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Abstract

In order to shed some light upon the mechanism for the free vibrations of the wavy cylinder reported
previously [18], we numerically investigate the effect of external forcing on the flow around a wavy
cylinder at Re = 5000. The forcing takes the form of sinusoidal transverse motion with the amplitude
fixed at Ae/Dm = 0.2 and the frequency spanning from fe = 0.1 to 0.3. Even though the wavy cylinder
is optimally designed to annihilate the Kármán vortex shedding in the fixed configuration, the Strouhal
frequency is found to resurrect in the forced vibration cases, leading to very similar responses between
the normal and wavy cylinders, especially at high forcing frequencies. By sectional analysis it is
revealed that the sectional distribution of the force coefficients undergoes significant changes with the
increase of the forcing frequency. Statistical tools such as the correlation and coherence reveals further
spanwise features of the force coefficients. In addition, the instantaneous three-dimensional vortical
structures are visualized by the spanwise voriticity isosurfaces to collaborate the previous discussions.
The cessation of the flow control efficacy in the forced vibration is explained by the recession of the
mean streamwise vorticity contours. The results presented in the work imply that the vortex-induced
vibration of the wavy cylinder might be ascribed to the typical wake-structure interaction as the normal
cylinder, rather than merely the destabilization of the unstable structure mode as we have surmise
earlier.
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1. Introduction

The flow around bluff bodies has been a celebrated topic of research not only owing to its common
occurrence in engineering applications, but also the profound significance in the fundamental fluid
mechanics. More often than not, efforts are made to suppress the vortices behind the bluff structures
in order to reduce the detrimental drag and fluctuating lift forces exerted on the bodies. Recently, the5

3D forcing technique [1], which applies span-wise varying controls for the nominally two dimensional
bluff bodies, has been recognized as an effective and efficient way of regulating the wake flow. Typical
examples pertaining to this category includes the distributed blowing and suction [2], hemisphere
bumps [3], wavy stagnation surfaces [4], etc.

In engineering applications such as bridge cables and offshore pipelines, the flow could attack10

the structures from all possible angles, requiring the control approaches to be omni-directional. One
particular kind of the 3D forcing device, which meets such requirement, is the wavy circular cylinder,
i.e., straight axis with sinusoidally varying diameter. The cross flow of the such cylinders has been
subjected to intensive researches over the last two decades [5–13]. The waviness has been shown to
generate significant span-wise pressure gradient on the cylinder surface, yielding an uneven distribution15
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of the sectional force coefficients. Integrating the forces along the axial direction results in significantly
smaller total drag and lift forces compared with the normal cylinder. The flow control efficacy of the
wavy cylinder depends highly on the shape parameters, i.e., the geometric amplitude and wavelength.
Two optimal wavelengths at λ/Dm ≈ 2 and 6 have been found to be particularly effective in the force
mitigation. Provided with suitable geometric amplitude, the wavy cylinder could even completely20

annihilates the Kármán vortex shedding behind it. As has been explained by [9, 13], the mechanism
of the flow control lies in the formation of the periodic streamwise vortices, which stabilize the free
shear layers and inhibit them from rolling up to forming the span-wise Kármán vortices. From a more
theoretical perspective, [14] revealed in the light of linear stability analysis that the span-wise waviness
in the two-dimensional base flow wake results in stabilization of the absolute instability. Apart from25

the cylindrical structures, the spanwise waviness has also been found to exist in the flippers of the
humpback whales [15], inspired by which many innovations such as the wavy wings and wind turbines
has been proposed [16, 17]. In view of the above, the wavy cylinder presents a promising passive flow
control device that has the potential to be used in various engineering applications.

Given the satisfactory flow control efficacy exhibited by the stationary wavy cylinders, we numer-30

ically investigated the flow around a flexibly mounted one at Re = 5000, expecting that the vortex-
induced vibration could also be effectively mitigated [18]. The wavy cylinder was optimally designed
so that it completely suppresses the Kármán instability at the studied Reynolds number. It was to our
disappointment to find that the free vibration response against the reduced velocity largely resembles
that of the normal cylinder. The maximum vibration amplitude is only 15% smaller compared with35

the normal cylinder, while for the same shape in the static configuration the lift force reduction is
around 90%. More interestingly, even in the absence of the primary vortex shedding frequency, the
frequency response from the oscillating wavy cylinder also exhibits the typical lock-in phenomenon at
a similar range of reduced velocity with the normal cylinder. These findings attested to the statement
of [19] that some successful flow control methods in the fixed configuration may cease to be effective40

in controlling the vibrations.
In order to shed more light upon the glaring differences exhibited by the wavy cylinder at fixed

and flexibly-supported configurations, the current work embark upon a curiosity study on the effect
of external sinusoidal oscillation on the cross flow of the wavy cylinders. Such a problem has been
intensively investigated for the two-dimensional straight cylinder (referred to as the normal cylinder45

