1) Since f is surjective, we see that the natural map F → f∗f
∗F is

injective. It suffices to show that F (S)→ F (H) is surjective. Since the statement

is étale local on S, in the case where f is smooth, we may assume that there is

a section s : S → H to f . Then it is enough to show that, for any element a of

F (H), its pullback by s ◦ f coincides with a. To see this, we may assume that

S is the spectrum of an algebraically closed field. Then, F is constant and the

connectivity implies F (H) = F (S), as desired.

(2) First we show that we may assume that F is constant. Since the statement

is étale local on S, we may assume that there is a decomposition of S as in the

assumption globally. Then we may assume that F = j!NT , where j : T → S is

an immersion and NT is the constant sheaf with values in a torsion-free abelian

group N . Replacing S with the closure of T , we may assume that j is an open

immersion. Then, j!NT injects to NS, and by (1), R1f∗f
∗j!NT → R1f∗f

∗NS is

also injective. Hence, we may and will assume that F is constant.

Next we show that we may assume that S is noetherian. To see this, we may

assume that S is the projective limit of noetherian schemes Sλ over S0 whose

transition morphisms are affine. If the conclusion holds for the base-changed

morphism of f0 over any Sλ, then it also holds for f . Thus, we may assume that

S is noetherian.

We show that we may assume further that S is normal and integral. Let

S ′ be the disjoint union of the normalizations of the irreducible components

of S. Let p be the canonical surjection S ′ → S. By (1), the homomorphism

R1f∗f
∗F → R1f∗f

∗p∗p
∗F is injective. Since p is pro-finite, by the usual proper

base change theorem and the fact Rp∗ = p∗, we see that R1f∗f
∗p∗p

∗F is equal

to p∗R
1f∗f

∗p∗F , where we denote the base-changed morphisms by the same

symbols. Hence we may assume that S is normal and integral.

Further, we may assume that S is strictly local. Then, H is connected and

normal because f is smooth with connected fibers. Therefore, H is irreducible

and geometrically unibranch, and by [2] Exposé IX Proposition 3.6 and Remar-

ques 3.7, we have H1(Hét, F ) = 0, as desired.

6.12 PROPOSITION. H0(G,Z) = Z,H0(G,Gm,log/Gm) = Gm,log/Gm, and

H1(G,Z) = H1(G,Gm,log/Gm) = 0.

Proof. As in the proof of [9] Proposition 7.22, this reduces to Lemma 6.11. Note

that the sheaf Gm,log/Gm restricted in a small étale site and the morphism G→ S

satisfy the assumptions in Lemma 6.11 (1) and (2).

6.13 PROPOSITION. (1) H1(Ã,Gm,log/Gm) = H1(Ã/G,Gm,log/Gm) = 0.

(2) H0(Ã,Gm,log/Gm) = H0(Ã/G,Gm,log/Gm) = X ⊕Gm,log/Gm.
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Proof. (1) First, by Proposition 6.6 (2) and 6.4.2, we have

H1(Ã,Gm,log/Gm) = H1(B, g∗(Gm,log/Gm)) = H1(B,X)⊕H1(B,Gm,log/Gm).

By Proposition 6.12, the last group vanishes.

Next, consider the inclusion H1(Ã/G, p∗(Gm,log/Gm)) ⊂ H1(Ã,Gm,log/Gm) =

0, where p is the projection Ã → Ã/G. Since p is a G-torsor in the cate-

gory of étale sheaves, it is represented by G-torsors. Hence, p∗(Gm,log/Gm) =

Gm,log/Gm by Lemma 6.11 (1). Together with the above inclusion, we conclude

H1(Ã/G,Gm,log/Gm) = 0.

(2) Again by 6.4.2, we have

H0(Ã,Gm,log/Gm) = H0(B,X)⊕H0(B,Gm,log/Gm) = X ⊕Gm,log/Gm,

where the last equality is by Proposition 6.12.

Next, we have H0(Ã/G,Gm,log/Gm) ⊂ H0(Ã,Gm,log/Gm) = X ⊕Gm,log/Gm.

Further, there is the inverse mapX⊕Gm,log/Gm → H0(Ã/G,Gm,log/Gm) because

Ã/G = Hom(X,Gm,log/Gm)
(Y ). Thus, H0(Ã/G,Gm,log/Gm) = X ⊕ Gm,log/Gm.

6.14. We prove the part H/X
≃→ H1(A,Gm,log/Gm) of Theorem 6.9 (2). Con-

sider the exact sequence

0→ H1(Y,H0(Ã,Gm,log/Gm))→ H1(A,Gm,log/Gm)→ H1(Ã,Gm,log/Gm).

By Proposition 6.13 (1), we have H1(Ã,Gm,log/Gm) = 0. Hence

H1(A,Gm,log/Gm) = H1(Y,H0(Ã,Gm,log/Gm)) = H1(Y,X ⊕ (Gm,log/Gm)S),

where the last equality is by Proposition 6.13 (2).

We compute H1(Y,X ⊕ (Gm,log/Gm)S) by the inhomogeneous cochain com-

plex. As is seen in 6.10, the group of cocycles is H. A coboundary is a map

Y → X ⊕ (Gm,log/Gm)S sending y ∈ Y to

y(x, c)/(x, c) = (x, c⟨x, y⟩)/(x, c) = (0, ⟨x, y⟩)

for some (x, c) ∈ X ⊕ (Gm,log/Gm)S, which is nothing but a section of X ⊂ H.

Hence, we have H1(Y,X ⊕ (Gm,log/Gm)S) ∼= H/X.

6.15 PROPOSITION. Let Homadj(Y,X) be the subgroup of Hom(Y,X) consisting

of all homomorphisms p such that there is another homomorphism p′ satisfying

⟨p(y), z⟩ = ⟨p′(z), y⟩ for any y, z ∈ Y . We have the following.

(1)Hom(Y,X)
≃→ Hom(Hom(X,Gm,log/Gm)

(Y ),Hom(Y,Gm,log/Gm)).

(2)Hom⟨ , ⟩(Y,X) ↪→ Homadj(Y,X)
≃→ Hom(Hom(X,Gm,log/Gm)

(Y )/Y,Hom(Y,Gm,log/Gm)
(X)/X)

≃→ Hom(Hom(X,Gm,log/Gm)
(Y )/Y,Hom(Y,Gm,log/Gm)/X).
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We remark that the image in Hom(Y,X) of Hom(Hom(X,Gm,log/Gm)
(Y ),

Hom(Y,Gm,log/Gm)
(X)) by the inverse isomorphism in (1) contains Homadj(Y,X);

but it does not necessarily coincide with Homadj(Y,X) or Hom(Y,X).

Proof. (1) is by [9] Theorem 7.3 (3).

(2) We call the p′ in the statement is an adjoint of p. If p is symmetric, p

itself is an adjoint of p. Hence we have the first inclusion.

Next we prove that the homomorphism Hom(X,Gm,log/Gm)
(Y ) → Hom(Y,

Gm,log/Gm) corresponding to p : Y → X via the isomorphism in (1) factors

through Hom(Y,Gm,log/Gm)
(X) if p has an adjoint p′ : Y → X in the sense that:

(∗) For any y, z ∈ Y , we have ⟨p(y), z⟩ = ⟨p′(z), y⟩.

Let φ : X → Gm,log/Gm be any section of Hom(X,Gm,log/Gm)
(Y ). Since it

belongs to (Y )-part, for any y ∈ Y , there are y1, y2 ∈ Y such that

⟨p(y), y1⟩|φ(p(y))|⟨p(y), y2⟩.

By (∗), this is equivalent to

⟨p′(y1), y⟩|φ(p(y))|⟨p′(y2), y⟩,

which means that the homomorphism φ◦p : Y → Gm,log belongs to the (X)-part

of Hom(Y,Gm,log/Gm). Thus we have the canonical homomorphism

Homadj(Y,X)→ Hom(Hom(X,Gm,log/Gm)
(Y )/Y,Hom(Y,Gm,log/Gm)

(X)/X).

To see that this is an isomorphism, apply [9] Theorem 7.6 (1) with X ′ = Y ,

Y ′ = X, and ⟨ , ⟩′, where ⟨y, x⟩′ := ⟨x, y⟩ (x ∈ X, y ∈ Y ).

To see the last isomorphism in (2), it is enough to show that any homomor-

phism

f : Hom(X,Gm,log/Gm)
(Y )/Y → Hom(Y,Gm,log/Gm)/X

comes from a homomorphism p having an adjoint. Locally on the base, f lifts to

a homomorphism

f̃ : Hom(X,Gm,log/Gm)
(Y ) → Hom(Y,Gm,log/Gm),

which sends Y into X. This is possible because Ext(Ã/G,X) = 0, which comes

from Ext(Ã,X) = 0 ([9] 7.23) and Hom(G,X) = 0. By (1), this f̃ comes from a

homomorphism p : Y → X. It suffices to show that p has an adjoint. Let y be

an element of Y . Since f̃ sends Y into X, there is an element x of X such that

⟨p(−), y⟩ = ⟨x,−⟩. Let p′(y) := x. Then the map p′ makes a homomorphism

from Y to X, which is an adjoint of p.
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6.16. We prove the case F = Gm,log/Gm of the cubic isomorphism (Theorem

2.2) for this case of constant degeneration, which implies the exactness of the

lower row in the diagram in Theorem 6.9 (3) by Lemma 3.8 and Proposition 2.1

(proved in Proposition 6.2). By Lemma 3.5, it is enough to show only Theorem

2.2 (2). (Notice that the functoriality and the last equality in Theorem 2.2 (1)

are deduced from the uniqueness in the first statement of Theorem 2.2 (1).)

Let the notation be as in the statement. Let u, v ∈ A(S ′). We identify L with

the class of a section (ψ, a) of H modulo X by 6.14. Then we have t∗u(ψ, a) =

(ψ, au(ψ)). Here u(ψ) is the composite of ψ : Y → X and u : X → Gm,log/Gm

modulo Y regarded as a section ofHom(Y,Gm,log/Gm)
(X)/X. Thus L 7→ t∗uL·L−1

sends (ψ, a) to (1, u(ψ)). Next, the same argument shows that L 7→ t∗vL · L−1

kills (1, b) for any b locally on S ′. Hence the composite L 7→ t∗uvL ·t∗uL−1 ·t∗vL−1 ·L
kills the class of L locally on S ′, which completes the proof.

6.17. We continue to prove Theorem 6.9.

(a) The first homomorphism in Theorem 6.9 (1) is injective.

This is by Lemma 2.6 (2) which is already proved in 5.1.

(b) The second homomorphism in Theorem 6.9 (1) is also injective.

This is by Hom(G,Gm,log/Gm) = 0 which is seen by [9] Lemma 6.1.1.

By (b), the natural homomorphism

Hom(A/G, Ext(A/G,Gm,log/Gm))→ Hom(A, Ext(A,Gm,log/Gm))

is injective and hence

(c) Biext sym(A/G,A/G;Gm,log/Gm) → Biext sym(A,A;Gm,log/Gm) is also in-

jective.

Further,

(d) The composite Hom⟨ , ⟩(Y,X) → Biext(A/G,A/G;Gm,log/Gm) in 2.7 is

injective.

In fact, the first homomorphism in the display in 2.7 is injective by Proposi-

tion 6.15 (2) and the second homomorphism in the display in 2.7 is also injective

by (a). Hence we have (d).

