Highlights

- Explosion pressures, LFL, and UFL of alkene-containing mixtures in N₂O are studied.
- CH_4 , C_2H_6 , $n-C_4H_{10}$, C_2H_4 , and C_3H_6 are the alkenes tested in this study.
- Alkene–N₂O mixtures exhibit higher explosion pressures than alkene–O₂ mixtures.
- LFLs for alkene-containing mixtures can be estimated using Le Chatelier's equation.
- A modified VAFT model can numerically estimate UFLs for alkene-containing mixtures.

1	Numerical and experimen	tal study of the explo	sion pressures and	flammability limits of lower
2	alkenes in nitrous oxide at	mosphere		
3				
4	Yusuke Koshiba ^{a,} *, Takash	i Hasegawa ^b , Hideo C	htani ^c	
5				
6	^a Department of Materials	Science and Chemical	Engineering, Facult	y of Engineering, Yokohama
7	National University, 79-5 To	okiwadai, Hodogaya-ku	ı, Yokohama 240-850	01, Japan
8	^b Graduate school of Enviro	nmental and Informati	on Sciences, Yokoha	uma National University, 79-7
9	Tokiwadai, Hodogaya-ku, Y	okohama 240-8501, Ja	pan	
10	^c Department of Safety	Management, Faculty	of Environmental	and Information Sciences,
11	Yokohama National Univers	sity, 79-7 Tokiwadai, H	odogaya-ku, Yokoha	ma 240-8501, Japan
12				
13	* Corresponding author:	Telephone number: -	-81 45 339 3985	
14		Fax number: +81 45	339 3985	
15		E-mail	addresses:	ykoshiba@ynu.ac.jp,
16	koshiba	-yusuke-xm@ynu.ac.jp	,	
17		Postal address: 79-5	Tokiwadai, Hodoga	aya-ku, Yokohama 240-8501,
18		Japan		

1 The first two authors contributed equally to this work.

1 Abstract

2 This article reports an experimental and numerical investigation of the explosive properties of 3 flammable mixtures of lower alkenes in nitrous oxide atmospheres. The motivation for this study 4 was to reduce fire/explosion risks in industrial facilities that handle nitrous oxide. In this study, 5 explosion pressures and lower and upper flammability limits were experimentally determined at an initial temperature of approximately 20 °C and an initial pressure of 101.3 kPa. The lower 6 7 alkanes/alkenes methane, ethane, n-butane, ethylene, and propylene were tested. To precisely 8 estimate the upper flammability limits of alkane–alkene–N₂O and alkene–alkene–N₂O mixtures, we 9 proposed a modified VAFT (variable adiabatic flame temperature) method. Experimental 10 measurements and numerical calculations clearly demonstrated that (i) alkene-N2O mixtures exhibit 11 higher explosion pressures than the corresponding alkene– O_2 mixtures under fuel-lean conditions, 12 (ii) Le Chatelier's equation successfully predicts the lower flammability limits of alkane-alkene-N2O and alkene-alkene-N2O mixtures, and (iii) the modified VAFT method can 13 14 predict the upper flammability limits of alkane-alkene-N₂O and alkene-alkene-N₂O mixtures more 15 accurately than Le Chatelier's equation.

16

17 **Keywords**: N₂O, Lower and upper flammability limits, Explosion pressure, Variable adiabatic flame

18 temperature (VAFT), Olefin, Gas explosion

2 Abbreviations

3	a ₁ -a ₆	coefficients in the thermodynamic equation
4	AFT	adiabatic flame temperature (K)
5	C_{p}	heat capacity (J mol ^{-1} K ^{-1})
6	$C_{ m p,\ total}$	total-product heat capacity $(J \text{ mol}^{-1} \text{ K}^{-1})$
7	$C_{ m st}$	stoichiometric concentration of a fuel (vol%)
8	FL	flammability limit (vol%)
9	Н	enthalpy (J mol ⁻¹)
10	$\Delta H_{\rm c}$	standard enthalpy of combustion (J mol^{-1} or kJ mol^{-1})
11	LFL	lower flammability limit (vol%)
12	n, m	positive integer of fuels
13	N ₂ O	nitrous oxide
14	$P_{\rm ex}$	observed explosion pressure (MPa)
15	$P_{\rm cal}$	theoretical explosion pressure (MPa)
16	R	gas constant (J $mol^{-1} K^{-1}$)
17	Т	temperature (K)
18	UFL, U	upper flammability limit (vol%)

1	VAFT	variable adiabatic flame temperature (K)
2	<i>v</i> ₁ – <i>v</i> ₄	stoichiometric coefficients in the global reactions
3	X _k	molar fraction of fuel component k (dimensionless)
4	Уĸ	molar fraction of product species k (dimensionless)
5		
6	Greek le	etters
7	φ	equivalence ratio (dimensionless)
8	$ au_{\mathrm{ex}}$	time to explosion pressure (ms)
9	χ	molar fraction of fuel (dimensionless)
10		
11	Supersc	ripts
12	ad	adiabatic
13	o	standard
14		
15	Subscri	pts
16	cal	calculated
17	k	chemical species, k
18	mix	mixture

2 1. Introduction

3

4 Nitrous oxide (N_2O) exhibits affects global warming approximately 300 times more severely than 5 carbon dioxide and is also an ozone-depleting anthropogenic substance (Ravishankara et al., 2009). 6 Nitrous oxide, however, is a useful oxidant in industrial processes because (i) nitrous oxide is 7 thermochemically stable under ambient conditions, (ii) nitrous oxide that contains 36% active 8 oxygen by mass is an economical oxidizing agent (Newman et al., 2015), and (iii) the only 9 significant byproduct of this oxidation reaction is N2 gas. Hence, nitrous oxide has recently attracted 10 increasing research attention; for instance, Branco et al. (2012) reported a method for converting 11 methane (CH₄) over bimetallic catalysts using nitrous oxide as oxidizing agent. Poh et al. (1999) 12 proposed an oxidation reaction of phosphines with nitrous oxide to avoid the use of flammable organic solvents, and Yamada et al. (2001) developed an olefin oxidation method that uses nitrous 13 14 oxide and ruthenium complexes. Although such research is promising, several serious explosion 15 accidents caused by nitrous oxide have been reported. For example, in the United States, a nitrous oxide trailer exploded, leading to one death (US Chemical Safety and Hazard Investigation Board, 16 17 2017), while in Japan, a gas cylinder explosion killed two people (Hirano, 2004).

