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Abstract. We consider the two-state space-inhomogeneous coined quantum
walk (QW) in one dimension. For a general setting, we obtain the stationary
measure of the QW by solving the eigenvalue problem. As a corollary, stationary
measures of the multi-defect model and space-homogeneous QW are derived.
The former is a generalization of the previous works on one-defect model and the
latter is a generalization of the result given by Konno and Takei (2015).

1. Introduction

The discrete time quantum walk (QW) was introduced as a quantum ver-

sion of the classical random walk, whose time evolution are defined by unitary

evolutions of amplitudes. The distribution of QW on the one dimensional lat-

tice is different from that of the random walk [16, 17]. The review and books

on QWs are Venegas-Andraca [27], Konno [18], Cantero et al. [6], Portugal

[26], Manouchehri and Wang [22], for examples. The QW is a subject of study

that has been investigated among quantum information and computation since

around 2000. For its characteristic properties, recently, QWs have been widely

studied by a number of groups in connection with various topics, for examples,

separation of the radioisotope [23], energy transfer of photosynthesis complexes

[24] and topological insulator [25].

There are two types of QWs, one is homogeneous QWs and the other is

inhomogeneous QWs. The meaning of “inhomogeneity” is that the quantum

coin of a QW depends on time and/or space [1, 2, 3, 13]. We focus on space-

inhomogeneous QWs in one dimension. One of the basic interests is to obtain

measures induced by unitary evolutions of QWs, e.g., stationary measure, (time-

averaged) limit measure and rescaled weak-limit measure. In this paper, we

consider the stationary measures of QWs on Z, where Z is the set of integers.
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Hence the stationary measure is the measure which does not depend on time.

Especially, we get stationary measures of the two-state space-inhomogeneous

QWs.

We briefly review the backgrounds of stationary measures for space-inhomo-

geneous models, i.e., QWs with defects. As for stationary measures of two-state

QWs with one defect at the origin, Konno et al. [20] showed that a stationary

measure with exponential decay with respect to the position for the QW starting

from infinite sites is identical to a time-averaged limit measure for the same QW

starting from just the origin. We call this stationary measure a exponential type

measure. One of our results contains the stationary measure shown by Konno et

al. [20]. Endo et al. [12] got a stationary measure of the QW with one defect

whose coin matrices are defined by the Hadamard matrix at x ̸= 0 and the

rotation matrix at x = 0. Endo and Konno [8] calculated a stationary measure

of the QW with one defect which was introduced and studied by Wójcik et al.

[28]. Moreover, Endo et al. [11] and Endo et al. [7] obtained stationary measures

of the two-phase QW without defect and with one defect, respectively. Our result

includes the stationary measure of the two-phase QW without defect and with

one defect which was studied by Endo et al. [7, 11].

Konno and Takei [21] considered stationary measures of QWs and gave non-

uniform stationary measures expressed as a quadratic polynomial. We call this

stationary measure a quadratic polynomial type measure. Moreover, they proved

that the set of the stationary measures contains uniform measure for the QW

in general. So our aim is to find the non-trivial stationary measure of two-state

QWs with multi-defect on Z. One of our results belongs the stationary measure

with quadratic polynomial type which is given by Konno and Takei [21].

Stationary measures for other QW models are also investigated, for example,

three-state QW on Z [9, 10, 14, 19, 29] and higher dimensional QW [15]. In order

to analyze the details of QWs, a method based on transfer matrices is one of the

common approaches, for example, Ahlbrecht et al. [4] and Bourget et al. [5].

In this paper, we apply this method to two-state space-inhomogeneous QWs to

obtain the stationary measures.

This paper is organized as follows. In Section 2, we introduce the definition

of the two-state inhomogeneous QWs with multi-defect on Z. In Section 3, we

present our results. Section 4 gives the proofs of results shown in the previous

section by solving the corresponding the eigenvalue problem. In Section 5, we

deal with typical examples of two-state space-inhomogeneous QWs. Finally,

summary is devoted to Section 6.
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2. Model and method

We introduce a discrete-time space-inhomogeneous QW on the line which is a

quantum version of the classical random walk with an additional coin state. The

particle has a coin state at time n and position x described by a two-dimensional

vector:

Ψn(x) =

[
ΨL

n(x)

ΨR
n (x)

]
(x ∈ Z),

The upper and lower elements express left and right chiralities, respectively. The

time evolution is determined by 2 × 2 unitary matrices Ux which is called coin

matrix here:

Ux =

[
ax bx
cx dx

]
(x ∈ Z).

