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Abstract. The differential Rényi entropy and Rényi divergence are perhaps
the two fundamental quantities in information theory and its applications. The
differential Rényi entropy and Rényi divergence are generalized form of the dif-
ferential Shannon entropy and Kullback Leibler divergence, respectively. In this
article, we prove that, if differential Rényi entropy of max domain of attrac-
tion laws exists then, Rényi divergence between the density function of linearly
normalized partial maxima of iid random variables and density function of max
stable converges to zero. The order of differential Rényi entropy has important
role to solve the problem.

1. Introduction

Let X1, X2, . . . , Xn be independent and identically distributed (iid) random

variables (rvs) with common distribution function (df) F and density function

f. The differential Rényi entropy of order β is defined as

hβ(F ) =
β

1− β
log (∥f(x)∥β) , (1.1)

where, ∥f(x)∥β =
(∫

A
(f(x))β dx

) 1
β for A = {x ∈ R : f(x) > 0} and 0 < β < ∞,

β ̸= 1, (Rényi, 1961). It is one of a family of functionals for quantifying the

diversity, uncertainty or randomness of a system. Here, we assume that the

goodness of the model F is assessed in terms of the closeness as a probability

distribution to true distribution G. As a measure of this closeness, for any simple

order β, Rényi divergence (relative Rényi entropy) of order β of F and G is

defined as

Dβ(F∥G) =
1

β − 1
log

(∫
A

(f(x))β(g(x))1−βdx

)
. (1.2)

2010 Mathematics Subject Classification: 60F10
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It is straight forward to justify this as an extension by continuity; as β tends

to 1, the relative Rényi entropy tends to Kullback Leibler divergence. Gilardoni

(2010) shows that Rényi divergence is related to the total variation distance

V (F,G) =
∫
A
|f(x)− g(x)|dx by a generalization of Pinskers inequality:

β

2
V 2(F,G) ≤ Dβ(F∥G), for β ∈ (0, 1].

Gibbs and Su (2002) study the differential Rényi entropy for β = 1/2 is func-

tion of squared Hillinger distance Hel2(F,G) =
∫
A
(f 1/2(x) − g1/2(x))2dx which

is D1/2(F∥G) = −2 log
(
1− Hel2(F,G)

2

)
. Similarly, for β = 2 it is given by

D2(F∥G) = log(1 + χ2(F,G)), where, χ2(F,G) =
∫
A

(f(x)−g(x))2
g(x)

dx. Therefore,

by using these equations and log(t) ≤ t− 1, imply that

Hel2(F,G) ≤ D1/2(F∥G) ≤ D1(F∥G) ≤ D2(F∥G) ≤ χ2(F,G).

The properties of Rényi divergence is studied by van Erven and Harremoës (2014)

and they show that Rényi divergence is nondecreasing in its order. The idea of

tracking the central limit theorem using Shannon entropy goes back to Linnik

(1959) and Shimizu (1975), who used it to give a particular proof of the central

limit theorem. Brown (1982), Barron (1986) and Takano (1987) discuss the cen-

tral limit theorem with convergence in the sense of Shannon entropy and relative

entropy. Artstein et al.(2004) and Johnson and Barron (2004) obtained the rate

of convergence under some conditions on the density. Johnson (2006) is a good

reference to the application of information theory to limit theorems, especially

the central limit theorem. Cui and Ding (2010) show that the convergence of

Rényi entropy of the normalized sums of iid rvs and obtain the corresponding

rate of convergence.

EXTREMES. The limit laws of linearly normalized partial maxima

Mn = max{X1, . . . , Xn} of iid rvs X1, X2, . . . , with common df F, namely,

lim
n→∞

Pr(Mn ≤ anx+ bn) = lim
n→∞

F n(anx+ bn) = G(x), x ∈ C(G), (1.3)

where, an > 0, bn ∈ R, are norming constants, G is a nondegenerate distribution

function, C(G) is the set of all continuity points of G, are called max stable

laws. If, for some nondegenerate distribution function G, a distribution function