hereafter) by both experimental [20–26] and numerical [27–31] methods, as a complementary approach
to understand the more complex fluid-structure interaction problems. For a static cylinder placed in
the uniform stream, the von Kármán vortex shedding with the fixed frequency fv prevails the wake
flow at the subcritical Reynolds numbers. Such shedding process is disturbed and complicated as the
forced motion with amplitude Ae and frequency fe intervenes. This is clearly manifested by the various50

vortex shedding modes at their respective combinations of Ae and fe as is tabulated in [32]. For the
forcing frequencies significantly different from the Strouhal frequency, the spectrum of the flow variables
(near wake velocity, lift coefficient, etc.) would reveal two distinctive peaks with one located at fe
and the other in the vicinity of fv. As the forcing frequency approaches the natural vortex shedding
frequency of the cylinder, i.e., fe/fv ∼ 1, the lock-in phenomenon, which is characterized primarily by55

the submission of the shedding frequency to the forcing, could be expected. The extent of the lock-in
region is found to be positively dependent on the prescribed oscillation amplitude. In addition, the
frequency synchronization is accompanied with many other features such as the magnification of the
drag and lift forces, the sudden change of phase between the lift and displacement, change of vortex
patterns, etc. In general, the forced vibration share many features, frequency lock-in in particular,60

with the free vibrations [33–35]. This has led to some successful predictions of the VIV by the forced
oscillation tests [26, 31, 36]. It should also be noted that the frequency synchronization phenomenon is
ubiquitous to many other kinds of forcing such as the oscillatory jet control to the cylinder wake [37],
unsteady blowing-suction to post-stall flow control of an airfoil [38], the localized periodic heating to
the shear layer modification [39], etc.65

In view of the above, the change of state from desynchronization to the lock-in in the forced
vibration of a circular cylinder is essentially owing to the evolution of the complicated entrainment
of the vortex shedding process to the prescribed forcing. On the other hand, we have shown in our
previous work [18] that the optimally designed wavy cylinder could completely eliminate the Kármán

2



vortex shedding even in the turbulent regime. This renders the current research, the forced vibration70

of a wavy cylinder, very interesting, since such a cylinder is devoid of the Strouhal frequency in the
fixed configuration. Some hints have been revealed in our previous [18] that the concealed Strouhal
frequency would resurface in the dynamic case and play its part in determining the free vibration
responses. It is believed that a thorough investigation by the forced vibration would bring more
insights to this problem. With the motivation described above, the rest of the paper is organized as75

follows. In the section to come, a detailed description of the case setup is presented. This is followed
by an introduction of the governing equations and the numerical schemes in section 3. Discussion of
the results are divided into three major parts in the next section. Firstly, the wavy cylinder is viewed
as whole and its global drag and lift coefficients are compared with that of the normal cylinder. In
the second part, sectional analysis of the wavy cylinder is presented. The sectional distribution of the80

force coefficients, as well as the spanwise correlation and coherence will be covered. To supplement the
above discussions, the vortex shedding modes at various forcing frequencies are presented in the third
part. Conclusions, together with some prospects for future research, are presented in the last section.

2. Description of the problem
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(a) Shape and coordinate (b) Overview of the mesh

A schematic of the geometry of interest with coordinate system is presented in Fig. 1(a). The85

diameter of the wavy cylinder varies sinusoidally along its span-wise direction by the following equation:

Dz = Dm + 2a cos (2πz/λ) , (1)

where Dz denotes the local diameter of the wavy cylinder and Dm = (Dmin+Dmax)/2 is the averaged
diameter which is used in the calculation of Reynolds number as well as the averaged force coefficients.
λ is the geometric wavelength in the span-wise direction and the geometric amplitude a is the maximum
deviation of local radius from the average radius Dm/2. The axial locations at which the local diameter90

maximizes (Dmax) or minimizes (Dmin) are referred to as ’node’ and ’saddle’, respectively. In the
current paper, we assign λ/Dm = 2 and a/Dm = 0.175. A total length of cylinder H = 4Dm,
which encompass two wavelengths, has been adopted. This particular wavy shape has been proven
to completely suppress the Kármán vortex shedding in the fixed configuration at Reynolds number of
5000 [18].95

Placed in the uniform streamwise flow, the cylinder, which is aligned with the z direction, is forced
to vibrate rigidly in the transverse (y) direction according to the following equation:

Y (t) = Ae sin (2πfet) , (2)

here, the normalized oscillation amplitude Ae/Dm is fixed at 0.2 and feDm/U is varied from 0.1 to
0.3 with an interval of 0.01. Note that in the following discussion, we will simply use Ae and fe to
denote the non-dimensional quantities. For the purpose of comparison, the same simulations are also100

conducted for the normal circular cylinder. For the fixed normal cylinder the Strouhal frequency is
around fv ≈ 0.21. Thus, the selected excitation frequency spans from around 0.5fv to 1.5fv.
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3. Governing equations, boundary conditions and mesh