The subscript x stands for the location. We divide Ux into Ux = Px +Qx with

Px =

[
ax bx
0 0

]
, Qx =

[
0 0

cx dx

]
.

The 2×2 matrix Px (resp. Qx) represents that the walker moves to the left (resp.

right) at position x at each time step. Then the time evolution of the walk is

defined by

Ψn+1(x) ≡ U (s)Ψn(x) = Px+1Ψn(x+ 1) +Qx−1Ψn(x− 1) (x ∈ Z).

That is, [
ΨL

n+1(x)

ΨR
n+1(x)

]
=

[
ax+1Ψ

L
n(x+ 1) + bx+1Ψ

R
n (x+ 1)

cx−1Ψ
L
n(x− 1) + dx−1Ψ

R
n (x− 1)

]
.

Now let

Ψn = T [· · · ,ΨL
n(−1),ΨR

n (−1),ΨL
n(0),Ψ

R
n (0),Ψ

L
n(1),Ψ

R
n (1), · · · ],

U (s) =



. . .
...

...
...

...
... . . .

. . . O P−1 O O O . . .

. . . Q−2 O P0 O O . . .

. . . O Q−1 O P1 O . . .

. . . O O Q0 O P2 . . .

. . . O O O Q1 O . . .

. . .
...

...
...

...
...

. . .


with O =

[
0 0

0 0

]
,
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where T means the transposed operation and the meaning of the superscript (s)

is the first letter of system. Then the state of the QW at time n is given by

Ψn = (U (s))nΨ0 for any n ≥ 0. Let R+ = [0,∞). Here we introduce a map

ϕ : (C2)Z → RZ
+ such that for

Ψ = T

[
· · · ,

[
ΨL(−1)

ΨR(−1)

]
,

[
ΨL(0)

ΨR(0)

]
,

[
ΨL(1)

ΨR(1)

]
, · · ·

]
∈ (C2)Z,

we define the measure of the QW by µ : Z → R+ satisfying

µ(x) = ϕ(Ψ)(x) = |ΨL(x)|2 + |ΨR(x)|2 (x ∈ Z).

We should note that µ(x) gives the measure of the QW at position x. Our model

here is considered on the set of all the C2-valued functions on Z whose inner

product is ⟨Ψ,Φ⟩ =
∑

x∈Z⟨Ψ(x),Φ(x)⟩C2 , where ⟨·, ·⟩C2 denotes the standard

inner product on C2. We do not have any assumptions on the norm for the

sets. In this paper, we consider the stationary measures for QWs on the above

framework.

Let M(U (s)) be the set of measures of the QW. To explain our results, we in-

troduce three classes of the measures for QW. First one is the set of the measures

with exponential type:

Met(U
(s)) =

{
µ ∈ M(U (s)) ; there exist c+, c− > 0 (c+, c− ̸= 1) such that

0 < lim
x→+∞

µ(x)

cx+
< +∞, 0 < lim

x→−∞

µ(x)

cx−
< +∞

}
,

where M(U (s)) is the set of measures on Z. Second one is the set of the measures

with quadratic polynomial type:

Mqpt(U
(s)) =

{
µ ∈ M(U (s)) ; 0 < lim

x→±∞

µ(x)

|x|2
< +∞

}
.

Last one is the set of the stationary measures:

Ms(U
(s)) =

{
µ ∈ M(U (s)) ; there exists Ψ0 ∈

(
C2

)Z
such that

ϕ((U (s))nΨ0) = µ (n = 0, 1, 2, . . .)
}

and we call the element of Ms(U
(s)) the stationary measure of the QW. In

general, if unitary operators U
(s)
1 and U

(s)
2 are different, the sets of stationary

measures Ms(U
(s)
1 ) and Ms(U

(s)
2 ) are different. For example, if we take the

unitary operators U
(s)
1 and U

(s)
2 corresponding to the following matrices U1 and

U2 respectively:

U1 =

[
1 0

0 1

]
, U2 =

1√
2

[
1 1

1 −1

]
,
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then we have

Ms(U
(s)
1 ) = Munif (U

(s)), Ms(U
(s)
2 ) ⊋ Munif (U

(s)).

The above results are given in Konno and Takei [21]. Here Munif (U
(s)) is the

set of the uniform measures defined by

Munif (U
(s)) =

{
µc ∈ M(U (s)) ; µc(x) = c, c > 0

}
.