F satisfies (1.3) for some norming constants an > 0, bn ∈ R, then we say that

F belongs to the max domain of attraction of G under linear normalization

and denote it by F ∈ D(G). Limit distribution functions G satisfying (1.3) are

well known extreme value types of distributions, or max stable laws. Fisher and
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Tippett (1928) show that max stable laws can only be one of three types, namely,

the Fréchet law:Φα(x) =

{
0, x < 0,

exp(−x−α), x ≥ 0;

the Weibull law: Ψα(x) =

{
exp(−|x|α), x < 0,

1, x ≥ 0;

and the Gumbel law: Λ(x) = exp(− exp(−x)); x ∈ R;

α > 0 being a parameter. Criteria for F ∈ D(G) are well known (see, for

example, Galambos, 1987; Resnick, 1987; Embrechts et al., 1997).

Under von Mises type conditions (see, theorems B.2 and B.3), de Haan and

Resnick (1982) and Sweeting (1985) prove the density of the normalized max-

imum converges to density of appropriate extreme value distribution in space

Lβ. They show that, if the differential Rényi entropy of original distribution of

max domain of attraction exist then Rényi entropy convergence of max domain

attraction and max stable laws hold. In recent research works on information

theory and extreme value theory, Ravi and Saeb (2013), study the convergence

theory of Shannon entropy for max domain of attraction. Saeb (2014) investigate

the rate of convergence of Rényi entropy in max domain of attraction.

In this article, our main interest is to investigate conditions under which the

relative Rényi entropy distance between the density function of the normalized

partial maxima of iid rvs and density function of max stable converges to zero.

In the next section, we give our main results. Rényi entropy of the extreme value

distributions are illustrated in the appendix A and appendix B containing results

used in this article.

Throughout the manuscript, we shall denote the right extremity of F by

r(F ) = sup{x : F (x) < 1} ≤ ∞ and left extremity of F is l(F ) = inf{x :

F (x) > 0} ≤ ∞, we define the inverse of F as F←(x) = inf{s : F (s) ≥ x},
survival function is F̄ (·) = 1 − F (·). Also, we employ the notation, ϕα(x) =

αx−(α+1)e−x
−α
, x > 0; is the density of Fréchet, ψα(x) = α|x|α−1e−|x|α , x < 0;

is the density of Weibull, and λ(x) = e−xe−e
−x
, x ∈ R is the density of the

Gumbel. The distribution and density function of the normalized maximum are

Gn(x) = F n(anx+ bn) and gn(x) = nanf(anx+ bn)F
n−1(anx+ bn), respectively.

2. Main Results

2.1 Fréchet case.

Suppose F ∈ D(Φα), and 1− F is regularly varying with index −α (written

F̄ ∈ RV−α) so that limn→∞
F̄ (anx)

F̄ (an)
= x−α, and from (1.3), limn→∞ F

n(anx) =
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Φα(x), x > 0, with an = F←(1 − 1
n
), n ≥ 1 and bn = 0. Now, we switch to

function a(n). Since F̄ ∈ RV−α, Resnick (1987) shows a(n) ∈ RV 1
α
. This means

that for any fixed x > 0, the function a(n), consider as a function of n, is also in

RV 1
α
.

We note that, the proof of the main theorems are different from the proof

for the relative Rényi entropy of the normalized sums of iid rvs. In our proofs,

the properties of normalized partial maxima such as, von Mises condition and

density convergence, plays an important role. By considering this assumptions,

we now justify the relative Renyi entropy convergence.

THEOREM 2.1. Let X1, X2, . . . be iid random variables with df F ∈ D(Φα)

which is absolutely continuous with density function f. If f is nonincreasing

function, hβ(F ) <∞ for 0 < β < α
1+α

, and left extremity of F, l(F ) ̸= 0 then

lim
n→∞

Dβ(Gn∥Φα) = 0.

Proof. From definition (1.2)

Dβ(Gn∥Φα) =
1

β − 1
log [I1(n, v) + I2(n, v) + I3(n, v)] . (2.1)

where, I1(n, v) =
∫∞
v
(ϕα(x))

1−β(gn(x))
β dx, and I2(n, v) =

∫ v−1

−∞ (ϕα(x))
1−β(gn(x))

β dx,

and I3(n, v) =
∫ v

v−1(ϕα(x))
1−β(gn(x))

β dx. It is enough to show that

lim
v→∞

lim
n→∞

(I1(n, v) + I2(n, v)) = 0.