The Navier-Stokes equations are spatially filtered to yield the governing equations of Large Eddy
Simulation (LES), which, in the Arbitrary-Lagrangian-Eulerian (ALE) frame, read as follows:105

∂ui
∂xi

= 0, (3)

∂ui
∂t

+ (uj − ũj)
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)
+ τij

]
, (4)

where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates, ui is the filtered velocity tensor and p is
the filtered pressure, in which the constant fluid density ρ has been incorporated. ũi is the velocity
component of mesh moving in the xi direction. τij = uiuj − uiuj is the sub-grid scale (SGS) stress
that requires extra modeling. The SGS stress is expressed in a wavy reminiscent of the Boussinesq110

hypothesis with the introduciton of a turbulent eddy viscosity νt:

τij −
2

3
ktδij = −2νtSij , (5)

in which kt = τkk/2 is the SGS turbulent kinetic energy and Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain

rate tensor calculated directly from the resolved scales. In the current paper, the dynamic k-equation
model is adopted to solve for the kt and νt, i.e.,

∂kt
∂t

+
∂

∂xj
(ujkt) = P +

∂

∂xj

[
(ν + νt)

∂kt
∂xj

]
− ε,

P = 2νtSijSij , (6)

ε = Cεk
1.5
t ∆−1,

115

νt = Ck∆k0.5t , (7)

The model coefficients Cε and Ck are dynamically computed as part of the solution based on the
Germano identity [40] with test filter ∆̂ = 2∆ by the least square minimization procedure proposed
by Lilly [41].

The above equations are solved by the pimpleDyMFoam solver embodied in the open-source soft-
ware OpneFOAM. The cylinder is placed in the center of a circular computation domain, which has a120

radial extension of 20D. The inlet boundary is specified with a uniform and constant inflow velocity
U∞. At the outlet, the reference pressure is set to be zero. The cylinder surface is specified as noslip,
which means that the flow velocity on the surface is the same with the motion velocity. For the two
spanwise ends, the slip boundary condition is employed.

The computational domain is discretized with uniformly spaced grids in the azimuthal coordinate125

and exponentially stretched ones in the radial direction with a growing factor of 1.035. An overview of
the mesh in the vicinity of the cylinder is depicted in Fig. 1(b). Since proper mesh dependency tests
have been conducted for both the static and dynamic cases in our previous work [18], the same mesh
resolution, i.e., Nθ ×Nr ×Nz = 160× 160× 80 is used in the current work. The timestep is set to be
∆ = 0.01. However, there is still the need to confirm whether the mesh resolution is adequate in the130

case of vibration with high forcing frequency. Such results will be presented in the next section. The
simulations are started from the initial condition with U = (1, 0, 0) for the whole domain except the
surface of the cylinder, where the noslip boundary condition is applied. The data, such as drag lift
forces, mean flow fields, etc., are collected after at least 50 seconds to prevent the unphysical initial
transients from contaminating the results. The data are recorded for more than 35 motion cycles to135

ensure statistical convergence.
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Table 1: Mesh dependency test for the wavy cylinder vibrating with Ae = 0.2 and fe=0.3.

Case Nc ×Nr ×Nz ∆t Cdmean
Clrms

fs fe
ref [18] 160× 160× 80 0.01 1.307 1.062 0.168 0.3
refined 180× 180× 100 0.005 1.275 1.057 0.174 0.3

4. Mesh dependency test

In this section, we conduct mesh dependency test for the wavy cylinder undergoing forced vibration
with Ae = 0.2 and fe = 0.3. This is considered as the most critical case since the cylinder is vibrating
with the highest frequency in the studied range. We compare the results between the mesh resolution140

used in our previous work and a refined one. The detaled mesh resolution and the corresponding
results are presented in table 1. For the refined case, not only is the mesh consolidated in the three
spatial directions, but also the timestep halved. In spite of this significant improvement in the spatial
and temporal resolutions, the resulted drag and lift coefficients remain quite close to each other. The
drag and lift coefficients are defined as145

Cd =
Fd

ρU2
0DmH/2

, (8)

Cl =
Fl

ρU2
0DmH/2

, (9)

where Fd and Fl are the total drag and lift forces on the cylinder and ρ is the density of the fluid.
In addition, the time history of the lift coefficient is put to the spectral analysis and two distinctive
frequencies, denoted as fs and fe, are revealed. The peak at fe = 0.3 could be expected since it
represents the effect of the external forcing. The existence of the other peak fs is of great significance150

to this the current work, and will be discussed in great detail in the coming sections. For the moment,
it is sufficient to note that the obtained values at fs for the two meshes are also close to each other.
In view of the above, it is reasonable to conclude that the mesh resolution we have used for the
vortex-induced vibration [18] is adequate to carry out the forced vibration simulations.