The commutativity of the diagram in Theorem 6.9 (3) is by construction.

By (c) and (d), the right vertical arrow of the diagram in Theorem 6.9 (3) is

injective. Therefore, the left vertical arrow of the diagram in Theorem 6.9 (3) is

surjective. Together with (a) and (b), we complete the proof of Theorem 6.9 (1).

We prove Theorem 6.9 (2). We already proved H/X
≃→ H1(A,Gm,log/Gm)

in 6.14. The same proof works for H/X
≃→ H1(A/G,Gm,log/Gm) if we know

H1(Ã/G,Gm,log/Gm) = 0 and H0(Ã/G,Gm,log/Gm) = X ⊕Gm,log/Gm. They are

proved by Proposition 6.13 (1) and (2), respectively.

The remaining part is the surjectivity of the right vertical arrow of the di-

agram in Theorem 6.9 (3). This is a part of Proposition 1.6 (1), which will be
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proved in the next paragraph.

6.18. We prove Proposition 1.6 for the case of constant degeneration. We have

already seen Proposition 1.6 (2) in 5.2. To see Proposition 1.6 (1), by (c) and (d)

in the previous paragraph, it is enough to show that the map Hom⟨ , ⟩(Y,X)→
Biext sym(A,A;Gm,log/Gm) is bijective, which also completes the proof of Theorem

6.9.

By Proposition 6.15 (2), we have

Homadj(Y,X)
≃→ Hom(Hom(X,Gm,log/Gm)

(Y )/Y,Hom(Y,Gm,log/Gm)/X)

(see Proposition 6.15 for the definition of Homadj(Y,X)). By Theorem 6.9 (1)

(already proved in 6.17), this is isomorphic to

Hom(A/G, Ext(A/G,Gm,log/Gm)).

Further, we prove

(∗) Hom(A/G, Ext(A/G,Gm,log/Gm)) ∼= Hom(A, Ext(A,Gm,log/Gm)).

First, we have Hom(G,Gm,log/Gm)=0 ([9] Lemma 6.1.1) and Ext(G,Gm,log/Gm)

= 0. (The latter is by Proposition 6.12 together with Lemma 3.2.) Hence,

Ext(A,Gm,log/Gm) = Ext(A/G,Gm,log/Gm)(= Hom(Y,Gm,log/Gm)/X). Hence

it is enough to show Hom(G,Hom(Y,Gm,log/Gm)/X) = 0. By Proposition

6.12 together with Lemma 3.2, we have Ext(G,X) = 0. On the other hand,

Hom(G,Hom(Y,Gm,log/Gm)) vanishes by [9] Lemma 6.1.1. Thus Hom(G,Hom
(Y,Gm,log/Gm)/X) = 0 and we have (∗).

By Proposition 2.3 (proved for the present case in 6.3), Hom(A, Ext(A,Gm,log

/Gm)) ∼= Biext(A,A;Gm,log/Gm). Therefore, we have proved

Homadj(Y,X) ∼= Biext(A,A;Gm,log/Gm).

Taking the symmetric parts, we have the desired bijection. This completes the

proof of the case of constant degeneration of Proposition 1.6 and also the proof

of Theorem 6.9.

The following propositions will be used in the next section.

6.19 PROPOSITION. The image of any homomorphism A → Ext(A,Gm,log) is

contained in the dual log abelian variety A∗ (1.2).

Proof. By [9] Theorem 7.4 (3), we have Ext(A,Gm,log) ∼= G∗
log/X. Any homomor-

phism A→ G∗
log/X induces a homomorphism A/G→ Hom(Y,Gm,log/Gm)/X by

[9] Corollary 6.1.2, and its image is contained inA∗/G∗ = Hom(Y,Gm,log/Gm)
(X)/

X by

Hom(A/G,Hom(Y,Gm,log/Gm)/X) = Hom(A/G,Hom(Y,Gm,log/Gm)
(X)/X)
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(Proposition 6.15 (2)). Hence we see that A→ G∗
log factors through G

∗(X)
log /X =

A∗, as desired.

6.20 COROLLARY. We have the following.

Hom(A,A∗) ∼= Biext(A,A;Gm,log), Homsym(A,A
∗) ∼= Biext sym(A,A;Gm,log).

Here Homsym(A,A
∗) is the sheaf of homomorphisms A → A∗ which coincides

with its dual A = A∗∗ → A∗.

Proof. By Lemma 3.4 and Hom(A,Gm,log) = 0 ([9] Theorem 7.4 (4)), we have

Hom(A, Ext(A,Gm,log)) = Biext(A,A;Gm,log). Then, the first isomorphism is

deduced from the previous proposition. Taking the symmetric parts, we obtain

the second isomorphism.

7. Case of constant total degeneration

In the next section, we will give a description of the group of Gm,log-torsors

on a weak log abelian variety with constant degeneration. This section treats

the special case where the abelian part B = 0. The reason why we treat the

case B = 0 in this separated section is that in the case B = 0, the description

becomes especially simple and becomes very similar to the classical theorem of

Appel–Humbert which describes the group of Gm-torsors on a complex torus (see

7.9), and hence this special case explains well the idea of proof and serves as a

good introduction to the general case treated in the next section. In fact, this

section is logically unnecessary as it is contained in the next section.

Let A be a weak log abelian variety over an fs log scheme S with constant

degeneration such that the abelian part B = 0. Let the notation be as in 6.1 in

the previous section. We further assume that the locally constant sheaves X and

Y are constant. Let ⟨⟨ , ⟩⟩ : X ×Y → Gm,log be the canonical pairing defined by

Y → Ã ⊂ Hom(X,Gm,log).

7.1. Let H be the sheaf of abelian groups on (fs/S)ét defined by

H={(p, a) | p is a homomorphism Y →X and a is a map Y →Gm,log such that

a(yz)a(y)−1a(z)−1 = ⟨⟨p(y), z⟩⟩ for all y, z ∈ Y }.

7.2. We define a natural homomorphism

H → H1(A,Gm,log).

Let (p, a) be a section of H. Consider the quotient of Ã×Gm,log by the action of

Y given by (m,λ) 7→ (ym, λa(y)−1m(p(y)−1)) (y ∈ Y,m ∈ Ã, λ ∈ Gm,log), where
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the last m is regarded as a section of Hom(X,Gm,log)
(Y ) ∼= Ã. Then this quotient

gives a Gm,log-torsor on A, which is defined as the image of (p, a).

LetX → H be a homomorphism sending x ∈ X to (0, ⟨⟨x,−⟩⟩). It is injective
and we identify X with the image of this injection. Then the above homomor-

phism H → H1(A,Gm,log) factors through H/X because m 7→ (m,m(x−1)) gives

a section of the torsor on A associated to x ∈ X.

7.3. We interpret the above homomorphism H → H1(A,Gm,log) in 7.2 in terms

of H1(Y,H0(Ã,Gm,log)).

First, a section of H can be regarded as a cocycle of the inhomogeneous

cochain complex associated with the Y -module X⊕Gm,log,S, where the action of

y ∈ Y on X ⊕Gm,log,S is

(x, c) 7→ (x, c⟨⟨x, y⟩⟩).

In fact, a cocycle is a map (p, a) : Y → X ⊕Gm,log,S satisfying

(p(yz), a(yz)) = z(p(y), a(y)) · (p(z), a(z)) = (p(y)p(z), a(y)⟨⟨p(y), z⟩⟩a(z)),

which is nothing but a section of H.

Next, Hom(X,Gm,log)
(Y ) ∼= Ã gives a natural homomorphism

X ⊕Gm,log,S → H0(Ã,Gm,log).

Hence there is a natural homomorphism

H → H1(Y,X ⊕Gm,log,S)→ H1(Y,H0(Ã,Gm,log)).

On the other hand, the canonical homomorphism

H1(Y,H0(Ã,Gm,log))→ H1(A,Gm,log)

is described as follows. Let f(y)(m) (y ∈ Y,m ∈ Ã) be a cocycle of the inhomo-

geneous cochain complex associated with the Y -module H0(Ã,Gm,log). Consider

the quotient of Ã×Gm,log by the action of Y given by (m,λ) 7→ (ym, λf(y)(m)−1)

(y ∈ Y,m ∈ Ã, λ ∈ Gm,log). Then this quotient gives a Gm,log-torsor on A, which

is the image of f .

Therefore the composite of the above homomorphisms

H → H1(Y,H0(Ã,Gm,log))→ H1(A,Gm,log)

coincides with the homomorphism in 7.2.

7.4 THEOREM. The natural homomorphism

H/X
≃→ H1(A,Gm,log)

in 7.2 is an isomorphism.
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Proof. Consider the exact sequence

0→ H1(Y,H0(Ã,Gm,log))→ H1(A,Gm,log)→ H1(Ã,Gm,log).

By Proposition 6.6 (1), we have H1(Ã,Gm,log) = 0. Hence

H1(A,Gm,log) = H1(Y,H0(Ã,Gm,log)) = H1(Y,X ⊕Gm,log,S),

where the last equality is by 6.4.3.

We compute H1(Y,X⊕Gm,log,S) by the inhomogeneous cochain complex. As

is seen in 7.3, the group of cocycles isH. A coboundary is a map Y → X⊕Gm,log,S

sending y ∈ Y to

y(x, c)/(x, c) = (x, c⟨⟨x, y⟩⟩)/(x, c) = (0, ⟨⟨x, y⟩⟩)

for some (x, c) ∈ X ⊕Gm,log,S, which is nothing but a section of X ⊂ H. Hence,

we have H1(Y,X ⊕Gm,log,S) ∼= H/X.

7.5. We prove the cubic isomorphism (Theorem 2.2) for this case of the constant

total degeneration. By Lemma 3.5, it is enough to show only Theorem 2.2 (2).

Let the notation be as in the statement. The case F = Gm,log/Gm is already

proved in 6.16. We prove the case F = Gm,log which implies the case F = Gm

because the natural homomorphism H1(A,Gm) → H1(A,Gm,log) is injective by

Proposition 2.1 (proved in Proposition 6.2). The proof is parallel to that for the

case F = Gm,log/Gm in 6.16.

Let u, v ∈ A(S ′). We identify L with the class of a section (p, a) of H modulo

X via the isomorphism in Theorem 7.4. Then we have t∗u(p, a) = (p, au(p)). Here

u(p) is the composite of p : Y → X and u : X → Gm,log modulo Y regarded as

a section of Hom(Y,Gm,log)
(X)/X. Thus L 7→ t∗uL · L−1 sends (p, a) to (1, u(p)).

Next, the same argument shows that L 7→ t∗vL · L−1 kills (1, b) for any b locally

on S ′. Hence the composite L 7→ t∗uvL · t∗uL−1 · t∗vL−1 ·L kills the class of L locally

on S ′, which completes the proof.

7.6. Define a subgroup sheaf Hom⟨⟨ , ⟩⟩(Y,X) of Hom(Y,X) by

Hom⟨⟨ , ⟩⟩(Y,X) := {p ∈ Hom(Y,X) | ⟨⟨p(y), z⟩⟩ = ⟨⟨p(z), y⟩⟩ for all y, z ∈ Y }.

