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Preface 

The main topic of this dissertation is one-shot (one-time) decision problems involving risk or 

uncertainty. The one-shot decision problem refers in particular to the situation where the decision 

is made only once. This sort of decision problems is often encountered in social production and 

living activities that are concerned with short-term benefits. Considering the one-time features 

of such problems, we propose new decision approaches based on the one-shot decision theory 

(OSDT). Unlike existing ways, the OSDT-based decision approach obtains a decision based on 

the most appropriate scenario (state) for the decision-maker. OSDT-based decision models are 

bilevel programming problems with maximin or minimax lower level programs. Since their 

lower level problems are non-smooth and sometimes even non-convex, traditional solution 

methods for bilevel optimization are not applicable to them directly. The second purpose of this 

dissertation is to provide efficient optimization methods to solve these special bilevel programs. 

As applications, we utilize the proposed approach to analyze a single-item newsvendor problem 

and a multi-item production planning problem. 

    The dissertation is mainly composed of three parts. The first part is shown in Chapter 2, which 

presents modeling processes. We first overview existing decision approaches including the 

expected value approach, the maximax approach and the maximin approach, and then present 

the OSDT-based decision approach. Specifically, the OSDT-based decision approach obtains an 

optimal decision by the following two-step process: in the first step, for each feasible decision, 

the decision-maker examines all possible states and then chooses an appropriate one as the focus 

point with considering the probability of its occurrence and the payoff associated with it; in the 

second step, based on the focus points of all feasible decisions, the decision-maker determines 
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the best decision by considering which one coupled with its focus point can generate the highest 

payoff. OSDT-based decision models are behavioral models in which, with different preferences 

for focus points, decision-makers may make different decisions. 

    The second part is presented in Chapter 3, in which we develop new solution methods to 

OSDT-based decision models. In fact, the OSDT-based decision model is a bilevel programming 

problem where the upper level program is used to determine the optimal decision based on its 

focus point and the lower level program is used to seek this focus point. Since these bilevel 

programs have non-smooth and non-convex lower level programs, they are difficult to deal with. 

In this part, we propose new solution methods to these special bilevel programs by reformulating 

them into general single-level optimization problems, such that they can be solved via the 

commonly used optimization methods or software. 

    The third part consists of Chapters 4 and 5, in which OSDT-based newsvendor models for an 

innovative product and OSDT-based production planning models for multiple short life-cycle 

products are built, respectively. We apply the proposed reformulation methods to these specific 

models and provide corresponding single-level equivalent models for them. The effectiveness of 

the proposed methods is also examined by numerical examples. 

    One-shot decision problems are important managerial decision problems. Bilevel Programs 

are important constrained optimization problems. We hope that the results obtained in this 

dissertation will be helpful to advance the research in these two fields. 

 

 

Xide Zhu 

March, 2019 
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Chapter 1 

Introduction 

In many decision problems, we often encounter a situation where decision-makers have one and 

only one opportunity to make a decision. Such decision problems are called one-shot (one-time) 

decision problems. The one-shot decision problem is an important decision problem, which 

arises in various areas of social production and living activities interested in short-term benefits. 

In general, a decision problem contains a set of alternative actions and each of which corresponds 

to a set of possible states of nature. For each alternative, one and only one state will happen in 

the future, resulting in an outcome associated with that decision. 

    When making decisions in practice, decision-makers may face three different decision 

conditions: certainty, risk and uncertainty. Certainty is for the situation where the state is unique 

for each alternative. In this situation, since the outcomes of all alternatives are accurately known, 

the decision-makers can choose the best decision or at least they can choose an alternative that 

generates the best outcome. Obviously, certainty is an ideal condition for decision-making. 

However, in practice, lots of decision problems always involve risks or uncertainties. More 

specifically, risk involves the situation where the probability of every possible state is known, 

under which the decision-makers can exactly calculate the probabilities of all possible outcomes. 

Uncertainty is for the situation where the decision-makers know all possible states related to 

every alternative but they do not obtain exact probabilities of them due to limited information. 
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    Different decision situations, especially involving risks and uncertainties, require different 

decision theories, among which the expected utility theory of von Neumann and Morgenstern 

(1944) and the subjective expected utility theory of Savage (1954) have almost been regarded as 

a normative theory for rational choice under risk and uncertainty, respectively. However, plenty 

of hypothetical experiments show that people’s preferences systematically violate the axioms of 

these two decision theories, such as the independence in the expected utility theory and the sure-

thing principle in the subjective expected utility theory; see, e.g., Allais (1953), Ellsberg (1961), 

Kahneman and Tversky (1979), and Starmer (2000). 

    From the aspect of mathematical optimization, decision problems under risk or uncertainty 

are usually modeled using the expected value: a weighted average of all possible outcomes (or 

utilities defined over the outcomes) for each alternative where objective or subjective 

probabilities are used as weights. We can easily understand that if the process repeats over a 

great large number of times in the same decision circumstances, then the expected value based 

decision will lead to the largest average outcome. However, this largest expected value may not 

be obtained in the short term or if the decision is made only once. In other words, for a one-shot 

decision problem, it is less justifiable to use the expected value to evaluate the decision. 

    Another two commonly used decision approaches, especially for situations involving 

uncertainty, are based on the maximax and maximin criterion: the maximax approach evaluates 

each decision by the maximum possible outcome associated with that decision, whereas the 

maximin approach considers the minimum possible outcome. The maximax approach is 

appropriate for an optimistic decision-maker who is often attracted by the best results. The 

maximin approach would be suitable for a pessimistic decision-maker who is always worried 

about the worst results. Clearly, the maximax approach might be too daring whereas the maximin 

approach might be too conservative in the sense that the former only focuses on the best scenario 

but the latter only considers the worst scenario no matter what will happen in the future. Besides 
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maximax and maximin criterions, the minimax regret criterion, Hurwicz criterion and Laplace 

criterion are also widely used in applications. Since the minimax regret approach is to minimize 

the worst-case regret (difference or ratio of the outcomes) rather than to minimize the outcome 

itself, it is sometimes not as pessimistic as the standard maximin approach. Likewise, to achieve 

a compromise between the optimism of the maximax criterion and the pessimism of the maximin 

criterion, Hurwicz criterion is proposed that is a weighted average of these two extremes. Laplace 

criterion applies to the situation where the decision-maker is completely ignorant about the 

probability of all states. In this case, the probability of each state is usually considered to be equal 

and the decision-maker chooses a decision by maximizing the expected outcome. 

In recent years, Guo (2011) proposed the one-shot decision theory (OSDT) for one-shot 

decision problems under risk or uncertainty, and applied it to several problems in business and 

management; see, e.g., Guo (2010a), Guo (2010b), Guo and Ma (2014). Based on the OSDT, 

Wang and Guo (2017) built a behavioral model for explaining the anomalies in the first-price 

sealed-bid auctions. To the best of our knowledge, this is the first time to provide a theoretical 

explanation for throwing-away phenomenon for such auction problems. Recently, Guo (2017) 

advanced the OSDT and axiomatized the focus theory of choice (FTC) for one-shot decision-

making under risk or uncertainty. OSDT and FTC are based on two basic assumptions (axioms): 

a decision-maker can choose the most attractive scenario (state) for him/her from among all 

possible scenarios for each action; a decision-maker can choose the most preferred action by 

comparing the salient states of all actions. These assumptions are intuitively appealing and there 

are indeed growing evidences supporting them; see, e.g., Bordalo et al. (2012), Busse et al. 

(2013), Orquin and Loose (2013), Stewart et al. (2016). OSDT and FTC are behavioral decision 

theories that can explain many puzzling phenomena in psychology and economics, such as the 

St. Petersburg, Allais and Ellsberg paradoxes. 
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In this dissertation, we propose new decision approaches to one-shot decision problems based 

on the OSDT. Different from traditional decision models, the OSDT-based decision model is a 

bilevel programming problem that obtains an optimal decision by the following two steps: (1) 

for each feasible decision variable (or vector) given by the upper level problem, the lower level 

problem examines every possible realization of the random variable (or vector) with considering 

the probability of this realization and the payoff associated with it and then chooses one as a 

focus point of this decision; (2) based on the focus points of all feasible decisions, the upper level 

problem determines an optimal decision by considering which one coupled with its focus point 

can generate the highest payoff. We consider two types of behaviors of the decision-maker 

choosing focus points: one is choosing the scenario which has a relatively high probability and 

can bring about a relatively high payoff, such focus points are called active focus points; the 

other is choosing the scenario which has a relatively high probability but can lead to a relatively 

low payoff, such focus points are called passive focus points. With different preferences for 

choosing the focus points, the decision-makers may make different decisions. 

    Bilevel program is a special constrained optimization problem, whose constraints or part of 

constraints are defined by another optimization problem. Since bilevel program is a non-convex 

optimization problem with an implicitly determined feasible set, to solve it or find its optimality 

conditions, the problem has to be reformulated as a single-level optimization problem. Since 

OSDT-based decision models have non-smooth and non-convex lower level programs, 

traditional reformulation methods are not applicable to them. In this dissertation, we propose 

new reformulation methods to these special bilevel programs by transforming them into general 

single-level optimization problems. We consider two models with one-dimensional lower level 

variables and multi-dimensional lower level variables, respectively. The reformulated models 

are more tractable than original bilevel optimization models so that they can be solved with the 
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commonly used optimization methods or software. Finally, we apply the OSDT-based decision 

approach to a single-item newsvendor problem and a multi-item production planning problem.  

The reminder of this dissertation is organized as follows. In Chapter 2, we propose bilevel 

programming approaches to one-shot decision problems with the OSDT and, moreover, we 

compare the OSDT-based decision approaches with several existing decision approaches 

including the maximax approach, the maximin approach and the expected value approach. In 

Chapter 3, we provide new methods to the proposed bilevel optimization models, by which these 

bilevel models can be equivalently reformulated as tractable single-level optimization problems. 

In Chapters 4 and 5, we build OSDT-based newsvendor models for an innovative product and 

OSDT-based production planning models for multiple short life-cycle products, respectively. 

We apply the proposed reformulation methods to these specific models and give corresponding 

single-level equivalent models for them. In particular, for OSDT-based production planning 

models, we consider two types of constraints of the lower level problems, that is, cuboid 

constraints and ellipsoidal constraints. Preliminary numerical experiments and computational 

discussions are also given in these two chapters. Finally, we conclude the research of this 

dissertation in Chapter 6. 
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Chapter 2 

Bilevel Programming Approaches to One-Shot Decision Problems 

2.1 Research Problem 

Consider a decision problem with uncertainty where the state is characterized as a real-valued 

random vector and the action is represented by a real-valued decision vector. In this dissertation, 

we use bold !  to represent the random vector in order to distinguish it from its possible 

realization ξ . More precisely, ! = ξ  means that there exists a random event ω  such that its 

outcome corresponds to the value ξ. Denoting by x the decision vector, then we can model such 

an uncertain decision problem as the following stochastic optimization problem: 

max
(
	f x, ! 					s. t.		x ∈ X.                                                 (2.1) 

Here X ⊂ R3 represents the feasible region of decision vectors and n ≥ 1; Ξ ⊂ R8 stands for the 

range of all possible values that the random vector ! can realize and m ≥ 1; f: R3×R8 → R 

denotes the original payoff function (or a utility function defined over the payoff). We assume 

throughout that the probability density (or mass) function ρ: Ξ → R= is given for continuous (or 

discrete) random vector !. Usually, the probability distribution can be estimated from objective 

historical data or is exogenously given to represent a decision-maker’s subjective degree of belief 

on the occurrence of each possible realization. 
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    In this dissertation, we are interested in resolving (2.1) with a situation where there is only one 

chance to make a decision before knowing the real realization of the random vector. Since ! is a 

random vector, the meaning of “max” is not clear at all. In other words, (2.1) is not a well-defined 

problem. Therefore, it is necessary to revise the modeling process and develop suitable decision 

approaches to (2.1).  

 

 

 

 

2.2 Existing Decision Approaches and Optimization Models  

In this section, we briefly review existing three kinds of decision approaches to (2.1) and use a 

simple example to illustrate their differences. The first approach is based on the expected value, 

which indicates that the best choice of x  is a global optimal solution of the following 

optimization problem: 

             max
(
	> f x, ! 					s. t.		x ∈ X,                                             (2.2) 

where > ⋅  represents the expectation operator with respect to the distribution of !. 

    Setting F x ≔ > f x, ! , we can understand that (2.2) is a deterministic mathematical 

programming problem. If F x  has a closed form, then (2.2) can be solved using suitable 

optimization methods. Now let us consider a sample example as follows: 

max
(
	 !BxC + !ExF 					s. t.		3xC + xF ≤ 9, xC + 2xF ≤ 8, xC, xF ∈ N.	             (2.3) 

Suppose that !B  and !E  are independent, discrete random variables and the probability 

distributions of !B  and !E  are given by ρ !B = 1 = 0.6, ρ !B = 13 = 0.4 and ρ !E = 3 =

0.3, ρ !E = 4 = 0.7, respectively. We can obtain that the joint probability distribution of the 
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random vector ! ≔ !B; !E  as ρ ! = 1; 3 = 0.18, ρ ! = 1; 4 = 0.42, ρ ! = 13; 3 =

0.12, ρ ! = 13; 4 = 0.28, and the expectation of ! as ! = 5.8; 3.7 . Further, we can obtain 

the optimal solutions corresponding to four scenarios of the problem (2.3), that is, x∗ 1; 3 =

0; 4 , x∗ 1; 4 = 0; 4 , x∗ 13; 3 = 3; 0  and x∗ 13; 4 = 3; 0  while the optimal 

solution determined by (2.2) is x∗ ! = 2; 3  with ! = 5.8; 3.7 . Clearly, !  does not 

correspond to any realization (scenario) of !. Although x∗ !  is not an optimal solution at all no 

matter which scenario happens, by the Law of Large Numbers, if the process repeats over a large 

number of times, then the solution of (2.2) will be optimal on average. Indeed, in this case, it 

makes sense to talk about the expected value. However, for one-shot decision problems, using 

expected values to evaluate decisions might not be reasonable. 