5. Results and discussion155

5.1. The flow control of the static wavy cylinder

(a) normal cylinder (b) wavy cylinder

Figure 2: Contour of ωz = ±0.5 of the static normal and wavy cylinders at Re = 5000. Recreated from ref [18] with the
permission from Elsevier.

The flow control efficacy of the wavy cylinder in the static configuration is revisited here to facilitate
the discussion in the forced vibrations. Fig. 2 presents the snapshots of the contours of the axial
vorticity ωz = ±0.5 for the normal and wavy cylinders at Re = 5000 in the static configuration.
For the normal cylinder, well-organized Kármán vortices could be clearly observed. However, in the160

case of the wavy cylinder, the free shear layers are greatly stabilized and roll up at far wake. The
developed vortices appear to be much weakened compared with the normal cylinder. The differences
in the vorticity pattern could also be quantitatively described by the spectrum of the lift coefficients,
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Figure 3: Frequency analysis of the lift force coefficients at fixed configuration.

as is shown in Fig. 3. A single sharp peak at fv = 0.21 representing the vortex shedding process could
be discerned for the normal cylinder, whereas such frequency is not exhibited in the case of the wavy165

cylinder.
Even with such strong suppression of the Kármán vortices, in the flexibly mounted case, the wavy

cylinder exhibits quite large vortex-induced vibrations and the response curves in terms of both amp-
litude and frequency resemble that of the normal cylinder [18]. In the following paper, we will present
results from the perspective of forced vibration in attempt to shed some light upon the destabilization170

of wavy cylinder in the free vibrations.

5.2. Global responses: comparison with the normal cylinder

In this section, the wavy cylinder is regarded as whole and its aerodynamic responses are compared
with the normal cylinder in the span-wise averaged sense. Fig. 4 presents the overall behavior of
the mean drag, rms lift coefficients and the phase angle as a function of the oscillation frequency at175

Re = 5000 and A/D = 0.2. Here the phase angle φ is calculated as the phase difference between the
lift coefficient and the displacement at fe. At small forcing frequencies, the force coefficients of both
the normal and wavy cylinders are kept at low values and increase slowly with fe. The lift force is
generally out-of-phase with the displacement in this regime, and the phase angle gradually decreases
with increasing fe. A sharp increase in the force coefficients, together with an abrupt decrease in180

the phase angle, occurs at fe = 0.17 and 0.18 for the normal and wavy cylinders, respectively. After
the sudden change, Cd gradually decreases and is kept at a value of around 1.3 for both cylinders.
C

′

l , however, drops slightly and then rises again at further higher oscillation frequencies. Besides, Cl
becomes almost completely in phase with the displacement at the high fe regimes. Except for the
small difference in the critical oscillation frequency for triggering the sudden transition, the response185

curves of the wavy cylinder largely resemble those of the normal cylinder.
To further explore the entanglement between the external forcing and the inherent vortex shedding,

FFT analysis is applied to the time histories of the lift coefficients, and the resulted spectra are
presented in Fig. 5. For the normal cylinder, typically the lift spectra is characterized by two distinctive
peaks, one at fe, manifesting the effect of the forced oscillation, and another at fs, which is close to,190

but not necessarily equals to the natural vortex shedding frequency of a fixed cylinder fv. Depending
on the amplitudes of the two peaks, the studied fe range could be divided into three stages. Starting
from low oscillation frequency, the amplitudes of the two peaks at fe and fs are both kept at low
values and are comparable with each other. Particularly, as will be discussed in more detail in the
texts that follow, at the smallest forcing frequency such as fe = 0.1 ∼ 0.11, the strength at fs, which is195

incurred by the natural vortex shedding, exceeds that at fe. As fe increases and approaches the natural
shedding frequency, we enter the second stage, in which fs is captured by the harmonic motion and the
spectra is featured by a single strong peak at fe. This is known as the famous lock-in phenomenon that
have been the focal of many related researches mentioned in section 1. During the course of lock-in, the
intensity of the single peak undergoes an abrupt jump between fe = 0.16 ∼ 0.17, as has been depicted200

in Fig. 4. Further increasing fe results in the third stage, in which the Strouhal frequency revives
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Figure 5: Variation of the lift spectra with oscillation frequency fe

at fs ≈ 0.16 and its magnitude appears stronger than that at the low forcing frequency stage. The
intensity at the fe peak is much higher than its peer at fs. The variation of the fe intensity conforms
to that has been described in the overall rms lift coefficient in Fig. 4. The described features of the
lift spectra is in great agreement with that of [25], in which the cylinder was studied with Ae = 0.25205

