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Abstract. The beans function BG(x) of a connected graph G is defined as the
maximum number of points on G such that any pair of points have distance at
least x > 0. This is a decreasing and left continuous function and has many
discontinuous points λn,1, . . . , λn,k over the interval (1/(n + 1), 1/n] in general.
We call these points the gaps of BG(x). We shall show that any gap BG(x)
is a rational number. By the recursive formula given in [3], we can show that
λn,i = λ1,i/(1+ (n− 1)λ1,i) easily. So, we shall focus on the interval (1/2, 1] and
show that λ1,1 ∈ (1/2, 3/5] and λ1,k ∈ [3/4, 1) if G has at least three vertices and
is not isomorphic to the star K1,|V (G)|−1. Furthermore, we shall find another gap
of BG(x) in [2/3, 3/4) with a suitable condition for G, and discuss the sharpness
of these results, considering some examples.

Introduction

Our graph G is a simple graph and we regard it as a 1-dimensional simplicial

complex each of whose edges has a unit length. Thus, if G is connected, then we

can define the distance dG(p, q) between any two points p and q on G; they may

be not only points located at vertices, but also intermediate points lying along

edges.

Negami [4] has introduced a function BG : R+ → N, called the beans function

of G, as the maximum number of points on G any pair of which have distance

at least x > 0, where R+ stands for the set of positive real numbers and N is the

set of natural numbers. He also has given the following upper and lower bounds

for the values of BG(x) taken over the interval An = (1/(n+ 1), 1/n]:

THEOREM 1. (Negami [4]) Let G be a connected graph and let n be a natural

number. If x ∈ An, then:

n · |E(G)|+ |V (G)| − 1 ≥ BG(x) ≥ n · |E(G)|+ α

where α = 1 if G is a tree, and α = 0 otherwise .

2010 Mathematics Subject Classification: 05C10, 05C12
Key words and phrases: graph theory, distance, arrangement of points



132 K. ENAMI AND S. NEGAMI

It is easy to see that the lower bound is attained by x = 1/n for any n ≥ 1.

On the other hand, Negami [4] has shown an example of a graph G whose beans

function takes the value n · |E(G)|+ |V (G)| − 1 as the maximum of BG(x) over

An = (1/(n+1), 1/n]. Furthermore, Enami [2] has already proved that the upper

bound is attained by a suitable value of x > 1/(n + 1) for any connected graph

G. Thus, we should investigate what happens inside the interval An.

Notice that
∪∞

n=1An = (0, 1] and that BG(x) is decreasing and left continuous.

Since BG(x) takes discrete values in N, it has finitely many discontinuous points

λn,1, . . . , λn,kn ∈ An−{1/n} and takes a constant value over each of the segments

separated by these points. We call each of λn,i’s a gap of BG(x) in An. In

particular, BG(x) takes the value n · |E(G)|+ |V (G)|−1 over (1/(n+1), λn,1] and

n · |E(G)|+α over (λn,kn , 1/n] by the facts described in the previous paragraph.

In fact, the authors have established the following recursive formula for

BG(x):

THEOREM 2. (Enami and Negami [3]) For any positive real number x ≤ 1 and

a natural number k ≥ 1, we have:

B

(
x

1 + kx

)
= BG(x) + k|E(G)|

The function fk(x) = x/(1 + kx) sends any value in An to a value in An+k

bijectively. Thus, this formula enables us to determine all values of BG(x) only

by knowing its values over the interval A1 = (1/2, 1]. For examples, the gap λn,i

corresponds to λ1,i and we have λn,i = λ1,i/(1 + (n − 1)λ1,i) and kn = k1 for

any natural number n. That is, the number of gaps over (1/(n + 1), 1/n] is a

constant, say k. To simplify the notations below, we set λi = λ1,i. To know all

gaps of BG(x), it suffices to focus on the interval (1/2, 1].

In this paper, we shall discuss the first left gap λ1 and the first right gap

λk in A1 = (1/2, 1] and estimate where they are located in A1, as given in the

following two theorems:

THEOREM 3. Let G be a connected graph which has at least three vertices and

is not isomorphic to the star K1,|V (G)|−1. Then the first left gap λ1 of BG(x) lies

in (1/2, 3/5] and BG(x) = |E(G)|+ |V (G)| − 1 for x ∈ (1/2, λ1].