Let us consider the eigenvalue problem:

U (s)Ψ = λΨ,

where λ ∈ C with |λ| = 1 and U (s) is an doubly infinite unitary matrix. If we

assume that the initial state Ψ0 is the above solution, we have

Ψn = (U (s))nΨ0 = λnΨ0.

Noting that |λ| = 1, we see

µn(x) = ||Ψn(x)||2 = |λ|2n||Ψ0(x)||2 = µ0(x) (x ∈ Z).

Therefore µ0(x) = ϕ(Ψ0)(x) gives the stationary measure.

3. Results

Applying the method introduced in Section 4 to the space-inhomogeneous

QW, we solve the eigenvalue problem U (s)Ψ = λΨ as follows. From now on, we

put α = ΨL(0) and β = ΨR(0).

THEOREM 3.1. Let Ψ(x) = T [ΨL(x),ΨR(x)] be the amplitude. Put coin matrix

which is defined by

Ux =

[
ax bx
cx dx

]
(x ∈ Z),

where axbxcxdx ̸= 0. Then a solution of the following eigenvalue problem:

U (s)Ψ = λΨ

is given by

Ψ(x) =



x∏
y=1

D+
y Ψ(0) (x ≥ 1),

Ψ(0) (x = 0),
x∏

y=−1

D−
y Ψ(0) (x ≤ −1),
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where

D+
x =

λ2 − bxcx−1

λax
−bxdx−1

λax
cx−1

λ

dx−1

λ

 , D−
x =

 ax+1

λ

bx+1

λ

−ax+1cx
λdx

λ2 − bx+1cx
λdx

 .

Moreover a stationary measure µ is given by

µ(x) = ϕ(Ψ)(x) = ||Ψ(x)||2 (x ∈ Z).

We introduce some notations

Z≥ = {0, 1, 2, . . .},
Z> = {1, 2, 3, . . .},

Z[a,b] = {a, a+ 1, . . . , b− 1, b}(a, b ∈ Z with a < b).

Next we consider a special case of Theorem 3.1 in which a sequence of coin

matrices {Ux} is defined by

Ux = U (x /∈ Z[−m,n])

for m,n ∈ Z>. Here U is a 2× 2 unitary matrix. The model can be considered

on a QW with (m+ n+ 1) defects. The following result is a direct consequence

of Theorem 3.1.

PROPOSITION 3.2. Put m,n ∈ Z>. Let Ψ(x) = T [ΨL(x),ΨR(x)] be the ampli-

tude. Define a sequence of coin matrices {Ux} as follows:

Ux =



[
ax bx

cx dx

]
(x ∈ Z[−m,n]),

[
a b

c d

]
(x /∈ Z[−m,n]),

where axbxcxdx ̸= 0, and abcd ̸= 0. Then a solution of the following eigenvalue

problem:

U (s)Ψ = λΨ
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is given by

Ψ(x) =



{
(D+)x−(n+1)

} n+1∏
y=1

D+
y Ψ(0) (n+ 2 ≤ x),

x∏
y=1

D+
y Ψ(0) (1 ≤ x ≤ n+ 1),

Ψ(0) (x = 0),
x∏

y=−1

D−
y Ψ(0) (−(m+ 1) ≤ x ≤ −1),

{
(D−)−x−(m+1)

} −(m+1)∏
y=−1

D−
y Ψ(0) (x ≤ −(m+ 2)),

where

D+ =

λ2 − bc

λa
− bd

λa
c

λ

d

λ

 , D+
n+1 =

λ2 − bcn
λa

−bdn
λa

cn
λ

dn
λ

 ,

D−
−(m+1) =

 a−m

λ

b−m

λ

−a−mc

λd

λ2 − b−mc

λd

 , D− =

 a

λ

b

λ

− ac

λd

λ2 − bc

λd

 .

Furthermore, a stationary measure µ is determined by

µ(x) = ϕ(Ψ)(x) = ||Ψ(x)||2 (x ∈ Z).

The following result is obtained by solving the recurrence relations of D+ and

D−, respectively.

PROPOSITION 3.3. We put ΨL(x) = Sx,Ψ
R(x) = Tx and ∆ = ad− bc.