    The maximax approach is another common decision approach for solving (2.1), which 

indicates that the best choice of x  is a global optimal solution of the following maximax 

optimization problem: 

   max
(
	 max

T
	f x, ξ : ξ ∈ Ξ 				s. t.		x ∈ X.                                    (2.4) 

Setting FU x ≔ max
T∈V

	f x, ξ , we can see that (2.4) is a deterministic mathematical programming 

problem. If FU x  has a closed form, then (2.4) can be solved using suitable optimization 

methods. Considering the example (2.3), we have FU x = 13xC + 4xF. That is, the best scenario 

is ξU = 13; 4  and x∗ ξU = 3; 0  is obtained by (2.4) as an optimal solution to correspond to 

this scenario. The maximax approach is an important decision criterion assuming that the best 

scenario will happen whatever action is taken. This approach is appropriate for an optimistic 

decision-maker who is often attracted by the best results. 



 9 

    Another common decision approach for solving (2.1) is called the maximin approach, which 

indicates that the best choice of x  is a global optimal solution of the following maximin 

optimization problem: 

    max
(
	 min

T
	f x, ξ : ξ ∈ Ξ 				s. t.		x ∈ X.                                  (2.5) 

Similarly, setting FX x ≔ min
T∈V

f x, ξ  , we know that (2.5) is a deterministic mathematical 

programming problem. If FX x  has a closed form, then (2.5) can be solved using suitable 

optimization methods. Considering the example (2.3), we have FX x = xC + 3xF. That is, the 

worst scenario is ξX = 1; 3  and x∗ ξX = 0; 4  is obtained by (2.5) as an optimal solution to 

correspond to this scenario. The maximin approach is another important decision criterion which 

assumes that the worst scenario will appear whatever action is taken. Opposite to the maximax 

approach, the maximin approach would be suitable for a pessimistic decision-maker who is 

always worried about the worst results. 

 

 

 

 

2.3 Bilevel Programming Approaches based on One-Shot Decision Theory 

We have already noted that for a different realization ξ of the random vector !, f x, ξ  can be 

quite different from > f x, ! . Therefore, it makes no sense to consider using the expected value 

approach to solve a one-shot decision problem. We also noted that the maximax approach might 

be too daring whereas the maximin approach might be too conservative in the sense that the 

former only considers the best scenario but the latter only takes into account the worst scenario 

regardless of their probabilities. 
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    In this section, we remodel the one-shot decision problem (2.1) where x should be chosen 

before a real realization (a scenario) of ! is known. Note that the decision-maker has only one 

opportunity to make a decision before the scenario reveals and only one scenario will appear. 

Considering the one-time features of such problems, we propose new decision approaches to 

(2.1) by the following two steps (Guo, 2011). In the first step, for each feasible decision, the 

decision-maker examines every possible realization of the random vector with considering the 

probability of its occurrence and the payoff associated with it and chooses one as a focus point 

of that decision. In the second step, the decision-maker determines such a decision as the optimal 

one that generates the maximum payoff with its focus points. 

    We consider two types of behaviors of the decision-maker choosing focus points: one is 

choosing the scenario (one realization of the random vector) which has a relatively high 

probability and can bring about a relatively high payoff as the active focus point; the other is 

choosing the scenario which has a relatively high probability but can lead to a relatively low 

payoff as the passive focus point. We formulate these two types of focus points as follows. 

(a) The active focus point of x, denoted as ξC x , is a non-dominated optimal solution of the 

following two-objective optimization problem: 

max
T
	ρ ξ , max

T
	f x, ξ 						s. t.		ξ ∈ Ξ.                                 (2.6) 

(b) The passive focus point of x, denoted as ξF x , is a non-dominated optimal solution of 

the following two-objective optimization problem: 

� max
T
	ρ ξ ,min

T
	f x, ξ 						s. t.		ξ ∈ Ξ.                                  (2.7) 

(2.6) and (2.7) reflect the optimistic and pessimistic attitudes to evaluate the scenario, 

respectively. We call the decision-maker who takes into account the active focus points or 

passive focus points as an active decision-maker or passive decision-maker, respectively. 
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    The decision-maker considers the focus point as his/her most appropriate scenario for each 

feasible decision and then chooses the optimal decision that generates the highest payoff when 

its focus point occurs. It should be noted that for each x ∈ X , we only consider one non-

dominated solution of (2.6) or (2.7) as an active or passive focus point of x. In other words, we 

do not take into account the frontier of (2.6) or (2.7). Based on the above considerations, we 

formulate this decision approach for these two kinds of decision-makers as follows. 

(c) The optimal decision for active decision-makers is a global optimal solution of the 

following optimization problem: 

�max
(
	f x, ξC x 						s. t.		x ∈ X.                                          (2.8) 

(d) The optimal decision for passive decision-makers is a global optimal solution of the 

following optimization problem: 

�max
(
	f x, ξF x 						s. t.		x ∈ X.                                         (2.9) 

 

 

2.3.1 Bilevel Optimization Model with Active Focus Points 

Lemma 2.1 The maximax optimization model (2.4) is a special case of (2.8). 

Proof. For any x ∈ X, we have FU x = max
T∈V

	f x, ξ . Given ξU x ∈ argmaxT∈V	f x, ξ , it is 

easy to verify that ξU x  is Pareto optimal for the two-objective optimization problem 

(2.6) due to f x, ξU x = FU(x). In other words, if the best scenario ξU x  is chosen by 

the decision-maker as the active focus point of every feasible x ∈ X, then (2.8) with these 

active focus points reduces to the maximax optimization problem (2.4).                                               ■ 

    Lemma 2.1 clarifies the relationship between (2.8) and (2.4). We can easily observe that the 

maximax approach completely ignores probabilities. In what follows, we give other approach 
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which can obtain a non-dominated optimal solution of the problem (2.6) with considering the 

payoff and the probability simultaneously. To this end, we give two definitions as follows. 

Definition 2.1 (Relative Likelihood Function) Let ρ:	Ξ → R=  be the original probability 

density (or mass) function for continuous (or discrete) random vector ! and π be a function 

defined from set Ξ to set 0, 1 . We call π ξ  as the relative likelihood degree of ξ if it satisfies 

max
T∈V

	π ξ = 1, 

and, for any ξC, ξF ∈ Ξ,  

π ξC > π ξF 	⟺ 	ρ ξC > ρ ξF   and  π ξC = π ξF 	⟺ 	ρ ξC = ρ ξF . 

Definition 2.2 (Satisfaction Function) Let f: X×Ξ → R be the original payoff function and u be 

a function defined from set X×Ξ to set 0, 1 . We call u x, ξ  as the satisfaction level of ξ ∈ Ξ for 

x ∈ X if it satisfies 

max
(;T ∈a×V

	u x, ξ = 1,   

and, for any x ∈ X, for any ξC, ξF ∈ Ξ, 

u x, ξC > u x, ξF 	⟺ 	f x, ξC > f x, ξF   and  u x, ξC = u x, ξF 	⟺ 	f x, ξC = f x, ξF . 

    The relative likelihood degree and the satisfaction level are used to represent the relative 

positions of the probability and the payoff, respectively. In fact, there are many ways that we can 

use to choose π and u satisfying Definitions 2.1 and 2.2, respectively.  

    For example, we can use 

π ξ =
ρ ξ − ρX
ρU − ρX

,																																																												 2.10  

where ρU and ρX are the upper and lower bounds of ρ in Ξ, respectively, that is, 

ρU:= max
T∈V

	ρ ξ    and   ρX : = min
T∈V

	ρ ξ . 

If the random vector follows a log-concave distribution, i.e., log ρ  is a concave function, we 

can use the following relative likelihood function: 
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π ξ =
log ρ ξ − log ρX
log ρU − log ρX

.																																																	 2.11  

    Similarly, we often use the following satisfaction level function: 

u x, ξ =
f x, ξ − fX
fU − fX

,																																																								 2.12  

where fU and fX are the upper and lower bounds of f in X×Ξ, respectively, that is, 

fU: = max
(;T ∈a×V

	f x, ξ    and   fX: = min
(;T ∈a×V

	f x, ξ . 

    With π and u, we give another non-dominated solution of the problem (2.6) as follows: 

max
T∈V

		min π ξ , u x, ξ .                                               (2.13) 

Since the minimal function between π ξ  and u x, ξ  can be expressed as 

min π ξ , u x, ξ = C
F
π ξ + u x, ξ − π ξ − u x, ξ , 

it is straightforward that using (2.13) we can find out a scenario ξ which simultaneously makes 

π  and u  large. In other words, comparing with π ξ + u x, ξ  and π ξ ∗ u x, ξ , (2.13) can 

avoid obtaining ξ with a large π ξ  but a small u x, ξ  or a small π ξ  but a large u x, ξ  because 

it tries to make π ξ − u x, ξ  as smaller as possible. 

    With (2.13), we formulate (2.8) as the following optimization model with active focus points. 

Bilevel optimization model with active focus points (Model A): 

        max
(;T

	f x, ξ 					s. t.		x ∈ X, ξ ∈ ΛC x ,                                     (2.14) 

where ΛC x  (which is related to x) denotes the set of global optimal solutions of the following 

maximin optimization problem: 

max
T∈V

		min π ξ , u x, ξ .                                             (2.15) 

Clearly, Model A is a bilevel optimization model where the upper level problem (2.14) is used 

to find the optimal decision for maximizing the payoff on a specific scenario associated with it; 

the lower level problem (2.15) is used to seek this scenario which has a relatively high probability 
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and can cause a relatively high payoff. Considering the example (2.3), by using (2.10) and (2.12) 

we can obtain that the optimal decision is x∗ = 3; 0   and its active focus point is ξC x∗ =

13; 4 . It means that the active decision-maker chooses 3; 0  as the best decision based on the 

scenario 13; 4 . The relative likelihood degree of ξC x∗  is 0.5333 and it can lead to the 

satisfaction level of 1 with x∗. 

 

 

2.3.2 Bilevel Optimization Model with Passive Focus Points 

Lemma 2.2 The maximin optimization model (2.5) is a special case of (2.9). 

Proof. For any x ∈ X, we have FX x = min
T∈V

f x, ξ . Given ξX x ∈ argminT∈V	f x, ξ , it is easy 

to verify that ξX x  is Pareto optimal for the two-objective optimization problem (2.7) due 

to f x, ξX x = FX(x) . In other words, if the worst scenario ξX x  is chosen by the 

decision-maker as the passive focus point of every feasible x ∈ X, then (2.9) with these 

passive focus points reduces to the maximin optimization problem (2.5).                       ■ 

    Lemma 2.2 clarifies the relationship between (2.9) and (2.5). It follows that the maximin 

approach completely ignores probabilities. With π  and u , we give another non-dominated 

solution of the problem (2.7) as follows: 

min
T∈V

	max 1 − π ξ , u x, ξ .                                           (2.16) 

Since the maximal function between 1 − π ξ  and u x, ξ  can be expressed as 

max 1 − π ξ , u x, ξ = C
F
1 − π ξ + u x, ξ + 1 − π ξ − u x, ξ , 

we know that using (2.16) we can find out a scenario ξ with a relatively larger π and a relatively 

smaller u.  

    With (2.16), we formulate (2.9) as the following optimization model with passive focus points. 
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Bilevel optimization model with passive focus points (Model B): 

        max
(;T

	f x, ξ 					s. t.		x ∈ X, ξ ∈ ΛF x ,                                     (2.17) 

where ΛF x  (which is related to x) denotes the set of globally optimal solutions of the following 

minimax optimization problem: 

min
T∈V

		max 1 − π ξ , u x, ξ .                                          (2.18) 

Clearly, Model B is a bilevel optimization model where the upper level problem (2.17) is used 

to find the optimal decision for maximizing the payoff on a specific scenario associated with it; 

the lower level problem (2.18) is used to find out this scenario which has a relatively high 

probability and can cause a relatively low payoff. Considering the example (2.3), by using (2.10) 

and (2.12) we can obtain that the optimal decision is x∗ = 0; 4  whose passive focus point is 

ξF x∗ = 1; 4 . It means that the passive decision-maker chooses 0; 4  as the best decision 

based on the scenario 1; 4 . The relative likelihood degree of ξF x∗  is 1 and it can lead to the 

satisfaction level of 0.4103 with x∗. 

