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In many decision problems, we often encounter a situation where decision-makers have
one and only one opportunity to make a decision. Such decision problems are called one-shot
(one-time) decision problems. The one-shot decision problem is an important decision
problem, which arises in various areas of social production and living activities interested in
short-term benefits. In general, a decision problem contains a set of alternative actions and
each of which corresponds to a set of possible states of nature. For each alternative, one and
only one state will happen in the future, resulting in an outcome associated with that
decision.

When making decisions in practice, decision-makers may face three different decision
conditions: certainty, risk and uncertainty. Certainty is for the situation where the state is
unique for each alternative. In this situation, since the outcomes of all alternatives are
accurately known, the decision-makers can choose the best decision or at least they can
choose an alternative that generates the best outcome. Obviously, certainty is an ideal
condition for decision-making. However, in practice, lots of decision problems always involve
risks or uncertainties. More specifically, risk involves the situation where the probability of
every possible state is known, under which the decision-makers can exactly calculate the
probabilities of all possible outcomes. Uncertainty is for the situation where the decision-
makers know all possible states related to every alternative but they do not obtain exact
probabilities of them due to limited information.

Different decision situations, especially involving risks and uncertainties, require
different decision theories, among which the expected utility theory of von Neumann and
Morgenstern (1944) and the subjective expected utility theory of Savage (1954) have almost
been regarded as a normative theory for rational choice under risk and uncertainty,
respectively. However, plenty of hypothetical experiments show that people’s preferences
systematically violate the axioms of these two decision theories, such as the independence in
the expected utility theory and the sure-thing principle in the subjective expected utility
theory; see, e.g., Allais (1953), Ellsberg (1961), Kahneman and Tversky (1979), and Starmer




(2000).

From the aspect of mathematical optimization, decision problems under risk or
uncertainty are usually modeled using the expected value: a weighted average of all possible
outcomes (or utilities defined over the outcomes) for each alternative where objective or
subjective probabilities are used as weights. We can easily understand that if the process
repeats over a great large number of times in the same decision circumstances, then the
expected value based decision will lead to the largest average outcome. However, this largest
expected value may not be obtained in the short term or if the decision is made only once. In
other words, for a one-shot decision problem, it is less justifiable to use the expected value to
evaluate the decision.

Another two commonly used decision approaches, especially for situations involving
uncertainty, are based on the maximax and maximin criterion: the maximax approach
evaluates each decision by the maximum possible outcome associated with that decision,
whereas the maximin approach considers the minimum possible outcome. The maximax
approach is appropriate for an optimistic decision-maker who is often attracted by the best
results. The maximin approach would be suitable for a pessimistic decision-maker who is
always worried about the worst results. Clearly, the maximax approach might be too daring
whereas the maximin approach might be too conservative in the sense that the former only
focuses on the best scenario but the latter only considers the worst scenario no matter what
will happen in the future. Besides maximax and maximin criterions, the minimax regret
criterion, Hurwicz criterion and Laplace criterion are also widely used in applications. Since
the minimax regret approach is to minimize the worst-case regret (difference or ratio of the
outcomes) rather than to minimize the outcome itself, it is sometimes not as pessimistic as
the standard maximin approach. Likewise, to achieve a compromise between the optimism
of the maximax criterion and the pessimism of the maximin criterion, Hurwicz criterion is
proposed that is a weighted average of these two extremes. Laplace criterion applies to the
situation where the decision-maker is completely ignorant about the probability of all states.
In this case, the probability of each state is usually considered to be equal and the decision-
maker chooses a decision by maximizing the expected outcome.

In recent years, Guo (2011) proposed the one-shot decision theory (OSDT) for one-shot
decision problems under risk or uncertainty, and applied it to several problems in business
and management; see, e.g., Guo (2010a), Guo (2010b), Guo and Ma (2014). Based on the
OSDT, Wang and Guo (2017) built a behavioral model for explaining the anomalies in the
first-price sealed-bid auctions. To the best of our knowledge, this is the first time to provide
a theoretical explanation for throwing-away phenomenon for such auction problems.
Recently, Guo (2017) advanced the OSDT and axiomatized the focus theory of choice (FTC)
for one-shot decision-making under risk or uncertainty. OSDT and FTC are based on two
basic assumptions (axioms): a decision-maker can choose the most attractive scenario (state)
for him/her from among all possible scenarios for each action; a decision-maker can choose
the most preferred action by comparing the salient states of all actions. These assumptions
are intuitively appealing and there are indeed growing evidences supporting them; see, e.g.,
Bordalo et al. (2012), Busse et al. (2013), Orquin and Loose (2013), Stewart et al. (2016).
OSDT and FTC are behavioral decision theories that can explain many puzzling phenomena
in psychology and economics, such as the St. Petersburg, Allais and Ellsberg paradoxes.

In this dissertation, we propose new decision approaches to one-shot decision problems
based on the OSDT. Different from traditional decision models, the OSDT-based decision
model is a bilevel programming problem that obtains an optimal decision by the following
two steps: (1) for each feasible decision variable (or vector) given by the upper level problem,
the lower level problem examines every possible realization of the random variable (or vector)
with considering the probability of this realization and the payoff associated with it and then




chooses one as a focus point of this decision; (2) based on the focus points of all feasible
decisions, the upper level problem determines an optimal decision by considering which one
coupled with its focus point can generate the highest payoff. We consider two types of
behaviors of the decision-maker choosing focus points: one is choosing the scenario which has
a relatively high probability and can bring about a relatively high payoff, such focus points
are called active focus points; the other is choosing the scenario which has a relatively high
probability but can lead to a relatively low payoff, such focus points are called passive focus
points. With different preferences for choosing the focus points, the decision-makers may
make different decisions.

Bilevel program is a special constrained optimization problem, whose constraints or
part of constraints are defined by another optimization problem. Since bilevel program is a
non-convex optimization problem with an implicitly determined feasible set, to solve it or find
its optimality conditions, the problem has to be reformulated as a single-level optimization
problem. Since OSDT-based decision models have non-smooth and non-convex lower level
programs, traditional reformulation methods are not applicable to them. In this dissertation,
we propose new reformulation methods to these special bilevel programs by transforming
them into general single-level optimization problems. We consider two models with one-
dimensional lower level variables and multi-dimensional lower level variables, respectively.
The reformulated models are more tractable than original bilevel optimization models so that
they can be solved with the commonly used optimization methods or software.

Finally, we apply the OSDT-based decision approach to a single-item newsvendor
problem and a multi-item production planning problem. We build OSDT-based newsvendor
models for an innovative product and OSDT-based production planning models for multiple
short life-cycle products, respectively. We apply the proposed reformulation methods to these
specific models and give corresponding single-level equivalent models for them. In particular,
for OSDT-based production planning models, we consider two types of constraints of the lower
level problems, that is, cuboid constraints and ellipsoidal constraints. Preliminary numerical
experiments and computational discussions are also given in this dissertation.
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