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Abstract. As a continuation work, we consider a second order nonlinear dif-
ferential equation denoted in the title. We show the domains of its solutions
and have analytical expressions valid in the neighbourhoods of the ends of these
domains. In this way, we clarify asymptotic behaviour of all solutions. We then
find a regulary varying solution and represent this with the help of an asymp-
totic expansion of a solution of a nonlinear differential equation with an irregular
singular point.

1. Introduction

In the papers [8, 9, 11, 13, 14, 16, 17, 18], we treat a second order nonlinear

differential equation

x′′ = tαλ−2x1+α ( ′ = d/dt) (E)

where t, x are positive variables and α, λ are real parameters. As stated in those

papers, it is valuable to solve this, for this can be applied to many other fields

and many authors treat this or its general types (see [2, 4, 5, 6, 7, 19, etc.]).

Also, (E) has a remarkable property that (E) can be transformed into a first

order rational differential equation. This property was first discovered in [8] and

using this property, we have investigated asymptotic behaviour of all solutions

of (E).

However, in the case α < 0 we treated only the following cases:

(i) λ0 < α < 0, λ < −1, λ > 0, (ii) α = λ0, λ < −1, λ > 0

where λ0 = −(2λ + 1)2/4λ(λ + 1). So we here consider the case α < 0, λ = 0,

namely

x′′ = t−2x1+α (α < 0). (E0)

In this case, the transformation and the rational differential equation which we
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use have singular forms, and so we cannot treat this case and another case si-

multaneously.

We state the asymptotic behaviour of all solutions of (E0) as our theorems in

Section 2. The proofs of these are carried out in Section 3. In these proofs, (E0)

is shown to admit a slowly varying solution. For expressing this solution, we use

an asymptotic expansion of a solution of a nonliner differential equation in the

complex domain with an irregular singlular point. Here we say that a function

x(t) is regularly varying of index k if

lim
t→∞

x(γt)

x(t)
= γk

for all γ > 0 and in particular, slowly varying if k = 0 ([1]). In this paper, the

solution is said to be slowly varying as t → +0 instead of t → ∞.

For completing those proofs, it is sufficient to follow the discussion of [14]

and so we state only the outlines, except the discussion on the slowly varying

solution.

Finally, we note that the asymptotic behaviour of the solutions of (E) of

the case λ = −1 is known directly from our conclusions via the transforma-

tion (t, x) → (1/t, x/t) of Panayotounakos and Sotiropoulos ([7]) and that this

equation has a regularly varying solution of index 1.

2. Statement of our theorems

Let us consider (E0). First, put

y = xα, z = ty′. (T )

Then we have y > 0, for x is a positive variable. Also, we get

dz

dy
=

(α− 1)z2 + αyz + α2y3

αyz
(R)

which is rewritten as a two dimensional autonomous system

dy

ds
= αyz

dz

ds
= (α− 1)z2 + αyz + α2y3 (S)

where s is a parameter. (R), (S) are the same as (2.10), (2.11) of [14] respetively.

The critical point of (S) is only the origin in the region y ≥ 0. As shown below,

the phase portrait of (S) is as in Figure.
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Figure The phase portrait of (S)

In this figure, O± denote the unique orbits such that

z = ±α

√
2

α + 2
y3/2

(
1 +

∞∑
n=1

zny
−n/2

)
(2.1)

in the neighbourhood of y = ∞, where zn are constants. The orbits lying above

O+ or below O− are represented as

z = Γ−1y(α−1)/α

{
1 +

∑
m+n>0

zmny
−(1/2)m+((α+2)/2α)n

}
(2.2)

in the neighbourhood of y = ∞, where Γ, zmn are constants. If the orbit tends

to the origin in z > 0, then this orbit is represented as

z = −αy2

(
1 +

N−1∑
n=1

zny
n +O(yN)

)
as y → 0 (2.3)

where N is any integer (≥ 2) and zn are constants, and if the orbit tends to the

origin in z < 0, then as

z = αy

[
1 +

∑
m+n>0

wmny
m
{
y−1/α(h log y + C)

}n]
(2.4)
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in the neighbourhood of y = 0, where wmn, h, C are constants and h = 0 if

−1/α ̸∈ N.
Now, given an initial condition

x(t0) = A, x′(t0) = B (0 < t0 < ∞, 0 < A < ∞, −∞ < B < ∞), (I)

we denote the solution of the initial value problem (E0), (I) as x = x(t). From

x(t) we have a solution z = z(y) of (R) with the initial condition

z(y0) = z0 (2.5)

where

y0 = Aα, z0 = αt0A
α−1B,

for we get

y = xα, z = αtxα−1x′

from (T ) and (y, z) = (y0, z0) if t = t0. Also, from x(t) we have an orbit (y, z)

of (S) passing (y0, z0). Conversely, via (T ) we get the solution x(t) of (E0), (I)

from the solution z(y) of (R) with (2.5) or from the orbit (y, z) of (S) passing

(y0, z0).

