Accepted Manuscript

Influence of parasitic chytrids on the quantity and quality of algal dissolved organic matter (AOM)

Yukiko Senga, Shiori Yabe, Takaki Nakamura, Maiko Kagami

PII: S0043-1354(18)30668-7

DOI: 10.1016/j.watres.2018.08.037

Reference: WR 14013

To appear in: Water Research

Received Date: 2 April 2018

Revised Date: 16 August 2018

Accepted Date: 18 August 2018

Please cite this article as: Yukiko Senga, Shiori Yabe, Takaki Nakamura, Maiko Kagami, Influence of parasitic chytrids on the quantity and quality of algal dissolved organic matter (AOM), *Water Research* (2018), doi: 10.1016/j.watres.2018.08.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Research Paper
2	
3	Influence of parasitic chytrids on the quantity and quality of algal dissolved
4	organic matter (AOM)
5	
6	Yukiko Senga ^{1*} , Shiori Yabe ¹ , Takaki Nakamura ¹ , Maiko Kagami ^{1, 2}
7	
8	
9	
10	¹ Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
11	² Graduate School of Environment and Information Sciences, Yokohama National
12	University, 79-7 Tokiwadai Hodogaya-ku, Yokohama 240-8501, Japan
13	
14	
15	
16	
17	*Corresponding author.
18	E-mail: yukiko.senga@sci.toho-u.ac.jp
19	Tel/Fax: +81-47-472-5052

20 ABSTRACT

21	Algae-derived dissolved organic matter (AOM) is an important nutrient source for
22	heterotrophic bacteria, while AOM such as humic substances pose significant challenges
23	during water treatment processing. We hypothesized that the parasitic infection of algae
24	could change the composition and concentration of AOM. This study investigated the
25	quality and quantity of DOM and bacterial abundance in diatom (Synedra) cultures, with
26	and without-parasitic fungi (chytrids). The quality of DOM was analyzed using
27	three-dimensional excitation-emission matrices combined with parallel factor analysis
28	(EEM-PARAFAC) and was compared to changes in algal and bacterial cell numbers.
29	Bacterial abundance was higher and dissolved organic carbon concentrations were lower
30	in the diatom cultures infected with parasitic fungi. Among the DOM compounds, the
31	concentrations of tryptophan-like material derived from algae were significantly lower
32	and the concentrations of humic substance-like material were higher in the infected
33	treatment. The parasitic fungi may have consumed tryptophan-like material and
34	stimulated the release of humic substances. These results provide the first evidence that
35	fungal infection may modulate algal-bacterial interactions, which are associated with
36	changes in the nature of AOM.

37

2

- 38 Keywords: Algal dissolved organic matter (AOM); Parasitic fungi; EEM-PARAFAC;
- 39 Humic-like substances; protein-like substances; Carbon cycling
- 40

41 **1. Introduction**

42	Algae-derived dissolved organic matter (AOM) arises extracellularly via metabolic
43	excretion and intracellularly via the autolysis of cells in aquatic and artificial ecosystems
44	(Henderson et al. 2008). The nature of AOM is very complex, but its major fractions
45	include carbohydrates and proteins (Fogg 1983; Myklestad 1995; Henderson et al. 2008),
46	which generally provide good substrates for bacteria, and often exhibit short turnover
47	times (Wetzel 2001). The release of humic substances by growing algae has also been
48	confirmed in nonaxenic (Aoki et al. 2008) and axenic cultures (Romera-Castillo et al.
49	2010; Fukuzaki et al. 2014). Increasing levels of humic substances pose serious challenges
50	for processing and the commercial supply of drinking water, because the humic
51	substances can be transformed into potentially carcinogenic and mutagenic disinfection
52	byproducts, such as trihalomethanes and haloacetic acids (Richardson et al. 2007;
53	DeMarini 2011; Herzsprung et al. 2012).
54	Phytoplankton can often be infected by many different parasites, including viruses
55	and fungi (Suttle 2005; Kagami et al. 2007, 2011). Viral infection is known to stimulate
56	dissolved organic carbon (DOC) release from phytoplankton due to cell lysis (Suttle 2005).
57	Whereas cytoplasmic components such as nucleic acids, enzymes, and small proteins will
58	probably be cycled through bacterial uses, some structural materials such as lipid bilayers,

59	large proteins, and cell walls may be refractory to biological assimilation and cycling. In
60	addition, lipids released by phytoplankton provide precursor materials, which when
61	catalyzed by light, can undergo condensation reactions to form fulvic acid DOM (Harvey
62	et al. 1983; Kieber et al. 1997). Parasitic fungi may also affect AOM, but via different
63	mechanisms than viruses due to their different infection processes. However, the influence
64	of parasitic fungi in AOM has still not been elucidated.
65	Parasitic fungal infections in phytoplankton have been discovered in not only lakes
66	but also marine ecosystems (reviewed in Frenken et al. 2017). Chytridiomycetes
67	(chytrids) are the main parasitic fungi of phytoplankton. Chytrids penetrate the diatom
68	protoplast using a rhizoidal system (Van Donk and Bruning 1992) and inserting a feeding
69	tube between silicified wall segments after enzymatic digestion of the organic components
70	of the walls (Smetacek 1999). Chytrids would affect AOM in the following ways: 1)
71	chytrid infection could stimulate the release of AOM by causing cell death; 2) chytrid
72	infection could cause the elution of algal cell content-derived DOM by inserting a rhizoid;
73	or 3) chytrids could reduce the release of AOM by consuming algal cell contents. Chytrid
74	infection may also affect bacteria directly or indirectly by changing the composition and
75	concentration of AOM.