at Re = 4410.
As for the wavy cylinder, although the natural shedding frequency appears to be absent in the

fixed state, when forced to oscillate transversely, its spectral behavior exhibits certain similarities with
that of the normal cylinder. This is especially true to the high fe stage, since other than the forcing
frequency, a significant peak mounts up at around fs ≈ 0.16, which is reminiscent of the Strouhal210

frequency of the normal cylinder. Judging from Fig. 5(b), the situation appears quite different at the
low forcing frequency stage, at which the spectrum seems to be dominated by a single frequency at fe
and the component at fs is not observable. As a matter of fact, it will be shown in the following texts
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Figure 6: Comparison of the time history (left) and power spectra (right) of the lift force coefficients between the normal
and wavy cylinder at three typical forcing frequencies.

that the peak at fs, small as it is, does exist in the spectrum. Similar to the normal cylinder in the
lock-in regime, in between the low and high forcing stages the spectrum is dominated by a single peak215

at fe. This will also be inspected more closely in the next paragraph.
Fig. 6 presents a detailed comparison of the time history and spectra of the lift force coefficients

between the normal and wavy cylinders at three forcing frequencies, each of which represents the three
stages described in Fig. 5. At small forcing frequency fe = 0.1, the absolute values of Cl for both the
normal and wavy cylinders are small and the former is clearly larger than the latter. The spectrum on220

the right side reveal the detailed information of the frequency contents. For the normal cylinder, the
peak at fs is slightly higher than fe, indicating that the effect of the forcing has not surpassed that of
the natural vortex shedding. As for the wavy cylinder, the peak magnitude at fe almost coincide with
the normal cylinder. Another peak, broader and much weaker, surfaces at fs ≈ 0.2, which is slightly
smaller than that of the normal cylinder. Owing to the difference in the fs component, the time history225

of the normal cylinder is characterized by strong entanglement between the two frequencies, while in
the case of the wavy cylinder the fs only have slight effect in shaping the temporal behavior of the
lift coefficient. By considering the extremity of zero forcing frequency, which translates to the static
configuration where full suppression of the Strouhal frequency is achieved, it could be anticipated that
the intensity of the Strouhal frequency will keep deteriorating with decreasing forcing frequency. The230
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lift spectra at fe = 0.18 of both cylinders are characterized by a single frequency at fe. Note that for
the static cylinder, the natural vortex shedding is 0.21 for the normal cylinder, and, judging from the
fs peak in Fig. 6(a), 0.20 for the wavy cylinder. The case of fe = 0.18 is certainly in the range of the
frequency lock-in for both the normal and wavy cylinders. It could also be observed in Fig. 6(b) that at
the current forcing frequency the lift of the normal cylinder is almost in phase with the displacement,235

while for the wavy cylinder the lift lags behind the displacement with a small angle. When it comes
to fe = 0.3, once again two distinctive peaks emerges. The second peak at fe is significantly higher
than the fs for normal and wavy cylinders alike, indicating the dominance of the forced motion over
the natural vortex shedding. Unlike the case at fe = 0.1, at high forcing frequency the spectra of
both cylinders resemble each other at their respective peaks, resulting in the great similarity in the lift240

coefficients.
In the light of the discussions above, we are now in the position to discuss the possible mechanism

for the destabilization of the wavy cylinder in the free vibration. In our previous paper [18], we have
related the VIV of the wavy cylinder with that of a normal cylinder at Re < 47, for which the Kármán
vortex shedding has yet to be triggered [42]. For the mechanism of the latter case, recent linear245

stability analysis [43, 44] have made it clear that while the fluid wake mode is always asleep, it is the
unstable structure mode that drives the coupled fluid-structure system to the linear growth, which
is then limited by the nonlinearity of the fluid and eventually arrive at the limit cycle VIV. Based
on the phenomenological similarity, it was tempting to ascribe the VIV of the wavy cylinder also to
the same mechanism. However, from the spectral analysis presented above, it is clearly demonstrated250

that the Strouhal frequency that is concealed in the fixed configuration does revive in the forced
vibrations and play its role in modulating the lift coefficients, leading to similar behavior with the
normal cylinder. This Strouhal frequency represents the wake mode revealed in the linear stability
analysis [43, 44]. Thus, the VIV of the flexibly mounted wavy cylinder should also be rooted in typical
wake-structure interaction like the case for the normal cylinder, rather than merely the destabilization255

unstable structural mode. As a matter of fact, it will be shown in section 5.4 that in the forced
vibrations cases the very mechanism that suppress the vortex shedding in the fix configuration will
be lessened or even removed in the forced vibrations, rendering the wavy cylinder very similar to the
normal one. However, as of now it is still not clear under what mechanisms the wake mode loses its
stability in the initial stages of the free vibration. Further investigations are still needed to address260

this issue.