 

 

 

 

2.4 Concluding Remarks 

In this chapter, we build OSDT-based decision models for one-shot decision problems where the 

obtained optimal decisions are based on the most appropriate scenarios for the decision-maker 

with considering the payoff and the probability. OSDT-based decision models (Model A and 

Model B) are some bilevel programming problems with maximin or minimax lower level 

problems. Comparing with the maximax approach and the maximin approach, although Model 
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A and Model B utilize the ‘maximin’ and ‘minimax’ operators, they also incorporate the 

probability, and so they simply eliminate the possibility of obtaining extreme results, that is, too 

optimistic results from the maximax approach or too conservative results from the maximin 

approach. We provide a fundamentally new idea to deal with one-shot decision problems 

involving uncertainty. Based on different assumptions, we can utilize different decision 

approaches to obtain a decision. 
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Chapter 3 

Solution Methods to the Proposed Bilevel Optimization Models 

3.1 Introduction 

Bilevel programming problem (BLPP) is a special constrained optimization problem whose 

constraints have another optimization problem. BLPP has two kinds of decision variables, 

referred to as the upper level variable and the lower level variable. The general formulation is 

max
(;	f

	F x, y 					s. t.		x ∈ X, y ∈ S x ,                                       (3.1) 

where S x  (which is related to x) denotes the set of global optimal solutions of the following 

optimization problem: 

max
f
	G x, y 				s. t. y ∈ Y x ,                                              (3.2) 

where X ⊂ 	R3, Y(x) ⊂ 	R8 for any x ∈ X, and F, G: R3×R8 → R are functions. 

    BLPP (3.1)-(3.2) represents an optimistic optimization approach in which the follower (lower 

level) is assumed to be cooperative and the leader (upper level) is allowed to choose the most 

suitable element from the set of global optimal solutions of the lower level problem. On the 

contrary, a pessimistic optimization approach deals with the case that the follower may be non-

cooperative. In this case, the leader cannot decide which of the best responses is implemented 

by the follower so that he/she chooses a decision that performs best in the case that the worst 

follower response happens, that is, solving the following pessimistic BLPP: 
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max
(∈a

			 min
f∈k (

F x, y .                                                    (3.3) 

    BLPP has been always an important research area. It was initially introduced by von 

Stackelberg (1952) for modeling a duopoly market. From then on, a great number of 

contributions including theories, algorithms and applications for BLPPs have been made by 

researchers; see, e.g., Allende and Still (2013), Bard (1998), Colson et al. (2005), Dempe (2002), 

Dempe and Zemkoho (2013), Dempe et al. (2012), Dempe and Zemkoho (2014), Lin et al. (2014), 

Ye and Zhu (1995), Ye and Zhu (2010). Since BLPP is a non-convex optimization problem with 

an implicitly determined feasible set, in order to solve it or find its optimality conditions, the 

problem has to be reformulated as a single-level optimization problem. 

    When the lower level program is a convex optimization problem and Salter’s condition holds 

for it, a common method to BLPP is to replace the lower level program by its Karush-Kuhn-

Tucker (KKT) condition and then solve a mathematical program with equilibrium constraints 

(MPEC) or mathematical program with complementarity constrains (MPCC). However, solving 

an MPEC is still difficult because its constraints fail to satisfy the standard constraint 

qualifications, such as the most commonly used Mangasarian-Fromovitz constraint qualification 

(MFCQ); see, e.g., [Proposition 1.1, Ye (1997)]. Even under some convexity conditions on the 

function F and the set X, MPEC is still not easy to be solved due to the non-convexities that occur 

in the Lagrangean or complementarity constraints. In other words, applying the classical 

optimization theories and algorithms in nonlinear programs to an MPCC directly may not be 

valid. To remedy this unusual structural optimization problem, several variants of stationary 

conditions including the strong (S-), Mordukhovich (M-) and Clarke (C-) stationary conditions 

have been proposed and various optimization methods have been studied; see, e.g., Pang et al. 

(1996), Facchinei et al. (1999), Ye (2005), Fletcher et al. (2006), Guo et al. (2015), Lin and 

Fukushima (2005), Scholtes (2001), Zhu and Lin (2016).  
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    When the lower level program is a non-convex optimization problem or the Slater’s condition 

is violated for some upper level variables, the BLPP may not be equivalent to the model 

reformulated by the KKT approach; see, Dempe et al. (2012). Another appealing way to BLPP 

is based on the so-called optimal value function of the lower level program. For any x given by 

the upper level, we define the optimal value function of the lower level problem (3.2) as 

V x ≔ max
f∈m (

	 G x, y 	,                                                 (3.4) 

then BLPP (3.1)-(2.2) can be reformulated as the following optimization problem:	 

        max
(;	f

	F x, y 					s. t.		V x − G x, y ≤ 0, x ∈ X, y ∈ Y x .                     (3.5) 

This approach was first introduced by Outrata (1990) for obtaining a numerical solution and 

subsequently used by Ye and Zhu (1995) for obtaining necessary optimality conditions. Recently, 

Lin et al. (2014) used this approach to solve a simple BLPP where the constraint set of the lower 

level program does not depend on x, that is, Y x ≡ Y. Xu and Ye (2014) proposed a smoothing 

projected gradient algorithm for solving (3.4) by using some smooth functions to approximate 

the optimal value function. In fact, it is not difficult to see that this approach does not require the 

lower level problem (3.2) to be a convex optimization. But it is significantly difficult to design 

effective numerical algorithms to solve the reformulated model (3.5) due to the existence of an 

implicitly determined constraint function. Due to inherent mathematical difficulties, most papers 

for a BLPP assume that the lower level is a smooth convex optimization problem so that its KKT 

reformulation can be solved by using appropriate methods for MPCC.  

    However, to the best of our knowledge, there is only a few papers dealing with BLPPs with 

some special non-smooth lower level programs; see, Li et al. (2014), Solodov (2007). Recently, 

Dempe and Zemkoho (2014) extended the KKT condition based single-level reformulation to 

non-smooth BLPPs and discussed various stationarity conditions. We have already observed 

from Chapter 2 that the proposed models are some special BLPPs with maximin or minimax 
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lower level problems. Since the lower level problems are non-smooth and sometimes even non-

convex, they are difficult to be solved. In this paper, we focus on proposing solvable single-level 

reformulations of these non-smooth BLPPs.  

    The remainder of this chapter is organized as follows. In Section 3.2, we use the KKT 

condition based method to convert these BLPPs into MPECs. We show the condition which 

guarantees the global optimal solutions of the reformulated models and the original BLPPs are 

equivalent. In Section 3.3, we propose other two types of single-level reformulations based on 

some relatively weak conditions, the proposed models are easily to be solved with the commonly 

used optimization methods or software. In Section 3.4, some conclusions are given.  

 

 

 

 

3.2 Traditional Solution Methods. 

In this section, we consider using traditional KKT condition based methods to solve the BLPP 

(2.14)-(2.15) and the BLPP (2.17)-(2.18). To this end, we assume that Ξ takes the form of  

Ξ ≔ ξ ∈ R8: g ξ ≤ 0 ,                                               (3.6) 

where g: R8 → Ro is a vector-valued function with J ≥ 1. The following definition will be used. 

Definition 3.1 (Stephen 2004) Let C be a convex set and let F: C → R be a continuous function.  

1) F is called concave if for all x, y ∈ C and λ ∈ 0,1 , we have  

F λ ∗ x + 1 − λ ∗ y ≥ λ ∗ F x + 1 − λ ∗ F y . 

2) F is called quasi-concave if for all x, y ∈ C and λ ∈ 0,1 , we have  

F λ ∗ x + 1 − λ ∗ y ≥ min F x , F y . 

3) F is called (quasi-) convex if −F is (quasi-) concave. 
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    First, let us consider the BLPP (2.14)-(2.15). Since the minimal function is not always 

differentiable, even though all the functions inside are smooth, the lower level problem (2.15) is 

a typical non-smooth optimization problem for any x given by the upper level problem (2.14). 

In order to remove the obstacle caused by non-smoothness, by introducing a new auxiliary 

variable y, we can transform the problem (2.15) into the following optimization problem: 

max
(T;	f)

	 y 			s. t.		y − π ξ ≤ 0, y − u x, ξ ≤ 0, g ξ ≤ 0, y ∈ R.                   (3.7) 

Assumption 3.1 Functions π ⋅ , u x,⋅  and −g ⋅  are differentiable and concave for all x ∈ X.  

    With Assumption 3.1, we know that (3.7) is a differentiable convex optimization problem. It 

is known that Slater's condition is an important regularity condition (or constraint qualification) 

for a convex optimization, which ensures that the KKT-type first-order condition is both 

necessary and sufficient for a solution to be optimal [Section 5.2.3, Stephen (2004)].   

Assumption 3.2 Ξ takes the form of (3.6), and there exists ξs ∈ Ξ such that  

  gt ξs < 0,				∀	j = 1,⋯ , J.                                            (3.8) 

    With Assumptions 3.1 and 3.2, we know that solving the problem (3.7) is equivalent to solving 

its first-order KKT condition, that is, solving the following system of equalities and inequalities: 

1 − α ∗ πz ξ + α ∗ uT
z x, ξ − βt ∗ gtz ξ

o
t|C = 0,

0 ≤ 1 − α ⊥ y − π ξ ≤ 0,																																												
0 ≤ α ⊥ y − u x, ξ ≤ 0,																																																
0 ≤ βt ⊥ gt ξ ≤ 0, j = 1,⋯ , J,																																			

                  (3.9) 

where α ∈ R, β ∈ Ro and 0 ≤ a ⊥ b ≤ 0 means that a ≥ 0, b ≤ 0	and	a ∗ b = 0. Setting 

hC x, ξ, α, β ≔ 1 − α ∗ πz ξ + α ∗ uT
z x, ξ − βt ∗ gtz ξ

o
t|C , 

and 

     HC α, β ≔ 1 − α; α; β ,   HF x, ξ, y ≔ y − π ξ ; y − u x, ξ ; −g ξ , 

then we can reformulate the BLPP (2.14)-(2.15) into the following MPEC: 

max
(;T;Ç;É;f

	f x, ξ 			s. t.		hC x, ξ, α, β = 0, 0 ≤ HC α, β ⊥ HF x, ξ, y ≥ 0, x ∈ X.         (3.10) 
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    Next, let us consider the BLPP (2.17)-(2.18). Similarly, by introducing a new auxiliary 

variable z, we can transform the problem (2.18) into the following optimization problem:  

min
(T;	Ö)

	 z 			s. t.		1 − π ξ ≤ z, u x, ξ ≤ z, g ξ ≤ 0, z ∈ R.                   (3.11) 

Assumption 3.3 Functions π ⋅ , −u x,⋅  and −g ⋅  are differentiable and concave for all x ∈ X.  

    Clearly, Assumption 3.3 ensures that (3.11) is a differentiable convex optimization problem. 

With Assumptions 3.3 and 3.2, we know that solving the problem (3.11) is equivalent to solving 

its first-order KKT condition, that is, solving the following system of equalities and inequalities: 

1 − γ ∗ πz ξ − γ ∗ uT
z x, ξ − ηt ∗ gtz ξ

o
t|C = 0,

0 ≤ 1 − γ ⊥ 1 − π ξ − z ≤ 0,																																						
0 ≤ γ ⊥ u x, ξ − z ≤ 0,																																																		
0 ≤ ηt ⊥ gt ξ ≤ 0, j = 1,⋯ , J,																																					

                (3.12) 

where γ ∈ R, η ∈ Ro. Setting   

hF x, ξ, γ, η ≔ 1 − γ ∗ πz ξ − γ ∗ uT
z x, ξ − ηt ∗ gtz ξ

o
t|C , 

and 

Hà γ, η ≔ 1 − γ; γ; η , Hâ x, ξ, z ≔ z + π ξ − 1; 	z − u x, ξ ; −g ξ , 

then we can reformulate the BLPP (2.17)-(2.18) as the following MPEC: 

max
((;T;ä;ã;Ö)

	f x, ξ 			s. t.		hF x, ξ, γ, η = 0, 0 ≤ Hà γ, η ⊥ Hâ x, ξ, z ≥ 0, x ∈ X.      (3.13) 

 

 

 

 

3.3 New Reformulation Methods 

We have shown in Section 3.1 that BLPP (2.14)-(2.15) can be equivalently reformulated as the 

MPEC (3.10) with some assumptions. Although (3.10) is a single-level optimization problem, 
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solving it is still difficult due to the existence of complementarity constraints. In fact, we can see 

that the reformulated model (3.10) has a combinatorial structure, That is, the feasible region of 

(3.10) is a union of lots of pieces, which makes it hard to solve effectively. Another defect is 

that, to ensure the equivalence between the BLPP (2.14)-(2.15) and the MPEC (3.10), the 

functions π and u are required to be concave with respect to the lower level variable. Such 

requirement seems to be too strict in applications. The above difficulties also exist in the problem 

(3.13). In this section, we provide new reformulation methods to solve the BLPP (2.14)-(2.15) 

and the BLPP (2.17)-(2.18) under some weaker conditions, the reformulated models are 

relatively easier to solve than (3.10) and (3.13), respectively.  

 

 

 

3.3.1 Case of One-Dimensional Lower Level Variables 

In this section, we consider the case where Ξ is a bounded convex subset of R, that is, 

Ξ = ξX, ξU ⊂ R  with  ξX < ξU, 

where ξX and ξU are the lower and upper bounds of Ξ, respectively. 

Assumption 3.4 π ⋅  and u x,⋅  are quasi-concave functions for all x ∈ X; π ξX = π ξU = 0 

holds and there exists ξå ∈ ξX, ξU  satisfying π ξå = 1. 