We set,

0 < I1(n, v) ≤ L(n; β)

∫ ∞
v

(
f(anx)

f(an)

)β

(ϕα(x))
1−βdx,

where, L(n; β) =

(
anf(an)nF̄ (an)

F̄ (an)

)β

. From (B. 2) and the fact that nF̄ (an) = 1

we have L(n; β) → αβ, as n → ∞. Under von Mises conditions (Theorem B.2-

(b)), f is nonincreasing function and
(

f(anx)
f(an)

)β
≤ 1 for x ≥ 1. We have

I1(n, v) ≤ L(n; β)

(
f(anv)

f(an)

)β ∫ ∞
v

(ϕα(x))
1−βdx.

From Lemma A.1-(i),
∫
R(ϕα(x))

1−βdx <∞, for 0 < β < α
α+1

. Hence,

lim
v→∞

lim
n→∞

I1(n, v) = 0. (2.2)
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Now, we choose ξn by − logF (ξn) ≃ n−1/2, and tn = ξn
an
. If ξn

an
→ c > 0 then

n1/2 ≃ −n(logF (tn an)) → c−α and this contradicts the fact that n1/2 → ∞.

Therefore, tn → 0 as ξn → ∞ for large n. Setting,

I2(n, u) =

∫ tn

l(F )/an

(ϕα(x))
1−β(gn(x))

βdx+

∫ v−1

tn

(ϕα(x))
1−β(gn(x))

βdx,

= I21(n) + I22(n, v), (2.3)

where, l(F ) ̸= 0. We write,

I21(n) =

∫ ξn

l(F )

(nF n−1(s)f(s))β(ϕα(sa
−1
n ))1−β ds, (where, anx = s),

≤ (nF n−1(ξn))
β

((
l(F )

an

)−α−1
αΦα(tn)

)1−β ∫ ∞
0

(f(s))β ds, if 0 < β < 1,

≃

(
na

(α+1)(1−β)/β
n

exp ((n− 1)n−1/2)

)β

(cα(l(F ))Φα(tn))
1−β
∫ ∞
0

(f(s))β ds, (2.4)

where, cα(l(F )) = αl(F )−α−1. Since, a(n) ∈ RV1/α and combining this with (B. 1)

we have

a(n) = c(n) exp

(∫ n

N

ρ(t)t−1dt

)
,

where, ρ(n) → 1
α
and c(n) → c as n → ∞. On the other hand, for n > N given

ϵ1 > 0 and ϵ2 > 0 such that ρ(n) < 1+ϵ1
α

and c(n) < (1 + ϵ2)c = c′ then

a(n) = c(n) exp

(∫ n

N

ρ(t)t−1dt

)
,

<
( n
N

) 1+ϵ1
α
c′,

From (2.4) we write,

0 < I21(n) ≤

(
n(c′ n

(1+ϵ1)
α N−

(1+ϵ1)
α )(α+1)(1−β)/β

exp(n1/2 − n−1/2)

)β

(cα(l(F ))Φα(tn))
1−β
∫ ∞
0

(f(s))β ds.

If
∫∞
0
(f(s))β ds <∞ and l(F ) ̸= 0 then,

lim
n→∞

I21(n) = 0. (2.5)

Next, we write I22(n, v) =
∫ v−1

tn
(ϕα(x))

1−β(gn(x))
β dx. Here, we need to find

the upper bound for gn ultimately. Now U = 1/(1−F ) ∈ RVα so that U(an)/U(anx)
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= U(anxx
−1)/U(anx) we get from Theorem B.1 for given 0 < ϵ1 < α, and large

n we have

(1− ϵ1)x
−(α−ϵ1) ≤ U(an)/U(anx) ≤ (1 + ϵ1)x

−(α+ϵ1).