18 Against such a background, gaining a clear insight into the explosive characteristics of

1	flammable mixtures is of great importance for both assessing fire and explosion risks and
2	guaranteeing safety in chemical and process industries. Among the explosive characteristics of a
3	mixture, knowing the flammability limits is important for preventing industrial accidents. However,
4	despite the background described above, few papers have been hitherto published on the
5	flammability limits of various fuels in nitrous oxide atmospheres, although flammability limits have
6	frequently been studied in other atmospheres. Razus et al. (2017) studied the explosive properties of
7	methane-N ₂ O mixtures diluted with inert gases: He, N ₂ , Ar, and CO ₂ . Koshiba et al. (2015)
8	measured the variation of flammability limits as a function of the carbon number of C1-C7 alkanes
9	in N ₂ O. Vandebroek et al. (2005) examined the lower and upper flammability limits (LFL and UFL,
10	respectively) of toluene–N ₂ O mixtures at an initial temperature of 70 $^{\circ}$ C and atmospheric pressure
11	(LFL = 0.25 vol% and UFL = 22.5 vol%). Unfortunately, only limited data on the flammability
12	limits of alkene–N ₂ O mixtures are available (Movileanu et al., 2015), let alone these of alkane–N ₂ O
13	mixtures.
14	The present study was designed with the following objectives in mind:
15	
16	• To experimentally measure the explosion pressures (P_{ex}) and time to the explosion pressures
17	(τ_{ex}) of various alkene–N ₂ O mixtures.
18	• To experimentally measure the flammability limits of alkene-containing mixtures:

1	alkane–alkene– N_2O and alkene–alkene– N_2O mixtures.
2	• To numerically estimate the flammability limits of alkane–alkene–N ₂ O and alkene–alkene–N ₂ O
3	mixtures using Le Chatelier's and modified variable adiabatic flame temperature (VAFT)
4	methods.
5	
6	In this study, the following lower alkanes and lower alkenes were tested as fuels: CH_4 , ethane (C_2H_6),
7	n-butane (n- C_4H_{10}), ethylene (C_2H_4), and propylene (C_3H_6). The explosion pressures, times to the
8	explosion pressures (Fig. 1), and flammability limits of the mixtures tested in this study were
9	measured at an initial temperature of approximately 20 °C and an initial pressure of 101.3 kPa.
10	
11	2. Experimental methods
12	
13	2.1 Gases
14	
15	The present tests employed dry CH_4 , C_2H_6 , n- C_4H_{10} , C_2H_4 , and C_3H_6 gases as fuels, and their
16	purities were as follows: >99.999% (CH ₄), >99.7% (C ₂ H ₆), >99.95% (n-C ₄ H ₁₀), >99.9% (C ₂ H ₄), and
17	>99.5% (C_3H_6). N_2O , O_2 , and N_2 were >99.99% pure.

1 2.2 Experimental apparatus

is the same as that used in an earlier study (Koshiba et al., 2010). The closed cylindrical chamber
(100 mm in diameter and 120-mm high, i.e., 0.94 L) includes tungsten electrodes (1.0 mm in
diameter) for ignition, a stirrer (1000 rpm), and two pressure transducers. The transducer (PTI-S,
Swagelok, USA) placed on the top of the explosion chamber is used to monitor the partial pressures
of the component gases, while the sensitive transducer (PGM-H, Kyowa Electronic Inst. Co., Ltd.,
Japan) located on the chamber side was used to measure the explosion pressure. The observed
explosion pressures were recorded on a personal computer connected to the apparatus by a
measuring unit (NR 500 and NR ST 04, Keyence Co., Japan).
2.3 Experimental procedures
The experimental procedures described here are the same as those of our earlier study (Koshiba et al.
2010). The explosion chamber was evacuated using a vacuum pump before each flammability limit

- 17 test. The partial pressure method was employed to prepare gas mixtures in the chamber, and the
- 18 mixtures were then mechanically mixed using the stirrer for at least one minute. At the quiescent

1	condition, an electric-spark discharge (18 J) between the electrodes was applied to ignite the center
2	of the chamber; this spark was powered with a neon transformer.
3	In this study, the 7% pressure-rise criterion was applied and each test was repeated three times to
4	confirm reproducibility. Each measurement was performed at an initial temperature of approximately
5	20 °C and initial pressure of 101.3 kPa.
6	
7	3. Numerical calculation methods
8	
9	3.1 Thermochemical equilibrium calculations
10	
11	If chemical reactions are allowed to reach equilibrium unimpeded and no heat loss is assumed, the
12	adiabatic flame temperature (AFT), equilibrium composition, and theoretical explosion pressure
13	(P_{cal}) can be computed by minimizing the Gibb's free energy (Melhem, 1997).
14	The CHEMKIN software package (v. 4.1.1, Kee et al., 2007) was used to compute the AFTs,
15	equilibrium compositions of lower- and upper-limit mixtures, and adiabatic pressure (i.e., theoretical
16	explosion pressures, P_{cal}). The following 34 chemical species were used in the calculations: C, CO,
17	CO ₂ , CH, CH ₂ , CH ₃ , CH ₄ , C ₂ , C ₂ H ₂ , C ₂ H ₄ , C ₂ H ₅ , C ₂ H ₆ , C ₃ , C ₄ , C ₅ , C ₆ H ₆ , HCO, CN, H, H ₂ , OH,
18	HO ₂ , H ₂ O, H ₂ O ₂ , O, O ₂ , N, N ₂ , NO, NO ₂ , N ₂ O, NH, HNO, and the fuels. The calculations postulated

1 that each gas behaves like an ideal gas.