 

(1) Equivalent Model of the BLPP (2.14)-(2.15) 

Theorem 3.1 With Assumption 3.4, the global optimal solutions of the BLPP (2.14)-(2.15) are 

equivalent to the ones of the following single-level optimization problem: 

max
(;	T

	f(x, ξ) 					s. t.		u x, ξ − π ξ ≤ 0, x ∈ X, ξ ∈ Ξ.                           (3.14) 



 24 

Proof. We divide the difference of u x, ξ  and π ξ  into two cases, that is u x, ξ ≥ π ξ  and 

u x, ξ < π ξ . If the global optimal solutions of the BLPP (2.14)-(2.15) satisfy the first case, 

that is, u x, ξ ≥ π ξ , then (2.15) is equivalent to the following optimization problem: 

       max
T
	π ξ 				s. t. u x, ξ − π ξ ≥ 0, ξ ∈ Ξ.                                (3.15) 

According to Definitions 2.1 and 2.2, we have 0 ≤ u x, ξ ≤ max
T∈V

π ξ = 1 . Together with 

Assumption 3.4, it is trivial to check that the inequality constraint of (3.15) is actually an equality 

constraint at the global optimal solutions. Combined with the second case, we can understand 

that the global optimal solutions of the lower level problem (2.15) must satisfy u x, ξ ≤ π ξ , 

which implies the BLPP (2.14)-(2.15) is equivalent to the following optimization problem: 

max
(;	T

	f(x, ξ) 				s. t. x ∈ X, ξ ∈ argmaxT∈V	 u x, ξ 	|		u x, ξ ≤ π ξ .             (3.16) 

Considering Definition 2.2, we know that problems (3.16) and (3.14) are equivalent.                 ■ 

    In fact, it is trivial to proof that, for any x ∈ X, the minimal function	min π ξ , u x, ξ  is also 

quasi-concave under	Assumption	3.4, which satisfies min π ξ , u x, ξ ∈ 0, 1 . In this case, 

the lower level problem (2.15) is a non-smooth quasi-convex optimization problem. In the 

following, we will give another equivalent form by considering the first order optimality 

condition. To this end, we give another assumption as follows. 

Assumption 3.5 (1) Function π ⋅  is quasi-concave and differentiable, u x,⋅  is concave and 

differentiable for all x ∈ X; (2) π ξX = π ξU = 0 holds, and there exists ξå ∈ (ξX, ξU) such that 

π ξå = 1, and πz ξ ≠ 0 for all ξ ∈ ξX, ξå ∪ (ξå, ξU).  

    With Assumption 3.5, we have min π ξX , u x, ξX = min π ξU , u x, ξU = 0 , so that 

solving (2.15) is equivalent to finding out ξ ∈ ξX, ξU  which satisfies the following first-order 

optimality condition: 

0 ∈ ∂T min π ξ , u x, ξ ,                                              (3.17) 
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where ∂T min π ξ , u x, ξ  denotes the subdifferential of min π ξ , u x, ξ  in variable ξ . 

Further, we can rewrite the condition (3.17) as: 

π′ ξ = 0,																			 if		π ξ − u x, ξ < 0;
uT
z x, ξ = 0,															 if		π ξ − u x, ξ > 0;
πz ξ ∗ uT

z x, ξ ≤ 0, if		π ξ − u x, ξ = 0.
                            (3.18) 

In fact, it is trivial to verify that the first item of (3.18) doesn’t hold under Assumption 3.5 so 

that the set of solutions of (2.15) can be rewritten as 

SC x ≔ ξ ∈ ξX, ξU 	 	uT
z x, ξ = 0, π ξ > u x, ξ ;                                                   

 or	πz ξ ∗ uT
z x, ξ ≤ 0, π ξ = u x, ξ }	.            (3.19) 

    In the following, we consider a new optimization problem: 

max
(;	T

		 f x, ξ 						s. t.		x ∈ X, ξ ∈ SC x ,	                                     (3.20) 

where 

SC x ≔ ξ ∈ ξX, ξU 	 	πz ξ ∗ uT
z x, ξ ≤ 0, π ξ − u x, ξ ≥ 0}.              (3.21) 

Actually, for any x ∈ X, it is easy to check that SC(x) is a proper subset of SC(x), and the 

difference of them can be obtained as: 

SC x − SC x = ξ ∈ ξX, ξU 	 	πz ξ ∗ uT
z x, ξ ≤ 0, uT

z x, ξ ≠ 0, π ξ > u x, ξ }.    (3.22) 

The following theorem shows the relation between the BLPP (2.14)-(2.15) and (3.20)-(3.21). 

Theorem 3.2 With Assumption 3.5, the global optimal solutions of the BLPP (2.14)-(2.15) and 

the problem (3.20)-(3.21) are equivalent. 

Proof. To prove this theorem, it suffices to show that, for any x ∈ X, it holds that 

f x, ξ > f x, ξ ,				∀	ξ ∈ SC x , ξ ∈ SC x − SC x .	                         (3.23) 

Let us prove (3.23) in what follows. First of all, it follows from (3.19) and (3.22) that 

uT
z x, ξ = 0, π ξ − u x, ξ > 0, or	πz ξ ∗ uT

z x, ξ ≤ 0, π ξ − u x, ξ = 0, 

and 
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πz ξ ∗ uT
z x, ξ ≤ 0, uT

z x, ξ	 ≠ 0, π ξ − u x, ξ > 0, 

respectively. 

    In the following, we discuss in details. In the case that uT
z x, ξ = 0 and π ξ − f x, ξ > 0. If 

uT
z x, ξ < 0 and π ξ − u x, ξ > 0 hold, then u x, ξ  is a decreasing function in variable ξ at 

the interval ξ, ξ , which implies (3.23). If uT
z x, ξ > 0 and π ξ − u x, ξ > 0 hold, then u x, ξ  

is an increasing function in variable ξ at the interval [ξ, ξ	], which implies (3.23). 

    In the case that πz ξ = 0 and π ξ − u x, ξ = 0 hold, we can obtain π ξ = u x, ξ =1. 

Combined with u x, ξ < π ξ ≤ 1, we have (3.23). 

    In the case that uT
z x, ξ = 0 andπ ξ − u x, ξ = 0 hold, we know ξ = argmaxT∈V	u x, ξ . 

Combined with uT
z x, ξ ≠ 0, we have (3.23). 

    In the case that uT
z x, ξ < 0, πz ξ > 0 and π ξ − u x, ξ = 0, If uT

z x, ξ < 0, πz ξ ≥ 0 

and π ξ − u x, ξ > 0 hold, then u x, ξ  is a decreasing function in variable ξ at the interval 

ξ, ξ  which implies (3.23). If uT
z x, ξ > 0 , πz ξ ≤ 0  and π ξ − u x, ξ > 0  hold, then we 

have uT
z x, ξ > 0 > uT

z x, ξ  and πz ξ ≤ 0 < πz ξ , which conflict with the definition of these 

two functions. 

    In the case that uT
z x, ξ > 0, πz ξ < 0 and π ξ − u x, ξ = 0, if uT

z x, ξ > 0, πz ξ ≤ 0 

and π ξ − u x, ξ > 0 hold, then u x, ξ  is an increasing function in variable ξ at the interval 

ξ, ξ , which implies (3.23). If uT
z x, ξ < 0, πz ξ ≥ 0 and π ξ − u x, ξ > 0 hold, it is easy to 

verify that this result conflicts with the definitions of these two functions. 

    From the above discussion, we know that (3.23) holds for any x ∈ X, which implies that the 

global optimal solutions of problems (2.14)-(2.15) and (3.20)-(3.21) are equivalent.               ■ 

    Considering u x, ξ ≤ π(ξ) and π ξX = π ξU = 0, we obtain the following theorem.  
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Theorem 3.3 With Assumption 3.5, the global optimal solutions of the BLPP (2.14)-(2.15) are 

equivalent to the ones of the following single-level optimization problem:  

max
(;	T

	u x, ξ 				s. t. πz ξ ∗ uT
z x, ξ ≤ 0, u x, ξ − π ξ ≤ 0, x ∈ X, ξ ∈ Ξ.	        (3.24) 

 

 

(2) Equivalent Model of the BLPP (2.17)-(2.18) 

From Assumption 3.4, it is easy to check that 1 − u x, ξ  is quasi-convex continuous in variable 

ξ, and for any x ∈ X, there exist ξ( ∈ Ξ such that 1 − u x, ξ( = π(ξ(). In what follows, we 

translate the BLPP (2.17)-(2.18) into a minimax optimization problem.  

Theorem 3.4 With Assumption 3.4, the global optimal solutions of the BLPP (2.17)-(2.18) are 

equivalent to the ones of the following continuous minimax optimization problem: 

min
(∈a

	max
T∈V

−u x, ξ 	 	1 − u x, ξ − π ξ = 0}.                          (3.25) 

Proof. Suppose that (x∗; ξ∗) is a global optimal solution of the BLPP (2.17)-(2.18), that is, ξ∗ ∈

ΛF(x∗). Let us prove that, under Assumption 3.4, solution (x∗, ξ∗) must satisfy: 

π ξ = 1 − u(x, ξ).                                                 (3.26) 

If π ξ∗ < 1 − u(x∗, ξ∗), then (2.18) is equivalent to the following optimization problem: 

max
T∈V

	π ξ 				s. t.		π ξ < 1 − u x∗, ξ . 

Considering the continuity of π ξ  and u x∗, ξ , there must be a point ξ ∈ ξ∗, ξå  or ξ ∈ ξå, ξ∗  

such that π ξ < 1 − u x∗, ξ  and π ξ > π ξ∗ . Clearly, the results are not consistent with the 

fact of ξ∗ ∈ ΛF(x∗). 

If 1 − u x∗, ξ∗ < π ξ∗ , then (2.18) is equivalent to the following optimization problem: 

max
T∈V

1 − u x∗, ξ 				s. t.		π ξ > 1 − u x∗, ξ . 
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Considering Assumption 3.4, the function 1 − u x∗, ξ  is quasi-convex continuous in variable ξ 

so that there must be a point ξ ∈ ξX, ξ∗  or ξ ∈ ξ∗, ξU  which satisfies 1 − u x∗, ξ < π(ξ) and 

1 − u x∗, ξ > 1 − u x∗, ξ∗ . The results are also not consistent with ξ∗ ∈ ΛF(x∗). As a result, 

the global optimal solutions of the BLPP (2.17)-(2.18) must satisfy (3.26). Thus, the global 

optimal solutions of the BLPP (2.17)-(2.18) are equivalent to the ones of the following maximin 

optimization problem: 

max
(∈a

	 min
T∈kò(()

f x, ξ ,                                                  (3.27) 

where SF x  denotes the set of solutions of the following problem:  

max
T∈V

	−u x, ξ 				s. t.		π ξ = 1 − u x, ξ .                              (3.28) 

In the following, we prove that the problems (3.27)-(3.28) and (3.25) are equivalent. First of 

all, we define the optimal value function of (3.28) as follows: 

V x ≔ max
T∈V

−u x, ξ 	 	1 − u x, ξ = π ξ }, 

then we can obtain that 

min
T∈kò(()

	 u x, ξ = −V x , 

which implies that the problem (3.27) is equivalent to 

max
(∈a

	−V x .                                                        (3.29) 

Obviously, the global optimal solutions of (3.29) and (3.25) are equivalent.                               ■ 

Since for any x ∈ X , we have 1 − u x, ξX − π ξX ≥ 0 , 1 − u x, ξå − π ξå ≤ 0 , 1 −

u x, ξU − π ξU ≥ 0, solving the equation 1 − u x, ξ − π ξ = 0 is equivalent to finding out 

ξ ∈ {ξC, ξF} such that 

1 − u x, ξC − π ξC = 0, ξC ∈ ξX, ξå ; 1 − u x, ξF − π ξF = 0, ξF ∈ ξå, ξU . 

Obviously, the points ξC, ξF  depend on x . Let ΞC ≔ ξX, ξå , ΞF ≔ ξå, ξU , the minimax 

optimization problem (3.25) can be rewritten as 
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min 		max −u x, ξC , −u x, ξF 																		
s. t. x ∈ X, ξC ∈ ΞC, ξF ∈ ΞF,																					

		1 − u x, ξö − π ξö = 0, i = 1, 2.			
                              (3.30) 

By introducing an auxiliary variable z , we can further transform (3.30) into the following 

optimization problem: 

min z																																																												
s. t. x ∈ X, ξC ∈ ΞC, ξF ∈ ΞF, z ∈ R,								

	
1 − u x, ξö − π ξö = 0, i = 1, 2,
−u x, ξC ≤ z, −u x, ξF ≤ z.										

                               (3.31) 

Theorem 3.5 Suppose that x∗; ξC∗; ξF∗ ; z∗  is a global optimal solution of the problem (3.31), then 

x∗; ξ∗  is still global optimal to the BLPP (2.17)-(2.18) with u x∗, ξ∗ = −z∗. 

 

 

 

3.3.2 Case of Multi-Dimensional Lower Level Variables 

In this section, we consider the case where Ξ is a bounded convex subset of R8 with m > 1. We 

assume that Ξ takes the following form: 

Ξ ≔ ξ ∈ R8: g ξ ≤ 0 		with		m > 1,                               (3.32) 

where g: R8 → Ro is a vector-valued function with J ≥ 1. 

 

(1) Equivalent Model of the BLPP (2.14)-(2.15) 

In the following, we reformulate the BLPP (2.14)-(2.15) into a solvable single-level optimization 

problem. To this end, we give an assumption as follows. 

Assumption 3.6 Function π ⋅  is quasi-concave and continuous; there exists ξå ∈ Ξ such that  

π ξå = max
T∈V

	π ξ ≥ u x, ξ ,					∀	 x; ξ ∈ X×Ξ. 
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Theorem 3.6 Suppose that x∗; ξ∗  is a global optimal solution of the following problem: 

max
(;	T

	f(x, ξ) 				s. t. u x, ξ − π ξ ≤ 0, g ξ ≤ 0, x ∈ X, ξ ∈ R8.              (3.33) 

then it is still global optimal for the BLPP (2.14)-(2.15) under Assumption 3.6. 