76 In the present study, we investigated the quantity and quality of AOM and bacterial

77	abundance in diatom cultures with and without parasitic chytrids. The quality of DOM
78	was analyzed using three-dimensional excitation-emission matrices (EEMs) combined
79	with parallel factor analysis (PARAFAC). EEM-PARAFAC has can be used to detect
80	humic-like and protein-like substances with high sensitivity (Yamashita et al. 2010; Senga
81	et al. 2017). We also determined the concentrations of carbohydrates without fluorescence
82	properties using a colorimetric method.
83	
84	2. Materials and methods
85	Isolation and maintenance of cultures
86	Host diatom Synedra sp. (Strain S1) and its parasitic chytrid Rhizophydiales were used for
87	the experiments. Both the host and chytrids were isolated from Lake Inba on December
88	2014 (Kagami et al. in prep.). These clones were maintained in non-axenic batch cultures
89	with CHU-10 medium (Stein 1973) at 18°C with a photoperiod of 12:12 h (light:dark)
90	with a photon irradiance of 20 μ mol photons m ⁻² s ⁻¹ (Kagami et al. 2004).
91	
92	Incubation experiment
93	Before the incubation experiments, Synedra sp. and parasitic chytrids were grown in
94	batch cultures with vitamin-free Chu-10 medium. First, 4 L of vitamin-free Chu-10

95	medium with 3000 cells mL ⁻¹ of Synedra sp. was prepared and divided into two 4-L
96	polycarbonate bottles. In one bottle, chytrids from a 1-week-old infected culture in which
97	50% of cells were infected were inoculated at a density of 100 spores mL^{-1} (i.e.,
98	diatom-chytrid treatment). In the other bottle, filtrate of infected cultures (0.2 μ m pore
99	size) was added in the same quantity as the diatom-chytrid treatment (i.e., diatom
100	treatment). This procedure was followed to avoid the possibility that the chytrid addition
101	itself increased the DOC concentration or changed the DOM compositions. Then, three
102	670-mL aliquots of each treatment were poured into three sterilized polycarbonate bottles.
103	On day 0, the abundances of Synedra sp., chytrids, and bacteria, and concentrations of
104	DOC, fDOM-1, -2, -3, -4, and -5, and carbohydrates in the diatom and diatom-chytrid
105	treatments were confirmed to not differ significantly.
106	All bottles were incubated at 16°C under a 12:12 h (light:dark) cycle at 230 μ mol
107	quanta m ⁻² s ⁻¹ . On days 5, 7, 11, and 14 during the incubation period, 100 mL of culture
108	was collected from each bottle to measure the abundance of organisms and DOM
109	concentrations and compositions.
110	

111 Synedra sp., chytrid, and bacteria counting

For the counting, 4.8 mL of each sample was fixed with glutaraldehyde (1% final 112

113	concentration) and stored in a refrigerator for the microscopic analysis. The abundances of
114	infected and uninfected Synedra sp. were counted under an inverted microscope at a
115	magnification of 400×. The bacterial abundance was counted under a fluorescence
116	microscope with blue fluorescence (wavelength: 460-490 nm) at 1000× magnification
117	after staining with SYBR green (Noble and Fuhrman 1998).
118	
119	Chemical analysis
120	DOC concentrations were determined using a total organic carbon analyzer
121	(TOC-2300; Hiranuma Sangyo, Ibaraki, Japan). The soluble carbohydrate carbon
122	concentration was measured according to the anthrone method, using glucose as the
123	standard (Dreywood et al. 1946; Morris 1948). 0.2% anthrone solution was prepared with
124	90 % sulfuric acid. 1 ml of water sample was mixed with 9 ml of 0.2% anthrone solution
125	in a test tube. The mixture was boiled in a water bath for 15 min. after which it was placed
126	in an ice bath for 10 min. The carbohydrate concentration of the solution was determined
127	by spectrophotometrically at 620 nm.
128	EEM spectra were obtained using an Aqualog fluorometer (Horiba Scientific, Kyoto,
129	Japan) with a 10 mm \times 10 mm quartz cuvette. Each EEM was recorded using an
130	excitation wavelength (Ex) range of 250-600 nm with a step width of 3 nm and an

