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Abstract—We investigated a Goldschmidt’s single flux quan-
tum (SFQ) floating-point divider that is suitable for the imple-
mentation using the bit-serial pipelined SFQ circuit. We designed
the bit-serial SFQ divider that outputs the 11-bit quotient. The
simulation results show correct operation at the frequency of 50
GHz and bias margin of 80-125%. We also estimated dependence
of latency and the number of Josephson junctions on accuracy
of outputs. According to the estimation, double-precision SFQ
divider can be designed using 27000 Josephson junctions, which
can be implemented on one chip using the current SFQ circuit
fabrication technology. Because of the small circuit area and
multiplier-based hardware architecture, the investigated divider
can be applied to build an SFQ graphical processing unit.

Index Terms—single-flux quantum logic, superconducting in-
tegrated circuits, Goldschmidt’s division algorithm

I. INTRODUCTION

ASINGLE-flux quantum (SFQ) logic circuit has the poten-
tial for high-speed and low power operation compared

to the semi-conductor CMOS circuit [1]. The SFQ logic
circuit is thought to be applied to the next generation high
performance computing (HPC) systems because of the high-
energy efficiency [2]. In the field of HPC, a general-purpose
computing on graphical processing units (GPGPU) is becom-
ing mainstream because of its high performance in terms of
calculation power and energy efficiency [3]. In the graphics
processing units (GPUs), floating-point arithmetic operation
plays the important role compared to general-purpose proces-
sors. Among four arithmetic operations, division is the most
complex and requires the longest calculation time. It is re-
ported that floating-point division accounts for approximately
40% of overall calculation time, although division occupies
only 3% of the total instructions to perform the SPECfp92
benchmark [4].

We have been studying the GPGPU-based SFQ processor
to implement high-speed and energy efficient future com-
puting system. To implement the GPGPU-based processor,
implementation of the floating-point arithmetic unit that can
efficiently perform four arithmetic operation, addition, sub-
traction, multiplication, and division, is important. So far,
addition and multiplication based on the SFQ logic have been
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studied using various hardware architectures, such as a bit-
serial architecture [5]–[8], a bit-slice architecture [9], [10], a 
bit-parallel architecture [11], [12].

In spite of the fact that divider plays an important role in the 
computing system as mentioned before, only one SFQ divider, 
which employs a systolic-array architecture, has been studied 
[13]. Though this divider has a good scalability, large circuit 
area is required to scale up the bit-length because the number 
of processing unit cells is proportional to the number of bits. 
In this study, we investigate a hardware algorithm of the SFQ 
divider, which also can be used as a multiplier and which is 
suitable for implementing SFQ-based GPU, based on the bit-
serial approach that can be implemented with small circuit 
area.

II. GOLDSCHMIDT’S ALGORITHM

There are two major hardware architecture approaches 
to implement the divider, subtractive and multiplicative ap-
proaches [14]. The subtractive approach, which is similar to 
the manual division calculation, uses subtraction and shift 
operations to calculate quotient. The calculation time of the 
subtractive method is relatively slow because the subtraction 
and shift sequence has to be repeated many times, at least 
the bit-length of the dividend. Owing to simplicity of the 
calculation and implementation, the subtractive approach has 
been widely used in commercial microprocessors [15]. The 
multiplicative approach uses multiplication to calculate the 
quotient on the basis of mathematical algorithm. In this 
approach, the input dividend converges to the quotient quadrat-
ically by iterating multiplication. The multiplicative approach 
also has been implemented in various microprocessors such as 
the IBM RS/6000 and AMD K7 processor [16]. Because the 
multiplier in the divider based on the multiplicative approach 
can be also used as the floating-point multiplier, the GPU, 
which has to perform both multiplication and division, can be 
implemented efficiently. We employed the the multiplicative 
approach to implement SFQ floating-point divider. As the mul-
tiplicative approach, the Newton-Raphson algorithm [14] and 
the Goldschmidt’s algorithm [17] are well-known. We employ 
the Goldschmidt’s algorithm for the SFQ divider because this 
algorithm is suitable for the pipelined SFQ logic circuit as we 
discuss later. And the divider using Glodschmidt’s algorithm 
can be used as a multiplier because this algorithm uses mul-
tiplication, and it bring efficient circuit area. We investigated 
the floating-point division of floating-point number defined by 
the IEEE standard 754 [18]. The floating-point number X is 
represented as X = (−1)XS ×2XE ×XF , where XS , XE and
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Fig. 1: Goldschmidt’s division algorithm

Fig. 2: Flow-chart of the iteration of Goldschmidt’s division
algorithm

XF are sign, exponent, and significand bits respectively. The
number of bits of the exponent and significand are represented
as ne and nf , respectively. According to the IEEE 754, the
standard format, (ne, nf ) = (5,11), (8.24), (11,53), and (15,
113) are called half-, single-, double- and quadruple-precision
floating-point numbers, respectively.