Then we have an exact sequence

0→ Hom(Y,Gm,log)→ H → Hom⟨⟨ , ⟩⟩(Y,X),

where the definitions of the arrows are as follows:

Hom(Y,Gm,log)→ H; a 7→ (1, a),

H → Hom⟨⟨ , ⟩⟩(Y,X); (p, a) 7→ p.
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7.7 PROPOSITION. We have a commutative diagram with exact rows

0 −−−→ Hom(Y,Gm,log)/X −−−→ H/X −−−→ Hom⟨⟨ , ⟩⟩(Y,X)y|≀
y|≀

y|≀

0 −−−→ Ext(A,Gm,log) −−−→ H1(A,Gm,log) −−−→ Homsym(A,A
∗)

in which all the vertical arrows are isomorphisms. Here the last arrow in the

lower row sends L ∈ H1(A,Gm,log) to A→ A∗; u 7→ t∗u(L) · L−1. (Cf. Corollary

6.20 for the definition of Homsym(A,A
∗).)

7.8. We prove Proposition 7.7. By Lemma 3.8, the part of the cubic isomorphism

proved in 7.5 and the part of Proposition 2.1 proved in Proposition 6.2 (2), we

have the exact sequence

0→ Ext(A,Gm,log)→ H1(A,Gm,log)→ Biext sym(A,A;Gm,log).

By Corollary 6.20, the last group is naturally isomorphic to Homsym(A,A
∗).

Thus we obtain the lower row in the diagram.

The upper row is clearly exact and the right vertical homomorphism is defined

by the definition of the groupHom⟨⟨ , ⟩⟩(Y,X). The commutativity of the diagram

is by construction. The middle vertical isomorphism is by Theorem 7.4. The

rest is to show that the right vertical homomorphism is an isomorphism. By

Proposition 6.15 (2), we have an isomorphism

Homadj(Y,X)
≃→ Hom(A/G,A∗/G∗)

(see Proposition 6.15 for the definition ofHomadj(Y,X)). We can regardHomsym

(A,A∗) as a subsheaf ofHom(A/G,A∗/G∗) because any homomorphism A to the

torus G∗ is trivial by [9] Theorem 7.4 (4). Since its corresponding subsheaf of

Homadj(Y,X) is Hom⟨⟨ , ⟩⟩(Y,X), the right vertical homomorphism is an isomor-

phism.

7.9. We remark that the above Proposition 7.7 is similar to the classical theorem

of Appell–Humbert (see Chapter I, Section 2 of the textbook [12] of Mumford)

concerning the analytic presentation of the Picard group of a complex torus.

8. Case of constant degeneration, II

Here we prove all the results described in Sections 1–2 in the case of constant

degeneration that are not proven so far.

Let the notation be as in the beginning of Section 6. For simplicity, unless

otherwise stated, we assume in this section that X and Y are constant, not only

locally constant, though the results in this section can be generalized to the case

of locally constant X and Y .
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8.1. For x ∈ X, define aGm-torsor E(x) on B to be the pushout ofGm
x← T → G

in the category of sheaves of abelian groups on (fs/S)ét. We have a commutative

diagram with exact rows

0 −−−→ T −−−→ G −−−→ B −−−→ 0

by x

y y ∥∥∥
0 −−−→ Gm −−−→ E(x) −−−→ B −−−→ 0.

For x ∈ X and y ∈ Y , we define an isomorphism of Gm,log-torsors on B

⟨⟨x, y⟩⟩ : E(x)log
≃→ t∗y(E(x)log)

as follows. Here E(x)log denotes the Gm,log-torsor on B obtained from E(x), and

t∗y denotes the pullback by the translation ty : B → B by the image of y in B

under the canonical homomorphism Y → B.

Consider the commutative diagram with exact rows

0 −−−→ Tlog −−−→ Glog −−−→ B −−−→ 0

by x

y y ∥∥∥
0 −−−→ Gm,log −−−→ E(x)log −−−→ B −−−→ 0.

Note that Y is embedded in Glog. We have a commutative diagram

E(x)log
≃−−−→ E(x)logy y

B
≃−−−→
ty

B,

where the upper horizontal arrow is the translation by the image of y. This

diagram defines the desired isomorphism ⟨⟨x, y⟩⟩ : E(x)log
≃→ t∗y(E(x)log).

This isomorphism ⟨⟨x, y⟩⟩ has the following properties 8.1.1–8.1.4.

8.1.1. ⟨⟨x, y⟩⟩ mod Gm = ⟨x, y⟩.
Here, since the Gm,log/Gm-torsor obtained from E(x) is trivial, the isomor-

phism of Gm,log/Gm-torsors obtained from ⟨⟨x, y⟩⟩ is regarded as a section of

Gm,log/Gm, and we denote this section of Gm,log/Gm by ⟨⟨x, y⟩⟩ mod Gm.

8.1.2. ⟨⟨xx′, y⟩⟩ = ⟨⟨x, y⟩⟩ · ⟨⟨x′, y⟩⟩ for x′ ∈ X.

Here the product on the right-hand-side is defined because the Gm-torsor

E(xx′) is the product of the Gm-torsors E(x) and E(x
′).

8.1.3. ⟨⟨x, yy′⟩⟩ = t∗y′(⟨⟨x, y⟩⟩) ◦ ⟨⟨x, y′⟩⟩ for y′ ∈ Y .
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8.1.4. Assume B = {1} = S and identify E(x) with Gm = Gm,S in the natural

way. Then ⟨⟨x, y⟩⟩, regarded as a section of Gm,log, coincides with the image of

y under the composite Y → Glog = Tlog
x→ Gm,log.

8.2. Let H be the sheaf of abelian groups on (fs/S)ét associated to the presheaf

classifying triples (L, p, a) of a Gm-torsor L on B, a homomorphism p : A→ A∗,

and an isomorphism

a(y) : Llog · E(p(y))log
≃→ t∗y(Llog)

of Gm,log-torsors on B given for any y ∈ Y that satisfy the following conditions

8.2.1 and 8.2.2. Here Llog denotes the Gm,log-torsor on B associated to L and

p(y) denotes the image of y in X under the homomorphism Y → X induced by

p (by abuse of notation).

8.2.1. The homomorphism B → B∗; u 7→ t∗u(L) · L−1 coincides with the map

induced by p.

This condition for u = y ∈ Y shows that L · E(p(y)) ∼= t∗yL locally on the

base S.

8.2.2. For any y, z ∈ Y , we have

a(yz) = t∗z(a(y)) ◦ a(z) · ⟨⟨p(y), z⟩⟩.

The meaning of the equation in 8.2.2 is as follows: a(yz) is an isomorphism

Llog · E(p(yz))log ∼= t∗yz(Llog). On the other hand, by using

E(p(yz)) = E(p(y)) · E(p(z)),

we have the composite isomorphism

Llog ·E(p(yz))log∼=Llog ·E(p(z))log ·E(p(y))log∼= t∗z(Llog) ·t∗z(E(p(y))log)∼= t∗yz(Llog),

where the second isomorphism is given by a(z) · ⟨⟨p(y), z⟩⟩ and the last iso-

morphism is given by t∗z(a(y)). The equation in 8.2.2 means that these two

isomorphisms coincide.

8.3. We construct a homomorphism

H → H1(A,Gm,log).

Let g : Ã→ B be the canonical morphism. Let (L, p, a) be a triple satisfying

8.2.1 and 8.2.2. We show that we have a canonical action of Y on g∗(Llog) which

is compatible with the action of Y on Ã (by translation), and hence g∗(Llog)

descends to a Gm,log-torsor on A = Ã/Y . This defines the desired homomorphism

H → H1(A,Gm,log).
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For x ∈ X, the commutative diagram with exact rows

0 −−−→ T
(Y )
log −−−→ Ã −−−→ B −−−→ 0

by x

y y ∥∥∥
0 −−−→ Gm,log −−−→ E(x)log −−−→ B −−−→ 0

shows:

8.3.1. The Gm,log-torsor g
∗(E(x)log) on Ã is canonically trivial.

We have isomorphisms

g∗(Llog) ∼= g∗(Llog) · g∗(E(p(y))log) ∼= t∗yg
∗(Llog)

ofGm,log-torsors on Ã, where the first isomorphism is by 8.3.1 applied to x = p(y),

the second isomorphism is induced by a(y), and ty denotes the translation by y

regarded as a section of Ã. Thus we have an isomorphism for each y ∈ Y
8.3.2. g∗(Llog) ∼= t∗y(g

∗(Llog)) for y ∈ Y.
As is easily checked, the condition 8.2.2 shows that the isomorphisms 8.3.2 for

y ∈ Y give an action of Y on g∗(Llog) which is compatible with the action of Y

on Ã.

8.4. We have an exact sequence

8.4.1. 0→ G∗
log → H → Hom(A,A∗),

where the homomorphism H → Hom(A,A∗) is defined by (L, p, a) 7→ p, and

the homomorphism G∗
log → H is defined as follows. For an exact sequence

0 → Gm → L → B → 0 and a homomorphism s : Y → Llog such that the

composite Y → Llog → B coincides with the canonical map Y → B, the map

G∗
log → H sends the class of the pair (L, s) to the class of the triple (L, 1, a), where

1 denotes the trivial homomorphism and the isomorphism a(y) : Llog
≃→ t∗y(Llog)

is defined by the following commutative diagram:

Llog
≃−−−→
s(y)

Llogy y
B

≃−−−→
ty

B.

Here the upper horizontal arrow is the translation by s(y).

The exactness of the sequence 8.4.1 is proved as follows. The problem is to

show that a triple (L, 1, a) in the kernel of H → Hom(A,A∗) comes from G∗
log.

By the classical exact sequence

0→ Ext(B,Gm)→ H1(B,Gm)→ Hom(B,B∗)
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and 8.2.1, L comes from Ext(B,Gm) locally on S. For y ∈ Y , the restriction of

the isomorphism a(y) to the origin of B induces a map

8.4.2. Gm,log,S = Llog|{1}
≃→ Llog|{y} ⊂ Llog.

Here Llog|{y} (resp. Llog|{1}) denotes the Gm,log-torsor on S obtained as the pull-

back of Llog under y : S → B (resp. under the origin S → B of B), and L|{1}
is identified with Gm,log,S since L comes from Ext(B,Gm). Denote the image of

1 ∈ Gm,log,S in Llog under the map 8.4.2 by s(y). It is easily seen that (L, 1, a)

comes from (L, s) ∈ G∗
log.

8.5 THEOREM. (1) If L is a Gm,log-torsor on A, the map

A→ H1(A,Gm,log); u 7→ t∗u(L) · L−1

is a homomorphism, and the image of this map is contained in A∗. Note that

A∗ ⊂ Ext(A,Gm,log) ⊂ H1(A,Gm,log).

(2) We have a commutative diagram with exact rows

0 −−−→ G∗
log/X −−−→ H/X −−−→ Homsym(A,A

∗)y|≀
y|≀

∥∥∥
0 −−−→ Ext(A,Gm,log) −−−→ H1(A,Gm,log) −−−→ Homsym(A,A

∗)

in which the vertical arrows are isomorphisms. Here the last arrow in the lower

row sends L ∈ H1(A,Gm,log) to A → A∗; u 7→ t∗u(L) · L−1. (Cf. Corollary 6.20

for the definition of Homsym(A,A
∗).)

8.5.1 REMARK. Note that in the case of total degeneration, the left and the

middle vertical arrows in the diagram in (2) reduce to (−1)-times of the corre-

sponding ones in Proposition 7.7. See Remark 5.2.1 for the left one. As for the

middle one, note that the Gm,log-torsor on A associated to (p, a) ∈ H in Section

7 coincides with the one associated to (Gm,−p, a−1) ∈ H in this section, where

−p : A→ A∗ is induced by (−1)-times of p and a−1(y) : Gm,log → Gm,log (y ∈ Y )

is the multiplication by a(y)−1.