- 2
- 3 3.2 Prediction of flammability limits
- 4

5 3.2.1 Literature review

As described above, the flammability limit is a key index for ensuring safe operations. To date, several methods for estimating flammability limits are available in the literature. For instance, for unary fuel mixtures, Jones (1938) reported the following empirical equations (Eqs. (1) and (2)).

9

$$LFL = 0.55C_{st}, #(1)$$

10

$$UFL = 3.50C_{st}, #(2)$$

11

where $C_{\rm st}$ is the stoichiometric concentration of a fuel. By using LFL and UFL data for typical organic compounds, excepting halogen-containing fuels, Suzuki (1994) and Suzuki & Koide (1994) developed the following empirical equations (Eqs. (3) and (4)).

$$LFL = -3.42\Delta H_{\rm c}^{-1} + 0.569\Delta H_{\rm c} + 0.0538\Delta H_{\rm c}^{2} + 1.80, \#(3)$$

$UFL = 6.30 \Delta H_{\rm c} + 0.567 \Delta H_{\rm c}^2 + 23.5, \#(4)$

2 where ΔH_c is the standard enthalpy of combustion in units of J mol⁻¹. 3 4 For binary fuel mixtures, Le Chatelier's formula (Eq. (5)) is the most well-known method for 5 estimating flammability limits (Drysdale, 2011). 6 $FL_{\rm mix} = \frac{1}{\sum \frac{x_{\rm k}}{FL_{\rm k}}}, \#(5)$ 7 where FL_{mix} is the flammability limit of a mixture, x_k is the mole fraction of component k such that 8 9 $\sum x_k = 100$ vol%, and FL_k is the flammability limit for fuel k. Several studies have been published 10 about the applicability of Le Chatelier's rule to binary fuel mixtures. For instance, Zhao et al. (2009) 11 demonstrated that, for lower-limit binary hydrocarbon-air mixtures, the values calculated from Le 12 Chatelier's equation fit well with the corresponding experimental LFL values, while for upper-limit 13 binary hydrocarbon-air mixtures, Le Chatelier's equation must be empirically modified by powering 14 the hydrocarbon concentrations. For upper-limit fuel-air mixtures, Kondo et al. (2008) extended Le 15 Chatelier's equations by manipulating the fitting parameter. 16 For alkene-containing mixtures, several researchers have developed methods for estimating

1	flammability limits using AFTs. Vidal et al. (2006) demonstrated that, for ethylene–air– N_2 mixtures,
2	computed LFL values agreed well with corresponding experimental values when the calculations are
3	performed with a fixed AFT of 1400 K. Zhao et al. (2010) developed a method for estimating LFLs
4	for alkane-alkene-air and alkene-alkene-air mixtures using average flame temperatures. Liaw et al.
5	(2012) presented a model to estimate the LFLs of N ₂ -diluted ethylene-air and propylene-air
6	mixtures using constant flame temperatures. A prediction method for UFLs of binary
7	hydrocarbon-air mixtures using calculated AFTs was developed by Mendiburu et al. (2016).
8	However, in general, UFLs are difficult to estimate precisely; in addition, no methods for estimating
9	the UFLs of specifically N_2O -containing mixtures are found in the literature.

11 3.2.2 Predicting UFL using the modified VAFT method

Recently, Wu et al. (2018) reported a new prediction method for the UFLs of alkane–air mixtures diluted with CO₂ based on the VAFT method, which semi-empirically estimates the UFL values. According to Wu et al., the VAFT model employed several assumptions that (i) the pressure remains constant during the combustion process, (ii) the AFT is positively correlated with the concentration of the diluent (i.e., CO₂), and (iii) the main combustion products at the UFL are carbon monoxide (CO), CO₂, H₂O, H₂, and N₂.

18 Later in this article, a modified VAFT model to estimate the UFLs for alkane–alkene– N_2O and

1 alkene–alkene–N₂O mixtures is proposed. As noted later in Section 4.4, when lower alkanes and alkenes are used as fuel, the mole fractions of H_2O are quite low (~10⁻⁵) at the UFLs of 2 alkane-alkene-N2O and alkene-alkene-N2O mixtures, whereas the mole fraction of acetylene 3 (C_2H_2) is high (~10⁻⁴-10⁻²). Hence, in this study, we made the following assumptions so that the 4 5 UFL values could be calculated: (i) combustion processes occur at a constant pressure, (ii) AFT varies with the fuel mole fraction, and (iii) the major chemical species at the upper-limit mixtures 6 7 examined in this study are CO, H₂, "C₂H₂," and N₂. For alkane-alkene-N₂O mixtures, the modified 8 VAFT model assumes the following global reaction scheme (Eq. (6)):

9

$$\chi U C_n H_{2n+2} + (1-\chi) U C_m H_{2m} + (1-U) N_2 O \rightarrow v_1 C O + v_2 H_2 + v_3 C_2 H_2 + v_4 N_2 + \Delta H_{c,1} \#(6)$$
10

where *U* is the UFL of the fuel, v_1-v_4 are the stoichiometric coefficients in the global reaction, $\Delta H_{c,1}$ is the enthalpy of combustion for the reaction, and χ denotes the mole fraction of C_nH_{2n+2} in the fuels.