(1) For x ≥ n+ 1, we have

(i) λ2 ̸= ad+ bc± 2
√
abcd case

Sx =
1

Λ+ − Λ−

{
Λx−n

+ (Sn+1 − Λ−Sn)− Λx−n
− (Sn+1 − Λ+Sn)

}
,

Tx =
1

Λ+ − Λ−

{
Λ

x−(n+1)
+ (Tn+2 − Λ−Tn+1)−

Λ
x−(n+1)
− (Tn+2 − Λ+Tn+1)

}
,
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where

Λ± =
λ2 +∆±

√
(λ2 +∆)2 − 4λ2ad

2aλ
.

(ii) λ2 = ad+ bc± 2
√
abcd case

Sx = Λx−(n+1)
[
Sn+1 + {x− (n+ 1)}(Sn+1 − ΛSn)

]
,

Tx = Λx−(n+2)
[
Tn+2 + {x− (n+ 2)}(Tn+2 − ΛTn+1)

]
,

where

Λ =
λ2 +∆

2aλ
.

(2) For x ≤ −(m+ 1), we have

(i) λ2 ̸= ad+ bc± 2
√
abcd case

Sx =
1

Γ+ − Γ−

{
Γ
−x−(m+1)
+ (S−(m+2) − Γ−S−(m+1))

− Γ
−x−(m+1)
− (S−(m+2) − Γ+S−(m+1))

}
,

Tx =
1

Γ+ − Γ−

{
Γ−x−m
+ (T−(m+1) − Γ−T−m)

− Γ−x−m
− (T−(m+1) − Γ+T−m)

}
,

where

Γ± =
λ2 +∆±

√
(λ2 +∆)2 − 4λ2ad

2dλ
=

d

a
Λ±.

(ii) λ2 = ad+ bc± 2
√
abcd case

Sx = Γ−x−(m+2)
[
S−(m+2) + {−x− (m+ 2)}(S−(m+2) − ΓS−(m+1))

]
,

Tx = Γ−x−(m+1)
[
T−(m+1) + {−x− (m+ 1)}(T−(m+1) − ΓT−m)

]
,

where

Γ =
λ2 +∆

2dλ
.
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From this theorem we can obtain the following result for the space-homo-

geneous case.

COROLLARY 3.4. Let Ψ(x) = T [ΨL(x),ΨR(x)] be the amplitude. Put

Ux = U =

[
a b

c d

]
(x ∈ Z),

with abcd ̸= 0. Then a solution of the following eigenvalue problem:

U (s)Ψ = λΨ

is given by

(i) λ2 ̸= ad+ bc± 2
√
abcd case[

ΨL(x)

ΨR(x)

]

=



1

Λ+ − Λ−

Λx
+(Ψ

L(1)− Λ−α)− Λx
−(Ψ

L(1)− Λ+α)

Λx
+(Ψ

R(1)− Λ−β)− Λx
−(Ψ

R(1)− Λ+β)

 (x ≥ 1),

1

Γ+ − Γ−

Γ−x
+ (ΨL(−1)− Γ−α)− Γ−x

− (ΨL(−1)− Γ+α)

Γ−x
+ (ΨR(−1)− Γ−β)− Γ−x

− (ΨR(−1)− Γ+β)

 (x ≤ −1),

(ii) λ2 = ad+ bc± 2
√
abcd case[

ΨL(x)

ΨR(x)

]

=



(
λ2 +∆

2aλ

)x
1

λ2 +∆

α(1 + x)λ2 − (α∇+ 2bdβ)x+ α∆

β(1− x)λ2 + (β∇+ 2acα)x+ β∆

 (x ≥ 1),

(
λ2 +∆

2dλ

)−x
1

λ2 +∆

α(1 + x)λ2 − (α∇+ 2bdβ)x+ α∆

β(1− x)λ2 + (β∇+ 2acα)x+ β∆

 (x ≤ −1),
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where

∆ = ad− bc, ∇ = ad+ bc,

Λ± =
λ2 +∆±

√
(λ2 +∆)2 − 4λ2ad

2aλ
, Γ± =

λ2 +∆±
√

(λ2 +∆)2 − 4λ2ad

2dλ
,

ΨL(1) =
αλ2 − b(dβ + cα)

aλ
, ΨR(1) =

dβ + cα

λ
,

ΨL(−1) =
bβ + aα

λ
, ΨR(−1) =

βλ2 − c(bβ + aα)

dλ
.

Furthermore, a stationary measure µ is given by

µ(x) = ϕ(Ψ)(x) = ||Ψ(x)||2 (x ∈ Z).