THEOREM 4. Let G be a connected graph which has at least three vertices and

is not isomorphic to the star K1,|V (G)|−1. Then the firsr right gap λk of BG(x)

lines in [3/4, 1) and BG(λk) > |E(G)| + α, where α = 1 if G is tree and α = 0

otherwise.

If we restrict the graph G slightly, we can find one more gap of BG(x), as
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follows. A set of edges in a graph G each pair of which have no common end is

called a matching in G and we denote the maximum size of matchings in G by

µ(G).

THEOREM 5. Let G be a connected graph which has the minimum degree at

least 2. Then there is a gap λ of BG(x) with 2/3 ≤ λ ≤ 3/4, and BG(λ) ≥
|E(G)|+ µ(G) > BG(x) for x > λ.

(i) If there is no odd cycle of length at most 2k − 1 in G, then λ ≤ (2k +

1)/(3k + 1).

(ii) If G is bipartite, then λ = 2/3.

First, we shall discuss a combinatorial criterion for a positive real number to

be one of gaps of BG(x) and prove that any gap is a rational number in Section

1. Next, focusing on the interval (1/2, 1], we shall prove the above theorems in

Sections 2 and 3, and discuss their sharpness with examples in Section 4. Our

terminology is quite standard and can be found in [1].

1. Gaps of functions

Let x > 0 be a positive real number. A set S of points on G is called an

x-set if any pair of points in S have distance at least x. In particular, if S has

the maximum size among all x-sets, then we call S a maximum x-set. That is,

BG(x) = |S| for any maximum x-set in G.

Let λ < 1 be a positive real number and let S be a λ-set in G. A cycle C

in G is said to be λ-full for S if it contains exactly |C|/λ point in S, where |C|
stands for the length of C and is equal to the number of edges of C. If C is a

λ-full cycle for S, then the points in S are located at equal intervals of length λ

along C. Thus, λ must be a rational number.

Similarly, a pathQ inG is said to be λ-full for S if it contains exactly |Q|/λ+1

points in S, where |Q| denotes the length of Q, which is equal to the number

of edges in Q. If Q is a λ-full path for S, then two points in S are located at

both ends of Q and the other points in S divide into |Q|/λ segements of length

λ. This implies that λ must be a rational number in this case, too.

Using these notions, we can establish a criterion for a positive real number

λ < 1 to be a gap of BG(x), as follows.

THEOREM 6. Let G be a connected graph and let λ < 1 be a positive real

number. The number λ is one of a gap of BG(x) if and only if there is either a

λ-full cycle or a λ-full path for any maximum λ-set S.
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Proof. First, we shall show the sufficiency. Suppose that λ is not a gap of BG(x).

Then BG(λ) = BG(λ + ε) for a sufficiently small positive number ε > 0. This

implies that any maximum (λ + ε)-set S in G is also a maximum λ-set in G.

Then any cycle and any path in G cannot be λ-full for this λ-set S since any pair

of points in S lying along it have distance at least λ+ ε > λ.

Next, we shall show the necessity. Let S be a maximum λ-set in G and

suppose that there is neither a λ-full cycle nor a λ-full path for S. Furthermore,

we may assume that we have chosen S to minimize the number of pairs of points

in S which have distance exactly λ.

Assume that there is still a pair of points s0 and s1 in S which have distance

exactly λ. Try to find a sequence of points s0, s1, . . . in S such that si−1 ̸= si+1

and that dG(si−1, si) = λ for i ≥ 1. If such a sequence included a cycle, then it

would be a λ-full cycle for S, contrary to our assumption. Thus, the sequence of

points s0, s1, . . . runs along a path in G, and will stop at a point st.

Extend such a sequence toward both directions and take a maximal one.

Then we may assume that a path Q = v0v1 · · · vk in G contains s0, s1, . . . , st,

where each of vi’s is a vertex in G. The point s0 lies on the edge v0v1 and st
lies on the edge vk−1vk. Since there is no λ-full path for S in G, at least one of

s0 and sk is not located at the ends of Q, Thus, we may assume that sk is an

intermediate point of the edge vk−1vk.