Let the dividend, the divisor, and the quotient be Z, D,
and Q, respectively. When we represent Z, D, and Q as Z =
(−1)zS × 2zE × zF , D = (−1)dS × 2dE × dF , and Q =
(−1)qS ×2qE ×qF , respectively, where (zS , dS , qS), (zE , dE ,
qE), and (zF , dF , qF ) are sign, exponent, and significand of
Z, D, and Q. Q can be calculated by

Q =
Z

D
=

(−1)zS × 2zE × zF
(−1)dS × 2dE × dF

(1)

= (−1)zS⊕dS × 2zE−dE × zF
dF

.

The sign, exponent, and the significand, qS , qE , and qF of Q,
can be represented as

qS = zS ⊕ dS , (2)

Fig. 3: Block diagram of bit-serial multiplier

Fig. 4: The block diagram of the proposed bit-serial Gold-
schmidt’s SFQ divider

qE = zE − dE + nbias, (3)
qF = zF /dF , (4)

where nbias is the bias for significand [18]. Bias is added to 
exponent to be an unsigned number, which is used to simplify a 
comparison of two exponents. To calculate qF , we employ the 
Goldschmidt’s division algorithm. The Goldschmidt’s di-vision 
algorithm is based on a nature of fraction that the value does 
not change when the same value is multiplied to both the 
denominator and the numerator. In the Goldschmidt’s division 
algorithm, the quotient qF (= zF /dF ) is calculated by iterating 
multiplications as

zF
dF

=
zF
dF

· x0 · x1 · · ·xk−1

x0 · x1 · · ·xk−1
, (5)

where k is the number of iterations of multiplication,

dF · x0 · x1 · · ·xk−1 → 1. (6)

Let us define di and zi as

di = di−1 · xi−1 = d0 · x0 · x1 · · ·xi−1 (7)

and

zi = zi−1 · xi−1 = z0 · x0 · x1 · · ·xi−1, (8)

where d0 and z0 are denominator dF and numerator zF ,
respectively. By choosing xi to satisfy the following:

xi = 10(2) − di (for i = 1, 2, · · · k − 1), (9)

the quotient qF converges to 1 [3]. To shorten the conversion
time of qF , x0, the initial value of xi, is set to be the
approximation value of 1/dF [14]. Fig. 1 shows a flow of
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Fig. 5: The physical layout of 4-bit Goldschmidt’s SFQ divider

Fig. 6: Schedule of each component in the 4-bit input Gold-
schmidt’s SFQ divider

the Goldschmidt’s division algorithm. Fig. 2 shows a flow-
chart of the division based on Goldschmidt’s algorithm. One
can see that the two calculations represented by (7) and
(8) can be performed by repeating simple multiplications.
Moreover, multiplication represented by (7) and (8) can be
performed independently. That means the data hazard does
not occur in each multiplication branch, the multiplication can
be performed efficiently by introducing pipelining. Therefore,
Goldschmidt’s division algorithm with iteration of simple
multiplications is suitable for the SFQ circuit that has the
latching function in logic gates and implementation of the
pipelining without pipeline registers. Let assume x0 to satisfy
the following:

x0 =
1

d0
− ϵ0, 0 ≤ ϵ0 < 2−p (10)

where ϵ0 is the error between x0 and 1/d0, and p is the ϵ0
represented by using the unit of bit. Since Goldschmidt’s di-
vision algorithm converges to accurate quotient quadratically,
bit accuracy of qF is improved to 7-bit, 15-bit, 31-bit, 63-bit
and 127-bit after iteration.

III. CIRCUIT DESIGN AND PEFORMANCE EVALUATION

From equations (2), (3) and (4), floating-point number
division can be calculated by using the exclusive-OR gate
for sign, the adder/subtractor for exponent, and divider for
significand. We designed a division circuit for the significand
that calculates zF /dF based on the Goldschmidt’s division al-
gorithm as shown in Fig. 2. Circuit components in the division
circuit for the significand are the lookup table for inputting
x0, the multiplier, 2’s complement converter (2’s comp conv.)