Since nF̄ (anx) ≃ F̄ (anx)/F̄ (an) = U(an)/U(anx) we have for large n

(1− ϵ1)x
−(α−ϵ1) ≤ nF̄ (anx) ≤ (1 + ϵ1)x

−(α+ϵ1).

From (B. 2), for given ϵ2 > 0 we write f(anx) ≤ α+ϵ2
anx

F̄ (anx) ultimately. Hence,

for sufficiently large n such that n > N we have

gn(x) < (α + ϵ2)nF̄ (anx)x
−1 exp

(
−nF̄ (anx)

)
,

< (α + ϵ2)(1 + ϵ1)x
−1−α−ϵ1 exp

(
−(1− ϵ1)x

−(α−ϵ1)
)
,

by choosing suitable ϵ1, ϵ2 and α, we define

k(x) = cα′x−1−α
′
exp

(
−cx−α′

)
. (2.6)

where, c, α′ > 0. Hence, gn(x) < k(x), for large n, we obtain

0 < I22(n, v) <

∫ v−1

0

(ϕα(x))
1−β(k(x))βdx.

Since
∫∞
0
(ϕα(x))

1−β(k(x))βdx <∞ so that,

lim
v→∞

lim
n→∞

I22(n, v) = 0. (2.7)

From, (2.3), (2.5) and (2.7) we have

lim
v→∞

lim
n→∞

I2(n, v) = 0. (2.8)

Finally, I3(n, v) =
∫ v

v−1(ϕα(x))
1−β(gn(x))

β dx. Since, for large n, gn(x) < k(x),

and it is well known that,
∫ v

v−1(ϕα(x))
1−β(k(x))βdx < ∞, by using Theorem

B.4-i, limn→∞ gn(x) = ϕα(x), locally uniformly convergence in x ∈ [v−1, v] by

dominated convergence theorem,

lim
v→∞

lim
n→∞

∫ v

v−1

(ϕα(x))
1−β(gn(x))

β dx =

∫ ∞
0

ϕα(x) dx = 1. (2.9)

From (2.1), (2.2), (2.8) and (2.9) imply,

lim
n→∞

Dβ(Gn∥Φα) = 0.
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2.2 Weibull case.

Suppose F ∈ D(Ψα), a necessary and sufficient condition for the existence of

an > 0, and bn = r(F ) <∞ such that (1.3) holds and F ∗(x) = F (r(F )− 1/x) is

in the domain of attraction of Φα. Results for Rényi entropy convergence in Ψα

may be derived directly from the corresponding results for F ∗ ∈ D(Φα). So, we

concentrate on Ψα by using the relationship between Fréchet and Weibull.

THEOREM 2.2. Let X1, X2, . . . be iid random variables with df F ∈ D(Ψα)

which is absolutely continuous with density function f. If f is nonincreasing

function, hβ(F ) <∞ for 0 < β < α
1+α

, and left extremity of F, l(F ) ̸= 0 then

lim
n→∞

Dβ(Gn∥Ψα) = 0.

Proof. Suppose F ∈ D(Ψα) iff r(F ) <∞ and F̄ (r(F )−x−1) ∈ RV−α, is regularly

varying. In this case, we may set τn = F←(1− 1
n
) and an = r(F )− τn, and then

lim
n→∞

F n(anx+ r(F )) = Ψα(x),

for x ∈ R. Now, from definition (1.2) we write,

Dβ(Gn∥Ψα) =
1

β − 1
log

(∫
A

(g∗n(y))
β (ϕα (y))

1−β dy

)
, (setting, y = −1/x)

= Dβ(G
∗
n∥Φα).

where, G∗n(y) = F n(r(F ) − an/y) and g∗n(y) = nan
y2
f(r(F ) − an/y)F

n−1(r(F ) −
an/y). Under conditions Theorem 2.1, if hβ(F ) < ∞, l(F ) ≠ 0 and f is nonin-

creasing function then

lim
n→∞

Dβ(Gn∥Ψα) = 0.

2.3 Gumbel case.

Suppose F ∈ D(Λ) and F̄ is Γ varying so that limn→∞
F (bn+xan)

F (bn)
= e−x, and

from (1.3) limn→∞ F
n(anx+bn) = Λ(x), x ∈ R, where the function an = u(bn) =∫ r(F )

bn
F (s)ds/F (bn) is called an auxiliary function and bn = F←(1 − 1

n
). With

this case in mind we state and proof the following lemata which will be used

subsequently.