So, taking (t0, A,B) of (I) and depending on where (y0, z0) lies, we state the

asymptotic behaviour of x(t). First, suppose −2 < α < 0.

THEOREM 1. If (y0, z0) ∈ O+, then x(t) is defined for 0 < t < ω+ (here and

hereafter, ω+ denotes some positive constant). Also, x(t) is represented as the

following asymptotic expansion:

x(t) = (α log t+ C)−1/α

[
1 +

∑
0<m+n≤N

xmn(α log t+ C)−m

×
{
(α log t+ C)−1 log(α log t+ C)

}n
+O((α log t)−N)

]
(2.6)

as t → +0, where C, xmn are constants, N is any integer (≥ 2), and xN0 = 0,

and as

x(t) =

{
2(α + 2)ω2

+

α2

}1/α

(ω+ − t)−2/α

{
1 +

∞∑
n=1

xn(ω+ − t)n

}
(2.7)

in the neighbourhood of t = ω+, where xn are constants.

Note that (2.6) is the slowly varying solution of (E0).
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THEOREM 2. If (y0, z0) lies in the region above O+, then x(t) is defined for

0 < t < ω+. Moreover x(t) is represented as (2.6) as t → +0, and as

x(t) = K(ω+ − t)

{
1 +

∑
m+n>0

xmn

×(ω+ − t)−(α/2)m(ω+ − t)((α+2)/2)n

}
(2.8)

in the neighbourhood of t = ω+, where K, xmn are constants.

THEOREM 3. If (y0, z0) lies in the region between O+ and O−, then x(t) is

defined for 0 < t < ∞. Also, x(t) is expressed as (2.6) as t → +0, and as

x(t) = Kt

(
1 +

∑
m+n>0

xmnt
αm−n

)
if − 1/α /∈ N (2.9)

x(t) = Kt

(
1 +

∞∑
k=1

tαkpk(log t)

)
if − 1/α ∈ N (2.10)

in the neighbourhood of t = ∞, where K, xmn are constants and pk are polyno-

mials with deg pk ≤ [−αk].

THEOREM 4. If (y0, z0) ∈ O−, then x(t) is defined for ω− < t < ∞ (here and

hereafter, ω− denotes some positive constant). Moreover x(t) is represented as

x(t) =

{
2(α + 2)ω2

−

α2

}1/α

(t− ω−)
−2/α

{
1 +

∞∑
n=1

xn(t− ω−)
n

}
(2.11)

in the neighbourhood of t = ω− where xn are constants, and as (2.9), (2.10) in

the neighbourhood of t = ∞.

THEOREM 5. If (y0, z0) lies in the region below O−, then x(t) is defined for

ω− < t < ∞. Also, in the neighbourhood of t = ω−, x(t) is represented as

x(t) = K(t− ω−)

{
1 +

∑
m+n>0

xmn

×(t− ω−)
−(α/2)m(t− ω−)

((α+2)/2)n

}
(2.12)

where K, xmn are constants, and in the neighbourhood of t = ∞, as (2.9), (2.10).

Next, suppose α ≤ −2. Then we have the following:

THEOREM 6. The conclusion of Theorem 3 follows for all (y0, z0).
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3. Proofs of our theorems

For the proofs, let us follow the discussion of [14]. First, put

w = y−2z

in (R). Then we have

dw

dy
=

α2 + αw − (α + 1)yw2

αy2w
. (3.1)

If γ denotes an accumulation point of a solution of (3.1) as y → 0, then we get

γ = −α,±∞

from Lemma 3.1 of [14]. We here postpone the discussion on the case γ = −α.

If γ = ±∞, then we have (2.4) in the neighbourhood of y = 0 from Lemma 2.5

of [12] and the proof of Lemma 3.3 of [14] (and eventually we have γ = −∞). If

we follow the discussion of Section 3 of [9], then from (2.4) we get (2.9), (2.10)

in the neighbourhood of t = ∞.