Before proving this theorem, we prove the following proposition.

8.6 PROPOSITION. We have a bijection to H1(A,Gm,log) from the sheaf of the

isomorphism classes of a Gm-torsor L over B paired with an action of Y on the

Gm,log-torsor g
∗(Llog) on Ã which is compatible with the action of Y on Ã. See

8.2 for Llog.

Proof. We prove the bijectivity by giving an inverse map. Let L be a Gm,log-

torsor on A. We construct strict étale locally on S, a Gm-torsor L and an action
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of Y on g∗(Llog). The exact sequence

0→ H1(B,Gm,log)→ H1(Ã,Gm,log)→ H0(B,R1g∗(Gm,log))

and Proposition 6.6 (1) prove

H1(B,Gm,log)
≃→ H1(Ã,Gm,log).

By

H0(B,Gm,log/Gm) = Gm,log/Gm, H1(B,Gm,log/Gm) = {1},

we have

H1(B,Gm)
≃→ H1(Ã,Gm,log).

This proves that L comes strict étale locally on S, from a Gm-torsor L on B such

that g∗(Llog) is endowed with an action of Y which is compatible with the action

of Y on Ã.

8.7. We show that the homomorphism H → H1(A,Gm,log) defined in 8.3 is

surjective. Let L be a Gm,log-torsor on A. We construct locally on S, a triple

(L, p, a) in H which produces L.

First by Proposition 8.6, L comes locally on S, from a Gm-torsor L on B

such that g∗(Llog) is endowed with an action of Y which is compatible with the

action of Y on Ã.

We next define a homomorphism ψ : Y → X as a preparation for the defi-

nitions of p and a. Since the Gm,log/Gm-torsor on Ã obtained from g∗(Llog) is

trivial, the action of y ∈ Y on g∗(Llog) defines an element of the group

H0(Ã,Gm,log/Gm) = X ⊕H0(B,Gm,log/Gm) (6.4.2).

Define ψ(y) ∈ X to be the first projection of this element.

We define an isomorphism

a(y) : Llog · E(ψ(y))log
≃→ t∗y(Llog)

for y ∈ Y . Recall that for x ∈ X, g∗(E(x)log) has a canonical section (8.3.1).

Since the Gm,log/Gm-torsor on Ã obtained from g∗(E(x)) is trivial, the canon-

ical section of g∗(E(x)log) induces an element of H0(Ã,Gm,log/Gm) = X ⊕
H0(B,Gm,log/Gm), and it is seen easily that this element coincides with (x, 1).

Consider the isomorphism of Gm,log-torsors on Ã

8.7.1. g∗(E(ψ(y))log)
≃→ t∗yg

∗(Llog) · g∗(Llog)
−1
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which sends the canonical section of g∗(E(ψ(y))log) to the section of t∗yg
∗(Llog) ·

g∗(Llog)
−1 defined by the action of Y on g∗(Llog). Since the canonical section of

g∗(E(ψ(y))log) and the above section of t∗yg
∗(Llog) · g∗(Llog)

−1 induce the same

element ψ(y) of X = H0(Ã,Gm,log/Gm)/H
0(B,Gm,log/Gm), the isomorphism

8.7.1 comes from an isomorphism

E(ψ(y))log
≃→ t∗y(Llog) · L−1

log

on B which is determined by 8.7.1 uniquely. This gives the desired a(y).

Next we define a homomorphism p : Ã→ G∗
log. Let u be a section of Ã given

on an fs log scheme U over S. We define a section p(u) of G∗
log on U . By replacing

U by S, we consider the case U = S. Locally on S, the Gm-torsor t
∗
u(L)·L−1 on B

comes from Ext(B,Gm). We assume that t∗u(L)·L−1 comes from Ext(B,Gm). For

y ∈ Y , the action of Y on g∗(Llog) induces an isomorphism g∗(Llog)
≃→ t∗yg

∗(Llog)

and it induces

t∗ug
∗(Llog) · g∗(Llog)

−1 ≃→ t∗ut
∗
yg

∗(Llog) · t∗yg∗(Llog)
−1.

By taking the pullback of this isomorphism by the origin S → Ã of Ã, we have

an isomorphism

(t∗u(Llog) · L−1
log)|{1}

≃→ (t∗u(Llog) · L−1
log)|{y}.

Since t∗u(L) · L−1 comes from Ext(B,Gm), the left-hand-side is the canonically

trivial Gm,log-torsor on S, and hence we obtain a section s(y) of the right-hand-

side. This gives a homomorphism s : Y → (t∗u(L)·L−1)log such that the composite

Y → (t∗u(L) · L−1)log → B coincides with the canonical map Y → B. We define

p(u) to be the section (t∗u(L) · L−1, s) of G∗
log.

Since Hom(Ã, G∗
log)
∼= Hom(G,G∗) ([9] Theorem 7.3 (3)), the image of the

homomorphism p : Ã→ G∗
log is contained in (G∗

log)
(X) = Ã∗. It can be seen that

the following diagram is commutative.

Y −−−→ Ã

ψ

y yp
X −−−→ Ã∗.

Hence p induces a homomorphism A→ A∗, and a(y) for y ∈ Y is regarded as an

isomorphism Llog · E(p(y))log
≃→ t∗y(Llog).

We can check that the conditions 8.2.1 and 8.2.2 so that the triple (L, p, a) is

a section of H, and it is easily seen that L ∈ H1(A,Gm,log) comes from (L, p, a).
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8.8. We prove Theorem 8.5.

First we prove Theorem 8.5 (1). Consider the diagram

H −−−→ Hom(A,A∗)y y∩

H1(A,Gm,log) −−−→ Mor(A,H1(A,Gm,log)),

whereMor means the sheaf of morphisms (which are not necessarily homomor-

phisms of sheaves of groups) and the lower horizontal arrow is defined by sending

the class of a Gm,log-torsor L on A to the morphism u 7→ t∗u(L) · L−1. It is easily

seen that this diagram is commutative. Since the left vertical arrow is surjective

as we have already shown, this diagram shows that u 7→ t∗u(L) · L−1 is in fact a

homomorphism from A to A∗. This proves Theorem 8.5 (1).

(2) We prove that the surjective homomorphism H → H1(A,Gm,log) induces

an isomorphism H/X
≃→ H1(A,Gm,log). It is easy to see that the diagram

G∗
log −−−→ Hy y

Ext(A,Gm,log) −−−→ H1(A,Gm,log).

is commutative, where the left vertical arrow is a surjection defined by [9] The-

orem 7.4 (3). By this and the commutativity of the diagram

H −−−→ Hom(A,A∗)y ∥∥∥
H1(A,Gm,log) −−−→ Hom(A,A∗),

and by the exactness of the sequence 8.4.1, the kernel of H → H1(A,Gm,log)

comes from G∗
log and hence coincides with Ker(G∗

log → Ext(A,Gm,log)) = X ([9]

Theorem 7.4 (3)).

We have shown that the lower row in Theorem 8.5 (2) without “sym” is

isomorphic to the upper row in Theorem 8.5 (2) without “sym”. Hence the

exactness of the upper row in Theorem 8.5 (2) without “sym” shows that the

lower row in Theorem 8.5 (2) without “sym” is exact. By the argument in the

proof of 3.6 (2), the image of the last map in the lower row is contained in the

symmetric part. Hence the same holds for the upper row. This completes the

proof of Theorem 8.5 (2).

8.9. Proof of the cubic isomorphism (Theorem 2.2) for the case of constant

degeneration. As in 6.16, it suffices to show only (2) of Theorem 2.2. First,

we already proved the case F = Gm,log/Gm in 6.16. Next, (1) of Theorem 8.5
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proves (2) of Theorem 2.2 for F = Gm,log. By Proposition 6.2, the canonical

homomorphism H1(A,Gm)→ H1(A,Gm,log) is injective. Hence, (2) of Theorem

2.2 for F = Gm reduces to that for F = Gm,log.

By Lemma 3.8, we prove Proposition 2.4 in the case of constant degeneration.

The next is a complement of Proposition 2.4 in the case of constant degener-

ation. The proof is straightforward.

8.10 PROPOSITION. The composite

Homsym(A,A
∗) ∼= Biext sym(A,A;Gm,log)→ H1(A,Gm,log) ∼= H/X

(where the first isomorphism is by Corollary 6.20 and the next arrow is the

pullback to the diagonal) is described as p 7→ the class of (LpB , p
2, a), where

LpB and a are defined as in 8.11 and 8.12 below. In particular, the cokernel

of H1(A,Gm,log) → Homsym(A,A
∗) is killed by 2. (Cf. Corollary 6.20 for the

definition of Homsym(A,A
∗).)

8.11. The definition of LpB in Proposition 8.10 is as follows. Let pB : B → B∗

be the homomorphism induced by p. Regard pB as a biextension of B × B by

Gm. By 1.5, we get a Gm-torsor LpB on B.

8.12. The definition of a in Proposition 8.10 is as follows. For simplicity, write

LpB as L. The commutative diagram

Y −−−→ B

p

y ypB
X −−−→ B∗

gives for any y of Y the isomorphism

E(p(y)) · t∗y(E(p(y)))
≃→ t∗y(L) · L−1,

which induces

t∗y(E(p(y))log)
≃→ E(p(y))−1

log · t
∗
y(Llog) · L−1

log.

By composing it with

⟨⟨p(y), y⟩⟩ : E(p(y))log
≃→ t∗y(E(p(y))log),

we obtain an isomorphism

a(y) : Llog · E(p(y))2log
≃→ t∗y(Llog).
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8.13. In the rest of this section, we prove Theorem 1.11 in the case of constant

degeneration. Let the notation be as in there (cf. Remark 5.2.1). Let Ã(ψ) be

the inverse image of A(ψ) by Ã→ A.

First we explain the case of constant total degeneration (cf. Section 7), that

is, the case where A is with constant degeneration and the abelian part is trivial.

Let ⟨⟨ , ⟩⟩ : X × Y → Gm,log be the canonical pairing.

Then Ã(ψ) is Proj(R)sat for the following graded ring R over OS with an fs

log structure as follows. Here (−)sat is the saturation.

Let E be the subring of sheaves ofOS[X×MS, θ], where θ is an indeterminate,

generated over OS[MS] by local sections of the form s(y) := ψ(y)2⊗ ⟨⟨ψ(y), y⟩⟩θ
(y ∈ Y ). Let R = E⊗OS [MS ]OS. Then R is quasi-coherent as an OS-module. The

log structure is as follows. Let y ∈ Y and let E(s(y)) be the part of Es(y) of degree

zero. We endow Spec(E(s(y))) with a fine log structure defined as a subsheaf of

X × Mgp
S generated by s(z)

s(y)
(z ∈ Y ). This glues into a fine log structure on

Proj(E). We endow Proj(R) with the pullback log structure.

By definition, the pullback to Ã(ψ) of the special invertible sheaf on A(ψ),

defined in 1.10, is O(1). In this case, the relative ampleness over S of the special

invertible sheaf on A(ψ) follows from this, for example, by Nakai’s criterion, which

completes the proof of Theorem 1.11 in the case of constant total degeneration.

8.14. Consider the case of constant degeneration in general.

In this case, over B, Ã(ψ) is Proj(R)sat for the following graded ring R over

OB with an fs log structure as follows.