131	emission wavelength (Em) range of 250–620 nm with a step width of 3 nm. The
132	integration time was 1 s. Each EEM data point was corrected for the inner-filter effect,
133	Rayleigh masking, and Raman scattering using Aqualog v3.6 software. Further details of
134	the procedures used can be found in Senga et al. (2017).
135	To identify the peaks of components from EEM datasets, a PARAFAC analysis was
136	performed using Solo + MIA v7.0.2 software (Eigenvector Research, Manson, WA, USA)
137	at an excitation of 252–573 nm and emission of 252–620 nm. The dataset collected from
138	the samples in the incubation experiments also included the preliminary experiments (n =
139	190). Components with core consistencies > 60 were accepted as the best models for the
140	datasets. The core consistency is a suggested method for determining the correct number
141	of components in multiway models (Bro and Kiers 2003). Using examples from a range
142	of different types of data, it was shown that the core consistency is an effective tool for
143	determining the appropriate number of components in PARAFAC models. Five
144	components, termed fDOM-1, -2, -3, -4, and -5, were identified in this study (Table 1).
145	The relative fluorescence intensity was calibrated using quinine sulfate units (QSU),
146	where 10 QSU corresponded to a fluorescence intensity of a 10 μ g L ⁻¹ quinine sulfate
147	solution in 0.05 M sulfuric acid at Ex/Em = 350/450 nm (Coble et al. 1993).
148	

149 Statistical analysis

150	Significant differences in parameters, such as the abundance of organisms,
151	concentrations of DOM, and ratios of the concentrations to Synedra sp., between the
152	diatom-chytrid and diatom treatments over time and their interaction (time × treatment)
153	were statistically examined using two-way repeated measures analysis of variance
154	(ANOVA) (R statistical software; R Development Core Team 2012). We used a general
155	linear model (LM) to clarify the factors influencing the concentrations of all DOM (DOC,
156	fDOM-1, -2, -3, -4, and -5, and carbohydrates). The response variables included the
157	concentrations of materials with significant differences between the treatments. The
158	explanatory variables included the abundances of organisms (Synedra sp., chytrids, and
159	bacteria). We conducted the model selection based on the Akaike information criterion
160	corrected for small sampling sizes (AICc). Model comparisons were based on the delta
161	individual model and the lowest observed AICc value. Models with AICc values differing
162	by < 2 were considered to be equivalent. For the DOC and DOM component
163	concentrations, interactions between bacteria and chytrids were examined with two-way
164	ANOVA. When interaction was detected at significance level ($p < 0.05$), there was an
165	interaction between bacteria and chytrids for DOC and DOM components.
166	

3. Results and discussion

168	The abundance of <i>Synedra</i> sp. in the diatom and diatom-chytrid treatments changed
169	significantly over the experimental period, and was significantly higher in the diatom
170	treatment than the diatom-chytrid treatment (Fig. 1a). The abundance of chytrid sporangia
171	increased until day 7, and the percentage of infected phytoplankton cells reached a
172	maximum of ~40% at day 7 (Fig. 1b). The abundance of bacteria was significantly higher
173	in the diatom-chytrid treatment than in the diatom treatment, and increased over time in
174	both treatments (Fig. 1c).
175	DOC concentrations increased over time in both treatments, and became
176	significantly higher in the diatom treatment than in the diatom-chytrid treatment after day
177	7 (Fig. 2). The LM model showed that the DOC concentration was correlated positively
178	with diatoms and negatively with chytrids (Table 2). These results indicate that diatoms
179	released extracellular organic matter during growth, and that algae infected with chytrids
180	caused a quantitative reduction in DOC.
181	In addition to diatoms and chytrids, DOC concentration must have been affected by
182	bacterial (Table 2). DOC concentration was also positively correlated with the abundance
183	of bacteria, but only in the diatom treatment (Fig. 6a). Positive relationship between DOC
184	concentration and the abundance of bacteria could be due to two different processes, i.e.

185	DOC (especially AOM) increased bacteria growth or bacteria increased DOC (especially
186	humic substances). Since the bacterial abundance was higher and DOC concentration was
187	lower in the diatom-chytrid treatment than in the diatom treatment (Fig. 1a, c), it is likely
188	that AOM released by fungal infection would increase the growth of bacteria, and
189	ultimately the AOM concentration will decrease by bacterial uptake. Another study found
190	that viral lysis of Aureococcus anophagefferens increased DOC release and bacterial
191	density (Gobler et al. 1997). In addition to the viral lysis of phytoplankton, fungal
192	infection in phytoplankton stimulates the shift of organic carbon from phytoplankton to
193	heterotrophic bacteria (Gobler et al. 1997; Wilhelm and Suttle 1999).
194	Five components, referred to as fDOM-1, fDOM-2, fDOM-3, fDOM-4, and fDOM-5,
195	were identified using EEM-PARAFAC (Table 1). Three components, fDOM-1, -3, and -4,
196	had a single emission maximum and two excitation maxima, while two components,
197	fDOM-2 and -5, had a single emission maximum and a single excitation maximum (Fig. 3).
198	According to previous studies of the spectral characteristics of fluorescent DOM
199	components in various aquatic environments (Cory and McKnight 2005; Stedmon and
200	Markager 2005; Santín et al. 2009; Yamashita et al. 2010; Stubbins et al. 2014), we
201	identified these components by their peak positions (Table 1). The fDOM-1, 3, and 4 were
202	found to be humic-like components and fDOM-2 and -5 protein-like components.