Proof. Suppose that ξ(x) is a global optimal solution of the lower level problem (2.15) where x ∈

X, then we have 

min π ξ x , u x, ξ x ≥ min π ξ , u x, ξ ,				∀	ξ ∈ Ξ.              (3.34) 

In fact, ξ(x) must satisfy the following condition: 

u x, ξ x − π ξ x ≤ 0.                                          (3.35) 

The reason is as follows.  

    If (3.35) does not hold, then we have π ξ x = min π ξ x , u x, ξ x . Considering (3.34), 

if π ξ < u x, ξ , we can obtain that  

π ξ x = min π ξ x , u x, ξ x ≥ min π ξ , u x, ξ = π(ξ).           (3.36) 

Clearly, if π ξ x < u x, ξ x , w x  is still global optimal for the following problem: 

max
T
	 π ξ 				s. t.		π ξ − u x, ξ < 0, ξ ∈ Ξ.                                (3.37) 

From Assumption 3.6, we know that π ξ   is a quasi-concave function and π ξå =

max π ξ : ξ ∈ Ξ = 1. Together with π ξ ∈ 0, 1  and u x, ξ ∈ 0, 1 , we can obtain that 

π ξå − u x, ξå = 1 − u x, ξå ≥ 0.                                     (3.38) 

It is clear that ξ x ≠ ξå if π ξ x < u x, ξ x . Since π(ξ) is quasi-concave and Ξ is a bounded 

set, there must exist ξ( = 1 − σ ∗ ξå + σ ∗ ξ x ∈ Ξ where 0 < σ < 1 such that  

π ξ( > π ξ x 		and		π ξ( − u x, ξ( < 0,                              (3.39) 

which conflict with the assumption that ξ(x) is a global optimal solution of (3.37). Hence, (3.35) 

is true. Thus, we can rewrite (2.15) as the following optimization problem:  

max
T
	 u x, ξ 				s. t.		u x, ξ − π ξ ≤ 0, ξ ∈ Ξ.                               (3.40) 
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Since u x, ξ  is the normalized profit function, we know that solving the BLPP (2.14)-(3.40) is 

equivalent to solving the following single-level optimization problem: 

 max
((;T)

	f x, ξ 				s. t.		x ∈ X, ξ ∈ Ξ, u x, ξ − π ξ ≤ 0.                         (3.41) 

Combined with (3.32), we can rewrite (3.41) as (3.33). Clearly, if x∗, ξ∗  is a global optimal 

solution of the problem (3.33), then it is still global optimal for the BLPP (2.14)-(2.15).        ■ 

 

 

(2) Equivalent Model of the BLPP (2.17)-(2.18) 

In the following, we reformulate the BLPP (2.17)-(2.18) into a solvable single-level optimization 

problem. To this end, we give another assumption as follows.  

Assumption 3.7 For any x ∈ X, we assume that function u x,⋅  is affine and continuous, function 

π ⋅  is concave and continuously differentiable, and there exists ξs ∈ Ξ such that 

1 − π ξs − u x, ξs < 0		and		g ξs < 0. 

Theorem 3.7 Suppose that x∗; ξ∗; λ∗; τ∗  is a global optimal solution of the following problem: 

max
(;	T;	û;	ü

	L x, ξ, λ, τ 				s. t. G x, ξ, λ, τ = 0, g ξ ≤ 0, x ∈ X, λ, τ ≥ 0,           (3.42) 

where L x, ξ, λ, τ  and G x, ξ, λ, τ  are respectively given by 

L x, ξ, λ, τ ≔ 1 − τ ∗ u x, ξ + τ ∗ 1 − π ξ + λ°g ξ ,                  (3.43) 

and 

G x, ξ, λ, τ ≔ 1 − τ ∗ uT
z x, ξ − τ ∗ πz ξ + λt ∗ gtz ξ

o
t|C ,               (3.44) 

then x∗, ξ∗  is still global optimal for the BLPP (2.17)-(2.18) under Assumption 3.7. 

Proof. Suppose that ξ(x) is a global optimal solution of (2.18) where x ∈ X, then we have 

max 1 − π ξ x , u x, ξ x ≤ max 1 − π ξ , u x, ξ , 		∀	ξ ∈ Ξ.        (3.45) 

We divide the difference of 1 − π ξ x  and u x, ξ x  into the following two cases:  
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1 − π ξ x − u x, ξ x > 0 and 1 − π ξ x − u x, ξ x ≤ 0.          (3.46) 

In fact, the first case of (3.46) does not hold. The reason is as follows.  

    If the first case of (3.46) holds, that is, π ξ x < 1 − u x, ξ x , then we have 

1 − π ξ x = max 1 − π ξ x , u x, ξ x ≤ max 1 − π ξ , u x, ξ ,     (3.47) 

which implies that ξ x  is still global optimal for the following optimization problem: 

min
T
1 − π ξ 				s. t.		1 − π ξ > u x, ξ , ξ ∈ Ξ.                              (3.48) 

From Assumption 3.7 as well as Definition 2.1, we know that π ξ  is a concave function and 

there exists ξå ∈ Ξ  satisfying π ξå = max π ξ : ξ ∈ Ξ = 1 . Together with π ξ ∈ 0, 1  and 

u x, ξ ∈ 0, 1 ,  we have  

1 − π ξå = 0 ≤ u x, ξ x .                                             (3.49) 

Clearly, ξ(x) ≠ ξå  if 1 − π ξ x > u x, ξ x  . Since functions π(ξ)  and u x, ξ  are concave 

and affine for variable ξ, respectively, there is ξ( = 1 − σ ∗ ξå + σ ∗ ξ x ∈ Ξ where 0 < σ <

1 such that 

 1 − π ξ( < 1 − π ξ x 		and		1 − π ξ( > u x, ξ( ,                    (3.50) 

which conflict with the assumption that ξ x  is a global optimal solution of (3.48). Therefore, 

solving problem (2.18) is equivalent to solving the following optimization problem: 

min
T
u x, ξ 				s. t. 1 − π ξ − u x, ξ ≤ 0, g ξ ≤ 0.                      (3.51) 

Since u x, ξ  is the normalized profit function, we can rewrite the BLPP (2.17)-(2.18) as the 

following maximin optimization problem: 

max
(∈a

	 min
T
	u x, ξ ∶ 	1 − π ξ − u x, ξ ≤ 0, g ξ ≤ 0 	.                  (3.52) 

    From Assumption 3.7, we know that solving (3.51) is to solve a convex optimization problem.  

In addition, for any x ∈ X, Slater’s constraint qualification holds for the problem (3.51). From 

the strongly dual theory for a convex optimization problem [Stephen (2004), Section 5.2], we 
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know that solving problem (3.51) can be equivalent to solving its duality problem and, moreover, 

they have the same optimal value. Let us give the Lagrange function of problem (3.51) as follows 

L x, ξ, λ, τ ≔ u x, ξ + τ ∗ 1 − π ξ − u x, ξ + λ°g ξ ,                  (3.53) 

where λ ∈ R=
o  and τ ∈ R=. Clearly, L x, ξ, λ, τ  is convex about the variable ξ for any fixed λ ≥

0 and τ ≥ 0. Thus, we can express its dual problem as 

max
û;ü

	L x, ξ, λ, τ 			s. t. G x, ξ, λ, τ = 0, λ ≥ 0, τ ≥ 0,                        (3.54) 

where  

G x, ξ, λ, τ ≔ LT
z x, ξ, λ, τ .                                            (3.55) 

(3.54) is also called the Wolfe duality problem. Further, we can rewrite (43) as (24), (45) as (25). 

Since the strongly dual condition holds for the problem (3.51), we know that solving (3.52) is 

equivalent to solving the problem (3.42). Clearly, if x∗; ξ∗; λ∗; τ∗  is a global optimal solution 

of the problem (3.42), then x∗; ξ∗  is still global optimal for the BLPP (2.17)-(2.18).               ■ 

 

 

 

 

3.4 Concluding Remarks 

In this chapter, we study various equivalent single-level models for BLPPs with a maximin or 

minimax lower level program. Note that using the traditional KKT condition based method 

requires that the lower level program is always a convex optimization problem and satisfies the 

Slater’s condition for each upper level variable. Such requirements seem to be too strict in 

applications. Note further that the reformulated model based on the KKT method is still hard to 

be solved because the feasible region is disconnected and necessarily non-convex. We propose 
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new reformulation methods to these special non-smooth BLPPs with some weaker assumption 

conditions. These equivalent single-level models can be easily solved by commonly used 

nonlinear optimization algorithms. 
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Chapter 4  

Applications to Single-Item Newsvendor Problems 

4.1 Introduction 

Newsvendor problems, sometimes called newsboy problems, are renowned as typical single-

period problems. These problems are characterized by predetermined prices and uncertain 

demands for the products associated with them. For each item, if its order exceeds its real demand, 

then the decision-maker (a buyer) will face the cost of salvaging the remaining units at the end 

of the period; otherwise he/she will lose the sales. Very often the purchasing lead-time of 

products is long and hence the decision-maker usually has one and only one opportunity to make 

an order for these products at the beginning of a single-period. Lots of products have the above-

mentioned characteristics, especially in fresh food, fast fashion and service industries, so 

newsvendor problems receive more and more attention in the real world. 

    The newsvendor problem is a typical one-shot decision problem. Since the actual end-of-

period profit cannot be viewed at the beginning of a single-period, the classic newsvendor model 

suggests that the optimal order can be taken by maximizing the expected profit. Unfortunately, 

researchers observed that maximizing the expected profit is not consistent with the actions of 

many decision-makers. Subsequently, various variants of the classic newsvendor model have 

been proposed for different situations in the past half century; please refer to the review articles 

(Khouja, 1999; Qin, 2011) and the references therein for more details on them. 
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    However, as far as we know, almost all expansions assume that the objective function is to 

maximize the probability of achieving a target profit or the expected utility. In this chapter, we 

apply the OSDT-based decision approaches to a traditional single-item newsvendor problem. 

Different from traditional models, the OSDT-based newsvendor model intuitively portrays a 

person's psychological process of decision-making. 

    The remainder of this chapter is organized as follows. In Section 4.2, OSDT-based 

newsvendor models for an innovative product are built. In Section 4.3, we apply the proposed 

reformulation methods to OSDT-based newsvendor models and give two specific single-level 

equivalent models for them. A numerical example is used to show the effectiveness of the 

proposed solution methods. Finally, we conclude our research in Section 4.4. 

 

 

 

 

4.2 One-Shot Decision Theory Based Newsvendor Models 

Consider a retailer who orders a product prior to the selling season. The demand is characterized 

as a random variable !. Suppose that this random variable follows a truncated normal distribution 

with mean µ and variance σF , i.e., !~• µ, σF , and the feasible region is Ξ ≔ µ − ξs, µ +

ξs ⊂ R with ξs > 0. Denote x as the retailer’s order quantity, w as the unit wholesale price, r 

as the unit revenue with r > w > 0. Any excess product can be salvaged at the unit salvage price 

ss > 0. If there is a shortage, the unit opportunity cost is sU > 0. If the realization of the random 

variable is ξ, then the profit function of the retailer can be given as 

p x, ξ ≔
r ∗ ξ + x − ξ ∗ ss − w ∗ x,								if		ξ < x,
r − w ∗ x − sU ∗ ξ − x ,										if		ξ ≥ x. 
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    Because the set of uncertain demand is Ξ, a reasonable order quantity should also lie in this 

region. Given an order quantity x ∈ Ξ , the function for evaluating the order quantity with 

considering the regret of the retailer can be given as 

f x, ξ ≔ − p x, ξ − pU x
F
, 

where pU(x) denotes the highest profit for an order quantity x, that is, 

      pU x = max
T∈V

	p(x, ξ) = r − w ∗ x. 

Further, we can obtain 

f x, ξ ≔
− r − ss F ∗ x − ξ F,							if		ξ < x;
−sUF ∗ x − ξ F,																				if		ξ ≥ x.

                             (4.1) 

    Using (2.10), we have the following relative likelihood function: 

π ξ = ¶ T ß¶®
¶©ß¶®

,                                                        (4.2) 

where ρ(ξ) denotes the original probability density function, 

     ρU =
C
F™∗´

   and  ρX =
C
F™∗´

∗ exp − T¨
ò

F´ò
. 

    Using (2.12), we have the following satisfaction function: 

u x, ξ = ≠ (,T ß≠®
≠©ß≠®

,                                                      (4.3) 

where fX  and fU  are the lower and upper bounds of f(x, ξ) in Ξ×Ξ, respectively. Clearly, the 

highest value is fU = 0, that is, the demand is equal to the order quantity. The lowest value is 

fX = min −4 r − ss F ∗ ξsF, −4sUF ∗ ξsF . 

    With (4.1)-(4.3), we build OSDT-based newsvendor models as follows. 