LEMMA 2.1. Suppose F ∈ D(Λ). For x ∈ R, there exists a large N such that

for n > N and ϵ, c > 0,

n(1− F (anx+ bn)) ≤ c(1 + ϵ |x|)−ϵ−1

;
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Proof. Case x ≥ 0 : For sufficient large n, and ϵ > 0 we have (1− ϵ) < nF̄ (bn) <

(1 + ϵ). From Theorem B.6, (recall an = u(bn)), we write

n(1− F (anx+ bn)) ≤ (1 + ϵ)
1− F (bn + anx)

1− F (bn)
,

= (1 + ϵ)
c(bn + anx)

c(bn)
exp

(
−
∫ bn+anx

bn

dy

u(y)

)
,

≤ (1 + ϵ)2 exp

(
−
∫ x

0

u(bn)ds

u(bn + ans)

)
, (2.10)

where, y = bn + ans and limt→∞
c(t+xu(t))

c(t)
= 1. Since, limt→r(F ) u

′(t) = 0, for

sufficient large n such that |u′(ant+ bn)| ≤ ϵ, and∣∣∣∣u(anx+ bn)

u(bn)
− 1

∣∣∣∣ = ∣∣∣∣∫ anx+bn

bn

u′(s)

u(bn)
ds

∣∣∣∣ ,
≤
∫ x

0

|u′(ant+ bn)| dt, where s = ant+ bn,

≤ ϵ x.

Consequently,

u(bn)

u(anx+ bn)
>

1

1 + ϵ x
. (2.11)

From (2.10) and (2.11) for large n and ϵ > 0 we have

n(1− F (anx+ bn)) ≤ (1 + ϵ)2 exp

(
−
∫ x

0

ds

1 + ϵs

)
,

< c(1 + ϵx)−ϵ
−1

.

where, c > 0. With similar argument, for the second statement x < 0 and

sufficient large n

u(bn)

u(anx+ bn)
<

1

1 + ϵ |x|
. (2.12)

where, ∣∣∣∣1− u(anx+ bn)

u(bn)

∣∣∣∣ ≤ ∫ 0

x

|u′(ant+ bn)| dt, (s = ant+ bn),

≤ ϵ |x| .
From (2.10) and (2.12) we get,

n(1− F (anx+ bn)) ≤ (1− ϵ)2 exp

(
−
∫ 0

x

u(t)dt

u(bn + ant)

)
,

≤ (1− ϵ)2 exp

(
−
∫ 0

x

dt

1 + ϵ |t|

)
,

< c(1 + ϵ |x|)−ϵ−1

,
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where, c > 0.

LEMMA 2.2. Suppose F ∈ D(Λ) with auxiliary function u and ϵ, c > 0. There

exists a large N such that for x ∈ R, and n > N,

gn(x) < c(1 + ϵ |x|)−
1
ϵ .

Proof. From Theorem B.3, for ϵ1 > 0 we have f(anx + bn) ≤ (1 + ϵ1)
F̄ (anx+bn)
u(anx+bn)

ultimately. We write,

gn(x) = nanf(anx+ bn)F
n−1(anx+ bn),

<
u(bn)

u(anx+ bn)
n(1 + ϵ1)F̄ (anx+ bn), (2.13)

Using the resukt of theorem B.5, for ϵ2 > 0 and x > 0 such that anx + bn ≥ N,
u(bn)

u(anx+bn)
< 1

1−ϵ2

[
− logF (bn)

− logF (anx+bn)

]ϵ2
. Now we apply

gn(x) <
u(bn)

u(anx+ bn)
(1 + ϵ1)nF̄ (anx+ bn),

<
1 + ϵ1
1− ϵ2

(nF̄ (anx+ bn))
1−ϵ2 .