203	The Ex/Em of fDOM-1 was similar to component 5 identified by Stedmon and
204	Markager (2005), which was determined to be generated though the subsequent microbial
205	processing of AOM in aquatic systems. Moreover, the Ex/Em of fDOM-1 was similar to
206	that of component P3 identified by Stubbins et al. (2014), which had an average molecular
207	weight of 445 Da and a molecular formula with less aromaticity and more nitrogen. The
208	Ex/Em of fDOM-3 was similar to that of Q3 identified by Cory and McKnight (2005) and
209	C4 by Yamashita et al. (2010). Q3 was a microbial precursor material, and was correlated
210	with aliphatic carbon content (Cory and McKnight 2005). Additionally, the microbial
211	humic-like C4 was predicted to be mainly derived from heterotrophic activity (Yamashita
212	et al. 2010). The fDOM-4 peaks were similar to those of SQ1 identified by Cory and
213	McKnight (2005), C2 by Santín et al. (2009), and C5 by Yamashita et al. (2010). SQ1, C2,
214	and C5 were described as terrestrial humic-like or humic acid-like substances. SQ1 (Cory
215	and McKnight 2005) was plant-derived, reduced in quinones, and enriched in aromatic
216	carbon. Considering these characteristics, fDOM-1, -3, and -4 were determined to be
217	humic-like components generated by bacteria using AOM, and fDOM-1 would be less
218	recalcitrant to degradation than fDOM-3 and -4. DOM compounds with less aromaticity
219	and the C/N ratio has been reported to be biologically more labile (Sulzberger and
220	Durisch-Kaiser 2009).

221	The fluorescence intensities (FIs) of fDOM-1, -3, and -4 increased over time (Fig. 4a,
222	c, and d). The FI of fDOM-1 was significantly higher in the diatom-chytrid treatment,
223	while there were no significant differences between treatments for fDOM-3 and -4. It
224	should be noted that the slopes of the regression formula between the FI of fDOM-1 and
225	the bacterial abundance in each treatment were almost the same (Fig. 6b). Additionally, no
226	interaction between bacteria and chytrids was detected ($p = 0.388$). These results
227	suggested that the generation of fDOM-1 was determined by bacteria and was not affected
228	by the presence of chytrids. On the other hand, the slopes of the regression formulae
229	between the FIs of fDOM-3 and -4 and bacterial abundance in each treatment differed
230	substantially (Figs. 6d and e), and interactions between bacteria and chytrids were
231	detected (fDOM-3, $p = 1.77 \times 10^{-4}$, fDOM-4, $p = 4.45 \times 10^{-3}$). This indicates that the
232	generation of fDOM-3 and -4 by bacteria was affected by chytrids. Considering the lower
233	slopes of fDOM-3 and -4 in the diatom-chytrid treatment than in the diatom treatment
234	(Figs. 6d and e), bacteria might have generated less fDOM-3, and -4 in the presence of
235	chytrids. Chytrids may have consumed algal cell contents that acted as precursors of
236	fDOM-3 and -4 by inserting their rhizoids into the host cells before bacteria used.
237	The FIs of fDOM-2, which is a tryptophan-like material (Cory and McKnight 2005;
238	Yamashita et al. 2010), increased over time and were significantly higher in the diatom

239	treatment (Fig. 4b). The LM model showed that the FI of fDOM-2 was significantly
240	positively correlated with diatom abundance (Table 2). It is well known that amino acids
241	can be released by algal activity (Henderson et al. 2008; Li et al. 2016). The FI of
242	fDOM-2 was also significantly positively correlated with bacterial abundance in the
243	diatom treatment (Fig. 6c), indicating that fDOM-2 is a good substrate for bacteria.
244	Additionally, fDOM-2 was negatively correlated with chytrid abundance (Table 2). An
245	interaction between bacteria and chytrids on fDOM-2 was detected ($p = 3.66 \times 10^{-2}$),
246	indicating that chytrids could possibly consume fDOM-2 components before they could
247	be used by bacteria. Chytrids could potentially directly take up the tryptophan-like
248	component via a feeding tube from the bodies of diatoms.
249	The fDOM-5 and carbohydrate concentrations remained almost constant over the
250	experimental period and did not differ significantly between the treatments (Figs. 4e and
251	5). The fDOM-5 components were considered to be tyrosine-like materials (Cory and
252	McKnight 2005; Yamashita et al. 2010). Both could be released during algal activity (Li et
253	al. 2016; Yamashita and Tanoue 2003), and were good substrates for bacteria (Wetzel
254	2001; Pérez and Sommaruga 2006). Moreover, bacteria also release the extracellular
255	polymeric substances (EPS) such as carbohydrates and proteins (Elliott et al. 2006;
256	Salama et al. 2015). Because none of the factors were significantly correlated with the FI