By the maximality of the sequence of points s0, s1, . . . , st, we have dG(s, st) >

λ for any point s in S placed around vk except st and st−1; s may or may not lie

on vk−1vk. Then we can move st slightly toward vk to obtain another λ-set S ′.

Since |S ′| = |S|, this new λ-set S ′ also is maximum, but the number of pairs of

points in S ′ which have distance exactly λ would be less than S, contrary to the

assumption on S.

Therefore, S contains no pair of points which have distance exactly λ and

hence the minimum distance taken over all pairs in S is greater than λ, say λ+ ε

with a suitable positive real number ε > 0. Thus, S is a (λ+ ε)-set in G and we

have BG(λ+ ε) = BG(λ). This implies that λ is not a gap of BG(x).

COROLLARY 7. Any gap of BG(x) of a connected graph G is a rational number.

Proof. If λ is a gap of BG(x) of G, then there is either a λ-full cycle or a λ-full

path for any maximum λ-set S in G. Let L be the length of such a cycle or a

path. The points in S lying along it divide it into several segments of length λ,

say M segments. Therefore, λ = L/M must be a rational number.
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2. First left and first right gaps

Given an x-set S in G, we decompose S into a disjoint union
∪

e∈E(G) Se so

that each edge contains the points in Se. If a point p in S is located at a vertex

v, then we choose only one of edges incident to v, say e, and consider that p

belongs to Se and not to the others.

Given an x-set S and its decomposition
∪

e∈E(G) Se, we set Ei = {e ∈ E(G) :

|Se| = i}. If x > 1/2, then it is clear that each edge contains at most two points

in S and hence E(G) = E0∪E1∪E2. Thus, if S is a maximum x-set for x > 1/2,

then we have:

|S| = BG(x) = |E1|+ 2|E2| = |E(G)|+ |E2| − |E0|
We shall use these notations in our arguments below.

Proof of Theorem 3. Suppose that x > 1/2 and thatBG(x) ≥ |E(G)|+|V (G)|−1.

Since the equality holds by Theorem 1, we have |S| = BG(x) = |E(G)|+|V (G)|−
1 = |E(G)|+ |E2|− |E0| and hence |E2|− |E0| = |V (G)|−1 for a maximum x-set

S.

Assume that the subgraph ⟨E2⟩ induced by E2 includes a cycle. Such a

cycle C contains exactly 2|C| points in S and those points divide C into 2|C|
segments. This implies that x ≤ |C|/2|C| = 1/2, contrary to our assumption.

Therefore, ⟨E2⟩ includes no cycle and hence |E2| ≤ |V (G)|−1. This implies that

|E2| = |V (G)| − 1, |E0| = 0 And that T = ⟨E2⟩ is a spanning tree of G.

Assume that there is a path of length 3 in the spanning tree T . Then the

path contains exactly six points in S, possibly located at its ends. These six

points divide the path into at least five segments. This implies that x ≤ 3/5.

On the other hand, if T includes no path of length 3, then T must be iso-

morphic to the star K1,s with s ≥ 2 since G has at least three vertices. By

the assumption in the theorem, G does not coincide with T and hence there is

an edge of G not belonging to T , which should belong to E1, and it joints two

vertices of degree 1 in T . Then there is a cycle of length 3 consisting of two edges

in E2 and one edge in E1, and exactly five points in S divide the cycle into five

segments. This implies that x ≤ 3/5, again.

Therefore, if x > 3/5, then BG(x) < |E(G)| + |V (G)| − 1. Since Enami’s

result [2] guarantees the existence of a real number λ > 1/2 such that BG(λ) =

|E(G)| + |V (G)| − 1, The supremum of such λ’s should be the first left gap λ1

and λ1 ≤ 3/5.

Note that if we can construct a 3/5-set S such that E0 = ∅ and that E2 forms

a spanning tree of G, then BG(3/5) = |E(G)|+ |V (G)|−1 and we can determine

the first left gap λ1 of BG(x); λ1 = 3/5.
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COROLLARY 8. If a connected graph G has a spanning tree isomorphic to K1,s

with s ≥ 2, but is not isomorphic to K1,s, then λ1 = 3/5.