14 The complete combustion reaction for each component gas in Eq. (6) is as follows (Eqs. 15 (7)–(10)):

$$C_nH_{2n+2} + (3n+1)N_2O \rightarrow nCO_2 + (n+1)H_2O + (3n+1)N_2 + \Delta H_{C,C_nH_{2n+2}} \#(7)$$

$$\mathbf{CO} + \mathbf{N}_2\mathbf{O} \rightarrow \mathbf{CO}_2 + \mathbf{N}_2 + \Delta H_{\mathcal{C},\mathbf{CO}} \#(\mathbf{8})$$

$$\mathbf{H}_2 + \mathbf{N}_2 \mathbf{O} \rightarrow \mathbf{H}_2 \mathbf{O} + \mathbf{N}_2 + \Delta H_{\mathcal{C},\mathbf{H}_2} \# (\mathbf{9})$$

$$C_2H_2 + 5N_2O \rightarrow 2CO_2 + H_2O + 5N_2 + \Delta H_{C,C_2H_2} # (10)$$

5 Substituting Eqs. (7)–(10) into Eq. (6) yields Eq. (11):

$$\Delta H_{C_{1}} = \chi U \Delta H_{C_{C_{n}H_{2n+2}}} + (1-\chi) U \Delta H_{C_{C_{m}H_{m}}} - v_{1} \Delta H_{C_{C_{0}}} - v_{2} \Delta H_{C_{H_{2}}} - v_{3} \Delta H_{C_{C_{2}H_{2}}} \# (11)$$

8 Using the mass conservation law, the following Eqs. (12)–(15)) result.

$$v_1 + 2v_2 = n\chi U + m(1 - \chi)U\#(12)$$

$$v_1 = 1 - U # (13)$$

$$v_2 + v_3 = (n+1)\chi U + m(1-\chi)U \# (14)$$

$$v_4 = 1 - U. \# (15)$$
2
3 On the basis of the law of conservation of energy, Eq. (16) results:
4
$$v_1H'_{C0} + v_2H'_{H_2} + v_3H'_{C_2H_2} + v_4H'_{N_2} + \Delta H_{c,1} = v_1H'_{C0}^{ad} + v_2H'_{H_2}^{ad} + v_3H'_{C_2H_2}^{ad} + v_4H'_{N_2}^{ad} \# (16)$$
5
6 where $H_{\lambda}^{\ a}$ and $H_{\lambda}^{\ ad}$ represent the enthalpy of species k at 298 K and the AFT, respectively. The
7 enthalpy of species k is calculated using Eq. (17).
8
$$\frac{H}{RT} = a_1 + \frac{a_2}{2}T + \frac{a_3}{3}T^2 + \frac{a_4}{4}T^3 + \frac{a_5}{5}T^4 + \frac{a_6}{T} \# (17)$$
9
10 where $a_1 - a_6$ are the thermodynamic coefficients of each species k , and these were extracted from a
11 thermodynamic database (NASA, 2001). R and T represent the gas constant and temperature,
12 respectively. The UFLs, U , were calculated by solving Eq. (16) using Eqs. (11)–(15) and (17).
13 Like the alkane–alkene–N₂O mixtures, U values for alkene–alkene–N₂O mixtures were

14 numerically computed on the basis of the following global reaction (Eq. (18)):

$$\chi U C_n H_{2n} + (1 - \chi) U C_m H_{2m} + (1 - U) N_2 O → v_1 CO + v_2 H_2 + v_3 C_2 H_2 + v_4 N_2 + \Delta H_{c,2} #(18)$$

where $\Delta H_{c,2}$ is the enthalpy of combustion for the reaction.
4 **4. Results and discussion**
5
6 *4.1 Explosion pressures and times to explosion pressures of alkene-N₃O mixtures diluted with N₂*
7
8 Owing to their high explosion pressures, each mixture tested was diluted with 30 vol% N₂ so that the
9 experiments were safe for researchers in the lab. The mixture composition in our tests was 70 vol%
10 of alkene-N₂O and 30 vol% of N₂.
11 Fig. 3a and 3b plots the explosion pressures, respectively, as a function of the equivalence ratio, *φ*,
13 varying from *φ* = 0.4 to *φ* = 2.4. For reference, the corresponding graphs for O₂-containing mixtures
14 (i.e., C₂H₄-O₂-N₂ and C₃H₆-O₂-N₂ mixtures) are plotted in Fig. 4a and 4b, respectively. The
15 explosion pressure for the C₂H₄-N₂O-30 vol% N₂ mixture in the 0.94-L vessel was determined to be
16 P_{ex} = 1.44 MPa when *φ* = 1.0. As expected, the values we observed were higher than those of
17 approximately of a stoichiometric C₃H₇-N₂O-60 vol% N₂ mixture in a 1.18-L vessel, P_{ex} = 0.7 MPa,

1 reported by Movileanu et al. (2015).

For both the C_2H_4 - O_2 - N_2 and the C_3H_6 - O_2 - N_2 mixtures, the explosion pressures exhibited a 2 similar inverted U-shaped curve, and the time to the corresponding explosion pressure showed the 3 4 same trend. Comparison of Fig. 3 with Fig. 4 indicates that the alkene-N₂O-N₂ mixtures exhibited the higher explosion pressures than the corresponding alkene-O2-N2 mixtures under fuel-lean 5 6 conditions. Comparison of Fig. 3 with Fig. 4 reveals that the φ values for the N₂O mixtures at which 7 the maximum explosion pressure is observed are smaller than those for the corresponding O2 mixtures (C₂H₄-N₂O-N₂: $\varphi = 1.4$, C₂H₄-O₂-N₂: $\varphi = 1.8$; C₃H₆-N₂O-N₂: $\varphi = 1.6$, C₃H₆-O₂-N₂: 8 9 $\varphi = 1.8$). This difference is probably explained by the decomposition reaction of N₂O. Unlike O₂, 10 nitrous oxide readily decomposes during combustion, according to Eq. (19) (Parres-Esclapez et al., 2010), which significantly enhances the observed explosion pressure. In fact, equilibrium 11 calculations verified that the mole fraction of N₂O was less than 10⁻⁶. The initial mole fraction of 12 N_2O decreases as the φ value increases, accordingly lowering the explosion pressure caused by N_2O 13 14 decomposition. A similar trend is reported in the literature (Koshiba et al., 2015).