Next, let us consider the case when y does not tend to 0. Following Section

4 of [14], we then conclude that y → ∞, z → ±∞ as s tends to the end of the

domain of the orbit (y, z). Also, if we put y = 1/η, z = 1/ζ and θ = η−3/2ζ,

ξ = η1/2, then we have

ξ
dθ

dξ
= −α + 2

α
θ + 2ξθ2 + 2αθ3. (3.2)

Let δ be an accumulation point of a solution of (3.2) as ξ → 0 (namely, y → ∞).

If −2 < α < 0, then we get

δ = 0,±ρ

(
ρ =

1

α

√
α + 2

2

)

and if α ≤ −2, then there exists no δ, namely y always tends to 0 as s tends to

the end of the domain of (y, z) (see the proof of Lemma 7.1 of [16]).

Suppose −2 < α < 0. If δ = 0, then from Section 5 of [9] we have (2.2) and

from this, (2.7), (2.11) if z > 0, z < 0 respectively. In fact, y is increasing in t

as z > 0 and decreasing in t as z < 0 from z = ty′ of (T). Also if δ = ±ρ, then

from Lemma 2.5 of [12] and the proof of Lemma 4.4 of [14] we get (2.1) and from

this, (2.8), (2.12) if z > 0, z < 0, respectively. Here we draw the phase portrait

of (S) as in Figure from considering γ, δ of (3.1), (3.2) and the direction of the

orbit of (S) (see Section 4 of [14]).
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Finally, let us discuss the case γ = −α in (3.1). In this case, put θ = w + α.

Then we have

y2
dθ

dy
= (α + 1)y − θ

α
+ · · · (3.3)

and θ → 0 as y → 0.

We really have such θ from the orbits tending to the origin in z > 0. So, we

consider the nonlinear differential equation

xσ+1 dy

dx
= f(x, y) (3.4)

with an irregular singular point, more generally. Here x, y are complex variables,

σ ∈ N, and f(x, y) is a holomorphic function in the neighbourhood of (x, y) =

(0, 0) such that

f(x, y) = ax+ λy +
∑

j+k≥2

ajkx
jyk

(a, λ, ajk : constants, λ ̸= 0).

LEMMA. If (3.4) has a solution y(x) tending to 0 as x → 0 along a line ℓ in a

sector

−π

2
< σ arg x− arg λ <

π

2
,

then we have

y(x) =
N−1∑
j=1

pjx
j +O(xN) (pj : constants)

as x → 0 along ℓ. Here N is any integer (≥ 2).

Proof. We first follow the discussion of [3] (Sections 4, 6 of Chapter III) and use

a formal transformation

y =
∑

j+k>0

pjkx
jηk (pjk : constants with p01 = 1)

which reduces (3.4) to

xσ+1η′ = η
σ∑

j=0

αjx
j

where α0 = λ, αj are constants and ′ = d/dx. From this, we have

η = CxασeΛ(x)

(
C : a constant, Λ(x) =

σ−1∑
j=0

αj

j − σ
xj−σ

)
.
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Next, we put

y = z + PN(x, η), PN(x, η) =
∑

j+k<N

pjkx
jηk

and have

xσ+1z′ = gN(x, η, z) (3.5)

where

gN(x, η, z) = f(x, z+PN(x, η))−
∑

j+k<N

jpjkx
j+σηk−

∑
j+k<N

kpjkx
jηk

σ∑
J=0

αJx
J .

Also, if we put

gN(x, η, z) =
∑

j+k+l>0

bjklx
jηkzl

then we have

b001 = λ, bjk0 = 0 (j + k < N),

for (3.5) has a formal solution

z =
∑

j+k≥N

pjkx
jηk.

Now, let us start our discussion. For sufficiently small |x| we have

π

2
< arg Λ(x) <

3

2
π,

that is,

ReΛ(x) < 0,

since ℓ lies in −π/2 < σ arg x− arg λ < π/2. Hence as x → 0 along ℓ we have

η → 0, x−1η → 0.