Proof. Let T be a spanning tree inG which is isomorphic toK1,s and let e1, . . . , es
be its edges with a unique common end v. Put two points pi and qi on each edge

ei so that dG(pi, v) = 3/10 and dG(qi, v) = 9/10, and take the midpoints of all

other edges. Then these points form a 3/5-set S and we have E2 = {e1, . . . , es},
E1 = E(G)− E2 and E0 = ∅. The set S satisfies the desired condition.

Proof of Theorem 4. Let G be a connected graph with at least three veritces.

First suppose that G is not a tree. Then BG(1) = |E(G)| by Theorem 1. It

suffice to show that BG(3/4) ≥ |E(G)|+ 1.

Choose one edge e = uv of G with endpoints u and v, and take the following

points as those in S:

(i) Two points p and q lying on e with dG(p, u) = 1/8 and dG(q, v) = 1/8

(ii) A point r lying on each edge incident to u (or v) with dG(r, u) = 5/8 (or

dG(r, v) = 5/8)

(iii) The midpoints of all edges other than e and edges incident to u or v

The set S consists of these |E(G)| + 1 points and it is easy to see that it forms

a 3/4-set. This implies that BG(3/4) ≥ |E(G)|+ 1.

Secondly suppose that G is a tree not isomorphic to the starK1,|V (G)|−1. Then

there is a path of length at least 3 which joins a pair of vertices of degree 1, say u1

and u2. Place one point at ui and another point pi on the unique edge incident to

ui with dG(ui, pi) = 3/4 for i = 1, 2. Add one point at the midpoint of each edge

incident to neither u1 nor u2. Then it is easy to see that these |E(G)|+2 points

form a 3/4-set and hence BG(3/4) ≥ |E(G)| + 2 = |E(G)| + 1 + α. Therefore,

the theorem follows in this case, too.

If a connected graph G has exactly one or two vertices, then G is isomorphic

to either K1 or K2. It is clear that BK1(x) = 1 for all x > 0 and that BK2(x) = 2

for all x ∈ A1. In either case, there is no gap for BG(x) over A1 and hence the

theorem does not hold for them. On the other hand, it is not so difficult to

determine BK1,s(x) over A1.

BK1,s(x) =

{
2s (1/2 < x ≤ 2/3)

s+ 1 (2/3 < x ≤ 1)

Thus, there is only one gap of BK1,s(x) over A1. These graphs K1, K2 and K1,s

must be excluded by the assumptions in the theorems.
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3. Another gap

Here we shall discuss basic facts on maximummatchings in a connected graph.

It is easy to see that if µ(G) = 1, then either G has at most three vertices, or G

is isomorphic to K1,s for s ≥ 3.

LEMMA 9. Let G be a connected graph having the minimum degree at least 2

and let M ⊂ E(G) be any maximum matching with |M | = µ(G). Then there

is a cycle C = e1 · · · em, given as a sequence of edges, such that e2i belongs to

M and e2i−1 does not belong to M for i ≥ 1; that is, if k is even, then C is an

alternating cycles, but otherwise, the pair of consecutive edges e1 and ek do not

belong to M .

Proof. Let Q = v0v1 · · · vk be a longest alternating path for M with edges ei =

vi−1vi for i = 1, . . . , k. Since G has the minimum degree at least 2, there is

at least one edge incident to vk other than ek, say e′ = vkvk+1. If ek belongs

to M , then e′ does not belong to M . In this case, if vk+1 did not contain in

{v0, v1, . . . , vk−2}, then we could extend the alternating path Q, contrary to the

assumption on Q. Thus, vk+1 coincides with one of v0, . . . , vk−2 and we find such

a cycle described in the lemma with suitable change of indexes.

Now assume that ek does not belong to M . If we can choose one of edges in

M as e′ = vkvk+1, then vk+1 should coincide with v0 and e1 does not belong to

M since Q is the longest and since each of v1, . . . , vk−2 is covered by M . In this

case, we find an alternating cycles of even length.