A stationary measure µ ∈ M(U (s)) in case (i) of Corollary 3.4 becomes an

exponential type measure, i.e., µ ∈ Ms(U
(s))∩Met(U

(s)). On the other hand, a

stationary measure µ ∈ M(U (s)) in case (ii) of Corollary 3.4 becomes a quadratic

polynomial type measure, i.e. µ ∈ Ms(U
(s)) ∩ Mqpt(U

(s)), which was given in

Konno and Takei [21].

4. Proofs

In this section, we prove Theorem 3.1 and Proposition 3.3.

4.1 Proof of Theorem 3.1

We focus on the space-inhomogeneous QW whose coin matrix is determined

by

Ux =

[
ax bx
cx dx

]
(x ∈ Z)

where axbxcxdx ̸= 0. We consider the solution of

U (s)Ψ = λΨ.

Then Ψ(x) = T [ΨL(x),ΨR(x)] satisfies

λ

[
ΨL(x)

ΨR(x)

]
=

[
ax+1Ψ

L(x+ 1) + bx+1Ψ
R(x+ 1)

cx−1Ψ
L(x− 1) + dx−1Ψ

R(x− 1)

]
(x ∈ Z). (4.1)

From now on, we will obtain D+ and D−. Eq.(4.1) gives

ΨL(x− 1) =
ax
λ
ΨL(x) +

bx
λ
ΨR(x). (4.2)
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Then Eq.(4.2) can be rewritten as

ΨL(x− 1) =
ax
λ
ΨL(x) +

bx
λ

{
cx−1

λ
ΨL(x− 1) +

dx−1

λ
ΨR(x− 1)

}
.

Hence, we get

ΨL(x) =
1

ax

(
λ− bxcx−1

λ

)
ΨL(x− 1)− bxdx−1

axλ
ΨR(x− 1).

From now on, we put

D+
x =

λ2 − bxcx−1

axλ
−bxdx−1

axλ
cx−1

λ

dx−1

λ

 .

Therefore Eq.(4.1) becomes

[
ΨL(x)

ΨR(x)

]
=

 1

ax

(
λ− bxcx−1

λ

)
ΨL(x− 1)− bxdx−1

axλ
ΨR(x− 1)

cx−1

λ
ΨL(x− 1) +

dx−1

λ
ΨR(x− 1)



=

λ2 − bxcx−1

axλ
−bxdx−1

axλ
cx−1

λ

dx−1

λ

[
ΨL(x− 1)

ΨR(x− 1)

]

= D+
x

[
ΨL(x− 1)

ΨR(x− 1)

]
.

Thus we get

Ψ(x) = D+
x Ψ(x− 1) (x ∈ Z). (4.3)

From Eq.(4.3), we obtain

Ψ(x) =
x∏

y=1

D+
y Ψ(0) (x ≥ 1).

We put {D+
x }−1 = D−

x−1. We should remark that determinant of D+
x is not 0,

since ax ̸= 0 (x ∈ Z). Then Eq.(4.3) gives

Ψ(x) = D−
x Ψ(x+ 1) (x ∈ Z). (4.4)

By Eq.(4.4), we have

Ψ(x) =
x∏

y=−1

D−
y Ψ(0) (x ≤ −1).
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4.2 Proof of Proposition 3.3

From now on, we focus on the space-inhomogeneous QW whose coin matrix

is determined by

Ux =



[
ax bx

cx dx

]
(x ∈ Z[−m,n]),

[
a b

c d

]
(x /∈ Z[−m,n]),

where axbxcxdx ̸= 0, and abcd ̸= 0. We consider the solution of

U (s)Ψ = λΨ.

Then Ψ(x) = T [ΨL(x),ΨR(x)] satisfies

λ

[
ΨL(x)

ΨR(x)

]
=

[
0 0

cx−1 dx−1

] [
ΨL(x− 1)

ΨR(x− 1)

]
+

[
ax+1 bx+1

0 0

] [
ΨL(x+ 1)

ΨR(x+ 1)

]
(x ∈ Z).