The morphism G → B is affine, and we can write G = Spec(
⊕

x∈X L(x))
over B. Here L(x) is an invertible OB-module defined as the part on which T

acts via x (we have L(x) ⊗ L(x′) = L(xx′)). Let E be the subring of sheaves

of (
⊕

x∈X L(x)) ⊗OB
OB[MS, θ] on B, where θ is an indeterminate, generated

over OB[MS] by local sections of the form b ⊗ aθ, where a ∈ MS such that the

class of a in MS/O×
S coincides with ⟨ψ(y), y⟩ and b belongs to L(ψ(y)2) (y ∈ Y ).

Let R = E ⊗OB [MS ] OB. Then R is quasi-coherent as an OB-module. The

log structure is as follows. Let y ∈ Y . Let b ⊗ aθ be a section of E, where

a ∈ MS such that the class of a in MS/O×
S coincides with ⟨ψ(y), y⟩ and b is a

local generator of L(ψ(y)2). Let E(b⊗aθ) be the part of Eb⊗aθ of degree zero. We

endow Spec(E(b⊗aθ)) with a fine log structure defined as a submonoid sheaf of

the structure ring generated by b′⊗a′θ
b⊗aθ , where a

′ ∈MS such that the class of a′ in

MS/O×
S coincides with ⟨ψ(z), z⟩ and b′ is a local generator of L(ψ(z)2) (z ∈ Y ).

This glues into a fine log structure on Proj(E). We endow Proj(R) with the

pullback log structure.

The pullback to Ã(ψ) of the special invertible sheaf on A(ψ) defined in 1.10

is O(1) ⊗ LpB . Then the relative ampleness over S of the pullback is by the
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relative ampleness over S of LpB and the relative ampleness over B of O(1). The
relative ampleness over S of the special invertible sheaf on A(ψ) follows from this

by Nakai’s criterion.

8.15. In the above, assume that there are S, ⟨ , ⟩ : X × Y → Sgp, S →
MS/O×

S , and ϕ = ψ as in 1.7–1.9 (cf. 4.5). Then, E is the subring of sheaves

of (
⊕

x∈X L(x)) ⊗OB
OB[S, θ] on B generated over OB[S] by local sections of

the form b ⊗ ⟨ϕ(y), y⟩θ, where b belongs to L(ϕ(y)2) (y ∈ Y ). We have R =

E⊗OB [S]OB. The log structure is described as follows. Let y ∈ Y . Let E ′ be the

subring of
⊕

x∈X L(x) ⊗ Z[Sgp] generated by L(ϕ(zy−1)2) ⊗ ⟨ϕ(z), z⟩⟨ϕ(y), y⟩−1

(z ∈ Y ). The induced log structure on Spec(E ′) is the one defined as a sub-

monoid sheaf of the structure ring generated by b⊗ ⟨ϕ(z), z⟩⟨ϕ(y), y⟩−1 (z ∈ Y ),

where b is a local generator of L(ϕ(zy−1)2).

8.16. For the other special fans introduced in Section 4, the proof of the analogue

of Theorem 1.11 is parallel. Note that, for a general fan Σ in C stable under

the action of Y , Ã(σ) in Ã(Σ) is Spec(E ′ ⊗OB [S] OB), where E ′ is the subring of⊕
x∈X L(x)⊗ Z[Sgp] generated by L(x)⊗ s (s ∈ Sgp) such that N(s) + l(x) ≥ 0

for all (N, l) ∈ σ. The induced log structure on Spec(E ′) is the one defined as

a submonoid sheaf of the structure ring generated by b ⊗ s (s ∈ Sgp), where b

is a local generator of L(x) for some x ∈ X satisfying N(s) + l(x) ≥ 0 for all

(N, l) ∈ σ.
The translation by y ∈ Y sends L(x) to L(x)⟨x, y⟩ (x ∈ X).

8.17 REMARK. We continue to assume that A is with constant degeneration.

We can give an alternative proof of this constant degeneration case of Theorem

1.11 by constructing the sections of L by theta series (or theta function) in the

same way as in [8] 5.4.

9. Projectivity of special models

In this section, we prove the following theorem on the existence of a projective

model of a polarized log abelian variety A. This implies the main result Theorem

1.11 of this paper under the assumption that a polarization on A corresponds to a

symmetric homomorphism from Y to X of A, which is guaranteed by Proposition

1.6. In the last section, we will prove this Proposition 1.6, which completes the

proof of Theorem 1.11 (cf. 12.14).

9.1 THEOREM. Let the notation and the assumption be as in 4.5. Assume that

the image of ψ in Biextsym(A/G,A/G;Gm,log/Gm) by the homomorphism in 2.7

lifts to a polarization on A. Let Σ be either the first standard fan, or the second

standard fan or the fan associated to a star in X (4.6). Then A(Σ) is represented
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by an fs log scheme over S whose underlying scheme is projective over S.

To show this, we use the following proposition.

9.2 PROPOSITION. Let f : X → S be a proper algebraic space over a locally

noetherian scheme S. Let F be a coherent sheaf of OX-modules. Then, for s ∈ S
and for any q, (Rqf∗F )s is an OS,s-module of finite type and its completion is

naturally isomorphic to

lim←−
i

Hq(f−1(s), F ⊗OS
(OS,s/mi

S,s)),

where mS,s is the maximal ideal of OS,s.
The proof of this proposition is parallel to the case of schemes ([6] Proposition

(4.2.1); see [15] Theorem 57.20.5).

9.3. We prove Theorem 9.1. We may assume that the base is noetherian. By

[11] Theorem 8.1 and [11] Theorem 17.1, we already know that A(Σ) is a proper

fs log algebraic space over S.

Let f : A(Σ) → S be the structure morphism. Let L be the invertible sheaf

on A(Σ) consisting of the sections of the special Gm-torsor on A
(Σ) in 5.3. It is

enough to show that L is relatively ample over S. This is equivalent to that, for

any coherent sheaf F on A(Σ), there is an integer n0 such that for any q > 0 and

any n > n0, R
qf∗(F ⊗L⊗n) = 0 (cf. [6] Proposition (2.6.1)). Hence, it is reduced

by Proposition 9.2 to the case where MS/O×
S is locally constant. Thus we may

assume that we are in the case of constant degeneration. Under this assumption,

the relative ampleness of L is by 8.14 in the case of the first standard fan and

the other two cases are similar.

10. Wide fans

In this section, we introduce the wideness of fans. The model associated to

a wide fan can recover the original weak log abelian variety (cf. Section 11).

10.1. Let the situation be as in 1.7. Let Σ be a fan which is stable under the

action of Y . We say that Σ is wide if the following condition holds:

There is a σ ∈ Σ such that : If (N, ℓ) ∈ C, we have (N, εℓ) ∈ σ for any ε ∈ Q
such that |ε| is sufficiently small.

At present, we cannot show that any weak log abelian variety has a wide fan,

and so at present, we cannot recover a weak log abelian variety from a proper

model in general.

On the other hand, as is shown below, a weak log abelian variety satisfying

the condition 1.4.1 has a complete wide fan.
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10.2 LEMMA. Assume that Σ is wide. Let ℓ be a prime number.

(1) Q =
∪
n≥0 Hom(X,Gm,log/Gm)

(ℓnΣ). Here the fan ℓnΣ is the set of cones

{ℓnτ | τ ∈ Σ} (cf. [11] 2.2).
(2) If ℓ is invertible on the base S, then Ã =

∪
ℓnÃ(Σ) as két sheaves.

(3) If ℓ is invertible on the base S, then A =
∪
ℓnA(Σ) as két sheaves.

Proof. First note that the sheaves Ã and A are két sheaves by [11] Theorem 5.1.

From this, we see that their Σ-parts are also két sheaves.

(1) Let σ be as in the definition of the wideness. Then C =
∪
ℓnσ, and we

have the desired equality.

(2) By (1), Ã =
∪
Ã(ℓnΣ). Since the homomorphism ℓ : Ã(Σ) → Ã(ℓΣ) of két

sheaves is surjective (cf. [11] 18.6, 18.10, Lemma 18.10.11), we have Ã(ℓnΣ) =

ℓnÃ(Σ).

(3) is by (2).

10.3 PROPOSITION. Let A be a weak log abelian variety satisfying the condition

1.4.1. Assume that there are data including a homomorphism ϕ : Y → X as in

1.7–1.9 (they always exist étale locally (cf. 4.5)). Then both the first and the

second standard fans are wide.

Proof. We consider the case of the first standard fan. The second is similar.

It is sufficient to prove that for (N, ℓ) ∈ C, if |ε| is sufficiently small, then

(N, εℓ) belongs to the Q≥0-span of C(0) = {(N, ℓ) | N(⟨ϕ(y), y⟩) + ℓ(ϕ(y)) ≥ 0

for all y ∈ Y } (that is, N(⟨ϕ(y), y⟩) + εℓ(ϕ(y)) ≥ 0 for all y ∈ Y ). By replacing

Y by Y/Yσ, where σ is the face of Hom(S,N) such that N is in the interior of σ,

we may assume that N(⟨ϕ(−),−⟩) is positive-definite. Thus the statement to see

is that if we have a positive-definite quadratic form Q on Rn and a linear form

h : Rn → R, then if ε > 0 is sufficiently small, we have Q(y) ≥ εh(y) for any

y ∈ Zn. We can assume Q(t1, . . . , tn) = t21+ · · ·+ t2n. Let h(t1, . . . , tn) =
∑

i 2aiti.

Then Q(t) − εh(t) =
∑

i(ti − εai)2 − ε2
∑

i a
2
i . If ε is such that |εai| ≤ 1/2 for

any i, the minimum of
∑

i(ti − εai)2 is given in the case ti = 0 for any i, and in

the case t = 0, Q(t)− εh(t) becomes Q(0)− εh(0) = 0.

11. Presentation of a weak log abelian variety by proper models as a

sheaf for the étale topology

Let A be a weak log abelian variety over an fs log scheme S satisfying the

condition 1.4.1. Let X and Y be those associated to A.

The aim of this section is to prove the following proposition, which roughly

says that A can be covered by proper models and which will be used in the next

section.
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11.1 PROPOSITION. There are fs log schemes S ′ and P over S and morphisms

P → S ′ and P → A over S having the following properties.

(i) S ′ → S is strict, étale and surjective.

(ii) As a morphism of sheaves on (fs/S), P → A is surjective.

(iii) P is proper over S ′.

(iv) P ×A P is represented by an fs log scheme over S, and the morphism

P ×A P → S ′ ×S S ′ is proper.

Assume that we are given X × Y → Sgp and S →MS/O×
S as in 1.7.

11.2 LEMMA. Let ℓ be a prime number which is invertible on the base S. Then

the following holds étale locally on S. There are schemes Sn over S for n ≥ 0 with

S0 = S, strict étale surjective morphisms Sn+1 → Sn for n ≥ 0, and subgroup

sheaves Hn ⊂ G[ℓn] ×S Sn and finite subsets Yn ⊂ Y for n ≥ 0, satisfying the

following conditions.

(i) Hn and the quotients ((A[ℓn]×S Sn)/Hn)két as két sheaves are represented

by finite flat group schemes (which are strict) over Sn. Below, this quotient sheaf

on Sn is denoted simply by A[ℓn]/Hn by abuse of notation.