Finally, we may assume that vk is incident to no edge in M and also that v0
is incident to no edge in M , considering the extension of Q from v0. However,

we could find another matching in G larger than M , exchanging edges along Q.

This is contrary to the maximality of M and hence this is not the case.

Proof of Theorem 5. Suppose that x > 1/2 and that BG(x) ≥ |E(G)| + µ(G).

Then there is a maximum x-set S such that |S| = BG(x) = |E(G)|+|E2|−|E0| ≥
|E(G)|+ µ(G) and hence we have |E2| − |E0| ≥ µ(G).

If E0 is not empty, then |E2| > µ(G) and hence E2 cannot be a matching and

contains a pair of edges having a common end u, say uv1 and uv2. Then these

two edges form a path v1uv2 and contains four points in S, possibly located at

the ends of this path. Thus, the four points divide the path of length 2 into at

least three segments. This implies that x ≤ 2/3.

Now assume that E0 is empty. Then |E2| ≥ µ(G). If |E2| > µ(G), or if E2 is

not a matching, then the same argument as in the previous works for this case

and we conclude that x ≤ 2/3. Thus, we may assume that E2 is a maximum
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matching and has exactly µ(G) edges.

By Lemma 9, there is a cycle C = e1 · · · em such that e2i belongs to E2 and

e2i+1 belongs to E1. If m is an odd number 2k + 1, then C contains 3k + 1

points in S and these points divide C into 3k + 1 segments. Then we find a

segment of length at most (2k + 1)/(3k + 1) among them. This implies that

x ≤ (2k + 1)/(3k + 1). On the other hand, if m is an even number 2k, then

C is an alternating cycle for E2 and contains 3k points in S. This implies that

x ≤ 2k/3k = 2/3, as well as in the previous.

Notice that if k < h, then 2/3 < (2h+1)/(3h+1) < (2k+1)/(3k+1) ≤ 3/4

and the second tends to 2/3 if h → ∞. Therefore, if there is no odd cycle of

length at most 2k − 1 in G, then we find either an odd cycle of length at least

2k+ 1 or an even cycle. Thus, we have x ≤ (2k+ 1)/(3k+ 1) in the former case

while x ≤ 2/3 < (2k + 1)/(3k + 1) in the latter case. If G is bipartite, that is,

if there is no odd cycle in G, then the latter case happens and we have ≤ 2/3.

These imply that there is a positive real number λ with 2/3 ≤ λ ≤ 3/4 such that

|E(G)|+ µ(G) > BG(x) for x > λ.

Now, take a maximum matching M = {e1, . . . , em} in G and put ei = uivi.

Place two points pi and qi on each ei so that dG(pi, ui) = dG(qi, vi) = 1/6 for

i = 1, . . . ,m and take the midpoints of all other edges, not belonging to M . It

is easy to see that these |E(G)|+ µ(G) points form a 2/3-set. This implies that

BG(2/3) ≥ |E(G)|+µ(G). Thus, the infimum of such λ’s given in the above will

be a gap of BG(x) which lies in [2/3, 3/4].

COROLLARY 10. If G has the minimum degree at least 2 and contains no tri-

angle, then there is a gap λ of BG(x) with 2/3 ≤ λ ≤ 5/7, which is different from

its first left and first right gaps.

Proof. Since there is no odd cycle of length 3 = 2·2−1 by the assumption, we can

take 2 as k in Theorem 5 and obtained the upper bound (2·2+1)/(3·2+1) = 5/7

for λ. Since 5/7 < 3/4, λ is different to λ1 and λk.

4. Examples

Here we shall discuss the sharpness of our main theorems, considering con-

crete examples of beans functions of graphs.