First we consider x ≥ 0 case. In particular, we have

λ

[
ΨL(x)

ΨR(x)

]
=

[
0 0

c d

] [
ΨL(x− 1)

ΨR(x− 1)

]
+

[
a b

0 0

] [
ΨL(x+ 1)

ΨR(x+ 1)

]
(x ≥ n+ 2),

From now on, we put Sx = ΨL(x) and Tx = ΨR(x), then above equations become

λSx = aSx+1 + bTx+1 (x ≥ n), (4.5)

λTx = cSx−1 + dTx−1 (x ≥ n+ 2). (4.6)

Then Eq.(4.5) and Eq.(4.6) can be rewritten as

λSx−1 = aSx + bTx (x ≥ n+ 1), (4.7)

Tx =
c

λ
Sx−1 +

d

λ
Tx−1 (x ≥ n+ 2). (4.8)

From Eq.(4.7), we have

Tx =
λ

b
Sx−1 −

a

b
Sx (x ≥ n+ 1), (4.9)

Tx−1 =
λ

b
Sx−2 −

a

b
Sx−1 (x ≥ n+ 2). (4.10)
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By substituting Eqs. (4.9) and (4.10) into Eq. (4.7), we see that Sx satisfies

λ
a

b
Sx +

(
c− ad

b
− λ2

b

)
Sx−1 + λ

d

b
Sx−2 = 0 (x ≥ n+ 2). (4.11)

If the characteristic equation of Eq.(4.11) has two distinct roots, Λ+ and Λ−,

then we obtain{
Sx − Λ+Sx−1 = Λ−(Sx−1 − Λ+Sx−2)

Sx − Λ−Sx−1 = Λ+(Sx−1 − Λ−Sx−2)
(x ≥ n+ 1), (4.12)

where

Λ± =
λ2 +∆±

√
(λ2 +∆)2 − 4λ2ad

2aλ
,

with

∆ = ad− bc.

Then Eq.(4.12) can be rewritten as{
Sx+1 − Λ+Sx = Λx−n

− (Sn+1 − Λ+Sn)

Sx+1 − Λ−Sx = Λx−n
+ (Sn+1 − Λ−Sn)

(x ≥ n+ 1),

hence

Sx =
1

Λ+ − Λ−

{
Λx−n

+ (Sn+1 − Λ−Sn)− Λx−n
− (Sn+1 − Λ+Sn)

}
(x ≥ n).

Next, if the characteristic equation of Eq.(4.11) has a multiple root, Λ, then we

have

Sx − ΛSx−1 = Λ(Sx−1 − ΛSx−2) (x ≥ n+ 2), (4.13)

where

Λ =
λ2 +∆

2aλ
.

Then Eq.(4.13) implies

Sx − ΛSx−1 = Λx−(n+1)(Sn+1 − ΛSn) (x ≥ n+ 2). (4.14)

From Eq.(4.14), we get

Sx = Λx−(n+1)
[
Sn+1 + {x− (n+ 1)}(Sn+1 − ΛSn)

]
(x ≥ n). (4.15)

Therefore
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(i) λ2 ̸= ad+ bc± 2
√
abcd case

Sx =
1

Λ+ − Λ−

{
Λx−n

+ (Sn+1 − Λ−Sn)− Λx−n
− (Sn+1 − Λ+Sn)

}
(x ≥ n),

where

Λ± =
λ2 +∆±

√
(λ2 +∆)2 − 4λ2ad

2aλ
.

(ii) λ2 = ad+ bc± 2
√
abcd case

Sx = Λx−(n+1)
[
Sn+1 + {x− (n+ 1)}(Sn+1 − ΛSn)

]
,

where

Λ =
λ2 +∆

2aλ
.

In a similar fashion, we obtain

λ
a

b
Tx+1 +

(
c− ad

b
− λ2

b

)
Tx + λ

d

b
Tx−1 = 0 (x ≥ n+ 2).

Then we have

(i) λ2 ̸= ad+ bc± 2
√
abcd case

Tx =
1

Λ+ − Λ−

{
Λ

x−(n+1)
+ (Tn+2 − Λ−Tn+1)−

Λ
x−(n+1)
− (Tn+2 − Λ+Tn+1)

}
(x ≥ n+ 1),

where

Λ± =
λ2 +∆±

√
(λ2 +∆)2 − 4λ2ad

2aλ
.

(ii) λ2 = ad+ bc± 2
√
abcd case

Tx = Λx−(n+2)
[
Tn+2 + {x− (n+ 2)}(Tn+2 − ΛTn+1)

]
(x ≥ n+ 1),

where

Λ =
λ2 +∆

2aλ
.

