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Abstract 
In modeling existing structures for seismic response analysis, parameter uncertainties 

due to seismic loading histories cannot be ignored. The models need to be updated 
considering those uncertainties. The updated models can be used for monitoring the health 
of structures, especially the ones suffering from large earthquakes. A combination of 
global sensitivity analysis (GSA) and uncertainty quantification (UQ) is often used for 
updating uncertain structural parameters. GSA can extract significant features of model 
outputs before UQ is applied. The validity of resulting posterior distributions from UQ 
strongly depends on how sensitive each parameter is on the outputs. However, sensitivity 
degree significantly varies under different seismic loadings, and therefore has 
unneglectable impacts on the validity of the distributions.  

Global sensitivity analysis (GSA) via Monto Carlo methods (MCSA), which can 
indicate model parameters’ importance to responses, requires a high computational cost. 
Alternatively, GSA can be conducted using metamodels which represent the input-output 
relationship based on training data following Bayesian approach, i.e., Bayesian sensitivity 
analysis (BSA). Firstly, we showed the applicability of BSA for linear and nonlinear 
dynamic models by comparing with MCSA. Then, dynamic property changes on the 
existing base-isolated building due to the Great East Japan earthquake in 2011 were 
verified by system identification and transfer function analysis using earthquake response 
monitoring data. Here, the possibility of local stiffness changes in the superstructure was 
clarified. Finally, BSA was applied to the numerical model of the building. It was shown 
that effect of local stiffness on maximum responses is strongly related to mode shapes, 
and the response monitoring data of small earthquakes could be used for reducing and 
updating those local parameters’ uncertainties. It was concluded that BSA with selected 
response features was applicable to understand the sensitivity of model parameters to 
output responses in modeling of the existing structure. 

The second contribution of this study is to simulate reliable posterior distributions of 
the model parameters which will be useful for accurate reliability estimations. The testbed 
structure is a standard two-degree-of-freedom (DOF) isolated bridge pier used in Japan 
design specifications for highway bridges. Firstly, a numerical model of bridge pier and 
isolators with the nonlinear response characteristics were constructed using a Takeda 
model and a bilinear model respectively. Monitoring data was then simulated by adding 
white noise to the model outputs under assumed damage and undamaged conditions of 
the structure. Significant feature extraction was then implemented by GSA using Kriging 
metamodels. The procedure chooses significant response data from the long-term 
monitoring data for UQ implementation afterward. Finally, a sequential uncertainty 
quantification procedure of the structural parameters using the long-term monitoring data 
was constructed. The proposed procedure can derive optimal and efficient posterior 
distributions of the parameters. Moreover, the procedure allows the effective and efficient 
use of the long-term monitoring data in reliability analysis. 
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Introduction 
 
 

1.1 Background and Research Gaps 

1.1.1 Health monitoring of existing structures 

Structural health monitoring (SHM) aims to observe deterioration or damages of 
structures in situ and determine the structural property changes qualitatively and 
quantitatively. Nowadays, with the increasing development of advanced technologies, 
e.g., measurement sensors, innovated calculation methods, the structural changes can 
hence be identified or predicted by the analyses using the monitoring data. Based on 
analysis results, the structures can be retrofitted, repaired or replaced timely to prevent 
risks in the future.  

Infrastructure systems including houses, buildings, bridges, roads, etc. are essential 
components of society and civilization. Therefore, their safety and integrity are priority 
all the time. However, the infrastructure is increasingly aging and may have potential 
damages in the future. Moreover, natural disasters such as strong wind, tsunami, flood, 
especially earthquake which is concerned in this study, can cause serve damages for the 
existing structures. To a certain extent, damaged structural components can be repaired 
or replaced by new ones; however, they are not always feasible to execute due to 
difficulties in financial problems, environment conditions, or structural complexity. 
Hence, continuous structural health monitoring of the existing structures over time is 
essential to predict future damages and increase their serviceable time as much as 
possible.  