(ii) Any fiber of Hn contains T [ℓn]×S Sn in the fiber of G[ℓn]×S Sn, where T
is the torus part of the fiber of G.

(iii) ℓHn+1 ⊂ Hn ×Sn Sn+1.

(iv) There is an isomorphism of sheaves Yn ∼= A[ℓn]/Hn for which the com-

posite Yn ∼= A[ℓn]/Hn → Y /ℓnY is the canonical projection.

Proof. When Y is trivial, Sn = S, Hn = G[ℓn] and Yn = Y satisfy the desired

conditions. Hence we may and will assume that Y is not trivial. We proceed

inductively. Assume that there are Si, Hi, and Yi for i ≤ n satisfying the condi-

tions. Let s ∈ Sn and we work around s. Consider the két stalk (Hn)s(két) of Hn

at s. By [11] Proposition 18.1 (3), A[ℓn+1] is két locally constant. Let H ′
n+1 be

the két locally constant subsheaf of A[ℓn+1]×S Sn whose stalk coincides with the

pullback of (Hn)s(két) by the stalk of ℓ : G[ℓn+1] ×S Sn → G[ℓn] ×S Sn. By [11]

Proposition 18.11, the geometric log fundamental group at s acts trivially both on

the két stalk of H ′
n+1 and the két stalk of the két quotient (A[ℓn+1]×S Sn)/H ′

n+1.

Hence, there is a strict étale neighborhood Sn+1 of s such that the pullback

Hn+1 ⊂ A[ℓn+1] ×S Sn+1 of H ′
n+1 is constant and the két quotient is also con-

stant. This Sn+1 and Hn+1 satisfy the conditions (i) for n+1, (ii) for n+1, and

(iii). Finally, we can take a subset Yn+1 of Y satisfying the condition (iv) for

n+ 1 because Y is infinite.

11.3 LEMMA. Let Hn be as in Lemma 11.2. Let An := (A/Hn)két be the quotient

as a két sheaf on Sn. Here and hereafter we denote the base change A×SSn simply

by A by abuse of notation. Then An is a weak log abelian variety, and the map
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An → A ; x 7→ ℓnx is a surjection of sheaves for the étale topology.

Proof. Let

G′ = G/Hn, X
′
= ℓnX, Y

′
= Y .

Then we have a commutative diagram with exact rows

0 → G → A → Hom(X,Gm,log/Gm)
(Y )/Y → 0

↓ ↓ ↓
0 → G′ → An → (Hom(X

′
,Gm,log/Gm)

(Y
′
) ⊗Q)/Y

′

on Sn. Here ⊗Q appeared from the két localization.

The multiplication by ℓn : A→ A factors as A→ An → A uniquely. By this

and by

ℓn : (Hom(X
′
,Gm,log/Gm)

(Y
′
) ⊗Q)/Y

′ ∼= (Hom(X,Gm,log/Gm)
(Y ) ⊗Q)/ℓnY ,

we have a commutative diagram with exact rows

0 → G′ → An → (Hom(X,Gm,log/Gm)
(Y ) ⊗Q)/ℓnY

↓ ↓ ↓
0 → G → A → (Hom(X,Gm,log/Gm)

(Y ) ⊗Q)/Y .

From this, we have an exact sequence

0→ G′ → An → Hom(X,Gm,log/Gm)
(Y )/ℓnY → 0.

By using this, we can see that An is a weak log abelian variety over Sn. (The

fact that An is separated follows from the fact that An → A is, relatively, étale

locally isomorphic to Yn.)

11.4. We prove Proposition 11.1 till 11.6.

We use Hn, Sn, and An to construct P , S ′ in 11.6.

Let Σ be a wide complete fan (Proposition 10.3).

Let Hn, Sn, and An be as in Lemma 11.2 and Lemma 11.3.

Let Pn be the két sheaf associated to the quotient (A(Σ)×S Sn)/Hn as a sheaf

for the két topology. Then Pn is the model of An corresponding to a fan Σn

defined as follows.

We understand the An-version of (X,Y ) of A as (X, ℓnY ), not as (ℓnX,Y ).

Let Σn = {σn | σ ∈ Σ}, where σn = {(N, ℓnf) | (N, f) ∈ σ}. Then Σn is a

complete fan for An. Hence Pn is proper over Sn.

We have a surjection of étale sheaves
⨿

n≥0 Pn → A on (fs/S), whose n-th

part is x 7→ ℓnx.
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11.5. The sheaf Pm ×A Pn is understood as follows. Assume m ≥ n (the case

m ≤ n is similar).

Note that A/Hm×AA/Hn
∼= A/Hm×A[ℓn]/Hn ; (a, b) 7→ (a, ℓm−na− b) over

Sm ×S Sn, where the quotients are the két quotients.

Then we have Pm×APn =
⨿

y∈Yn Pm,n,y×SSn, where Pm,n,y is a proper model

of Am corresponding to the fan Σ(m,n, y) defined as follows. We regard (X, ℓmY )

as the Am-version of (X,Y ) of A.

The fan Σ(m,n, y) is the one consisting of all faces of all cones

(σ, τ)m,n,y = {(N, f) ∈ σm | (N, fy) ∈ τn}

(σ, τ ∈ Σ), where fy is defined by fy(x) = f(x) +N(⟨x, y⟩).
Hence Pm ×A Pn is proper over Sm ×S Sn.
Pm×A Pn is also described, by using quotients of sheaves for két topology, as⨿

y∈Yn{a ∈ A
(Σ)/Hm | ℓm−na+ y ∈ A(Σ)/Hn}.

11.6. Let S ′ =
⨿

n Sn, P =
⨿

n Pn. So, P ×A P =
⨿

m,n Pm ×A Pn. Then

Proposition 11.1 holds for these S ′ and P , which is seen by the above arguments.

This completes the proof of Proposition 11.1.

11.7 EXAMPLE. Let A be the log Tate elliptic curve G(q)
m,log/q

Z and let Σ be

the wide fan corresponding to the intervals [qm−1/2, qm+1/2] (m ∈ Z). Then, for

any n ≥ 1, Pn is the model associated to the fan corresponding to the intervals

[qℓ
n(m−1/2), qℓ

n(m+1/2)] (m ∈ Z) of log Tate elliptic curve G(q)
m,log/q

ℓnZ.

11.8 REMARK. The above proof shows, in particular, that for a wide complete

fan Σ, the morphism A(Σ) → A is represented by proper log étale morphisms

which are surjective (as a morphism of schemes, not as a morphism of sheaves).

This justifies the sentence that “a log abelian variety is a proper object.”

11.9 REMARK. The group structure of A is also recovered as follows from the

model associated with a wide complete fan Σ. Hence the group object is recovered

from data given by fs log schemes.

Let X ′ = X ×X and Y ′ = Y × Y . Take the admissible pairing X ′× Y ′ → S
induced by X × Y → S as the pairing for A × A. Let C ′ ⊂ Hom(S,Z) ×
Hom(X ′,Z) = Hom(S,Z)×Hom(X,Z)×Hom(X,Z) be the A×A-version of the

cone C in 1.7 of A. Let Σ′ be the fan in C ′ defined to be the set of all faces of

the cones (σ, τ, ρ) := {(N, ℓ1, ℓ2) ∈ C ′ | (N, ℓ1) ∈ σ, (N, ℓ2) ∈ τ, (N, ℓ1 + ℓ2) ∈ ρ}
given for each σ, τ, ρ ∈ Σ. Then Σ′ is complete.

Let P ′
n be the quotient (A×A)(Σ′)/(Hn×Hn) as a két sheaf. It is the model

of An × An corresponding to the fan Σ′. We have a surjection of étale sheaves⨿
n P

′
n → A× A whose n-th part is x 7→ ℓnx. We have P ′

n → Pn induced by the

group law An × An → An. The map
⨿

n P
′
n →

⨿
n Pn induces the group law of

A. The morphism between relation parts
⨿

n P
′
n×A×A

⨿
n P

′
n →

⨿
n Pn×A

⨿
n Pn
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is given by using P ′
m,n,(y1,y2)

→ Pm,n,y1+y2 ; (a, b) 7→ a + b, where P ′
m,n,(y1,y2)

is

the (A × A)-version of Pm,n,y in 11.5 for (y1, y2). It commutes with the two

projections. This is shown by the easily seen fact that the map C ′ → C sends

((σ1, τ1, ρ1), (σ2, τ2, ρ2))m,n,(y1,y2) into (ρ1, ρ2)y1+y2 (σi, τi, ρi ∈ Σ for i = 1, 2).

12. Gm-torsors, Gm,log-torsors, and Gm,log/Gm-torsors on weak log

abelian varieties

In this section, we study Gm-torsors, Gm,log-torsors, and Gm,log/Gm-torsors

on a weak log abelian variety. In particular, we prove the cubic isomorphism,

and the results concerning such torsors stated in Section 2. Every torsor here is

regarded with respect to the usual étale topology.

12.1 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme

S satisfying the condition 1.4.1. Let F = Ga,Gm,Gm,log, or Gm,log/Gm. Then,

we have H0(A,F ) = H0(S, F ).

Proof. By the zero section, we have a surjectionH0(A,F )→ H0(S, F ). We prove

that this surjection is injective. The case F = Gm,log is reduced to the cases F =

Gm and F = Gm,log/Gm. But, sinceH
0(S,Gm,log/Gm)→

∏
s∈S H

0(s,Gm,log/Gm)

is injective, the latter case F = Gm,log/Gm is reduced to the case of constant

degeneration (Proposition 6.2 (2)). Thus it suffices to treat the cases where

F = Ga and Gm. The case F = Gm is reduced to the case F = Ga.

Let f : A → Ga be a section. Assuming f = 0 on the zero section, we prove

f = 0 on the whole A.

Since the problem is étale local on the base, using the condition 1.4.1, we may

and will assume that there are data including a homomorphism ϕ : Y → X as in

1.7–1.9. Then, we can take a complete wide fan Σ (Proposition 10.3). Let P be

the associated proper model. Then P contains G as a sheaf. Since P is proper,

H0(P,Ga) is coherent as an OS-module. Hence f |G is contained in a subring R of

H0(G,Ga) over OS such that Spec(R)→ S is finite. Since G→ S is smooth and

geometrically connected, such an R coincides with OS. Hence f |G is 0. Further,

let p + G be any G-orbit in A, where p : T → A (T ∈ (fs/S)) is a section of A

and + means the addition of A. Then p+P ⊃ p+G. Since p+G is isomorphic

to G and p + P is isomorphic to P , similarly as above, f |p+G is constant. Thus

f induces a morphism A/G→ Ga. Let f̃ : Ã/G→ A/G→ Ga be the composite

morphism. Take a finitely generated subcone σ of C such that nσ (n ≥ 1) cover

C. (Such a cone exists. Indeed, the cone σ = C(1) in [8] 3.4.9 satisfies the

condition, as is seen in ibid. 3.4.10.) Then, V (nσ) (n ≥ 1) cover Ã/G. By [11]

Lemma 9.10, the restriction of f̃ to V (nσ) for each n ≥ 1 is constant and hence
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is 0. Thus we conclude f̃ = 0 and f = 0.

This proposition together with Proposition 6.2 completes the proof of Propo-

sition 2.1.

12.2. We prove Proposition 2.3. This is a consequence of Lemma 3.1, Lemma

3.4 and Proposition 12.1 just proved.

12.3 LEMMA. Let S be an fs log scheme, and A a weak log abelian variety over

S satisfying the condition 1.4.1. Let F = Gm,Gm,log, or Gm,log/Gm.