EXAMPLE 1. The beans functions of the cycle Cm and the path Pm having m

vertices for x ≤ 1 are:

BCm(x) =
⌊m
x

⌋
, BPm(x) =

⌊m
x

⌋
+ 1 (0 < x ≤ 1)
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We can rewrite these formula as:

BCm(x) = n, BPm(x) = n+ 1 (m/(n+ 1) < x ≤ m/n)

Substituting n = 2m− 1 and n = m, we obtain the following:

BCm(x) =

{
2m− 1 (1/2 < x ≤ m/(2m− 1))

m (m/(m+ 1) < x ≤ 1)

BPm(x) =

{
2m (1/2 < x ≤ m/(2m− 1))

m+ 1 (m/(m+ 1) < x ≤ 1)

Thus, the first left gap is λ1 = m/(2m− 1) and tends to 1/2 if m → ∞ while

the first right gap is λm−1 = m/(m+ 1) and tends to 1 if m → ∞. Since each of

these beans functions decreases by 1 when it passed one gap, there are exactly

m− 1 gaps over A1.

EXAMPLE 2. The perfect form of the beans function of the complete graph Km

of order m ≥ 3 has been given in [3]. In particular, it can be presented as below

for x ∈ (1/2, 1]. Thus, it has exactly three gaps.

BKm(x) =



m(m− 1)

2
+m− 1 (1/2 < x ≤ 3/5)

m(m− 1)

2
+
⌊m
2

⌋
(3/5 < x ≤ 2/3)

m(m− 1)

2
+ 1 (2/3 < x ≤ 3/4)

m(m− 1)

2
(3/4 < x ≤ 1)

All of the critical values given in Theorem 3, 4 and 5 appear as three gaps in the

above. Notice that this formula can be expressed as:

BKm(x) =


|E(Km)|+ |V (G)| − 1 (1/2 < x ≤ 3/5)

|E(Km)|+ µ(Km) (3/5 < x ≤ 2/3)

|E(Km)|+ 1 (2/3 < x ≤ 3/4)

|E(Km)| (3/4 < x ≤ 1)

These values in cases appear as the bounds for BG(x) given in the theorems.

One might wonder if BG(2/3) = |E(G)| + µ(G), following our argument in

the proof of Theorem 5. The next lemma will deny it:
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LEMMA 11. Let G be a bipartite connected graph which has the minimum degree

at least 2 and let V (G) = X ∪Y be its bipartition. If |X| ≥ |Y |, then BG(2/3) ≥
|E(G)|+ |X| > BG(x) for x > 2/3.

Proof. We call each vertex in X a black vertex and one in Y a white vertex. Put

a point at each black vertex in X and put a point p on each edge incident to each

white vertex u in Y so that dG(p, u) = 1/3. Then these points form a 2/3-set

and they are |E(G)|+ |X| in number. Thus, we have BG(2/3) ≥ |E(G)|+ |X|.
Now we shall show that if BG(x) ≥ |E(G)| + |X|, then x ≤ 2/3. Let S

be a maximum x-set and suppose that BG(x) ≥ |E(G)| + |X|. Then we have

|E2| − |E0| ≥ |X|. If |E2| > |X| or if E2 is not a matching in G, then there is

a vertex v in G such that two edges e1 and e2 in E2 incident to v. These edges

form a path of length 2 and contains four points in S, which divide the path into

at least three segments. This implies that x ≤ 2/3. Thus, we may assume that

E2 is a matching with |E2| = |X| and hence E0 is empty. Since |X| ≥ |Y |, E2

must be a perfect matching, that is, E2 covers all vertices, making pairs of black

and white vertices.

Since any perfect matching is a maximum matching and G is a bipartite

graph with the minimum degree at least 2, then there is an alternating cycle C

for E2 in G by Lemma 9. If C has length 2k, then it contains 3k points in S.

This implies that x ≤ 2/3. Therefore, if x > 2/3, then BG(x) < |E(G)| + |X|.

EXAMPLE 3. Consider the complete bipartite graph Ks,t with s, t ≥ 2. It is

clear that if s < t, then µ(Ks,t) = s and we can use the independent set of size t

as X in the above lemma.

BKs,t(2/3) ≥ |E(Ks,t)|+ t = |E(Ks,t)|+ µ(Ks,t) + (t− s)

Thus, BKs,t(2/3) can be arbitrarily larger than |E(Ks,t)|+µ(Ks,t) if the difference

between the sizes of two independent sets, t− s, is arbitrarily large.

Our arguments for Theorem 5 do not cover the case when G is a tree since

we assume that G has the minimum degree at least 2. However, very similar

arguments will work for trees.
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