5.3. Sectional force analysis

The discussions in the previous section have been focused on the comparison of the global responses
between the normal and wavy cylinders. On the other hand, the span-wise undulation in the wavy
cylinder provides a fertile ground for the discussion of the sectional features. In this section, the inner265

characteristics within the axial extent of the wavy cylinder will be discussed based on the sectional
force coefficients, which are defined based on the slices of the sectional mesh and are calculated as

Cd (z) =
Fd (z)

ρU2
0D (z) ∆L/2

=

Nc∑
0

Cp · nx ·∆θ, (10)

Cl (z) =
Fl (z)

ρU2
0D (z) ∆L/2

=

Nc∑
0

Cp · ny ·∆θ, (11)

in which Fd (z) and Fl (z) are the drag and lift forces on the mesh slice with width of ∆L at spanwise
location z. ∆θ is the angular division of the circumferential mesh. nx, ny and nz are the surface270

normal vectors.

5.3.1. Sectional distribution of drag and lift force coefficients

The sectional time-averaged drag and rms lift force coefficients are summarized in Fig. 7. For the
drag coefficient (Fig. 7(a)), significant variation is generated in the spanwise direction. For all the
forcing frequencies, the minimum Cd is without an exception located at the middle plane in between275

the node and saddle planes. This is owing to the large spanwise geometric gradient nz consuming
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Figure 7: Spanwise distribution of the force coefficients at selected frequencies

a large portion of the magnitude of the surface normal vector (whose magnitude is unity), resulting
in much smaller nx and ny, which are key ingredients in computing the sectional drag and lit force
coefficients as are shown in Equations 10 and 11. Things differ for the location of the maximum drag
coefficient. In the static configuration, the largest Cd is found at the node planes. This feature persists280

for a large range of forcing frequencies from fe = 0.1 till fe = 0.25, even though the difference of the
values at node and saddle grows smaller with the increasing forcing frequency. It is not until fe reaches
0.27 that the drag coefficient at the saddle begins to exceed that at the node. However, even at the
highest forcing fe = 0.3, the difference between the node and saddle remains small. For all the cases
studied here the curve of the sectional drag in one wavelength resembles a W shape.285

On the other hand, the situation for the rms lift coefficient is largely divided depending on the
forcing frequency. For fe ≤ 0.17, C

′

l remains small and increase slowly with the forcing frequency.
Along the axial direction, the spanwise variation of the lift coefficient is also small, nevertheless, it
could still be discerned that in the forced cases C

′

l reaches maximum at the node and minimum at
the middle plane. The jump occurs abruptly at fe = 0.18, and the lift coefficient has been kept290

at high values ever since. Along with the jump, the sectional difference of C
′

l also enlarges. At

fe = 0.18 ∼ 0.21, in one wavelength the C
′

l curve features a W shape with the lift coefficient at the
node slightly larger than the saddle. For further higher forcing frequencies, i.e., fe > 0.23, the lift
coefficient at the saddle keeps swelling up at exceeds that at the node. The curve at one wavelength
then resembles a Λ shape. It should be noted that even though the distributions of the spanwise drag295
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and lift coefficients undergo such significant changes in the studied forcing frequencies, the sectional
forces, in which the local diameter D (z) is incorporated, is always larger at the node and smaller at
the saddle.

5.3.2. Span-wise correlation and coherence

The spanwise correlation of the lift coefficients measures the three dimensionality in the near wake300

of the body. The correlation coefficient between two signals X (t) and Y (t) is defined as

r =
σXY
σXσY

, (12)

in which σXY is the covariance and σX and σY represent the standard deviations. In the current work,
a consecutive correlation curve for the lift coefficients could be obtained by applying equation 12 to the
whole extent of the cylinder with reference to one fixed end. Such results are presented in Fig. 8 for the
wavy cylinder. When the wavy cylinder is static, the correlation coefficient deteriorates swiftly in the305

spanwise direction. Such sharp decrease in the correlation owes its origin to the completely suppressed
vortex shedding. As has been elucidated in our previous work [18], the small lift coefficient on the
static wavy cylinder is mainly caused by the chaotic turbulence effect and thus features low correlation.
Compared with the static case, significant enhancement in the correlation could be observed for the
externally excited wavy cylinders, even at the mildest forcing fe = 0.1. The correlation coefficients310

generally increases with the increasing forcing frequency, and this trend is not affected by whether
the vortex shedding is locked to the forcing or not. The above described features are also generally
true for the normal cylinder, which is omitted here for the sake of brevity. In addition, a spanwise
undulated pattern, which conforms to the shape of the geometric waviness, could be noticed in the
forced vibrating cases. Since in the calculation of the correlation the reference point is selected at315

cylinder’s one end (node), the correlation always increase slightly when it approaches the node. Such
phenomenon is also observed in the free vibration of the same wavy cylinder [18]. This strong spatial
undulation indicates clearly that the flow dynamics in the near wake is significantly affected by the
cylinder motion.
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Figure 8: Span-wise correlation of the lift force coefficients