(1) The canonical homomorphism Ext(A,F )→ H1(A,F ) is injective.

(2) For θ ∈ H1(A,F ), the following are equivalent:
(i) θ ∈ Ext(A,F );

(ii) µ∗(θ) = pr∗1(θ) + pr∗2(θ) in H1(A ×S A,F ), where µ : A ×S A → A

denotes the sum of A.

We remark that the condition (ii) in (2) implies that e∗(θ) = 0 in H1(S, F ),

where e : S → A denotes the zero section of A.

Proof. This follows from Lemma 3.9 and Proposition 12.1.

We have more results for Gm,log/Gm-torsors.

12.4 PROPOSITION. Let S be an fs log scheme whose underlying scheme is

strictly local. Let s be the closed point of S endowed with the inverse image

log structure from S. Let A be a weak log abelian variety over S satisfying the

condition 1.4.1. Then,

H1(A,Gm,log/Gm)→ H1(A×S s,Gm,log/Gm)

is injective.

Proof. Let L be a Gm,log/Gm-torsor on A. Assume that the pullback of L (de-

noted by the same notation) to As := A×S s has a section. Take a covering by

proper models P → A by Proposition 11.1. (Here we use the assumption 1.4.1.)

Consider the commutative diagram

H0(A,L) → H0(P,L) ⇒ H0(P ×A P,L)
↓ ↓ ↓

H0(As, L) → H0(Ps, L) ⇒ H0(Ps ×As Ps, L)

with exact rows, where Ps := P ×S s. Since the right and the middle vertical

arrows are isomorphisms by the proper base change theorem and by the fact

that the pullback of L as a Gm,log/Gm-torsor with respect to a strict morphism

coincides with the pullback of L as a sheaf of sets. Hence L has a section on

A.
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12.5. We prove the cubic isomorphism stated in Theorem 2.2. By Lemma 3.5

and Proposition 2.1 (proved after Proposition 12.1), it is enough to show the first

statement of Theorem 2.2 (1) (cf. 6.16).

The case of constant degeneration (a) is shown in 8.9.

We prove the case (b). It is valid at each geometric point by (a). Then, by

Proposition 12.4, it holds if the base is strictly local (cf. Lemma 3.5 (i) ⇔ (ii)).

Then it holds étale locally. Since the isomorphisms are canonical, they glue. This

completes the case (b).

We prove the case (c). First consider the case of Gm. By the case (a), we

already have the cubic isomorphism on every log locus (including the nonreduced

ones). We may assume that S is affine. Let R = Γ(S,OS). For an fs log scheme

T charted by an fs monoid P and a face F of P , we temporarily call the subset

{t ∈ T | the set of the elements of P which are invertible at t is F} of T the F -

locus. For a point s ∈ S, let rs be the number of the faces F of P := (MS/O×
S )s

such that the F -locus of the strict localization of S at s is not empty. We proceed

by induction on r := sup
s∈S

rs. We may assume that there are an fs chart P for

S and a point s ∈ S such that the induced homomorphism P → (MS/O×
S )s

is bijective and such that the closure of each nonempty F -locus, where F is a

face of P , contains s. If the log of S is not locally constant, then there is a

nontrivial face F of P such that the F -locus S ′ is not empty. Take a nontrivial

element f of F . Then r for Spec(R[ 1
f
]) is strictly less than that for R because

this open subscheme does not intersect with the {0}-locus, where 0 is the unit

element of P . Further, for each n ≥ 1, r for Spec(R/fnR) is also strictly less

than that for R because this subscheme does not intersect with the locus S ′.

Hence, by the induction hypothesis, the cubic isomorphisms exist on both. Let

R̂ = lim←−
n

(R/fnR). We see that the cubic isomorphism exists on Spec(R̂) by

GAGF as follows. Take a covering by proper models P → A by Proposition

11.1. Then the cubic isomorphisms on Spec(R/fnR) (n ≥ 1) induce a formal

isomorphism on P ⊗R R̂, which gives the algebraic isomorphism by the classical

GAGF. The last isomorphism descends to A⊗R R̂.
Further, since R is noetherian, the natural sequence

0→ R→ R[ 1
f
]⊕ R̂→ R̂[ 1

f
]→ 0

of R-modules is exact (cf. [9] Proposition 9.9 with R′ = R̂ and F = Ga). Since

R̂[ 1
f
] is flat over R, via this exact sequence, the cubic isomorphisms on Spec(R[ 1

f
])

and on Spec(R̂) yield the cubic isomorphism on Spec(R), which completes the

proof of the case of Gm.

Next consider the case of Gm,log. Let N be the left-hand-side of the cubic

isomorphism. We want to prove N ∼= Gm,log. By the case (b), we see that N
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comes from a Gm-torsor N0 over A. This N0 has a canonical section on each log

locus by the case (a). By the same argument in the case of Gm, these canonical

sections glue into a global one. Thus N0 has a canonical section and N also.

12.6. We prove Proposition 2.4. This is by Lemma 3.8, Proposition 2.1, and

Theorem 2.2.

Till 12.12, we prove Proposition 1.6. First, we note the following fact, which

will be used in the proof of Proposition 12.8.

12.7 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme

S. Then A is locally of finite presentation.

Proof. This is because G and Q/Y are locally of finite presentation and the

canonical homomorphism lim−→H1(Sλ, G) → H1(lim←−Sλ, G) is injective, where

(Sλ)λ is a cofiltered projective system of affine fs log schemes over S whose

transition morphisms are strict.

12.8 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme S

satisfying the condition 1.4.1. Let (Sλ)λ be a cofiltered projective system of affine

fs log schemes over S whose transition morphisms are strict. Let S∞ = lim←−λ Sλ.
Let Aλ (for any λ) and A∞ be the base-changed object of A over Sλ and S∞

respectively. Let F = Gm,Gm,log, or (Gm,log/Gm)két, where the last one is the két

sheafification of Gm,log/Gm. Then the following holds.

(1) lim−→λ
Extkét(Aλ, F ) = Extkét(A∞, F ).

(2) lim−→λ
Biextkét(Aλ, Aλ;F ) = Biextkét(A∞, A∞;F ).

(3) lim−→λ
Biextsym,két(Aλ, Aλ;F ) = Biextsym,két(A∞, A∞;F ).

(4) Assume that S∞ is noetherian if F = Gm or Gm,log. Then

lim−→
λ

H1
két(Aλ, F ) = H1

két(A∞, F ).

12.8.1 REMARK. We remark the following.

(1) The proof below also shows the following: In (4) and in the cases of Gm

and Gm,log, the canonical homomorphism from the left-hand-side to the right-

hand-side is injective under the assumption that each Sλ is noetherian instead

of that S∞ is noetherian.

(2) Under the same assumption as in Proposition 12.8, we have lim−→λ
H0(Aλ, F )

= H0(A∞, F ) for F = Gm,Gm,log, Gm,log/Gm, and (Gm,log/Gm)két. This is re-

duced to the case of A = S by Proposition 12.1.

Proof. To see (1) (resp. (2), resp. (3), resp. (4)), it is enough to show that we can

describe a (két) extension (resp. a biextension, resp. a symmetric biextension,

resp. a torsor) by some finite data (more precisely, a finite number of fs log



76 T. KAJIWARA, K. KATO, AND C. NAKAYAMA

schemes of finite presentation over the base and a finite number of morphisms

between them, which can be spread out) as follows.

To this end, we may assume that there are a homomorphism from an fs

monoid S → MS/O×
S , an admissible pairing X × Y → Sgp and exact sequences

0→ G→ A→ Q/Y → 0 and 0→ G→ Ã→ Q→ 0 as in 1.7. Further, we may

assume that there is a prime number ℓ which is invertible on the base.

Take a finitely generated subcone σ in C such that
∪
n ℓ

nσ = C, where

ℓnσ is defined in [11] 2.2 (cf. the proof of Proposition 12.1). Then, we have∪
n V (ℓnσ) = Q. Let I := Ã(σ) ⊂ Ã be the part corresponding to σ, that is,

the pullback of V (σ). Let J = Ã(ℓ−1σ) ⊂ I. We have a surjection of két sheaves

J → I ; x 7→ xℓ (cf. [11] Theorem 5.1). Note that here it is essential for us to

work with két topology.

To show (1), it is enough to see lim−→λ
Ext(Ãλ, F ) = Ext(Ã∞, F ) in this setting.

In fact, giving an extension E on A is equivalent to giving an extension Ẽ on Ã

endowed with a homomorphism Y → Ẽ which lifts the homomorphism Y → Ã.

So, by taking care of Y by Proposition 12.7, we see that if we can treat an

extension on Ã, then we can do with an extension on A also.

As for extensions on Ã, there is a categorical equivalence between the cat-

egory of the extensions on Ã and that of the torsors L on I endowed with

an isomorphism i : µ∗(L) ∼= pr∗1(L)pr
∗
2(L) on J × J satisfying a certain set

of conditions, where µ, pr1, and pr2 are the map J × J → I induced by

the summation, the first projection, and the second projection, respectively.

We explain the above-mentioned set of conditions. Let (L, i) be the pair as

above. Then, using the existence of the isomorphism i, we can show that

L⊗ℓ restricted to J descends to J/G[ℓ], and canonically isomorphic to L via

ℓ : J/G[ℓ] ∼= I. Hence, we can glue the push by ℓn-multiplication of L⊗ℓn on

I/G[ℓn] to Ã(ℓnσ) and get a torsor on Ã. The above-mentioned set of condi-

tions are the ones for this torsor on Ã to make an extension. For example, for

the associativity, we impose the condition that the composite of isomorphisms

pr∗1(L)pr
∗
2(L)pr

∗
3(L)

∼= (µ, pr3)
∗µ∗(L) = (pr1, µ)

∗µ∗(L) ∼= pr∗1(L)pr
∗
2(L)pr

∗
3(L) on

K×K×K, where K = Ã(ℓ−2σ), is the identity. We have to impose more compat-

ibilities, though we do not write down here. Thus we can describe an extension

on Ã by finite data in the above sense so that the desired statement (1) follows.

We proceed to (2). As for the biextension, more complicated but simi-

lar argument works. There is a categorical equivalence between the category

of the biextensions on Ã and that of the torsors L on I endowed with an

isomorphism i : µ∗
12(L)

∼= pr∗13(L)pr
∗
23(L) on J × J × I and an isomorphism

j : µ∗
23(L)

∼= pr∗12(L)pr
∗
13(L) on I × J × J satisfying a certain set of condi-

tions, where µab and prab are the maps induced by the summation of a-th
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component and b-th component and by the projections to a-th and b-th com-

ponents, respectively. From these isomorphisms, we can see that L⊗ℓ restricted

to J × J descends to J/G[ℓ] × J/G[ℓ]. Hence L⊗ℓ2 also descends. The de-

scended L⊗ℓ2 is isomorphic to the original one via ℓ-multiplication. Hence, we

can glue the push by ℓn-multiplication of L⊗ℓ2n on I/G[ℓn] to Ã(ℓnσ) and get

a torsor on Ã. The above-mentioned set of conditions are the ones for this

torsor on Ã to make a biextension. In particular, besides the conditions on

the associativity etc. with respect to i or j, which are similar to the case of

the extension, we need the compatibility of i and j, that is, that the com-

posite of isomorphisms pr∗13(L)pr
∗
14(L)pr

∗
23(L)pr

∗
24(L)

∼= (µ, pr3, pr4)
∗µ∗

23(L) =

(pr1, pr2, µ)
∗µ∗

12(L)
∼= pr∗13(L)pr

∗
14(L)pr

∗
23(L)pr

∗
24(L) on J ×J ×J ×J is the iden-

tity. We omit here the other conditions. Thus we can describe a biextension by

finite data.