On the other hand, we get z = z(x) → 0 as x → 0 along ℓ from the assumption

y(x) → 0. Therefore we have

gN(x, η, z) = λ̂(x)z + hN(x)

where λ̂(x) is a holomorphic function of x ̸= 0, hN(x) is that of x, and

λ̂(x) → λ,
hN(x)

xN
→ bN00 as x → 0 along ℓ.
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Hence from (3.5) we have

z = e
∫ x
x0

λ̂(x)x−σ−1dx

(∫ x

x0

hN(x)x
−σ−1e

−
∫ x
x0

λ̂(x)x−σ−1dx
dx+ C

)
where x0 is a nonzero constant on ℓ, C is a constant, and the paths of integration

are a segment connecting 0 and x0. Therefore if we put x = reiθ, x0 = r0e
iθ0 ,

λ = ρeiω then θ is constant and

Re

∫ x

x0

λ̂(x)x−σ−1dx =

∫ r

r0

λ̃(r, θ)r−σ−1dr

where

λ̃(r, θ) = Re λ̂(x) cos σθ + Im λ̂(x) sin σθ.

Hence we have

|z| ≤ e
Re

∫ x
x0

λ̂(x)x−σ−1dx

(∣∣∣∣∫ r

r0

|hN(x)|r−σ−1e
−Re

∫ r
r0

λ̂(x)x−σ−1dx
dr

∣∣∣∣+ |C|
)

= e
∫ r
r0

λ̃(r,θ)r−σ−1dr

(∣∣∣∣∫ r

r0

|hN(x)|r−σ−1e
−

∫ r
r0

λ̃(r,θ)r−σ−1dr
dr

∣∣∣∣+ |C|
)
.

Since λ̂(x) → λ, we get

λ̃(r, θ) → ρ cos(ω − σθ) as r → 0

and

λ̃(r, θ) >
ρ

2
cos(ω − σθ) > 0

for sufficiently small r. Here, suppose r < r0. Then for sufficiently small r0 we

have∫ r

r0

λ̃(r, θ)r−σ−1dr <
{ρ
2
cos(ω − σθ)

}(
−r−σ

σ
+

r−σ
0

σ

)
→ −∞ as r → 0.

Hence from l’Hospital’s theorem we get∫ r

r0
|hN(x)|r−σ−1e

−
∫ r
r0

λ̃(r,θ)r−σ−1dr
dr

rNe
−

∫ r
r0

λ̃(r,θ)r−σ−1dr
→ − bN00

ρ cos(ω − σθ)
,

which implies

z = O(xN) as x → 0 along ℓ.

Therefore it completes the proof to put pj = pj0, for x
−1η → 0 as x → 0 along ℓ.
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If we put λ = −1/α(> 0), σ = 1, x = y(> 0), y = θ in (3.4), then we have

(3.3) and may take σ arg x− arg λ = 0. Hence from this lemma, we get

θ =
N−1∑
n=1

θny
n +O(yN) as y → 0

where θn are constants and θ1 = α(α + 1). Since θ = w + α, w = y−2z, we have

w = −α +
N−1∑
n=1

θny
n +O(yN)

and (2.3). Also, from (T ) we get

ty′ = −αy2

(
1 +

N−1∑
n=1

θ̃ny
n +O(yN)

) (
θ̃n = −θn

α

)
.

Solving this, we have

−y−1 + (α + 1) log y +
N−1∑
n=2

θ̂ny
n−1 +O(yN−1)

= −α log t− C (θ̂n, C : constants)

and from this,

y

{
1 +

∑
0<m+n≤N

amny
m(y log y)n

}
(1 +O(yN)) = (α log t+ C)−1

where amn are constants. As y → +0, we get t → +0 and

y

(α log t)−1
→ 1.

Hence we have

O(yN) = O((α log t)−N)

and

y

{
1 +

∑
0<m+n≤N

amny
m(y log y)n

}
= (α log t+ C)−1{1 +O((α log t)−N)}. (3.6)

Taking the logarithms of both sides, we get

log y +
∑

m+n>0

ãmny
m(y log y)n = − log(α log t+ C)

+O((α log t)−N) (ãmn : constants) (3.7)
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and multiplying (3.6) with (3.7),

y log y +
∑

m+n>1

âmny
m(y log y)n

= −(α log t+ C)−1 log(α log t+ C) +O((α log t)−N−1 log(α log t))

(âmn : constants). (3.8)

Note that the left hand sides of (3.6), (3.8) are functions of y, y log y. Then

applying the inverse function theorem to (3.6), (3.8), we determine y, y log y and

in particular we have

y = (α log t+ C)−1

[
1 +

∑
0<m+n≤N

bmn(α log t+ C)−m

×{(α log t+ C)−1 log(α log t+ C)}n +O((α log t)−N)

]
(bmn : constants).

This implies (2.6) from (T ). Now the proofs are complete.
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