From Lemma 2.1 for ϵ3 > 0 and x > 0 we have nF̄ (anx + bn) < c(1 + ϵ3x)
−ϵ−1

3 ,

we have

gn(x) < c(1 + ϵ3x)
− 1−ϵ2

ϵ3 ≃ c(1 + ϵ3x)
− 1

ϵ3 ,

where, 1− ϵ2 ≃ 1.

Similarly, from (2.13), Theorem B.5 and Lemma 2.1 for x < 0, we justified

that,

gn(x) < c(1 + ϵ3 |x|)−
1
ϵ3 .

Here, we show that under some conditions, the relative Rényi entropy distance

between density function of max domain of attraction of Gumbel under linear

normalization with norming constants an > 0 and bn ∈ R and density function

of Gumbel converges to zero.

THEOREM 2.3. Let {Xi, i ≥ 1} be iid random variables with df F ∈ D(Λ)

which is absolutely continuous with density function f. If f is nonincreasing

function, hβ(F ) <∞, for 0 < β < 1 and l(F ) exists then

lim
n→∞

Dβ(Gn∥Λ) = 0.
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Proof. From (1.2) we write,

D(Gn∥Λ) =
1

β − 1
log [I1(n, v) + I2(n, v) + I3(n, v)] . (2.14)

where, I1(n, v) =
∫∞
v
(λ(x))1−β(gn(x))

β dx, and I2(n, v) =
∫ −v
−∞(λ(x))

1−β(gn(x))
β dx,

and I3(n, v) =
∫ v

−v(λ(x))
1−β(gn(x))

β dx. It is enough to show that,

lim
v→∞

lim
n→∞

[I1(n, v) + I2(n, v)] = 0.

Set, I1(n, v) =
∫∞
v
(λ(x))1−β(gn(x))

βdx, we have

0 < I1(n, v) ≤ J(n; β)

∫ ∞
v

(
f(anx+ bn)

f(bn)

)β

(λ(x))1−βdx.

where, J(n; β) =
(
nF̄ (bn)

f(bn)an
F̄ (bn)

)β
. From (B. 4) and the facet that nF̄ (bn) →

1, as n → ∞, we get J(n; β) → 1 as n → ∞. From Theorem B.3-(b), f is

nonincreasing function and f(anv+bn)
f(bn)

≤ 1 for v ≥ 1. We write,

0 < I1(n, v) ≤ J(n; β)

(
f(anv + bn)

f(bn)

)β ∫ ∞
v

(λ(x))1−βdx.

Since,
∫∞
v
(λ(x))1−βdx <∞, for 0 < β < 1, we get

lim
v→∞

lim
n→∞

I1(n, v) = 0. (2.15)

Now, we choose ξn satisfying − logF (ξn) ≃ n−1/2. If tn = ξn−bn
an

→ c, then

n1/2 ≃ −n logF (antn+bn) → e−c, and this contradicts with n1/2 → ∞. Therefore,

tn = ξn−bn
an

→ −∞, as ξn → r(F ) for large n.

We now decompose the integral,

I2(n, v) =

∫ tn

l(F )−bn
an

(λ(x))1−β(gn(x))
βdx+

∫ −v
tn

(λ(x))1−β(gn(x))
βdx = I21(n)+I22(n, v).

Set

0 < I21(n) < (nF n−1(ξn))
β(anΛ(ξn))

1−βe−(1−β)l(F )

∫
R
(f(s))βdx, where anx+ bn = s,

≃ nβ(anΛ(ξn))
1−β

exp(β(n− 1)n−1/2)
e−(1−β)l(F )

∫
R
(f(s))βdx, (2.16)

It is well known that, if F ∈ D(Λ) with an = u(bn) and denominator is exponen-

tial form of n. If
∫
R(f(s))

βdx <∞ then,

lim
n→∞

I21(n) = 0. (2.17)



ON RELATIVE RÉNYI ENTROPY CONVERGENCE 93

Now, set I22(n, v) =
∫ −v
tn

(λ(x))1−β(gn(x))
β dx. By Lemma 2.2, we define

k(x) = (1 + ϵ |x|)−
1
ϵ ,

and using Hölder inequality, for 0 < β < 1, we get,

I22(n, v) <

(∫ −v
tn

(λ(x))p(1−β)dx

)1/p(∫ −v
tn

(k(x))qβ dx

)1/q

.