15

$$N_2 0 \rightarrow N_2 + \frac{1}{2} 0_2 \# (19)$$

1	out by Salzano et al (2012), the experimentally observed explosion pressure is significantly lower
2	than the corresponding calculated explosion pressure. This difference is accounted for by heat losses
3	at the vessel walls. However, interestingly, no significant differences were found in terms of
4	explosion pressure between the experimental and calculated values for the C_2H_4 - O_2 - N_2 and
5	C_3H_6 - O_2 - N_2 mixtures. This may imply that the heat loss at the wall surface is negligible when
6	combusting these mixtures.
7	
8	4.2 Flammability limits of C_2H_4 – N_2O and C_3H_6 – N_2O mixtures
9	
10	Table 1 lists the LFLs and UFLs of the C_2H_4 - N_2O and C_3H_6 - N_2O mixtures, together with C_2H_4 - O_2 ,
11	$C_3H_6-O_2$, C_2H_4 -air, and C_3H_6 -air mixtures for reference. As shown in this table, the flammable
12	range of C_2H_4 -N ₂ O was determined to be 2.0-40.0 vol%, while that of C_3H_6 -N ₂ O was
13	1.5–28.7 vol%.
14	For the same alkene, the mixtures are ranked in terms of their LFLs as follows:
15	alkene/air \approx alkene/O ₂ > alkene/N ₂ O; this ordering is in good agreement with that for alkane
16	mixtures (alkane/air \approx alkane/O ₂ > alkane/N ₂ O, Koshiba et al., 2015). This implies that a fuel in an
17	N_2O atmosphere more readily creates a flammable mixture than a fuel in air or O_2 atmospheres.
18	

3 The LFLs of alkane-alkene-N2O and alkene-alkene-N2O mixtures are discussed in this section. As an example, Fig. 5a–5c shows the variations of the LFLs as a function of $x_{\text{fuel-1}}$ (x_{ethylene} or x_{methane}) for 4 5 the C₂H₄-n-C₄H₁₀-N₂O, CH₄-C₃H₆-N₂O, and C₂H₄-C₃H₆-N₂O mixtures, respectively. Fig. 5 also plots the curves calculated from Eq. (5) for these lower-limit mixtures. As seen in the figure, the 6 7 maximum absolute differences between the observed LFLs and the calculated curves are 0.1 vol%, 8 which is within experimental error. 9 As stated by Crowl and Louvar (2011a), Le Chatelier's rule relies upon the following basic 10 assumptions: (i) the total heat capacity of reaction products is constant, (ii) the combustion kinetics 11 of the pure species is independent and unchanged, and (iii) AFT is independent of fuel fraction. The 12 total-product heat capacity is calculated with the following equation (Eq. (20)): 13

$$C_{\mathrm{p,total}} = \sum C_{\mathrm{p,k}} \cdot y_k \#(20)$$

14

15 where $C_{p, total}$, $C_{p, k}$, and y_{k} denote the total-product heat capacity, heat capacity of product species k,

- 16 and mole fraction of product species *k*, respectively.
- 17 In Fig. 6a, the total-product heat capacities calculated from Eq. (20) and AFTs for the lower-limit

1	C_2H_4 - <i>n</i> - C_4H_{10} -N ₂ O mixture are plotted as a function of x_{ethylene} in the fuels. Fig. 6b shows the
2	equilibrium compositions of the main species with mole fraction greater than 10^{-2} for the lower-limit
3	C_2H_4 - <i>n</i> - C_4H_{10} -N ₂ O mixture. As seen in Fig. 6, the three parameters (i.e., total-product heat capacity,
4	equilibrium composition, and AFT) remained unchanged for various values of x . The results in Figs
5	7 and 8 also confirm similar trends for the CH_4 - C_3H_6 - N_2O and C_2H_4 - C_3H_6 - N_2O mixtures. Hence,
6	as with lower-limit alkane-alkane-N ₂ O mixtures (Koshiba et al., 2017), we concluded that Le
7	Chatelier's rule holds for the lower-limit alkane-alkene-N2O and alkene-alkene-N2O mixtures
8	examined in this study.
9	
10	4.4 UFLs of alkane–alkene– N_2O and alkene–alkene– N_2O mixtures
11	
12	The UFLs of CH ₄ -C ₃ H ₆ -N ₂ O, C ₂ H ₄ -C ₂ H ₆ -N ₂ O, and C ₂ H ₄ -C ₃ H ₆ -N ₂ O mixtures are plotted as a
13	function of $x_{\text{fuel-1}}$ (i.e., x_{ethylene} or x_{methane}) in Fig. 9a–9c, respectively. For the alkane–alkene–N ₂ O and
14	alkene-alkene-N2O mixtures, the UFLs exhibited flattened S-shaped or inverted S-shaped curves.
15	Note that the curve shape (i.e., S-shaped or inverted S-shaped) varies depending on the combination
16	of fuels tested. Similar behavior was also reported by Zhao et al. (2009), who studied the UFLs of
17	methane-ethylene-air and ethylene-propylene-air mixtures.