5. Examples

In this section, we give two examples. The first model is a QW with two

defects. The second model is the Hadamard walk with three defects which is a

generalization of the model proposed by Wojcic et al [28].
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5.1 QW with two defects

From now on, we consider the space-inhomogeneous QW whose quantum coin

is determined by

Ux =



[
cos θ sin θ

sin θ − cos θ

]
(x = −m,m),

[
1 0

0 −1

]
(x ̸= −m,m),

for m ∈ Z>, θ ̸= π
2
. From Theorem 3.1 and Proposition 3.2, we have

D+ =

[
λ 0

0 − 1
λ

]
, D+

m =

[
λ

cos θ
sin θ
λ cos θ

0 − 1
λ

]
, D+

m+1 =

[
λ 0

sin θ
λ

− cos θ
λ

]
,

D−
−m =

[
1
λ

0
sin θ
λ cos θ

− λ
cos θ

]
, D−

−(m+1) =

[
cos θ
λ

sin θ
λ

0 −λ

]
, D− =

[
1
λ

0

0 −λ

]
.

By Theorem 3.1, the amplitude becomes

Ψ(x) =



x∏
y=1

D+
y Ψ(0) (x ≥ 1),

Ψ(0) (x = 0),
x∏

y=−1

D−
y Ψ(0) (x ≤ −1),

i.e,

[
ΨL(x)

ΨR(x)

]
=



[
λxα

(− 1
λ
)xβ

]
(0 ≤ x ≤ m− 1),

[
1

cos θ

{
λmα− sin θ(− 1

λ
)mβ

}
(− 1

λ
)mβ

]
(x = m),

[
λ

cos θ

{
λmα− sin θ(− 1

λ
)mβ

}
1

λ cos θ

{
sin θλmα− (− 1

λ
)mβ

}] (x = m+ 1),

[
λx−(m+1)ΨL(m+ 1)

(− 1
λ
)x−(m+1)ΨR(m+ 1)

]
(x ≥ m+ 2),
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[
ΨL(x)

ΨR(x)

]
=



[
( 1
λ
)−xα

(−λ)−xβ

]
(−m+ 1 ≤ x ≤ 0),

[
1
λmα

1
cos θ

{
sin θ 1

λmα + (−λ)mβ
}] (x = −m),

[
1

λ cos θ

{
1
λmα + sin θ(−λ)mβ

}
− λ

cos θ

{
sin θ 1

λmα + (−λ)mβ
}] (x = −m− 1),

[
( 1
λ
)−x−(m+1)ΨL(−(m+ 1))

(−λ)−x−(m+1)ΨR(−(m+ 1))

]
(x ≤ −m− 2).

Furthermore, a stationary measure µ is given by

µ(x) = ϕ(Ψ)(x) = ||Ψ(x)||2 (x ∈ Z).

For example, if α = 1/
√
2, β = i/

√
2 and θ = π/4, we get the stationary measure

µ given by

µ(x) =


1 (x ∈ Z[−(m−1),m−1]),

2 (x = ±m),

3 (x /∈ Z[−m,m]).

This stationary measure is not uniform measure.

5.2 Hadamard walk with three defects

Next, we consider the space-inhomogeneous QW whose quantum coin is de-

termined by

Ux =

ωH (x ∈ Z[−1,1]),

H (x /∈ Z[−1,1]),

with ω = e2iπϕ (ϕ ∈ [0, 1)), where

H =
1√
2

[
1 1

1 −1

]
.
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In particular, if ϕ = 0 (i.e., ω = 1), then this space-homogeneous QW is called

the Hadamard walk. Endo and Konno [8] investigated the stationary measures

of Hadamard walk with one defect introduced by Wojcik et al. [28] via a different

approach, i.e., the splitted generating function method.

From Theorem 3.1 and Proposition 3.2, we have

D+ =

[
2λ2−1√

2λ
1√
2λ

1√
2λ

− 1√
2λ

]
, D+

2 =

[
2λ2−ω√

2λ
ω√
2λ

ω√
2λ

− ω√
2λ

]
, D+

1 =

[
2λ2−ω2
√
2λ

ω√
2λ

ω√
2λ

− ω√
2λ

]
,

D−
−1 =

[
ω√
2λ

ω√
2λ

ω√
2λ

−2λ2−ω2
√
2ωλ

]
, D−

−2 =

[
ω√
2λ

ω√
2λ

ω√
2λ

−2λ2−ω√
2ωλ

]
, D− =

[
1√
2λ

1√
2λ

1√
2λ

−2λ2−1√
2λ

]
.