257	of fDOM-5 in the LM model (Table 2), it could be possible that fDOM-5 were not
258	produced or consumed during incubation. While, carbohydrate was significantly
259	correlated with diatom (Table 2), and positively correlated with bacteria in
260	diatom-treatment (Fig 6g). It could be possible that carbohydrates were consumed by
261	bacteria as soon as they were released from the diatoms.
262	Chytrids are ubiquitous in the aquatic ecosystem (Carney and Lane 2014) and play
263	an important role in food web and material cycling, as their zoospores are a good food
264	source for zooplankton (Kagami et al. 2006, 2007). Although the parasites associated with
265	algae have received much interest for their potential economic impact in commercial algal
266	production for biofuels, food, and pharmaceuticals, there is little information regarding
267	their role in artificial ecosystems, including drinking water treatment processes. From the
268	perspective of AOM, parasitic fungi in industrial and commercial water treatment
269	processes require further research.
270	In this study, changes in the DOM quantity and quality in diatom-bacteria cultures
271	with and without chytrids were indicated. We hypothesized that chytrids would affect
272	AOM in the three processes. From our results, the release of AOM seemed to be
273	stimulated by chytrids by 1) causing cell death of diatoms and 2) causing the elution of
274	algal cell content-derived DOM by inserting a rhizoid. AOM released would have

275	increased the growth of bacteria, and ultimately the concentrations of AOM and their
276	components would be altered by bacterial uptake or metabolism. In addition, chytrids
277	could directly take up algal cell contents, such as precursors of fDOM-3 and -4, and the
278	tryptophan-like components (process 3). Recent advancements in the EEM-PARAFAC
279	technique have enabled more rapid and simple analysis of DOM composition with a small
280	sample volume (e.g., Fellman et al. 2010). Many fluorescence characterizations of AOM
281	could be collected during the short incubation period, demonstrating that fungal infection
282	stimulated decreases in DOC and tryptophan-like substances and an increase in the
283	proportion of humic substances by bacterial processing. These results provide the first
284	evidence that parasitic fungi influence the composition and concentration of AOM.
285	
286	4. Conclusion
287	Parasitic fungal infection decreased AOM concentration. This reason was that
288	abundant bacteria may have actively consumed certain AOM in the infected treatment.
289	The EEM-PARAFAC technique gives some of the first insights into the role of parasitic
290	fungi in aquatic DOM dynamics that fungal infection may modulate algal-bacterial
291	interactions, which are associated with changes in the nature of AOM. Fungal infection
292	stimulated the release of humic-like components, which bacteria processed algal

293	decaying-derived DOM. We also detected the interactions between fungi and bacteria, that
294	fungi chytrids may have consumed certain algal cell contents that acted as precursors of
295	humic-like components faster than bacteria. While, chytrid decreased the tryptophan-like
296	component via direct feeding algal substances.
297	Because fungal infection can cause massive lysis of dominant phytoplankton species,
298	fungal infections can have a considerable effect on AOM and consequently affect carbon
299	cycling. Therefore, both bacteria and fungi should be considered to better understand the
300	dynamics of DOM and carbon cycling in aquatic and artificial ecosystems.
301	
302	
303	Acknowledgments
304	We thank Prof. Hans-Peter Grossart for his useful discussions with the authors. This
305	work was supported by the Japan Society for the Promotion of Science KAKENHI grant
306	numbers JP15K00525, JP25281012, and JP15KK0026.
307	
308	

308

309 **References**

310	Aoki. S., Ohara, S., Kimura, K., Mizuguchi, H., Fuse, Y., Yamada, E., 2008.
311	Characterization of dissolved organic matter released from <i>Microcystis</i>
312	aeruginosa. Anal. Sci. 24, 386–394.
313	Bro, R., Kiers, H.A., 2003. A new efficient method for determining the number of
314	components in PARAFAC models. J. Chemometrics 17, 274–286.
315	Carney, L., Lane, T.W., 2014. Parasites in algae mass culture. Front Microbiol. 5, 278.
316	Coble, P.G., Schultz, C.A., Mopper, K., 1993. Fluorescence contouring analysis of DOC
317	intercalibration experiment samples: a comparison of techniques. Mar. Chem.
318	41, 173–178.
319	Cory, R.M., McKnight, D.M., 2005. Fluorescence spectroscopy reveals ubiquitous
320	presence of oxidized and reduced quinones in dissolved organic matter. Environ.
321	Sci. Technol. 39, 8142–8149.
322	DeMarini, D.M., 2011. Genotoxicity of disinfection by-products: comparison to
323	carcinogenicity. Encyclopedia of Environmental Health: Elsevier Science and
324	Technology, Michigan.
325	Dreywood, R., 1946. Qualitative test for carbohydrate material. Ind. Eng. Chem. (Anal.
326	Ed.) 18, 499.