The OSDT-based newsvendor model with active focus points: 

        max
(;T

	f x, ξ 					s. t.		x ∈ Ξ, ξ ∈ ΛC x ,                                       (4.4) 

where ΛC x  denotes the set of global optimal solutions of the following optimization problem: 

max
T∈V

		min π ξ , u x, ξ .                                                (4.5) 
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The OSDT-based newsvendor model with passive focus points: 

        max
(;T

	f x, ξ 					s. t.		x ∈ Ξ, ξ ∈ ΛF x ,                                       (4.6) 

where ΛF x  denotes the set of global optimal solutions of the following optimization problem: 

min
T∈V

		max 1 − π ξ , u x, ξ .                                            (4.7) 

Clearly, for Model (4.4)-(4.5), the upper level problem (4.4) is used to find the optimal order on 

a specific scenario associated with it; the lower level problem (4.5) is used to seek this scenario 

which has a relatively high relative likelihood degree and can cause a relatively high satisfaction 

level. Likewise, for Model (4.6)-(4.7), the upper level problem (4.6) is used to find the optimal 

order on a specific scenario associated with it; the lower level problem (4.7) is used to seek this 

scenario which has a relatively high relative likelihood degree and can cause a relatively low 

satisfaction level. 

 

 

 

 

4.3 Solutions to the Proposed Newsvendor Models and Numerical Examples 

We have already proposed single-level reformulation methods to solve OSDT-based decision 

models in Chapter 3. In this section, we apply these methods to OSDT-based newsvendor models 

(4.4)-(4.5) and (4.6)-(4.7). Considering (4.2), it is easy to prove that π(⋅) is quasi-concave and 

continuously differentiable and, moreover, it satisfies π(µ)=1 and π µ − ξs = π µ + ξs = 0. 

Considering (4.3), it is easy to prove that u x,⋅  is quasi-concave for all x ∈ Ξ . Hence, 

Assumption 3.4 holds. 
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    By Theorem 3.1, we know that solving the BLPP (4.4)-(4.5) becomes equivalent to solving 

the following single-level optimization problem: 

   max
(;	T

	f(x, ξ) 					s. t.		u x, ξ − π ξ ≤ 0, x ∈ µ − ξs, µ + ξs , ξ ∈ µ − ξs, µ + ξs ,     (4.8) 

where f(x, ξ), π ξ  and u x, ξ  are given by (4.1), (4.2) and (4.3), respectively. 

    By Theorems 3.4 and 3.5, we know that solving the BLPP (4.6)-(4.7) becomes equivalent to 

solving the following single-level optimization problem: 

min z																																																																																																											
s. t. x ∈ µ − ξs, µ + ξs , ξC ∈ µ − ξs, µ , ξF ∈ µ, µ + ξs , z ∈ R,

	
1 − u x, ξö − π ξö = 0, i = 1, 2,
−u x, ξC ≤ z, −u x, ξF ≤ z.																																																									

        (4.9) 

where f(x, ξ), π ξ  and u x, ξ  are defined by (4.1), (4.2) and (4.3), respectively. 

    We demonstrate the proposed solution methods with the following example. A sports clothing 

store, located in Tokyo, Japan, is planning to order a new fashion sportswear before the selling 

season. The unit wholesale price w, the unit revenue r, the unit salvage price ss and the unit 

opportunity cost sU are 6, 9, 4 and 3 (thousand JPY), respectively. The demand is distributed 

normally with mean 500 and variance 200F. The range of the possible demand is [200, 800]. 

By using (4.1), we have 

f x, ξ ≔
−25 x − ξ F,					if		ξ < x,
−9 x − ξ F,							if		ξ ≥ x,

 

where x, ξ ∈ [200,800]. The highest value is fU = 0 and the lowest value is fX = −9000000. 

By using (4.2), the relative likelihood function is 

π ξ :=
exp − ξ − 500 F/80000 − exp 	 −9/8

1 − exp −9/8
. 

By using (4.3), the satisfaction function is 

u x, ξ =
−

1
600F

x − ξ F + 1,												if		ξ < x,

−
1

1000F
x − ξ F + 1, if		ξ ≥ x.
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In our experiments, we utilize the interior-point algorithm from Global Optimization 

Toolbox of MATLAB 7.10.0 to solve the reformulated models (4.8) and (4.9). The numerical 

results are listed in the following table. 

Table 4-1: Numerical results for the newsvendor example 

Model x∗ ξ∗ π(ξ∗) u x∗, ξ∗  

(4.8) 500 500 1.0000 1.0000 

(4.9) 432 230/770 0.1146 0.8854 

    Table 4-1 shows that the optimal order quantity of the active retailer is equal to its focus point. 

Interestingly, it implies that the active retailer has a confidence that he/she can sell what he/she 

optimally orders. The optimal order quantity of the active retailer is more than the one of the 

passive retailer, that is in perfect accordance with the situations occurred in the real world. 

 

 

 

 

4.4 Concluding Remarks 

In this chapter, we apply the OSDT-based decision approaches to a single-item newsvendor 

problem and build OSDT-based newsvendor models. The proposed newsvendor models are 

BLPPs with one-dimensional lower level variables. We utilize the proposed single-level 

reformulation methods to solve them and use a numerical example to show their effectiveness. 
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Chapter 5 

Applications to Multi-Item Production Planning Problems 

5.1 Introduction 

Production planning problems are fundamental and important managerial decision problems in 

various industries, such as agricultural industry, manufacturing industry, entertainment industry, 

etc. Since production planning problems in the real world invariably include some unknown 

parameters, uncertainty is a main factor that affects the effectiveness of the obtained plan. 

Uncertainty involved in production planning problems can generally be categorized into two 

major types: system uncertainty and environmental uncertainty. The former includes 

uncertainties within the production processes, such as quality uncertainty, operation yield 

uncertainty and so on; the latter involves uncertainties beyond the production processes, such as 

demand uncertainty, supply uncertainty and so on (Ho 1989). The uncertainty in production 

planning problems was first examined by Dantzig (1955). From then on, a considerable amount 

of research (e.g., Aouam and Brahimi 2013; Graves 2011; Gyulai and Pfeiffer 2016; Higle and 

Kempf 2011; Kazemi et al. 2010; Shi et al. 2011; Sodhi and Tang 2009; Tang et al. 2012) and 

surveys have appeared in the production planning literature, including those of Mula et al. (2006) 

and Wazed et al. (2010).  

    From the aspect of mathematical optimization, production planning problems involving 

uncertainty can be mainly modeled by the following approaches. The first approach is stochastic 
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programming where the uncertain parameters can be characterized by random variables whose 

probability distributions are known or can be estimated (see, e.g.,  Bornapour and Hooshmand 

2015; Koca et al. 2015; Nasiri et al. 2014; Tempelmeier and Hilger 2015). Specifically, there are 

two kinds of methods to deal with stochastic programming problems: chance-constrained 

methods and recourse methods. The chance-constrained methods ensure that the optimal solution 

makes the probability of a certain constraint being satisfied above a certain level (see, e.g., 

Charnes and Cooper 1959; Miller and Wagner 1965; Nemirovski and Shapiro 2006; Pagnoncelli 

et al. 2009). The recourse methods are mainly used in two-stage (or multi-stage) problems: in 

the first stage, a feasible solution is chosen before observing the random parameters; in the 

second stage, upon a realization of the random parameters, further decisions are allowed to avoid 

the infeasibility of constraints (see, e.g., Birge and Louveaux 1997; Shapiro et al. 2009). The 

second approach is robust optimization to deal with the uncertain parameters which are known 

to reside in (bounded) uncertainty sets (see, e.g., Alem and Morabito 2012; Alvarez and Vera 

2014; Aouam and Brahimi 2013; Ardjmand et al. 2016; Carvalho et al. 2016). According to 

different decision environments, this kind of problem can be subdivided as static robust 

optimization or adjustable robust optimization. Static robust optimization is for the case that all 

decision variables represent here-and-now decisions, that is, they should be made before the 

actual parameters are observed. Adjustable robust optimization is for the case that the part of the 

decision variables must be determined before the realization of the uncertain parameters, while 

the others can be adjusted after some parts of the uncertain parameters are revealed (see, e.g., 

Ben-Tal et al. 2004; Gorissen and Den Hertog 2013). Ben-Tal et al. (2009) give a comprehensive 

overview of robust optimization theory and applications. In addition, distributionally robust 

optimization approach is also widely used for the case that the uncertain parameters can be 

characterized by random variables but the probability distributions are not fully known due to 

the lack of enough historical data. Distributionally robust optimization provides an alternative 
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way to overcome the conservativeness of the robust optimization without requiring exact 

specifications of the probability distributions (see, e.g., Hanasusanto et al. 2015; Wiesemann et 

al. 2014; Zymler et al. 2013).  

    In this chapter, we consider a production planning problem for innovative products as defined 

by Fisher (1997). According to Fisher, an innovative product has a higher profit margin, an 

intrinsically unpredictable demand and a short life cycle. In addition, for such an innovative 

product, the procurement lead-time is usually longer than the selling season so that there is often 

only one opportunity to produce goods before the season. One typical example is fashion clothes 

which are characterized by volatile and unpredictable demands, short life cycles and long supply 

processes (Sen 2008). Fashion items are sold punctually in a short period and generally not 

replenished so that they are called as “one-shot” items (Thomassey 2010). Hence, the production 

planning problem for such products is typically a one-shot decision problem. In this chapter, we 

apply the OSDT-based decision approaches to a multi-item production planning problem with 

short life-cycle products. For the sake of simplicity, we only consider the market uncertainty 

which is characterized by a random vector of unit profits of innovative products. 

The remainder of this chapter is organized as follows. In Section 5.2, OSDT-based production 

planning models are built. In Section 5.3, we apply the proposed reformulation methods to these 

models and give specific single-level equivalent models for them. In particular, we consider two 

types of constraints, namely, cuboid constraints and ellipsoidal constraints. In Section 5.4, two 

numerical examples are used to show the effectiveness of the proposed reformulation methods, 

a comparison with other methods is made, and the managerial insights are gained. Finally, we 

conclude our research in Section 5.5. 
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5.2 One-Shot Decision Theory Based Production Planning Models 

Consider a manufacturer who is making a production planning for multiple innovative products 

with short life-cycles under market uncertainty. The production quantity of product i is the 

decision variable xö	 i = 1,⋯ , n , the unit profit of product i  is characterized as a random 

variable !Ø. The realization of the random vector ! = !B;⋯ ; !∞  is denoted by ξ = ξC;⋯ ; ξ3  

whose feasible region is denoted by Ξ ⊂ R3 . X:= x ∈ R3:	Ax ≤ b, x ≥ 0  represents the 

constraints of available resources, such as time, materials, etc.  

    Usually, such a production planning problem can be modeled as the following stochastic 

optimization problem: 

max
(
	!°x						s. t. Ax ≤ b, x ≥ 0.                                           (5.1) 

Due to the short life cycles of these products, one and only one realization of a random vector of 

the unit profits of these products (a scenario) will appear in the future and the manufacturer has 

only one opportunity to determine the production levels before the scenario reveals. Clearly, 

such a production planning problem is a one-shot decision problem. However, (5.1) is not well 

defined since ! is a random vector. 

    In the following, we remodel the problem (5.1) with the one-shot decision theory. Since the 

normal distribution is one of the most frequently used probability distributions, we assume 

hereafter that ! follows a (truncated) normal distribution with mean vector µ = µC;⋯ ; µ3 ∈

R3 and covariance matrix Σ ∈ R3×3, that is, !~• µ, Σ . Using (2.11) and (2.12), we can give 

two formulas as follows: 

π ξ := C
X≤≥ ¶© ßX≤≥ ¶®

log ρ ξ − log ρX ,                                (5.2) 

where ρ denotes the original probability density function and 
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u x, ξ : = C
≠©ß≠®

ξ°x − fX ,                                                (5.3) 

where ρX ≔ min ρ ξ : ξ ∈ Ξ   and ρU ≔ max ρ ξ : ξ ∈ Ξ   are the lower and upper bounds of 

ρ ξ  in Ξ, fX = min	 ξ°x: x ∈ X, ξ ∈ Ξ  and fU = max	 ξ°x: x ∈ X, ξ ∈ Ξ  are the lower and upper 

bounds of ξ°x in X×Ξ, respectively. Instead of directly normalizing the original density function, 

we utilize (5.2) as the relative likelihood function because it is a concave function and hence it 

is computationally tractable. 

    With (5.2)-(5.3), we build OSDT-based production planning models as follows. 

The OSDT-based production planning model with active focus points: 

        max
(
	ξ°x 					s. t.		Ax ≤ b, x ≥ 0, ξ ∈ ΛC x ,                                 (5.4) 

where ΛC x  denotes the set of global optimal solutions of the following optimization problem:  

max
T∈V

		min π ξ , u x, ξ .                                                 (5.5) 

The OSDT-based production planning model with passive focus points: 

        max
(
	ξ°x 					s. t.		Ax ≤ b, x ≥ 0, ξ ∈ ΛF x ,                                   (5.6) 

where ΛF x  denotes the set of global optimal solutions of the following optimization problem: 

min
T∈V

		max 1 − π ξ , u x, ξ .                                          (5.7) 

Clearly, for Model (5.4)-(5.5), the upper level problem (5.4) is used to find the optimal 

production plan for maximizing the total profit on a specific scenario associated with it; the lower 

level problem (5.5) is used to seek this scenario which has a relatively high relative likelihood 

degree and can cause a relatively high satisfaction level. Likewise, for Model (5.6)-(5.7), the 

upper level problem (5.6) is used to find the optimal production plan for maximizing the total 

profit on a specific scenario associated with it; the lower level problem (5.7) is used to seek this 

scenario which has a relatively high relative likelihood degree and can cause a relatively low 

satisfaction level. 
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5.3 Solutions to the Proposed Production Planning Models. 

We have already proposed single-level reformulation methods to solve OSDT-based decision 

models in Chapter 3. In this section, we apply these methods to OSDT-based production planning 

models (5.4)-(5.5) and (5.6)-(5.7). 