Furthermore, the amplitude is given by

Ψ(x) =



{
(D+)x−2

} 2∏
y=1

D+
y Ψ(0) (3 ≤ x),

x∏
y=1

D+
y Ψ(0) (1 ≤ x ≤ 2),

Ψ(0) (x = 0),
x∏

y=−1

D−
y Ψ(0) (−2 ≤ x ≤ −1),{

(D−)−x−2

} −2∏
y=−1

D−
y Ψ(0) (x ≤ −3),

Next, by Proposition 3.3, we consider the amplitude of 3 ≤ x and x ≤ −3. If

characteristic equation of Eq.(4.11) has a multiple root, then λ = e±
πi
4 ,−e±

πi
4 .

Therefore the amplitude is given by

(i) λ ̸= e±
πi
4 ,−e±

πi
4 (distinct root) case

[
ΨL(x)

ΨR(x)

]

=



A

Λx−1
+ (ΨL(2)− Λ−Ψ

L(1))− Λx−1
− (ΨL(2)− Λ+Ψ

L(1))

Λx−2
+ (ΨR(3)− Λ−Ψ

R(2))− Λx−2
− (ΨR(3)− Λ+Ψ

R(2))

 (x ≥ 3),

A

Γ−x−2
+ (ΨL(−3)− Γ−Ψ

L(−2))− Γ−x−2
− (ΨL(−3)− Γ+Ψ

L(−2))

Γ−x−1
+ (ΨR(−2)− Γ−Ψ

R(−1))− Γ−x−1
− (ΨR(−2)− Γ+Ψ

R(−1))


(x ≤ −3),
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(ii) λ = e±
πi
4 ,−e±

πi
4 (multiple root) case.[

ΨL(x)

ΨR(x)

]

=



Bx−2
{
ΨL(2) + (x− 2)(ΨL(2)−BΨL(1))

}
Bx−3

{
ΨR(3) + (x− 3)(ΨR(3)−BΨR(2))

}
 (x ≥ 3),

(−B)−x−3
{
ΨL(−3) + (−x− 3)(ΨL(−3) +BΨL(−2))

}
(−B)−x−2

{
ΨR(−2) + (−x− 2)(ΨR(−2) +BΨR(−1))

}
 (x ≤ −3),

where

Λ± =
λ2 − 1±

√
λ4 + 1√

2λ
, Γ± = −Λ∓, A =

λ√
2(λ4 + 1)

, B =
λ2 − 1√

2λ
,

[
ΨL(1)

ΨR(1)

]
=


2αλ2+βω2−αω2

√
2ωbλ

− (β−α)ω√
2λ

 ,

[
ΨL(2)

ΨR(2)

]
=


2αλ4−{(α−β)ω2+αω}λ2+(α−β)ω3

ωλ2

αλ2−(α−β)ω2

λ2

 ,

[
ΨL(−1)

ΨR(−1)

]
=


(α+β)ω√

2λ

−2βλ2−βω2−αω2
√
2ωλ

 ,

[
ΨL(−2)

ΨR(−2)

]
=

 −βλ2−(α+β)ω2

λ2

2βλ4−{(α+β)+βω}λ2+(α+β)ω3

ωλ2

 ,

and

ΨR(3) =
2αλ4 − {(α− β)ω2 + 2αω}λ2 + 2(α− β)ω3

√
2ωλ3

,

ΨL(−3) =
2βλ4 − {(α + β)ω2 + 2βω}λ2 + 2(α + β)ω3

√
2ωλ3

.

Furthermore, a stationary measure µ is given by

µ(x) = ϕ(Ψ)(x) = ||Ψ(x)||2 (x ∈ Z).

6. Summary

In this paper, we obtained stationary measures for the two-state space-inhomo-

geneous QWs on Z by solving the corresponding eigenvalue problem (Theorem
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3.1). From this result follow several interesting corollaries. For example, we got

a stationary measure µ ∈ Ms(U
(s)) ∩Met(U

(s)) in Corollary 3.4 (i). This case

is a generalization of the model studied by Konno et al.[20]. On the other hand,

we obtained a stationary measure µ ∈ Ms(U
(s)) ∩ Mqpt(U

(s)) in Corollary 3.4

(ii). This case is a generalization of the model considered by Konno and Takei

[21].

As a future work, it would be fascinating to investigate the stationary measure

of the multi-state space-inhomogeneous QW on general graphs.
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