327	Elliot, S., Lead, J.R., Baker, A., 2006. Characterisation of the fluorescence from
328	freshwater, planktonic bacteria. Water Res. 40, 2075–2083.
329	Fellman, J.B., Hood, E., Spencer. R.G.M., 2010. Fluorescence spectroscopy opens new
330	windows into dissolved organic matter dynamics in freshwater ecosystems: a
331	review. Limnol. Oceanogr. 55, 2452–62.
332	Fogg, G.E., 1983. The ecological significance of extracellular products of phytoplankton
333	photosynthesis. Bot. Mar. 26, 3–14.
334	Frenken, T., Alacid, E., Berger, S.A., Bourne, E.C., Gerphagnon, M., Grossart, H.P., Gsell,
335	A.S., Ibelings, B.W., Kagami, M., Küpper, F.C., Letcher, P.M., Loyau, A., Miki,
336	T., Nejstgaard, J.C., Rasconi, S., Reñé, A., Rohrlack, T., Rojas-Jimenez, K.,
337	Schmeller, D.S., Scholz, B., Seto, K., Sime-Ngando, T., Sukenik, A., Van de
338	Waal, D.B., Van de Wyngaert, S., Van Donk, E., Wolinska, J., Wurzbacher, C.,
339	Agha, R., 2017. Integrating chytrid fungal parasites into plankton ecology:
340	research gaps and needs. Environ. Microbiol. 19 (10), 3802–3822.
341	Fukuzaki, K., Imai, I., Fukushima, K., Ishii, K., Sawayama, S., Yoshioka, T., 2014.
342	Fluorescent characteristics of dissolved organic matter produced by
343	bloom-forming coastal phytoplankton. J. Plankton. Res. 36 (3), 685-694.
344	Gobler, C.J., Hutchins, D.A., Fisher, N.S., Cosper, E.M., Safiudo-Wilhelmy, S.A., 1997.

345	Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a
346	marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504.
347	Harvey, G.R., Boran, D.A., Cheasl, L.A., Tokar, J.M., 1983. The structure of marine fulvic
348	and humic acids. Mar. Chem. 12, 119–132
349	Henderson, R.K., Baker, A., Parsons, S.A., Jefferson B., 2008. Characterisation of
350	algogenic organic matter extracted from cyanobacteria, green algae and diatoms.
351	Water. Res. 42, 3435–3445.
352	Herzsprung, P., Tümpling, W., Hertkorn, N., Harir, M., Büttner, O., Bravidor, J., Friese,
353	K., Schmitt-Kopplin, P., 2012. Variations of DOM quality in inflows of a
354	drinking water reservoir: Linking of van Krevelen diagrams with EEMF spectra
355	by rank correlation. Environ. Sci. Technol. 46, 5511-5518.
356	Kagami, M., Van Donk, E., de Bruin, A., Rijkeboer, M., Ibelings, B.W., 2004. Daphnia
357	can protect diatoms from fungal parasitism. Limnol. Oceanogr. 49, 680–685.
358	Kagami, M., Gurung, T.B., Yoshida, T., Urabe, J., 2006. To sink or to be lysed?
359	Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol.
360	Oceanogr. 51, 2775–2786.
361	Kagami, M., De Bruin, A., Ibelings, B.W., van Donk, E., 2007. Parasitic chytrids: their
362	effects on phytoplankton community and food-web dynamics. Hydrobiol. 578,

363	113–129.
364	Kagami, M., Amano, Y., Ishii, N., 2011. Community structure of planktonic fungi and the
365	impact of parasitic chytrids on phytoplankton in Lake Inba, Japan. Microb. Ecol.
366	63, 358–368.
367	Kieber, R.J., Hydro, L.H., Seaton, P.J., 1997. Photooxidation of triglycerides and fatty acids in
368	seawater: Implication toward the formation of marine humic substances. Limnol.
369	Oceanogr. 42, 1454–1462.
370	Li, W., Xu, X., Fujibayashi, M., Niu, Q., Tanaka, N., Nishimura, O., 2016. Response of
371	microalgae to elevated CO_2 and temperature: impact of climate change on
372	freshwater ecosystems. Environ Sci. Pollut. Res. 23, 19847–19860.
373	Myklestad, S.M., 1995. Release of extracellular products by phytoplankton with special
374	emphasis on polysaccharides. Sci. Tot. Environ. 165, 155–164.
375	Morris, D.L. 1948. Quantitative determination of carbohydrates with Dreywood's
376	anthrone reagent. Science. 107, 254–255.
377	Noble, R.T., Fuhrman, J.A., 1998. Use of SYBR green I for rapid epifluorescence counts
378	of marine viruses and bacteria. Aqua. Microbial. Ecol. 14, 113–118.
379	Pérez, M.T., Sommaruga, R., 2006. Differential effect of algal- and soil-derived dissolved
380	organic matter on alpine lake bacterial community composition and activity.

381	Limnol. Oceanogr. 51, 2527–2537.
382	R Development Core Team. 2012. R: A language and environment for statistical
383	computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN
384	3-900051-07-0. URL http://www.R-project.org
385	Richardson, S., Plewa, M., Wagner, E., Schoeny, R., Demarini, D., 2007. Occurrence,
386	genotoxicity, and carcinogenicity disinfection by products in drinking water: a
387	review and roadmap for research. Mutat. Res. 636, 178–242.
388	Romera-Castillo, C., Sarmento, H., Alvarez-Salgado, X.A., Gasol, J.M., Marrase, D.,
389	2010. Production of chromophoric dissolved organic matter by marine
390	phytoplankton. Limnol. Oceanogr. 55, 446–454.
391	Salama, Y., Chennaou, i M., Sylla, A., Mountadar, M., Rihani, M., Assobhei, O., 2015.
392	Characterization, structure, and function of extracellular polymeric substances
393	(EPS) of microbial biofilm in biological wastewater treatment systems: a review.
394	Desalination Water Treat. 57, 1–18.
395	Santín, C., Yamashita, Y., Otero, X.L., Álvarez, M.Á., Jaffé, R., 2009. Characterizing
396	humic substances from estuarine soils and sediments by excitation-emission
397	matrix spectroscopy and parallel factor analysis. Biogeochemistry. 96, 131-147.
398	Senga, Y., Moriai, S., Naruoka, C., Nedachi, R., Terui. S., 2017. Characterizing the