(3) is reduced to (2) by taking symmetric parts.

Finally we show (4). We may assume that each Sλ is noetherian. First we

claim that the natural homomorphism lim−→λ
H i

két(Sλ, F ) → H i
két(S∞, F ) is bijec-

tive for any i. (Below, only the cases i = 1, 2 are necessary.) Since (Gm,log/Gm)két
is compatible with the pullback with respect to a strict morphism, the case where

F = (Gm,log/Gm)két is reduced to the standard property of két cohomology. In

the other cases where F = Gm or Gm,log, since lim−→(S∞ → Sλ)
∗F

∼→ F , the map

concerned is bijective again by the standard property of két cohomology, which

completes the proof of the claim.

To prove (4), we describe a torsor by finite data. To this end, the cubic

isomorphism is crucial. By the cubic isomorphism, we already proved Proposition

2.4 (12.6), which implies the két version of it, that is, we have an exact sequence

0→ Extkét(A,F )→ H1
két(A,F )

p→ Biext sym,két(A,A;F ).

The pullback to the diagonal d satisfies p ◦ d = 2. Let L be any torsor. Since

on the part of the biextension the pullback n : A→ A acts by the multiplication

by n2, the pullback 2∗L satisfies p(2∗L) = 4p(L). Hence p(2∗L − d(2p(L))) =

4p(L) − 4p(L) = 0 and 2∗L − d(2p(L)) comes from an extension. Therefore, if

any extension and biextension can be written by some finite data, then, 2∗L can

be also. Then, by applying the kummer log flat descent to 2: A → A, we can

also write the original L by finite data. Thus (1)–(3) together with the above

claim imply (4).

Next we prove a non-két variant of (4) of the above proposition.

12.9 LEMMA. Let the notation and the assumption be as in Proposition 12.8.

Let F ′ = Gm,Gm,log, or Gm,log/Gm. In the cases of Gm and Gm,log, assume

further that S∞ is noetherian. In the case of Gm,log/Gm, assume further that
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there are two distinct primes which are invertible on S∞. Then the natural map

lim−→
λ

H1
ét(Aλ, F

′)→ H1
ét(A∞, F

′)

is injective.

Proof. By Proposition 12.8 (4), it is enough to show the injectivity of H1
ét(A,F

′)

→ H1
ét(A, ε∗(F

′)két), where (F ′)két is the két sheafification of F ′. Since Gm and

Gm,log are két sheaves, these cases are proved.

As for the case of Gm,log/Gm, since we have not yet proved that H1
ét(A,Gm,log

/Gm)→ H1
ét(A, ε∗((Gm,log/Gm)két)) is injective, we argue as follows. By assump-

tion, we may assume that there are two distinct primes ℓ1 and ℓ2 which are

invertible on all Sλ. For an integer n invertible on all Sλ, we consider the n-két

topology, which is an intermediate one between két topology and the usual étale

topology. Roughly, it admits only the két covering consisting of n-két morphisms;

a két morphism is n-két if and only if the cokernel of each stalk of the homo-

morphism between M/O× is killed by a power of n. See the remark below for a

more precise definition of n-két topology. Then, the n-két variant of Proposition

12.8 (4) holds by the same proof. Consider the exact sequence

0→ Z→ Z[1/ℓ1]⊕ Z[1/ℓ2]→ Z[1/ℓ1ℓ2]→ 0.

By tensoring it with Gm,log/Gm on A, we have an exact sequence

0→ Gm,log/Gm → Gm,log/Gm ⊗ Z[1/ℓ1]⊕Gm,log/Gm ⊗ Z[1/ℓ2]
→ Gm,log/Gm ⊗ Z[1/ℓ1ℓ2]→ 0

on A. Since H0
ét(A,−) of the last exact sequence coincides with that on S

(cf. 6.4.2), by using εℓi∗((Gm,log/Gm)ℓi-két) = Gm,log/Gm ⊗ Z[1/ℓi], where εℓi
is the projection from the ℓi-két site to the usual étale site, we obtain an in-

jective homomorphism H1
ét(A,Gm,log/Gm) → H1

ét(A, εℓ1∗((Gm,log/Gm)ℓ1-két)) ⊕
H1

ét(A, εℓ2∗((Gm,log/Gm)ℓ2-két)) and hence an injective homomorphism H1
ét(A,

Gm,log/Gm)→ H1
ℓ1-két

(A, (Gm,log/Gm)ℓ1-két)⊕H1
ℓ2-két

(A, (Gm,log/Gm)ℓ2-két). Thus,

the desired injectivity reduces to ℓi-két variant of Proposition 12.8 (4).

12.10 REMARK. We give a more precise definition of n-két topology used in

the above proof. Let n be a positive integer. A morphism f : T → S of fs log

schemes is n-két if it is kummer, log étale, and for any t ∈ T , the cokernel of

the homomorphism (MS/OS)gpf(t) → (MT/OT )gpt is killed by a power of n. A két

covering (Ti → S)i is called an n-két covering if every Ti → S is n-két. Then

the n-két coverings give a topology of the big site of S, which we call the n-két

topology.
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As an application of Lemma 12.9, we have

12.11 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme

S. Assume that A satisfies the condition 1.4.1. Then the natural homomorphism

H0(S,R1f∗(Gm,log/Gm))→
∏
s∈S

H0(s,R1(f ×S s)∗(Gm,log/Gm))

is injective, where f is the structure morphism of A over S.

Proof. This is reduced to Proposition 12.4 by Lemma 12.9.

12.12. We prove Proposition 1.6. Proposition 1.6 (2) is already seen in 5.2. We

prove Proposition 1.6 (1). We explain how we can prove it if we have a proof of

the usual étale variant of Proposition 12.8 (3). After that, since we have not yet

proved it in actual, we explain how to modify the proof.

By Proposition 2.3, it is enough to show that the canonical homomorphism

Hom⟨ , ⟩(Y ,X)→ Biext sym(A,A;Gm,log/Gm)

given by 2.7 is an isomorphism. Assume that, for the present, the usual étale

variant of Proposition 12.8 (3) holds. Let F1 = Hom⟨ , ⟩(Y ,X) and F2 =

Biext sym(A,A;Gm,log/Gm). We prove that F1(T ) → F2(T ) is an isomorphism

for any fs log scheme T over S. Since F1 and F2 are locally of finite presenta-

tion (here we use the usual étale variant of Proposition 12.8 (3) for F2), we may

assume that the underlying scheme of T is the spectrum of a strictly local ring

(R,m). Since we have F1(R/m) ∼= F2(R/m) by the case of constant degeneration

(6.18), it is enough to show the following two statements.

F1(R)→ F1(R/m) is bijective.(∗)
F2(R)→ F2(R/m) is injective.(∗∗)

We prove (∗). Let s be the closed point of SpecR. First F1(R) → F1(R/m)

is injective because the map Y → X is determined by Y s → Xs (for Y s → Y t

is surjective for any generization t of s). Next, using the nondegeneracy of the

pairing X × Y → MS/O×
S , we prove the surjectivity of F1(R) → F1(R/m) as

follows. Let ψ : Y s → Xs be a homomorphism which is compatible with ⟨ , ⟩.
It suffices to prove that, for any generization t of s, the map Y s → Xs → X t

factors through Y s → Y t. Let y be in the kernel of Y s → Y t. Then we have

⟨ψ(z), y⟩ = 0 at t for any z ∈ Y s. Hence ⟨ψ(y), z⟩ = 0 at t for any z. By the

nondegeneracy, ψ(y) = 0 at t follows.

We prove (∗∗). First we prove that the natural homomorphism f : F2 →
H1(A × A,Gm,log/Gm) is injective. By Proposition 2.3 (proved in 12.2) and

Proposition 2.4 (proved in 12.6), we have F2 ⊂ Hom(A, Ext1(A,Gm,log/Gm)) ⊂
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Hom(A,H1(A,Gm,log/Gm)) ⊂ H0(A,H1(A,Gm,log/Gm)). Since this inclusion

factors through f , the homomorphism f is injective. Hence, (∗∗) is reduced

to the injectivity of H1(A× A,Gm,log/Gm)(R)→ H1(A× A,Gm,log/Gm)(R/m).

This is by Proposition 12.4 because A× A satisfies the condition 1.4.1.

We explain how to modify the above argument. Since the statement is local,

we may assume that there are two distinct primes ℓ1 and ℓ2 which are invertible

on S. Let n be either ℓ1, ℓ2, or ℓ1ℓ2. If we replace F1 by F1[1/n] := F1⊗Z[1/n] and
F2 by its n-két version F n

2 (cf. the proof for Lemma 12.9), then, since the n-két

variant of Proposition 12.8 (3) holds and since the n-két variant of Proposition

12.4 also holds, we can obtain the proof of F1[1/n] ∼= F n
2 by modifying the above

proof. (Here we remark that, instead of strict localization, we have to work with

strict n-két localization. Then we lost noetherianness and everything should be

thought as limits. Further, in 6.4.2, X should be replaced by X ⊗ Z[1/n]; then
the same proof in Section 6 shows the n-két version of the isomorphism for the

residue field.)

Now consider the diagram

0 −−−→ F1 −−−→ F1[1/ℓ1]⊕ F1[1/ℓ2] −−−→ F1[1/ℓ1ℓ2]y ∥∥∥ ∥∥∥
F2 −−−→ F ℓ1

2 ⊕ F ℓ2
2 −−−→ F ℓ1ℓ2

2 .

The upper row is exact. The lower row is a complex and the first arrow is injec-

tive. Then the left vertical arrow is bijective. (Hence, F n
2
∼= F1[1/n] ∼= F2[1/n].)

Here the injectivity of the first arrow in the lower row is reduced to that of

H1
ét(A,Gm,log/Gm)→ H1

ℓ1-két
(A, (Gm,log/Gm)ℓ1-két)⊕H1

ℓ2-két
(A, (Gm,log/Gm)ℓ2-két)

in the proof of Proposition 12.9. This completes the proof of the fact that

Hom⟨ , ⟩(Y ,X)→ Biext sym(A,A;Gm,log/Gm) is an isomorphism.

Next, we prove that Biextsym(A/G,A/G;Gm,log/Gm)→ Biextsym(A,A;Gm,log/

Gm) is injective, which completes the proof of Proposition 1.6 (1). By Proposi-

tion 2.3 and Lemma 2.6 (4) (proved in 5.1), we reduce the desired injectivity to

that of Hom(A/G, Ext(A/G,Gm,log/Gm)) → Hom(A, Ext(A,Gm,log/Gm)). This

is reduced to the vanishing of Hom(G,Gm,log/Gm) ([9] Lemma 6.1.1).

12.13. The statement at the beginning of 4.14 is reduced to that the sheaf

F = Hom⟨ , ⟩(Y ,X) has the property F (R) = F (R/m) for any strictly local ring

(R,m), which we already showed in 12.12 (∗).
12.14. We prove Theorem 1.11. As we explained in the beginning of Section 9,

this is implied by Theorem 9.1 and Proposition 1.6.
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