For seismic risk assessment of the existing structures related to structural 
performances, numerical modeling with considering parameter uncertainties related to its 
current structural conditions is required. The numerical models incorporating seismic 
response monitoring data is then applicable for uncertainty quantification and model 
updating. One of the influential factors to the seismic response is model parameter 
uncertainty due to unrecognizable property changes occurred in previous earthquakes. 
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These accumulated changes over time may cause damages in the future huge earthquakes. 
Therefore, diagnosing the abnormal structural changes is essentially required to fix them 
timely. Moreover, for future proper maintenance or renovation work, understanding 
structural responses, especially the relationship between input and output under future 
earthquakes is desired. For these purposes, a properly updated model is essential. 
However, existing structures with complex structural geometry require high degree-of-
freedom models and nonlinear time-history response analyses. Moreover, the seismic risk 
assessment must consider not only the uncertainty of structural properties but loading 
history. The sensitivity analysis can estimate how much the variability of the inputs affect 
to the one of the output responses under any earthquakes. The sensitivity analysis thus 
takes a key role to construct a validated numerical model for such the seismic risk analysis 
of the existing structures. 

To predict the consequence of damages, structural reliability estimation is essential as 
it supports to propose effective maintenance strategies, suggest more crucial repair and 
retrofit works in time. However, uncertainties such as loading history, deteriorating 
structural elements, boundary conditions, among others have been always challenging to 
accuracy of reliability estimates. Over decades, the integration of numerical models and 
monitoring data in reliability analysis has been expected to improve estimation results, 
e.g., fragility curve or failure probability, as closely as to real-life performances. Ajay 
Singhal et al. (Singhal and Kiremidjian, 1998) combine building damage data from past 
earthquakes with analytical ground motion to update fragility curve of the structure. 
Catbas F.N. et al. (Catbas, Susoy and Frangopol, 2008) and Frangapol D.N. et al. 
(Frangopol, Strauss and Kim, 2008) efficiently include monitoring data, e.g., strain 
measurement, to reduce uncertainties of prediction models in a probabilistic sense in the 
reliability estimation. Serdar Soyoz et al. (Serdar Soyoz, M.ASCE; Maria Q. Feng, 
M.ASCE; and Masanobu Shinozuka, 2010) and Ozer E. et al. (Özer and Soyöz, 2015) 
indicated that failure probability of the systems estimated using updated structural 
parameters based on measurement data, e.g., stiffness and damping, is higher than the one 
using non-updated parameters. Any false model updating which does not represent real 
response of the structures will lead to inaccurate reliability estimates. For this reason, the 
reliability of the updated model parameters considering uncertainties from both loading 
history and structural changes need to be considered carefully. Moreover, monitoring data 
of interest in this study is response data collected from rare earthquakes, hence the 
effective and efficient use of the long-term data to update the model parameters is also 
concerned. 
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1.1.2 Model uncertainty 

The knowledge about the existing structures and their abnormal structural changes 
subjected to external loadings are always uncertain. The uncertainty is an unavoidable 
obstacle in modeling of the existing structures.  In SHM, numerical models incorporating 
with sensing data is a common practice to understand the structural response 
characteristics and keep them updated in time. Updated structural parameters, e.g., 
stiffness, yield load, etc., in either a deterministic or probabilistic manner can be used to 
not only assess post-event damages, but also predict the damaging consequences on future 
structural performances via reliability estimations.   

The uncertainty sources of the models are basically categorized into two sorts of 
aleatoric and epistemic uncertainties. The aleatoric uncertainty is defined for irreducible 
errors resulted from random effects of systems. The epistemic uncertainty is originated 
from systematic errors such as simplification of mathematical representatives, lack of 
knowledge on the model parameters. Structural damages due to external effects can be 
sorted to the epistemic uncertainty. Both uncertainties can be performed in a probabilistic 
framework. This study will focus on clarifying and quantifying the epistemic uncertainty 
which is deducible by the aid of the numerical models, the monitoring data and up-to-
date methodologies.  

1.1.3 Sensitivity analysis 

Sensitivity analysis (SA) is a common tool to interpret the effect of input variability 
on output variability, and hence which parameters are more sensitive than others can be 
indicated. For simple linear models, local SA is efficient to point out prominently 
sensitive parameters with no interaction between variables is considered. Unlike local 
SA, global SA can quantify the uncertainty in the whole input space considering the 
simultaneous variability of all inputs. Monte Carlo simulation can be hence applied to 
calculate high-order sensitivity indices, i.e., main index and interactions. The complicated 
models struggle with high computational cost, which is the case in most civil engineering 
models.  