 

 

5.3.1 Case of Cuboid Constraints 

In this subsection, we consider the case where Ξ is a cuboid constraint, i.e., 

Ξ = ξ ∈ R3 ∶ µö − kσö ≤ ξö ≤ µö + kσö, ∀	i = 1,⋯ , n   with  k > 0,          (5.8) 

where σö = Σ i, i  represents the standard deviation of the random variable !Ø for i = 1,⋯ , n. 

It follows from (5.8) that µ − kσ and µ + kσ are the lower and upper bounds of Ξ, respectively. 

Property 5.1 Suppose that Ξ takes the form of (5.8), then π ξ  is a quadratic concave function: 

π ξ = 1 − C
µò´∂∑∏π´

∗ ξ − µ °ΣßC ξ − µ .                                  (5.9) 

    Property 5.1 means that the mean vector has the maximal relative likelihood degree 1, i.e., 

π µ = 1, and the vector which has a longer Euclidean distance from the mean vector will have 

a less relative likelihood degree. Considering Property 5.1, we know that Assumption 3.6 holds. 

By (5.3) and (5.9), we can easily to verify that Assumption 3.7 is also satisfied. 
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    By Theorem 3.6, we know that solving the BLPP (5.4)-(5.5) becomes equivalent to solving 

the following single-level optimization problem: 

max ξ°x																																																
s. t. FC x, ξ ≤ 0, Ax ≤ b,																

x ∈ R=3 , ξ ∈ µ − kσ, µ + kσ ,
                                     (5.10) 

where FC is defined as 

FC x, ξ = T∂(ß≠®
≠©ß≠®

+ Tß∫ ∂ª∏π Tß∫
µò´∂∑∏π´

− 1. 

    By Theorem 3.7, we know that solving the BLPP (5.6)-(5.7) becomes equivalent to solving 

the following single-level optimization problem: 

max LC x, ξ, λ, η, τ 																																																																								
s. t. GC x, ξ, λ, η, τ = 0, Ax ≤ b,																																																

	x ∈ R=3 , ξ ∈ µ − kσ, µ + kσ , λ ∈ R=3 , η ∈ R=3 , τ ∈ R=,
            (5.11) 

where LC and GC are respectively defined as 

LC x, ξ, λ, η, τ = 1 − τ ∗ T
∂(ß≠®
≠©ß≠®

+ τ ∗ Tß∫ ∂∑∏π Tß∫
µò´∂∑∏π´

+	λ° ξ − µ − kσ + η° µ − kσ − ξ ,  

and 

GC x, ξ, λ, η, τ = 1 − τ ∗ (
≠©ß≠®

+ 2τ ∗ ∑∏π Tß∫
µò´∂∑∏π´

+ λ − η. 

 

 

5.3.2 Case of ellipsoidal constraints 

In this subsection, we consider the case where Ξ is an ellipsoidal constraint, i.e., 

Ξ = ξ ∈ R3 ∶ g ξ = C
F
ξ − µ °ΣßC ξ − µ − rF ≤ 0  with r > 0.          (5.12)  

Further, we have 

∇g ξ = ΣßC ξ − µ . 

Property 5.2 Suppose that Ξ takes the form of (5.12), then π ξ  is a quadratic concave function: 

π ξ = 1 − C
FΩò

∗ ξ − µ °ΣßC ξ − µ .                                  (5.13) 



 48 

    Property 5.2 means that the mean vector has the maximal relative likelihood degree 1, i.e., 

π µ = 1, and the vector which has a longer Euclidean distance from the mean vector will have 

a less relative likelihood degree. Considering Property 5.2, we know that Assumption 3.6 holds. 

By (5.3) and (5.12), we can easily to verify that Assumption 3.7 is also satisfied. 

    By Theorem 3.6, we know that solving the BLPP (5.4)-(5.5) becomes equivalent to solving 

the following single-level optimization problem: 

max ξ°x																																																																											
s. t. FF x, ξ ≤ 0, C

F
ξ − µ °ΣßC ξ − µ − rF ≤ 0,

Ax ≤ b, x ∈ R=3 , ξ ∈ R3,																																						
                        (5.14) 

where FF is defined as 

FF x, ξ = T∂(ß≠®
≠©ß≠®

+ Tß∫ ∂ª∏π Tß∫
FΩò

− 1. 

    By Theorem 3.7, we know that solving the BLPP (5.6)-(5.7) becomes equivalent to solving 

the following single-level optimization problem: 

max LF x, ξ, λ, τ 																																																																					
s. t. GF x, ξ, λ, τ = 0, C

F
ξ − µ °ΣßC ξ − µ − rF ≤ 0,

Ax ≤ b, x ∈ R=3 , ξ ∈ R3, λ ∈ R=, τ ∈ R=,																		
                 (5.15) 

where LF and GF are respectively defined as 

LF x, ξ, λ, τ = 1 − τ ∗ T
∂(ß≠®
≠©ß≠®

+ τ ∗ Tß∫ ∂∑∏π Tß∫
FΩò

+ 	λ ∗ C
F
ξ − µ °ΣßC ξ − µ − rF ,  

and 

GF x, ξ, λ, τ = 1 − τ ∗ (
≠©ß≠®

+ τ ∗ ∑
∏π Tß∫
Ωò

+ λ ∗ ΣßC ξ − µ .  
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5.4.  Numerical Experiments and Computational Discussions 

In order to illustrate the proposed methods, let us consider a numerical example as follows. An 

apparel manufacturer is planning to produce four types of new fashion clothes for the coming 

summer season. For producing fashion clothes 1, 2, 3 and 4, four kinds of resources, that is, A, 

B, C and D are needed. The available amounts of A, B, C and D are 1500, 2250, 1100 and 1300 

units, respectively. The amounts of resource A needed for producing one unit fashion clothes 1, 

2, 3 and 4 are 2, 3, 3 and 2 units, respectively; the amounts of resource B needed for producing 

one unit fashion clothes 1, 2, 3 and 4 are 2, 3, 4 and 5 units, respectively; the amounts of resource 

C needed for producing one unit fashion clothes 1, 2, 3 and 4 are 3, 2, 2 and 1 units, respectively; 

the amounts of resource D needed for producing one unit fashion clothes 1, 2, 3 and 4 are 1, 2, 

2 and 3 units, respectively. Hence, the feasible set of production levels is 

X = x ∈ R=â ∶ Ax ≤ b .                                             (5.16) 

where 

A =

2 3
2 3

3 2
4 5

3 2
1 2

2 1
2 3

  and  b =
1500
2250
1100
1300

. 

 

 

 

5.4.1 Numerical Examples with Cuboid Constraints 

In this subsection, we consider the case where Ξ takes the form of (5.8), that is, 

Ξ ≔ µ − kσ, µ + kσ ⊂ Râ		with		k > 0,                                (5.17) 

It follows from (2.2) that the expected value based production planning model is 

				max	 µ°x				s. t. Ax ≤ b, x ≥ 0.                                          (5.18) 
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It follows from (2.4) that the maximax approach based production planning model is 

				max		(µ + kσ)°x 				s. t. Ax ≤ b, x ≥ 0.                                   (5.19) 

It follows from (2.5) that the maximin approach based production planning model is 

max		(µ − kσ)°x 				s. t. Ax ≤ b, x ≥ 0.                                  (5.20) 

We utilize the interior-point algorithm from Global Optimization Toolbox of MATLAB 7.10.0 

to solve (5.10) and (5.11), and use the simplex algorithm to solve (5.18), (5.19) and (5.20). 

 

Case I:  k = ks, Σ = Σs and µ = µs where 

ks = 2, Σs =

2500 1250
1250 2500

1250 1250
1250 1250

1250 1250
1250 1250

2500 1250
1250 2500

  and  µs =
150
200
200
150

. 

The numerical results are shown in the following tables. 

 

Table 5-1. Solutions of (5.10) for Case I 

ξ∗ x∗ π ξ∗  u x∗, ξ∗  ξ∗°x∗ 

191.5182
244.4839
244.4839
197.4494

 
100.0000
150.0000
150.0000
200.0000

 0.7999 0.7999 131990 

 

Table 5-2. Solutions of (5.11) for Case I 

ξ∗ x∗ π ξ∗  u x∗, ξ∗  ξ∗°x∗ 

91.9217
133.4775
133.4775
88.3976

 
84.9330
180.1356
180.1324
124.6650

 0.5945 0.4055 66915 

 

Table 5-3. Solutions of (5.18) for Case I 



 51 

ξ∗ x∗ π ξ∗  u x∗, ξ∗  ξ∗°x∗ 

150.0000
200.0000
200.0000
150.0000

 
100.0000
186.1648
113.8352
200.0000

 1.0000 0.6364 105000 

 

Table 5-4. Solutions of (5.19) for Case I 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

250.0000
300.0000
300.0000
250.0000

 
100.0000
200.0000
100.0000
200.0000

 0.0000 1.0000 165000 

 

Table 5-5. Solutions of (5.20) for Case I 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

50.0000
100.0000
100.0000
50.0000

 
0.0000
236.7627
263.2373
0.0000

 0.0000 0.3030 50000 

 

 

For examining how the solutions change with k for Case I, we consider the following case. 

Case II: k = 1.5 ∗ ks, Σ = Σs and µ = µs. 

The obtained results are shown in the following tables. 

 

Table 5-6. Solutions of (5.10) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 
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213.5324
281.6845
254.4564
222.6085

 
100.0000
300.0000
0.0000
200.0000

 0.7712 0.7712 150380 

  

Table 5-7. Solutions of (5.11) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

77.1232
113.8610
113.8608
75.6643

 
78.1756
193.6479
193.6497
90.8779

 0.7077 0.2923 57003 

      

Table 5-8. Solutions of (5.18) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

150.0000
200.0000
200.0000
150.0000

 
100.0000
186.1648
113.8352
200.0000

 1.0000 0.5385 105000 

 

Table 5-9: Solutions of (5.19) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

300.0000
350.0000
350.0000
300.0000

 
100.0000
202.1351
97.8649
200.0000

 0.0000 1.0000 195000 

 

Table 5-10. Solutions of (5.20) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

0.0000
50.0000
50.0000
0.0000

 
0.0000
271.1877
228.8123
0.0000

 0.0000 0.1282 25000 
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We examine how the solutions change with Σ for Case I. We consider the following case III. 

Case III: k = ks, Σ = 1.44 ∗ Σs and µ = µs. 

The obtained results are shown in the following tables. 

 

Table 5-11. Solutions of (5.10) for Case III 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

201.8225
255.5241
255.5241
209.2257

 
100.0000
150.0000
150.0000
200.0000

 0.7835 0.7835 138680 

  

Table 5-12. Solutions of (5.11) for Case III 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

85.3928
124.8230
124.8230
82.7798

 
81.5170
186.9661
186.9659
107.5849

 0.6467 0.3533 62542 

 

Table 5-13. Solutions of (5.18) for Case III 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

150.0000
200.0000
200.0000
150.0000

 
100.0000
186.1648
113.8352
200.0000

 1.0000 0.5932 105000 

 

Table 5-14. Solutions of (5.19) for Case III 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 
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270.0000
320.0000
320.0000
270.0000

 
100.0000
200.0000
100.0000
200.0000

 0.0000 1.0000 177000 

 

Table 5-15. Solutions of (5.20) for Case III 

ξ∗ x∗ π(ξ∗) u(x∗, ξ∗) ξ∗°x∗ 

30.0000
80.0000
80.0000
30.0000

 

0.0000
258.4314
241.5686
0.0000

 0.0000 0.2260 40000 

 

Table 5-16. The scenarios associated with the optimal solutions in Cases I and II 

 (5.20) (5.11) (5.18) (5.10) (5.19) 

I 
50.0000
100.0000
100.0000
50.0000

 
91.9217
133.4775
133.4775
88.3976

 
150.0000
200.0000
200.0000
150.0000

 
191.5182
244.4839
244.4839
197.4494

 
250.0000
300.0000
300.0000
250.0000

 

II 

0.0000
50.0000
50.0000
0.0000

 
77.1232
113.8610
113.8608
75.6643

 
150.0000
200.0000
200.0000
150.0000

 
213.5324
281.6845
254.4564
222.6085

 
300.0000
350.0000
350.0000
300.0000

 

 

Table 5-17. The scenarios associated with the optimal solutions in Cases I and III 

 (5.20) (5.11) (5.18) (5.10) (5.19) 

I 
50.0000
100.0000
100.0000
50.0000

 
91.9217
133.4775
133.4775
88.3976

 
150.0000
200.0000
200.0000
150.0000

 
191.5182
244.4839
244.4839
197.4494

 
250.0000
300.0000
300.0000
250.0000

 

III 

30.0000
80.0000
80.0000
30.0000

 
85.3928
124.8230
124.8230
82.7798

 
150.0000
200.0000
200.0000
150.0000

 

201.8225
255.5241
255.5241
209.2257

 
270.0000
320.0000
320.0000
270.0000
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Table 5-18. The optimal total profit for Cases I and II 

 (5.20) (5.11) (5.18) (5.10) (5.19) 

I 50000 66915 105000 131990 165000 

II 25000 57003 105000 150380 195000 

 

Table 5-19. The optimal total profit for Cases I and III 

 (5.20) (5.11) (5.18) (5.10) (5.19) 

I 50000 66915 105000 131990 165000 

III 40000 62542 105000 138680 177000 

 

 

 

5.4.2 Numerical Examples with Cuboid Constraints 

In this subsection, we consider the case where Ξ takes the form of (5.12), that is, 

Ξ = ξ ∈ Râ ∶ g ξ = C
F
ξ − µ °ΣßC ξ − µ − rF ≤ 0  with r > 0.          (5.21)  

It follows from (2.2) that the expected value based production planning model is 

				max
æ
	 µ°x				s. t. Ax ≤ b, x ≥ 0.                                           (5.22) 

It follows from (2.4) that the maximax approach based production planning model is 

				max
(;T

		 ξ°x 				s. t. Ax ≤ b, x ≥ 0, g ξ ≤ 0.                                  (5.23) 

It follows from (2.5) that the maximin approach based production planning model is 

max
(
	 min

T
ξ°x : g ξ ≤ 0 				s. t. Ax ≤ b, x ≥ 0.                            (5.24) 

Using the strongly dual theory to (5.24), we can transform it into the following problem: 

max
(;T;û

		 ξ°x 				s. t. Ax ≤ b, x ≥ 0, λ ≥ 0, g ξ = 0, x + λ ∗ ΣßC ξ − µ = 0.       (5.25) 
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We utilize the interior-point algorithm from Global Optimization Toolbox of MATLAB 7.10.0 

to solve (5.12), (5.13), (5.23) and (5.25), use the simplex algorithm to solve (5.22). 