where, 1
p
+ 1

q
= 1. Since,

(∫
R(λ(x))

p(1−β)dx
)1/p (∫

R(k(x))
qβ dx

)1/q
<∞ we have

lim
v→∞

lim
n→∞

I22(n, v) = 0. (2.18)

From, (2.17) and (2.18)

lim
v→∞

lim
n→∞

I2(n, v) = 0. (2.19)

Finally, we consider I3(n, v) =
∫ v

−v(λ(x))
1−β(gn(x))

β dx. From Lemma 2.2, for

large n, we have gn(x) < k(x), and
∫ v

−v k(x)dx < ∞ by using Theorem B.4-iii

limn→∞ gn(x) = λ(x), for x ∈ [−v, v], we get

lim
v→∞

lim
n→∞

∫ v

−v
(λ(x))1−β(gn(x))

β dx =

∫ ∞
−∞

λ(x) dx = 1. (2.20)

From (2.14), (2.15), (2.19) and (2.20),

lim
n→∞

Dβ(Gn∥Λ) = 0.

REMARK 2.1. Lemma A.2 shows, Rényi entropy does not depend on the loca-

tion and scale parameters.

Appendix A.

LEMMA A.1. The Rényi entropy of

(i) Fréchet law:

hβ(Φα) = − logα +
α + 1

α
log β − 1

1− β

(
log β − log Γ

(
α + 1

α
(β − 1) + 1

))
;

where, 1
α+1

< β.



94 A. SAEB

(ii) Weibull law:

hβ(Ψα) = − logα +
α− 1

α
log β − 1

1− β

(
log β − log Γ

(
α− 1

α
(β − 1) + 1

))
;

where, max
(
0, β−1

β

)
< α, for β > 0.

(iii) Gumbel law:

hβ(Λ) =
1

1− β
log

Γ(β)

ββ
;

where, β > 0.

Proof. (i) The Rényi entropy of Fréchet distribution is

hβ(Φα) =
1

1− β
log

∫ ∞
0

(
αx−α−1e−x

−α
)β
dx.

Putting, βx−α = u, −βαx−α−1dx = du,

hβ(Φα)

=
1

1− β
log

∫ ∞
0

αβ−1u(β−1)(
α+1
α

)β−((β−1)(
α+1
α

)+1)e−udu,

=
1

1− β

(
(β − 1) logα−

(
(β − 1)

α + 1

α
+ 1

)
log β + log Γ

(
α + 1

α
(β − 1) + 1

))
,

where, α+1
α

(β − 1) + 1 > 0, so 1
β
< α + 1.

(ii) By a similar argument for Rényi entropy of Weibull distribution we have

hβ(Ψα)

=
1

1− β
log

∫ ∞
0

(
αxα−1e−x

α)β
dx,

=
1

1− β

(
(β − 1) logα−

(
(β − 1)

α− 1

α
+ 1

)
log β + log Γ

(
α− 1

α
(β − 1) + 1

))
,

where, α−1
α

(β− 1)+ 1 > 0. If β > 1 then α > β−1
β
, and for β < 1, we have 0 < α,

therefore, max
(
0, β−1

β

)
< α, for all β > 0.

(iii) The Rényi entropy of Gumbel distribution

hβ(Λ) =
1

1− β
log

∫ ∞
−∞

(
e−xe−e

−x
)β

dx,
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Taking u
β
= e−x and du

β
= −e−xdx

hβ(Λ) =
1

1− β
log

∫ ∞
0

uβ−1e−uβ−βdu,

=
1

1− β
(log Γ(β)− β log β) .

where, β > 0.

LEMMA A.2. If Y = X−b
a
, for b ∈ R and a > 0, then Rényi’s entropy of Y is

given by

hβ(FY ) = − log a+ hβ(FX).

Proof. We have FY (y) = Pr (X ≤ ay + b) = FX (ay + b) , and fY (y) = afX(ay+

b), so that from (1.1),

hβ(FY ) =
1

1− β
log

∫ ∞
−∞

(afX(ay + b))β dy =
1

1− β
log

∫ ∞
−∞

fβ
X(z)a

β−1dz,

= − log a+ hβ(FX).