399	photochemical	degradation	of aquatic	humic substan	ces from a d	dystrophic lake
* / /						<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>

- 400 using excitation-emission matrix fluorescence spectroscopy and parallel factor
- 401 analysis. Limnology. 18, 97–110.
- 402 Smetacek, V., 1999. Diatoms and the ocean carbon cycle. Protist. 150, 25–32.
- 403 Stedmon, C.A., and Markager, S., 2005. Tracing the production and degradation of
- 404 autochthonous fractions of dissolved organic matter by fluorescence analysis.
- 405 Limnol. Oceanogr. 50, 1415–1426.
- 406 Stein, J., 1973. Handbook of Phycological Methods. Culture Methods and Growth
- 407 Measurements. Cambridge University Press, London.
- 408 Stubbins, A., Lapierre, J.-F., Berggren, M., Prairie, Y.T., Dittmar, T., del Giorgio, P.A.,
- 409 2014. What's in an EEM? Molecular signatures associated with dissolved
- 410 organic fluorescence in boreal Canada. Environ. Sci. Technol. 48, 10598–
- 411 10606.
- 412 Sulzberger, B., and Durisch-Kaiser, E., 2009. Chemical characterization of dissolved
- 413 organic matter (DOM): a prerequisite for understanding UV-induced changes of
- 414 DOM absorption properties and bioavailability. Aquat. Sci. 71, 104–126.
- 415 Suttle, C. 2005. Viruses in the sea. Nature. 437, 356–61.
- 416 Van Donk, E., Bruning, K., 1992. Ecology of aquatic fungi in and on algae. Algae and

417	Symbioses: Plants, Animals, Fungi, Interactions Explored. Biopress Limited,
418	Bristol.
419	Wetzel, P.G., 2001. 23 Detritus: organic carbon cycling and ecosystem metabolism.
420	Limnology, Lake and River Ecosystem. Academic Press, San Diego.
421	Wilhelm, S.W., Suttle C.A., 1999. Viruses and nutrient cycles in the sea: viruses play
422	critical roles in the structure and function of aquatic food webs. Bioscience. 49,
423	781–788.
424	Yamashita, Y., Tanoue E., 2003. Chemical characterization of protein-like fluorophores in
425	DOM in relation to aromatic amino acids. Mar. Chem. 82, 255–271.
426	Yamashita, Y., Scinto, L.J., Maie, N., Jaffè, R., 2010. Dissolved organic matter
427	characteristics across a subtropical wetland's landscape: application of optical
428	properties in the assessment of environmental dynamics. Ecosystems 13, 1006-
429	1019.
430	

431 Figure captions

- 432 Fig. 1 The abundances of (a) diatoms, (b) chytrids and the percentage of infected cells,
- 433 and (c) bacteria in the diatom and diatom-chytrid treatments.
- 434 Fig. 2 DOC concentrations in the diatom and diatom-chytrid treatments.
- 435 Fig. 3 Fluorescent DOM components identified using parallel factor analysis. Fluorescence
- 436 intensity is indicated by the contour color. The identified fluorescent components
- 437 were (a) fDOM-1, (b) fDOM-2, (c) fDOM-3, (d) fDOM-4, and (e) fDOM-5.
- 438 Fig. 4 Fluorescence intensities of (a) fDOM-1, (b) fDOM-2, (c) fDOM-3, (d) fDOM-4,
- 439 and (e) fDOM-5 in the diatom and diatom-chytrid treatments.
- 440 Fig. 5 Carbohydrate concentrations in the diatom and diatom-chytrid treatments.
- 441 Fig. 6 Relationships between bacterial abundance and concentrations of (a) DOC, (b)
- 442 fDOM-1, (c) fDOM-2, (d) fDOM-3, (e) fDOM-34 (f) fDOM-5, and (g)
- 443 carbohydrates. The x-axis presents the bacterial abundance and the y-axis presents
- the concentration. The solid and dashed lines indicate the regression lines in the
- 445 diatom and diatom-chytrid treatments, respectively.

Table 1. Excitation (Ex) and emission (Em) wavelengths and characteristics of the five fluorescent components in this study and from previous studies, as well as the characteristics of carbohydrates in this study.