 

Case I:  r = rs, Σ = Σs and µ = µs where 

rs = 2, Σs =

2500 1250
1250 2500

1250 1250
1250 1250

1250 1250
1250 1250

2500 1250
1250 2500

  and  µs =
150
200
200
150

. 

The numerical results are shown in the following tables. 

 

Table 5-20. Solutions of (5.12) for Case I 

ξ∗ x∗ π ξ∗  u x∗, ξ∗  ξ∗°x∗ 

195.9639
259.0964
239.3976
202.5301

 
100.0000
300.0000
0.0000
200.0000

 0.7844 0.7844 137831 

 

Table 5-21. Solutions of (5.13) for Case I 

ξ∗ x∗ π ξ∗  u x∗, ξ∗  ξ∗°x∗ 

88.4210
128.8371
128.8371
85.3855

 
82.9979
184.0042
184.0042
114.9895

 0.6325 0.3675 64570 

 

Table 5-22. Solutions of (5.22) for Case I 

ξ∗ x∗ π ξ∗  u x∗, ξ∗  ξ∗°x∗ 

150.0000
200.0000
200.0000
150.0000

 
100.0000
186.1648
113.8352
200.0000

 1.0000 0.6364 105000 
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Table 5-23. Solutions of (5.23) for Case I 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

248.9949
327.2792
384.8528
263.1371

 
100.0000
300.0000
0.0000
200.0000

 0.0000 1.0000 175711 

 

Table 5-24. Solutions of (5.25) for Case I 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

53.0560
79.5840
79.5840
53.0561

 
62.2845
208.4773
208.4772
62.2837

 0.0000 0.2265 39792 

 

 

For examining how the solutions change with r for Case I, we consider the following case. 

Case II: r = 1.2 ∗ rs, Σ = Σs and µ = µs. 

The obtained results are shown in the following tables. 

 

Table 5-25. Solutions of (5.12) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

207.1906
273.5308
249.0205
215.3607

 
100.0000
300.0000
0.0000
200.0000

 0.7682 0.7682 145850 

  

Table 5-26. Solutions of (5.13) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 
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81.8363
120.1086
120.1086
79.7196

 

79.9678
190.0645
190.0645
99.8388

 0.6831 0.3169 60160 

      

Table 5-27. Solutions of (5.22) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

150.0000
200.0000
200.0000
150.0000

 
100.0000
186.1648
113.8352
200.0000

 1.0000 0.5385 105000 

 

Table 5-28: Solutions of (5.23) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

268.7939
352.7351
301.8234
285.7645

 
100.0000
300.0000
0.0000
200.0000

 0.0000 1.0000 189853 

 

Table 5-29. Solutions of (5.25) for Case II 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

36.4944
54.7416
54.7416
36.4944

 
51.6320
215.5786
215.5786
51.6323

 0.0000 0.1442 27371 

 

 

We examine how the solutions change with Σ for Case I. We consider the following Case III. 

Case III: r = rs, Σ = 1.69 ∗ Σs and µ = µs. 

The obtained results are shown in the following tables. 
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Table 5-30. Solutions of (5.12) for Case III 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

212.8789
280.8442
253.8962
221.8616

 
100.0000
300.0000
0.0000
200.0000

 0.7613 0.7613 149914 

  

Table 5-31. Solutions of (5.13) for Case III 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

78.8907
116.2039
116.2039
77.1850

 
78.8165
192.3669
192.3669
94.0827

 0.7045 0.2955 58187 

 

Table 5-32. Solutions of (5.22) for Case III 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

150.0000
200.0000
200.0000
150.0000

 
100.0000
186.1648
113.8352
200.0000

 1.0000 0.5932 105000 

 

Table 5-33. Solutions of (5.23) for Case III 

ξ∗ x∗ π(ξ∗) u x∗, ξ∗  ξ∗°x∗ 

278.6934
365.4630
310.3087
297.0782

 
100.0000
300.0000
0.0000
200.0000

 0.0000 1.0000 196924 

 

Table 5-34. Solutions of (5.25) for Case III 

ξ∗ x∗ π(ξ∗) u(x∗, ξ∗) ξ∗°x∗ 
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28.2408
42.3612
42.3612
28.2408

 
47.5771
218.2819
218.2819
47.5771

 0.0000 0.1076 21181 

 

 

Table 5-35. The scenarios associated with the optimal solutions in Cases I and II 

 (5.25) (5.13) (5.22) (5.12) (5.23) 

I 

53.0560
79.5840
79.5840
53.0561

 
88.4210
128.8371
128.8371
85.3855

 
150.0000
200.0000
200.0000
150.0000

 
195.9639
259.0964
239.3976
202.5301

 
248.9949
327.2792
384.8528
263.1371

 

II 
36.4944
54.7416
54.7416
36.4944

 
81.8363
120.1086
120.1086
79.7196

 
150.0000
200.0000
200.0000
150.0000

 
207.1906
273.5308
249.0205
215.3607

 
268.7939
352.7351
301.8234
285.7645

 

 

Table 5-36. The scenarios associated with the optimal solutions in Cases I and III 

 (5.25) (5.13) (5.22) (5.12) (5.23) 

I 

53.0560
79.5840
79.5840
53.0561

 
88.4210
128.8371
128.8371
85.3855

 
150.0000
200.0000
200.0000
150.0000

 
195.9639
259.0964
239.3976
202.5301

 
248.9949
327.2792
384.8528
263.1371

 

III 
28.2408
42.3612
42.3612
28.2408

 
78.8907
116.2039
116.2039
77.1850

 
150.0000
200.0000
200.0000
150.0000

 
212.8789
280.8442
253.8962
221.8616

 
278.6934
365.4630
310.3087
297.0782

 

 

Table 5-37. The optimal total profit for Cases I and II 

 (5.24) (5.13) (5.22) (5.12) (5.23) 

I 39792 64570 105000 137831 175711 

II 27371 60160 105000 145850 189853 
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Table 5-38. The optimal total profit for Cases I and III 

 (5.25) (5.13) (5.22) (5.12) (5.23) 

I 39792 64570 105000 137831 175711 

III 21181 58187 105000 149914 196924 

 

 

 

5.4.3 Results Analysis and Discussion 

Let us give an explanation for numerical results shown in Section 5.4.1. Table 5-1 shows that the 

optimal production plan for an active manufacturer. The active production plan is (100.0000; 

150.0000; 150.0000; 200.0000); the active focus point (scenario) for supporting this production 

plan is (191.5182; 244.4839; 244.4839; 197.4494); the relative likelihood degree of this focus 

point is 0.7999; when the active scenario occurs, the satisfaction level of this plan is 0.7999. In 

other words, the reason that an active manufacturer chooses the production plan (100.0000; 

150.0000; 150.0000; 200.0000) is that the scenario (191.5182; 244.4839; 244.4839; 197.4494) 

is the most appropriate for this manufacturer. Table 5-2 shows that the optimal production plan 

for a passive manufacturer. The passive production plan is (84.9330; 180.1356; 180.1324; 

124.6650); the passive focus point (scenario) for supporting this production plan is (91.9217; 

133.4775; 133.4775; 88.3976); the relative likelihood degree of this scenario is 0.5945; when 

the passive scenario occurs, the satisfaction level of this plan is 0.4055. It means that the scenario 

(91.9217; 133.4775; 133.4775; 88.3976) is the most acceptable scenario amongst all unfavorable 

ones, a passive manufacturer chooses the production plan (84.9330; 180.1356; 180.1324; 

124.6650) based on this scenario. Table 5-3 corresponds to the expected profit max manufacturer 

where the mean of profits per units of four products is (150; 200; 200; 150) whose relative 
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likelihood degree is 1 and it can lead to the satisfaction level of 0.6364 for the optimal production 

plan. Tables 5-4 and 5-5 are for the maximax manufacturer and the maximin manufacturer, 

respectively. The maximax manufacturer takes into account the upper bound of profits per units 

of four products (250; 300; 300; 250) whereas the maximin manufacturer considers the lower 

bound of profits per units of four products (50; 100; 100; 50).  

Tables from 5-6 to 5-10 and Tables from 5-11 to 5-15 respectively show how the solutions 

change with the varying of the feasible region of the realization of the random vector, that is, the 

varying of k and with the varying of uncertainty, that is, the varying of Σ. From these tables, we 

know different models provides different optimal solutions which can reflect different 

consideration for handling the uncertainty. However, as shown in Tables 5-16 and 5-17, in any 

case, the profit per unit of each product which is take into account for obtaining the optimal 

production plan will increase according to the order of the maximin manufacturer, the passive 

manufacturer, the expected profit max manufacturer, the active manufacturer and the maximax 

manufacturer. In addition, Tables 5-18 and 5-19 show that the profit anticipated by a maximax 

manufacturer is larger than the one by an active manufacturer; the profit anticipated by an active 

manufacturer is larger than the one by an expected profit max manufacturer; the profit anticipated 

by an expected profit max manufacturer is larger than the one by a passive manufacturer; the 

profit anticipated by a passive manufacturer is larger than the one by a maximin manufacturer. 

It means that the maximax manufacturer is the most optimistic, the maximin manufacturer is the 

most pessimistic, the expected profit max manufacturer is at the middle of the active and passive 

manufacturers.  

When we compare the profit per unit of each product associated with  the optimal production 

plans between Case I and Case II  (shown in Table 5-16), we can find that increasing the feasible 

set of the realization of random variables, that is, k increasing from 2 (Case I) to 3 (Case II),  the 

maximin manufacturer and the passive manufacturer will take a more conservative attitude so 
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that the profit per unit of each product associated with the optimal production plan will decrease 

accordingly; on the contrary, the maximax manufacturer and the active manufacturer will take a 

more aggressive attitude so that the profit per unit of each product associated with the optimal 

production plan will increase accordingly; however, an expected profit max manufacturer only 

takes into account the mean vector of the profits per unit of products. 

When we compare the profit per unit of each product associated with the optimal production 

plans between Case I and Case III (shown in Table 5-17), we can find that increasing the 

uncertainty of profits, that is, changing Σ from Σs (Case I) to 1.44 ∗ Σs (Case III), will cause the 

maximin manufacturer and the passive manufacturer more vigilant so that the profit per unit of 

each product associated with the optimal production plan will decrease accordingly; on the 

contrary, the maximax manufacturer and the active manufacturer will become more optimistic 

so that the profit per unit of each product associated with the optimal production plan will 

increase accordingly; however, the action of an expected profit max manufacturer will remain 

unchanged. 

The obtained managerial insights can also be observed from the numerical results shown in 

Section 5.4.2, which are intuitively acceptable and can be used as a sort of criterion for selecting 

a product planning model to fit the preference of the different types of decision makers.  

 

 

 

 

5.5 Concluding Remarks 

We propose a new production planning model for a manufacturer that is planning to produce 

multiple innovative products with short life-cycles. Different from the existing production 
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planning models, we build OSDT-based production planning models in which the optimal 

production quantities are obtained based on the scenarios which are the most appropriate for the 

manufacturer with considering the profit and the probability. We utilize the proposed 

reformulation methods to solve OSDT-based production planning models and use two numerical 

examples to show their effectiveness. 
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Chapter 6 

Conclusions 

In this dissertation, we are interested in solving a one-shot decision problem with one-shot 

decision theory (OSDT). Different from existing decision theories, OSDT provides a scenario-

based theory of choice. According to OSDT, a decision-maker makes a one-shot decision by a 

two-step process in which the first step is to choose the most appropriate scenario for each 

alternative and the second step is to choose the best decision based on the selected scenarios. 

These selected scenarios are called focus points. The focus point of the best decision is a 

supporting scenario to carry out this decision. With different behaviors for choosing the focus 

points, decision-makers may make different decision.  

    OSDT-based decision models are bilevel programming problems with maximin or minimax 

lower level programs. Due to inherent mathematical difficulties, existing optimization methods 

are not valid to solve them directly. In this dissertation, we provide solvable single-level 

reformulations of these special bilevel optimization problems. The reformulated models are 

computationally tractable than traditional KKT-based reformulations.  

    As applications, we build OSDT-based newsvendor models and OSDT-based production 

planning models. The effectiveness of the proposed reformulation methods to these specific 

models is tested by preliminary numerical experiments. Applying the proposed methods to more 

real-world one-shot decision problems will be one of the main directions of future research. 
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