18 Unlike the lower-limit alkane-alkene- N_2O and alkene-alkene- N_2O mixtures discussed in

1	Section 4.3, the upper-limit alkane-alkene-N ₂ O and alkene-alkene-N ₂ O mixtures tested in this
2	study did not satisfy the assumptions involved in Le Chatelier's equation (data not shown). As also
3	depicted in Fig. 9, the CH ₄ -C ₃ H ₆ -N ₂ O, C ₂ H ₄ -C ₂ H ₆ -N ₂ O, and C ₂ H ₄ -C ₃ H ₆ -N ₂ O mixtures showed
4	relatively large differences between the observed UFLs and the curves calculated from Eq. (5).
5	Hence, Le Chatelier's equation is not accurate for these mixtures. Such result is consistent with the
6	finding of Zhao et al. (2009) that Le Chatelier's equation cannot always precisely predict UFL values
7	for mixtures that contain alkenes.
8	As an example, the relation between the species mole fractions (>10 ⁻⁴) and x_{ethylene} for the
9	upper-limit C_2H_4 – C_2H_6 – N_2O mixture is shown in Fig. 10. The major species are clearly H_2 , N_2 , CO_4
10	and C ₂ H ₂ . In Figs. 9a–9c, UFL curves calculated using the modified VAFT method are also plotted
11	for the CH ₄ -C ₃ H ₆ -N ₂ O, C ₂ H ₄ -C ₂ H ₆ -N ₂ O, and C ₂ H ₄ -C ₃ H ₆ -N ₂ O mixtures, respectively. As the
12	agreement of these latter curves with the experimental data shows, we therefore conclude that the
13	VAFT method accurately estimates UFLs for lower alkane-alkene- N_2O and lower
14	alkene–alkene–N ₂ O mixtures.
15	In summary, the modified VAFT model suggested in this study permits us to accurately estimate
16	the flammability limits of alkane-alkene-N2O and lower alkene-alkene-N2O mixtures. However,
17	note that the modified VAFT method includes an inherent limitation. In general, at UFLs, the
18	insufficient amount of oxidant leads to incomplete combustion, resulting in the formation of soot. As

1	reported by Torrade et al. (2017) who investigated the explosion characteristics of hybrid mixtures
2	(i.e., methane-air-nanosized-carbon black), explosion properties are generally influenced by the
3	presence of soot. To obtain a closer estimate of UFLs, a new model that considers soot formation
4	should be developed in future research.
5	
6	5. Conclusions
7	
8	In this study, the explosion pressures, times to the corresponding explosion pressures, and LFL and
9	UFL of mixtures with lower alkenes (i.e., C_2H_4 and C_3H_6) in nitrous oxide atmospheres were
10	measured experimentally at an initial temperature of ca. 20 °C and an initial pressure of 101.3 kPa.
11	In addition, the LFL and UFL of alkane-alkene- N_2O and alkene-alkene- N_2O mixtures were
12	numerically calculated using both Le Chatelier's equation and the modified VAFT method.
13	We draw the following conclusions from the experimental and numerical results.
14	
15	(i) Under fuel-lean conditions, alkene– N_2O – N_2 mixtures exhibited higher explosion pressures than
16	did corresponding alkene–O ₂ –N ₂ mixtures.
17	(ii) For lower-limit alkane-alkene-N2O and alkene-alkene-N2O mixtures, the curves calculated
18	from Eq. (5) agreed well with the experimental LFL data, implying that Le Chatelier's rule holds

1	for these lower-limit mixtures in nitrous oxide atmosphere.		
2	(iii) For upper-limit alkane-alkene-N2O and alkene-alkene-N2O mixtures, Le Chatelier's equation		
3	does not agree with experimental UFL values. The modified VAFT method suggested in this		
4	study estimates the UFLs of these mixtures more accurately than Le Chatelier's equation.		
5			
6	This experimental and numerical study opens the way for estimating the LFL and UFL of lower		
7	alkane-alkene-N2O and alkene-alkene-N2O mixtures. The methods presented above will contribute		
8	to safety enhancement in industrial facilities that handle and store nitrous oxide.		
9			
10	Conflict of interest		
11			
12	The authors declare that there are no conflicts of interest.		
13			
14	References		
15	Branco, J.B., Ferreira, A.C., Botelho do Rego, A.M., Ferraria, A.M., Almeida-Gasche, T., 2012.		
16	Conversion of methane over bimetallic copper and nickel actinide oxides (Th, U) using nitrous oxide		
17	as oxidant. ACS Catal. 2, 2482–2489.		
18			

- Chen, C.-C., 2011. A study on estimating flammability limits in oxygen. Ind. Eng. Chem. Res. 50,
 10283–10291.
- 3
- 4 Crowl, D.A., Louvar, J.F., 2011a. Chemical Process Safety: Fundamentals with Applications, third
 5 ed. Pearson Education, Inc, Boston, pp. 253–254.
- 6
- 7 Crowl, D.A., Louvar, J.F., 2011b. Chemical Process Safety: Fundamentals with Applications, third
- 8 ed. Pearson Education, Inc, Boston, pp. 688–689.
- 9
- 10 Crowl, D.A., Louvar, J.F., 2011c. Chemical Process Safety: Fundamentals with Applications, third
- 11 ed. Pearson Education, Inc, Boston, p. 259.
- 12
- 13 Drysdale, D., 2011. An Introduction to Fire Dynamics, third ed. John Wiley & Sons. Ltd., West
- 14 Sussex.
- 15
- 16 Hirano, T., 2004. Accidental explosions of semiconductor manufacturing gases in Japan. J. Loss Prev.
- 17 Process Ind. 17, 29–34.
- 18