Appendix B.

THEOREM B.1. (Proposition 0.8, Resnick (1987)) Suppose U ∈ RVρ, ρ ∈ R.
Take ϵ > 0. Then there exists t0 such that for x ≥ 1 and t ≥ t0

(1− ϵ)xρ−ϵ <
U(tx)

U(t)
< (1 + ϵ)xρ+ϵ.

REMARK B.1. (Remark, Page 19, Resnick (1987)) If U ∈ RVρ then U has

representation

U(x) = c(x) exp

(∫ x

1

t−1ρ(t)dt

)
, (B. 1)

where, limx→∞ c(x) = c and limt→∞ ρ(t) = ρ.

THEOREM B.2. (Proposition 1.15 and 1.16, Resnick (1987))

(i) Suppose that distribution function F is absolutely continuous with positive den-

sity f in some neighborhood of ∞.
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(a) If for some α > 0

lim
x→∞

xf(x)

F (x)
= α, (B. 2)

then F ∈ D(Φα).

(b) If f is nonincreasing and F ∈ D(Φα) then (B. 2) holds.

(ii) Suppose F has finite right endpoint r(F ) and is absolutely continuous in a left

neighborhood of r(F ) with positive density f.

(a) If for some α > 0

lim
x→r(F )

(r(F )− x)f(x)

F (x)
= α (B. 3)

then F ∈ D(Ψα).

(b) If f is nonincreasing and F ∈ D(Ψα) then (B. 3) holds.

THEOREM B.3. (Proposition 1.17, Resnick (1987)) (a) Let F be absolutely con-

tinuous in a left neighborhood of r(F ) with density f. If

lim
x↑r(F )

f(x)

∫ r(F )

x

F (t)dt/F (x)2 = 1, (B. 4)

then F ∈ D(Λ). In this case we may take,

u(x) =

∫ r(F )

x

F (t)dt/F (x), bn = F←(1− 1/n), an = u(bn).

(b) If f is nonincreasing and F ∈ D(Λ) then (B. 4) holds.

THEOREM B.4. (Theorem 2.5, Resnick (1987)) Suppose that F is absolutely

continuous with pdf f. If F ∈ D(G) and

(i) G = Φα, then gn(x) → ϕα(x) locally uniformly on (0,∞) iff (B. 2) holds;

(ii) G = Ψα, then gn(x) → ψα(x) locally uniformly on (−∞, 0) iff (B. 3) holds;

(iii) G = Λ, then gn(x) → λ(x) locally uniformly on R iff (B. 4) holds.

THEOREM B.5. (Lemma 2, de Haan and Resnick (1982)) Suppose F ∈ D(Λ)

with auxiliary function u and ϵ > 0. There exists a t0 such that for x ≥ 0, t ≥ t0

(1− ϵ)

[
− logF (t)

− logF (t+ xu(t))

]−ϵ
≤ u(t+ xu(t))

u(t)
≤ (1 + ϵ)

[
− logF (t)

− logF (t+ xu(t))

]ϵ
,
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and for x < 0, t+ xu(t) ≥ t0

(1− ϵ)

[
− logF (t+ xu(t))

− logF (t)

]−ϵ
≤ u(t+ xu(t))

u(t)
≤ (1 + ϵ)

[
− logF (t+ xu(t))

− logF (t)

]ϵ
.

THEOREM B.6. (Corollary, Balkema and de Haan (1972)) A distribution func-

tion F ∈ D(Λ) if and only if there exist a positive function c satisfying limx→r(F ) c(x)

= 1 and a positive differentiable function u(t) satisfying limx→r(F ) u
′(x) = 0 such

that

F̄ (x) = c(x) exp

(
−
∫ x

−∞

dt

u(t)

)
for x < r(F ).
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IID random variables. Statistics and Probability Letters, 80 (2010), 1167–1173.

[ 6 ] de L. Haan, and S. I. Resnick, Local limit theorems for sample extremes. The Annals of

Probability, 10(1982), 396–413.
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