While the correlation analysis measures the similarity of the spanwise lift coefficients in the time320

domain, more information could be retrieved from the spectral coherence analysis, which inspects the
degree of dependency of the sectional lift coefficients in the frequency space. The magnitude-square
coherence is defined as

h =
|PXY (f) |2

PX (f)PY (f)
, (13)

in which PXY is the cross power spectral density of the two signals and PX and PY are the power
spectrum density of the respective signals. Similar to the correlation, equation 13 is used by fixing X to325
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Figure 9: Span-wise distribution of the magnitude-squared coherence of the lift force coefficients of the normal cylinder

z = 0 and sweeping Y all over the axial length. Selected results are presented in Fig. 9 for the normal
cylinder and in Fig. 10 for the wavy cylinder. In each of the figures, the horizontal axis indicates the
lift frequency fCl and vertical axis is the span-wise coordinate z normalized by the wavelength λ. For
the normal cylinder, at fe = 0.1, two distinctive frequencies are illuminated, representing the forcing
and the Strouhal frequency. The coherence at fCl = 0.1 gradually weakens through the spanwise330

extent, while at fs it is better maintained. The situation gets inversed when it comes to fe = 0.12,
where the coherence at the Strouhal frequency gradually weakens while that at the forcing frequency is
kept high. At fe = 0.17 ∼ 0.2, lock-in occurs and the two frequencies merge into one illuminated band.
As the forcing frequency increases to 0.26 and 0.3, the Strouhal frequency recurs, and its intensity
of coherence becomes much weaker than its peer at fe, which is featured by almost full spanwise335

coherence. Since for most of the cases spectral intensity of the lift coefficient at fe exceeds that at fs,
the spanwise correlation as we have discussed in the previously is also found to be positively related
to the enhancement of the coherence at fe.

The coherence spectrum of the wavy cylinder exhibits many similar features with the normal cylin-
der, especially at high frequencies (fe = 0.26, 0.3), where the Strouhal frequency is clearly manifested340

in addition to the almost fully coherent forcing frequency. At fe = 0.17 and 0.2, the two frequencies
merges into one. This serves as another solid indication for the occurrence of lock-in. Things are not
exactly the same at the small forcing frequencies. At fe = 0.1 and 0.12, while the forcing frequency
is clearly illuminated in Fig. 9∼10, the coherence at the Strouhal frequency is discernible but vague.
This comparison corresponds well to the high and low spectral intensity at fe and fs of the wavy345

cylinder, as has been depicted in Fig. 6(a). In view of the above, one important conclusion that could
be drawn from Fig. 10 is that during the forced vibration, the Strouhal instability does resurrect and
its property appears to be very similar to that of the normal cylinder.

5.4. Vorticity patterns

5.4.1. Evolution of the spanwise vorticity350

Fig. 11 presents the evolution of the vorticity dynamics for the wavy cylinder over one cycle of
the motion. The contours of the spanwise vorticity ωz, which is of relevance to the vortex shedding
phenomenon, are employed to visualize the vortices. The five snapshots in each subfigure are taken
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Figure 10: Span-wise distribution of the magnitude-squared coherence of the lift force coefficients

at the instants when the cylinder is at the top (I), middle with downward motion (II), bottom (III),
middle with upward motion (IV), and again top (V) positions. At fe = 0.1, the lift coefficient remains355

low and in one cycle of motion, it consists multiple frequency components. At the top position (I), the
negative vorticity develops on upper side of the cylinder and detaches when the cylinder moves down
to the middle position (II). Meanwhile, the upper free shear layer breeds a vortex and is ready to shed
at the bottom position (III). From this perspective, the situations at the top and bottom locations
are very similar. As the cylinder rises again to the middle position (IV), the newly generated negative360

vortex sheds. Thus, at fe = 0.1 one cycle of motion corresponds to two cycles of vortex shedding,
which corresponds to the peak at fs ≈ 0.2 as is observed in Fig. 6(a). However, the shedding of the
vortices takes place at relatively far wake, and the effect of the natural vortex shedding on the total
lift coefficient remains small.