1	Jones, G.W., 1938. Inflammation limits and their practical application in hazardous industrial
2	operations. Chem. Res. 22, 1–26.
3	
4	Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., Mof-fat, H.K., Lutz, A.E.,
5	Dixon-Lewis, G., Smooke, M.D., Warnatz, J., Evans, G.H., Larson, R.S., Mitchell, R.E., Petzold,
6	L.R., Reynolds W.C., Caracotsios, M., Stew-art, W.E., Glarborg, P., Wang, C., McLellan, C.L.,
7	Adigun, O., Houf, W.G., Chou, C.P., Miller, S.F., Ho, P., Young, P.D., Young, D.J., Hodgson, D.W.,
8	Petrova, M.V., Puduppakkam, K.V., 2007. CHEMKIN Release 4.1.1, Reaction Design, San Diego,
9	CA.
10	
11	Kondo, S., Takizawa, K., Takahashi, A., Tokuhashi, K., Sekiya, A., 2008. A study on flammability
12	limits of fuel mixtures. J. Hazard. Mater. 155, 440-448.
13	
14	Koshiba, Y., Hasegawa, T., Kim, B., Ohtani, H., 2017. Flammability limits, explosion pressures, and
15	applicability of Le Chatelier's rule to binary alkane-nitrous oxide mixtures. J. Loss Prev. Process Ind.
16	45, 1–8.
17	

18 Koshiba, Y., Nishida, T., Morita, N., Ohtani, H., 2015. Explosion behavior of n-alkane/nitrous oxide

mixtures. Process Saf. Env. Prot. 98, 11-15.

2	
3	Koshiba, Y., Takigawa, T., Matsuoka, Y., Ohtani, H., 2010. Explosion characteristics of flammable
4	organic vapors in nitrous oxide atmosphere. J. Hazard. Mater. 183, 746-753.
5	
6	Liaw, HJ., Chen, CC., Chang, CH., Lin, NK., Shu, CM., 2012. Model to estimate the
7	flammability limits of fuel-air-diluent mixtures tested in a constant pressure vessel. Ind. Eng. Chem.
8	Res. 51, 2747–2761.
9	
10	Melhem, G.A., 1997. A detailed method for estimating mixture flammability limits using chemical
11	equilibrium. Process Saf. Prog. 16, 203–218.
12	
13	Mendiburu, A.Z., de Carvalho Jr., J.A., Coronado, C.R., 2016. Estimation of upper flammability
14	limits of C-H compounds in air at standard atmospheric pressure and evaluation of temperature
15	dependence. J. Hazard. Mater. 304, 512-521.
16	
17	Movileanu, C., Razus, D., Mitu, M., Giurcan, V., Oancea, D., 2015. Explosion of C ₂ H ₄ –N ₂ O–N ₂ in
18	elongated closed vessels. in: Proc. 7th Eur. Combust. Meeting (P4-04).

2	NASA, 2001. Thermo Build. https://www.grc.nasa.gov/www/CEAWeb/ceaThermoBuild.htm
3	(accessed 1 April 2018).
4	
5	Newman, S.G., Lee, K., Cai, J., Yang, L., Green, W.H., Jensen, K.F., 2015. Continuous thermal
6	oxidation of alkenes with nitrous oxide in a packed bed reactor. Ind. Eng. Chem. Res. 54,
7	4166–4173.
8	
9	Parres-Esclapez, S., Illán-Gómez, M.J., Salinas-Martínez de Lecea, C., Bueno-López, A., 2010. On
10	the importance of the catalystredox properties in the N_2O decomposition over alumina and ceria
11	supported Rh, Pd and Pt. Appl. Catal. B: Environ. 96, 370–378.
12	
13	Poh, S., Hernandez, R., Inagaki, M., Jessop, P.G., 1999. Oxidation of phosphines by surpercritical
14	nitrous oxide. Org. Lett. 1, 583–585.
15	
16	Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous oxide (N ₂ O): the dominant
17	ozone-depleting substance emitted in the 21st century. Science 326, 123-125.

1	Razus, D., Mitu, M., Giurcan, V., Oancea, D., 2017. Propagation indices of methane-nitrous oxide
2	flames in the presence of inert additives. J. Loss Prev. Process Ind. 49, 418-426.
3	
4	Salzano, E., Cammarota, F., Di Benedetto, A., Di Sarli, V., 2012. Explosion behavior of
5	hydrogen-methane/air mixtures. J. Loss Prev. Process Ind. 25, 443-447.
6	
7	Schröder, V., Molnarne, M., 2005. Flammability of gas mixtures Part 1: Fire potential. J. Hazard.
8	Mater. A121, 37–44.
9	
10	Suzuki, T., 1994. Empirical relationship between lower flammability limits and standard enthalpies
11	of combustion of organic compounds. Fire Mater. 18, 333–336.
12	
13	Suzuki, T., Koide, K., 1994. Correlation between upper flammability limits and thermochemical
14	properties of organic compounds. Fire Mater. 18, 393–397.
15	
16	Torrado, D., Buitrago, V., Glaude, PA., Dufaud, O., 2017. Explosions of methane/air/nanoparticles
17	mixtures: comparison between carbon black and inert particles. Process Saf. Env. Prot. 110, 77-88.
18	

1	US Chemical Safety and Hazard Investigation Board, 2017. Nitrous Oxide Explosion. Investigation
2	report (#2016-04-I-FL).
3	
4	Vandebroek, L., Van den Schoor, F., Verplaetsen, F., Berghmans, J., Winter, H., van't Oost, E., 2005.
5	Flammability limits and explosion characteristics of toluene-nitrous oxide mixtures. J. Hazard.
6	Mater. A120, 57–65.
7	
8	Vidal, M., Wong, W., Rogers, W.J., Mannan, M.S., 2006. Evaluation of lower flammability limits of
9	fuel-air-diluent mixtures using calculated adiabatic flame temperatures. J. Hazard. Mater. 130,
10	21–27.
11	
12	Wu, M., Shu, G., Chen, R., Tian, H., Wang, X., Wang, Y., 2018. A new model based on adiabatic
13	flame temperature for evacuation of the upper flammable limit of alkane-air-CO ₂ mixtures. J.
14	Hazard. Mater. 344, 450–457.
15	
16	Yamada, T., Hashimoto, K., Kitaichi, Y., Suzuki, K., Ikeno, T., 2001. Nitrous oxide oxidation of
17	olefins catalyzed by ruthenium porphyrin complexes. Chem. Lett. 30, 268–269.
18	