Fig. 7: A simulation result of the divider

Fig. 8: Frequency dependence of the bias margin

for xi, and registers (Reg) that store the multiplication results 
of each iteration stage. We employ the bit-serial multiplier 
proposed in [8] that has less latency and good scalability 
shown in Fig. 3.

Fig. 4 shows the block diagram of the proposed bit-serial 
Goldschmidt’s SFQ divider composed of circuit elements 
mentioned above. To evaluate the performance and the circuit 
scale of the SFQ divider, we designed the bit-serial divider 
using the cell library we developed [19] for the AIST 10 
kA/cm2 Nb advanced process 2 [20]. In order to reduce 
the propagation delay of the data, passive transmission lines 
with the characteristics of 3.5 Ω are used for wiring between 
each circuit component [21], [22]. Because implementation 
of the large-scale SFQ lookup table using the current super-
conducting circuit fabrication process is difficult, use of the 
SFQ/CMOS hybrid lookup table [23] is assumed in the circuit 
design. Fig. 5 shows the layout of designed 4-bit SFQ divider 
composed of 8,091 JJs assuming the bit length of d and z 
are 4 and the accuracy of x0 is 2−3 (p = 3). When these 
bit length and accuracy are assumed, the accuracy of quotient 
qF would reach to 2−11 after iteration of multiplication three 
times. Since the accuracy of the 2−11 is acceptable for the 
practical application, we evaluated the latency of the divider 
assuming the 3 iterations. Fig. 6 shows the time scheduling of 
each calculation of the 4-bit input Goldschmidt’s SFQ divider.

We have simulated the designed circuit with Cadence 
Verilog-XL simulator using the behavior model that defines 
setup time, hold time, and latency of each cell. Fig. 7 shows the 
digital simulation results of the designed half-precision SFQ 
divider. In this test sequence, d0 = 0.1101, z0 = 1.111, x0 = 
1.101, yielding the quotient z3 = 
10.101110100010110011110010011. The simulation results 
show that designed divider operates correctly up to the clock 
frequency of 76.9 GHz. The latency of the 4-bit divider is 87
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clocks as shown in Fig. 6. The dc bias margin of the 4-bit 
divider is 80-125%. The clock frequency dependence of the 
dc bias margin is shown in Fig. 8.

Based on the circuit divider design result, we estimated 
latency and the number of Josephson junctions (JJs) of the 
SFQ divider assuming p of 8 as a function of bit-length of 
the input data, which is the same as the accuracy of quotient. 
Fig. 9 shows the estimated latency and the number of JJs 
of the bit-serial SFQ divider as a function of accuracy of 
the quotient. The order of latency and the number of JJs are 
O(nlogn) and O(n) respectively, where n is the bit length of 
the input data. From this estimation, when the circuit operates 
at the frequency of 50 GHz, single- and double-precision 
division can be performed with the latency of 5.3, 15.1 ns, 
respectively. To improve the latency of the divider more, using 
two multipliers is effective. As discussed in section 2, the two 
multiplication branches can be performed independently. In 
the case we adopt expanded architecture, the latency of the 
divider can be reduced by approximately 40% by using two 
multipliers though the circuit area of the divider increases. It 
cannot be reduced by 50% because multiplication can not be 
parallelized at the last iteration.

We also estimated the number of JJs to as the function of 
accuracy of quotient. Fig. 9 (b) shows the dependence of the 
number of the JJs of the divider on the bit length of the input 
data. The order of the number of JJs are O(n) because the 
number of JJs of the multiplier is proportional of input bit 
length [8]. According to our estimation, the number of JJs 
required to implement single- and double-precision dividers 
are 13,594 and 26,518 respectively. These JJ number can be 
implemented using the current circuit fabrication process on 
one chip [24]. If we employ the parallel multiplication as 
mentioned above, the number of JJs of the double-precision 
divider is estimated to be 41,284.

IV. CONCLUSION

We investigated the floating-point bit-serial divider for SFQ 
logic based on Goldschmidt’s division algorithm. We designed 
the 4-bit SFQ divider composed of one pipelined multiplier 
using the AIST 10 kA/cm2 Nb advanced process. When the 
bit-length of the dividend and divisor are 4, accuracy of 2−11 

can be obtained by iterating multiplication by three cycles. 
Estimated latency and the number of JJs of the designed 4-bit 
SFQ divider are 87 clocks and 8091, respectively. According to 
estimation based on the circuit design of the 4-bit divider, the 
double-precision divider can be implemented with 26,518 JJs 
by following this architecture, which can be implemented on 
one chip using the current SFQ circuit fabrication technology.
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