Local SA focuses on the response variability of the system subjected to a small 
permutation around a designed point (Saltelli, 2008). With concerning sensitivity of local 
points, local SA will become important to have fast evaluations which commonly require 
low computational costs.  When decisive evaluation in a whole picture of nonlinear 
systems is concerned, local SA is not recommended. However, many previous studies, 
e.g.,  (Lomas and Eppel, 1992), (Lam and Hui, 1996) opted this method for the sake of 
sensitivity analysis of building energy models because of its cheap computational cost.  
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Global sensitivity analysis (GSA) aims to describe how changes in model inputs affect 
model outputs, and hence can extract significant uncertain parameters. Some GSA 
techniques consist of: (i) variance-based methods such as Sobol’ method (Sobol, 1990), 
and Fourier Amplitude Sensitivity Test (FAST) (Cukier et al., 1973; Saltelli, 2008); (ii) 
screening-based method such as Morris’s method (Morris, 1991; Heiselberg et al., 2009); 
(iii) regionalized sensitivity analysis (RSA) (Spear and Hornberger, 1980); (iv) 
regression-based method, such as correlation/ regression coefficient (Helton, 1993). 
Sobol and FAST methods can apply for nonlinear models with correlated input 
parameters. Two famous measures of those methods include main and total sensitivity 
indices. Unlike first-order index, total index consider both main effect and the interaction 
between the parameters. Morris’s method or called Elementary Effect Test (EET) in 
(Saltelli, 2008) aims to derives partially the model response at evenly-distributed points. 
The method can provide the information regarding the interaction between the concerned 
parameter to others.  

One of GSA methods which is mostly used is variance-based SA (VBSA) (Saltelli, 
2008). The advantages of VBSA include model independence, the provision of a 
complete picture of models considering simultaneous variations of all input parameters, 
and the ability to treat a group of variables as a scalar variable. The Sobol’ indices (Sobol’, 
1993) which indicate variance-based sensitivity measures come from the Sobol’ 
decomposition (Hoeffding, 1948). Generally, the Monte Carlo based sensitivity analysis 
method (MCSA) (Sobol’, 2001) which known as the most robust has been used to 
estimate the indices. However, these sampling-based methods which require thousands 
of simulation runs are not desirable due to the operating incapability in complex models. 
Therefore, there is an increasing demand for developing alternative mathematical 
approximation models, metamodels or surrogate models to eliminate computational 
burden.  

In recent decades, GSA methods using reduced models emerges as an efficient method 
for complicated models. However, the reliability of the methods strongly depends on how 
precise the reduced models can represent system responses. To estimate Sobol’ indices, 
Chen et al. (2006) suggested tensor-product formulation to calculate the mean of Gaussian 
process models, while Oakley and O’Hagan (2004) applied the Bayesian formalism of 
Gaussian processes considering all the global stochastic models including mean and 
variance. The latter method has been known as Bayesian sensitivity analysis (BSA). The 
application of BSA in civil engineering is quite new. Several recent studies used BSA to 
identify parameter importance in building energy models, see a review (Tian, 2013). 
Becker et al. (2012) demonstrated efficient use of Gaussian process-based surrogates on 
large multi-variate models with significantly reduced computing cost through a nonlinear 
airship model. However, the performance of surrogates in BSA has not been verified 
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especially for structural dynamics of complex modeling structures with high DOF and 
nonlinearity.  

1.1.4 Metamodeling 

Surrogate modeling or metamodeling methods can be categorized into three 
approaches such as data-driven surrogates, projection-based methods, and multi-
fidelity based surrogates as reviewed in Asher et al., 2015. Data-driven metamodels 
approximate the system response by artificial models which capture the input-output 
relationship mapping with the actual model. Projection-based models try to reduce the 
dimensionality of the system by projecting the alternative mathematical representatives 
into an orthogonal space. The multi-fidelity or called hierarchical models is known 
probabilistic based models. This method treats mathematical functions as stochastic 
responses.  

Metamodels have been developed by statistical algorithms such as Kriging (Sacks et 
al., 1989; Welch et al., 1992; Kennedy and O’Hagan, 2001a), polynomial chaos 
expansions (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002), artificial neural 
networks (ANNs) (Schueremans and Van Gemert, 2005), radial basic functions (RBFs) 
(Regis and Shoemaker, 2005), sparse grid interpolation (Xiong et al., 2010). Among 
these, Kriging metamodeling is most common and effective to construct reduced models 
based on Design-of-Experiments.  