At fe = 0.17, which is right before the abrupt jump occurs, the free shear layer with negative365

vorticity breeds on the upper side of the cylinder at the top position (I), and then sheds as the cylinder
moves to position (II), resulting in a minimum value in the lift coefficient. For position III and IV, the
same process occurs for the positive vorticity on the bottom side of the cylinder. The vorticity patterns
clearly show that only one cycle of vortex shedding occurs in one cycle of the motion, indicating the
occurrence of lock-in. The case of fe = 0.18 is also in the lock-in state, however, it is clearly shown370

that the vortex shedding takes place at a location much closer to the cylinder than that of fe = 0.17.
The contraction of the wake clearly signifies the abrupt jump in the drag and lift coefficients. The
upper free shear layer with negative vorticity is still in its infancy at position I and remains attached
at position II, then it sheds shortly before the cylinder reaches the bottom (III).

The situation at fe = 0.26 is quite close to that at fe = 0.18, except that the lift coefficient becomes375

almost totally in phase with the displacement. Each time the cylinder is at the top position, positive
vorticity shed at the bottom side resulting in the maximum lift coefficient and vice versa. The spanwise
vortices appears quite chaotic and decay quickly as they are convected to further downstream.

5.4.2. Time-averaged streamwise vorticity

According to [9, 13, 14], the mechanism for the flow control of the static wavy cylinders lies in380

the periodic arrangement of the streamwise vorticity, which inhibits the development of the spanwise
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(a) fe = 0.1

(b) fe = 0.17

(c) fe = 0.18

(d) fe = 0.26

Figure 11: Evolution of contour ωz = ±0.5 in the wake of the wavy cylinders. Blue and yellow indicate positive and
negative spanwise vorticity. The location of the cylinder in the five snapshots are indicated in the time history plot.
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Kármán vortex shedding. This is also found to be true for the wavy cylinder studied in the current
work. Fig. 12 presents the contours of the streamwise vorticity ωx = ±0.5 calculated from the time-
averaged flow filed for five cases: static, fe = 0.1, 0.16, 0.19 and 0.3. In the static case, the streamwise
vorticity extends far into the wake and plays its role in suppressing the formation of the spanwise385

Kármán vortices. At fe = 0.1 ∼ 0.16 , the length of the contours dwindles, indicating the lessening
of the flow control efficacy. However, since ωx still exists extensively in the wake, the suppression
mechanism is still maintained to some extent. When it comes to fe = 0.19, significant contraction of
the ωx occurs, signifying the massive recession of the flow control effectiveness. At the highest forcing
frequency fe = 0.3, the streamwise vorticity is suppressed so significantly that it only exists near the390

cylinder surface. At such an event, Kármán vortex shedding, as an inherent mechanism for the bluff
bodies, no longer suffer from the obstruction from the extended ωx and resurrect in the near wake.
From the above discussion it is clearly manifested that the imposed cylinder motion could disrupt the
formation of the streamwise vortices, which is considered as the key mechanism of the flow control in
a fixed wavy cylinder. Without the existence of such a mechanism, the inherent absolute stability in395

the bluff body wake would recur and the wavy cylinder behaves like a normal straight cylinder in the
forced vibrations.

(a) static (b) fe = 0.1 (c) fe = 0.16

(d) fe = 0.19 (e) fe = 0.3

Figure 12: Contours of the time-averaged streamwise vorticity ωx = ±0.5 for the wavy cylinders. Blue and yellow
indicate positive and negative vorticity.

6. Conclusion

Intensive computational efforts have been devoted to the study of the wavy cylinder undergoing
forced sinusoidal oscillation with prescribed amplitude Ae = 0.2 and frequency spanning from fe = 0.1400

to 0.3 at a fixed Reynolds number of 5000. The wavy cylinder is optimally designed so that it completely
suppresses the Kármán vortex shedding in the stationary configuration. Various aspects, such as the
drag and lift forces, lift force spectrum, spanwise correlation and coherence, vorticity patterns, etc.,
has been covered. A major discovery unveiled from the current work is the resurrection of the Strouhal
frequency in the forced vibrations of the wavy cylinder. This particular frequency component is also405

observed to submit to the forcing frequency by a typical lock-in mechanism. As a result, the response
curves in terms of the force coefficients as well as the phase difference of the normal and wavy cylinders
resembles each other. Detailed sectional analysis are also conducted for Cd and Cl in the spanwise
direction. In one wavelength, while the sectional distribution of the drag coefficient generally features
a W curve, the shape of the lift coefficients undergoes a transition from W to Λ. Statistical tools such410

as the correlation and coherence are applied to the lift coefficients to retrieve more information. The
lift correlation, posing an undulation which conforms to the geometric waviness, gradually increases
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with the forcing frequency. On the other hand, the coherence spectrum clearly reveals the differences
in the spanwise correlations between different frequency peers.

The discussion presented above suggests that rather than merely the destabilization of the structural415

mode, the free vibration of the flexibly mounted wavy cylinder [18] should be a result of the typical
wake-structure interaction, which is similar to the case of the normal cylinder. Future researches are
needed to understand the detailed mechanism for the revival of the Strouhal instability in the vibrating
cases, especially in the initial development of the free vibration.
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