Components	Ex (nm)	Em (nm)	Characteristics					
fDOM-1	< 252 and 348	436	Microbial processing of algae-derived DOM (Stedmon and Markager 2005). Lower aromaticity and higher nitrogen content than terrigenous humic-like components (Stubbins et al. 2014). Aquatic humic-like component from bacterial processing of AOM. Chytrids do not affect the generation of fDOM-1 (this study).					
fDOM -2	276	341	Tryptophan-like component (Cory and McKnight 2005; Yamashita et al. 2010). Consumed by bacteria after release from diatoms. Chytrids may consume this component directly (this study).					
fDOM -3	< 252 and 312	387	Microbial precursor material with aliphatic carbon content (Cory and McKnight 2005). Heterotrophic microbial activity-derived DOM (Yamashita et al. 2010). Aquatic humic-like component from bacterial processing of AOM. Chytrids may consume algal cell contents, which are precursors of fDOM-3 (this study).					
fDOM -4	261 and 384	515	Terrestrial humic-like or humic acid-like component (Cory and McKnight 2005; Santín et al. 2009; Yamashita et al. 2010). Plant-derived reduced quinones, enriched in aromatic carbon (Cory and McKnight 2005). Aquatic humic-like component from bacterial processing of AOM. Chytrids may consume algal cell contents, which are precursors of fDOM-4 (this study).					
fDOM -5	270	299	Tyrosine-like component (Cory and McKnight 2005; Yamashita et al. 2010). Used rapidly by bacteria after release from algae (this study).					
Carbohydrates			Used rapidly by bacteria after release from algae (this study).					

	Model	Diat	om	Bacteria		Chytrid					
_	Rank	Estimate	р	Estimate	р	Estimate	р	Adj. R^{2a}	р	AICc	ΔΑΙϹ
DOC	1	2.49×10 ⁻⁵	1.85×10 ⁻²	1.93×10 ⁻⁷	9.13×10 ⁻²	-9.30×10 ⁻⁵	1.26×10 ⁻²	0.55	2.75×10 ⁻⁵	-47.54	
	2	3.64×10 ⁻⁵	6.03×10 ⁻⁵			-5.99×10 ⁻⁵	5.78×10 ⁻²	0.51	2.40×10 ⁻⁵	-46.19	1.35
fDOM-1	1			5.03×10 ⁻⁷	<2×10 ⁻¹⁶			0.94	<2.2×10 ⁻¹⁶	-119.07	
	2	1.27×10 ⁻⁶	0.644	4.96×10 ⁻⁷	6.30×10 ⁻¹⁶			0.93	<2.2×10 ⁻¹⁶	-117.32	-1.75
	3			5.05×10 ⁻⁷	<2×10 ⁻¹⁶	-1.30×10 ⁻⁶	0.893	0.93	<2.2×10 ⁻¹⁶	-117.10	-1.97
-2	1	7.02×10 ⁻⁵	2.87×10 ⁻²	5.71×10 ⁻⁷	0.102	-3.75×10 ⁻⁴	1.59×10 ⁻³	0.57	1.20×10 ⁻⁵	19.61	
	2	1.04×10 ⁻⁴	1.32×10 ⁻⁴			-2.77×10 ⁻⁴	5.73×10 ⁻³	0.54	9.10×10 ⁻⁶	20.76	1.15
-3	1	1.84×10 ⁻⁵	5.51×10 ⁻⁶	3.00×10 ⁻⁷	3.86×10 ⁻⁹			0.88	1.04×10 ⁻¹³	-106.14	
	2	1.86×10 ⁻⁵	5.42×10 ⁻⁵	2.99×10 ⁻⁷	2.07×10 ⁻⁷	1.02×10 ⁻⁶	0.940	0.88	1.24×10 ⁻¹²	-104.15	-1.99
-4	1	9.51×10 ⁻⁶	7.14×10 ⁻³	2.44×10 ⁻⁷	3.62×10 ⁻⁷	-1.92×10 ⁻⁵	0.104	0.83	9.71×10 ⁻¹¹	-114.24	
	2	1.23×10 ⁻⁵	2.91×10 ⁻⁶	2.11×10 ⁻⁷	3.13×10 ⁻⁷			0.82	3.96×10 ⁻¹¹	-113.14	1.10
-5	1	-1.11×10 ⁻⁵	0.134					0.05	0.134	-49.24	0.00
	2*									-48.78	0.46
	3			-8.51×10 ⁻⁸	0.293			0.01	0.293	-47.99	1.25
	4	-1.20×10 ⁻⁵	0.123			-1.40×10 ⁻⁵	0.639	0.02	0.296	-47.49	1.75
	5	-9.71×10 ⁻⁶	0.275	-2.87×10 ⁻⁸	0.762			0.01	0.316	-47.34	1.90
Carbohydrates	1	1.17×10 ⁻⁵	3.93×10 ⁻²					0.11	3.93×10 ⁻²	-66.56	
	2	1.10×10 ⁻⁵	0.103	1.35×10 ⁻⁸	0.849			0.08	0.122	-64.60	1.96
	3	1.17×10 ⁻⁵	4.84×10 ⁻²			-1.49×10 ⁻⁷	0.995	0.08	0.124	-64.56	2.00

Table 2. The best general linear models explaining the variation in DOC and DOM components.

Values in bold indicate a significant correlation (p < 0.05).

* Null model

^a Adjusted (Adj.) R^2 is a modified version of the R^2 that has been adjusted for the number of terms in the model.

CHRITICA MARINE

Highlights

- Parasitic fungal infection in phytoplankton affected AOM.
- AOM concentration was lower by fungal infections.
- With EEM-PARAFAC, fungal infections increased humic-like components.
- Fungal infection decreased the tryptophan-like component.
- This study gives the first insights into the role of fungi in AOM dynamics.

A ALANA