1	Zhao, F., Rogers, W.J., Mannan, M.S., 2010. Calculated flame temperature (CFT) modeling of fuel
2	mixture lower flammability limits. J. Hazard. Mater. 174, 416–423.
3	
4	Zhao, F., Rogers, W.J., Mannan, M.S., 2009. Experimental measurement and numerical analysis of
5	binary hydrocarbon mixture flammability limits. Process Saf. Env. Prot. 87, 94–104.
6	
7	
8	Table caption
9	Table 1
10	Lower and upper flammability limits of C_2H_4 -N ₂ O and C_3H_6 -N ₂ O mixtures, listed alongside
11	previously reported values for C ₂ H ₄ –O ₂ , C ₃ H ₆ –O ₂ , C ₂ H ₄ –air, and C ₃ H ₆ –air mixtures.
12	
13	Figure captions
14	Figure 1
15	Typical explosion pressure history in this study.
16	
17	Figure 2
18	Experimental apparatus for explosion tests.

2	Figure 3
3	Observed explosion pressures (\circ , P_{ex}), theoretical explosion pressures (\bullet , P_{cal}), and times to the
4	corresponding explosion pressures (\Box , τ_{ex}) as a function of the equivalence ratio, φ . (a) C ₂ H ₄ –N ₂ O
5	mixtures diluted with 30 vol% N_2 and (b) $C_3H_6\!\!-\!\!N_2O$ mixtures diluted with 30 vol% $N_2.$
6	
7	Figure 4
8	Observed explosion pressures (\circ , P_{ex}), computed theoretical explosion pressures (\bullet , P_{cal}), and times
9	to the corresponding explosion pressures (\Box, τ_{ex}) as a function of the equivalence ratio, φ . (a)
10	C_2H_4 - O_2 mixtures diluted with 30 vol% N_2 and (b) C_3H_6 - O_2 mixtures diluted with 30 vol% N_2 .
11	
12	Figure 5
13	Lower flammability limits of (a) C_2H_4 - <i>n</i> - C_4H_{10} - N_2O , (b) CH_4 - C_3H_6 - N_2O , and (c) C_2H_4 - C_3H_6 - N_2O
14	mixtures. The dashed curves are calculated from Eq. (5).
15	
16	Figure 6
17	(a) Total-product heat capacity calculated from Eq. (20) and AFTs. (b) Equilibrium compositions for
18	the lower-limit C_2H_4 – <i>n</i> - C_4H_{10} – N_2O mixtures.

-
-
-

2	Figure 7
3	(a) Total-product heat capacity calculated from Eq. (20) and AFTs. (b) Equilibrium compositions for
4	the lower-limit CH_4 – C_3H_6 – N_2O mixtures.
5	
6	Figure 8
7	(a) Total-product heat capacity calculated from Eq. (20) and AFTs. (b) Equilibrium compositions for
8	the lower-limit C_2H_4 – C_3H_6 – N_2O mixtures.
9	
10	Figure 9
10 11	Figure 9 UFLs of (a) $CH_4-C_3H_6-N_2O$, (b) $C_2H_4-C_2H_6-N_2O$, and (c) $C_2H_4-C_3H_6-N_2O$ mixtures. The dashed
10 11 12	Figure 9 UFLs of (a) $CH_4-C_3H_6-N_2O$, (b) $C_2H_4-C_2H_6-N_2O$, and (c) $C_2H_4-C_3H_6-N_2O$ mixtures. The dashed curves are computed from Eq. (5), and solid curves are calculated on the basis of the modified VAFT
10 11 12 13	Figure 9 UFLs of (a) $CH_4-C_3H_6-N_2O$, (b) $C_2H_4-C_2H_6-N_2O$, and (c) $C_2H_4-C_3H_6-N_2O$ mixtures. The dashed curves are computed from Eq. (5), and solid curves are calculated on the basis of the modified VAFT method.
 10 11 12 13 14 	Figure 9 UFLs of (a) CH ₄ –C ₃ H ₆ –N ₂ O, (b) C ₂ H ₄ –C ₂ H ₆ –N ₂ O, and (c) C ₂ H ₄ –C ₃ H ₆ –N ₂ O mixtures. The dashed curves are computed from Eq. (5), and solid curves are calculated on the basis of the modified VAFT method.
 10 11 12 13 14 15 	Figure 9 UFLs of (a) CH ₄ –C ₃ H ₆ –N ₂ O, (b) C ₂ H ₄ –C ₂ H ₆ –N ₂ O, and (c) C ₂ H ₄ –C ₃ H ₆ –N ₂ O mixtures. The dashed curves are computed from Eq. (5), and solid curves are calculated on the basis of the modified VAFT method. Figure 10
 10 11 12 13 14 15 16 	Figure 9 UFLs of (a) CH ₄ –C ₃ H ₆ –N ₂ O, (b) C ₂ H ₄ –C ₂ H ₆ –N ₂ O, and (c) C ₂ H ₄ –C ₃ H ₆ –N ₂ O mixtures. The dashed curves are computed from Eq. (5), and solid curves are calculated on the basis of the modified VAFT method. Figure 10 Calculated equilibrium compositions for upper-limit C ₂ H ₄ –C ₃ H ₆ –N ₂ O mixtures. Only the major

Table 1

	Flammable range (vol%)		
	in N ₂ O	in O ₂	in air
C_2H_4	2.0–40.0 ^a	3.0–80 (Crowl and Louvar, 2011b)	2.7–36 (Crowl and Louvar, 2011c)
			3.1-32 (Chen, 2011)
			2.6–27.4 (Schröder and Molnarne, 2005)
C_3H_6	1.5–28.7 ^a	2.1–53 (Crowl and Louvar, 2011b)	2.0–11 (Crowl and Louvar, 2011c)

^a Data were obtained from the present study.