 In this study, we focus on a method addressing multi-fidelity based surrogates, named 
Kriging or Gaussian Process Regression (GPR) (Rasmussen, 2006; Kennedy and 
O’Hagan, 2001). Kriging is a surrogate technique which first developed by (Krige, 1952) 
in the geo-statistics, then introduced in computer experiments by Sacks et al., 1989; 
Welch et al., 1992.  GPR interpolates unknown values from prior covariances based on 
smoothness criteria. The prior covariances are built on input samples and corresponding 
outputs from the original model. Depending on acceptable accuracy level of surrogates, 
these models can then be used to calculate sensitivity indices and uncertainty 
quantification with much lower cost than the implementation of full models.  

1.1.5 Uncertainty quantification 

Model parameter uncertainty can be qualified and quantified by a good cooperation of 
sensitivity analysis and uncertainty quantification. Uncertainty quantification (UQ) 
following Bayesian inference can reduce the uncertainty of input model parameters for 
model updating. Uncertain sources can be modeling errors due to the lack of knowledge 
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on inputs or structural condition changes due to seismic damages under large earthquakes. 
Markov Chain Monte Carlo using Metropolis-Hastings algorithms (Metropolis et al., 
1953)(Besag et al., 1995) is preferred to draw samples from non-symmetrical posterior 
pdfs. For high-dimensional dynamic models with multi-modal target distributions, the 
Differential Evolution Markov Chain algorithm (Ter Braak, 2006) can infer the posteriors 
precisely. Beyond that, there are some alternative methods without using MCMC 
sampling, e.g., optimal transportation theory (El Moselhy and Marzouk, 2012), 
variational strategies (Schwab et al., 2012) (Franck and Koutsourelakis, 2017), and 
spectral likelihood expansions (Nagel and Sudret, 2016).    However, the computational 
cost is concerned when dealing with those models by either Monte Carlo simulations or 
analytical calculations. Hence, metamodels which are constructed on training data are 
preferred to alternate the use of original models for SA and UQ efficiently. 

The uncertainty degree of the parameters relates to the validity of the posteriors. 
Measured data can constrain the posteriors of the parameters which have high sensitivity 
with considerably reduced uncertainty. The ranking sensitivity of the parameters about a 
single output feature incorporating with UQ is often applied in the literature (Higdon et 
al., 2008)(Sraj et al., 2014)(Abdel-Khalik et al., 2008). However, the ranking of multiple 
input parameters considering multiple features subjected to various seismic levels has not 
been noticed so far. This is necessary to obtain well-defined posteriors with effectively 
reduced uncertainty since different seismic levels cause a dissimilar impact on the 
variance of the outputs.  

1.2 Motivation of Study 

One of the influential factors to the model response is parameter uncertainty due to 
unrecognizable property changes occurred in previous earthquakes. These accumulated 
changes over time may cause damages in the future huge earthquakes; therefore, 
diagnosing the abnormal structural changes is essentially required to fix them timely. 
Moreover, for future proper maintenance or renovation work, understanding structural 
response characteristics, especially the relationship between input parameters and output 
responses under future earthquakes is desired. For these purposes, a properly updated 
model is essential. However, the seismic risk assessment related to structural 
performances must consider not only the uncertainty of structural properties but also the 
variability of input seismic loads, i.e., structural changes due to external forces and 
loading history. With complicated structures, high degree-of-freedom (DOFs) and 
asymmetric geometry, sensitivity analysis plays an important role to indicate critical 
uncertain parameters and extract significant response features in model updating, towards 
constructing validated numerical models of the existing structures. 
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Model updating aims to calibrate unknown parameters or functions to best fit with 
observed data. The result can be either new deterministic values or probabilistic 
distributions of model parameters. Deterministic model updating is often based on 
constrained optimization problems between model outputs and measurement, while 
probabilistic one involves uncertainties into inverse problems. The later method gains 
advantage over the deterministic one due to the inherent uncertainty of simulations and 
observed data. Bayesian uncertainty quantification (UQ) is a common practice to update 
the model parameters which are inferred from the combination of prior distributions, 
observed data and likelihood functions. Sensitivity analysis is often used to extract 
significant response features and rank the importance of the parameters before UQ is 
applied. The parameters are more sensitive to simulated outputs, the posterior uncertainty 
is more reducible. Therefore, the validity of resulting posterior distributions strongly 
depends on how sensitive each parameter is on the output responses. Unfortunately, 
sensitivity degree significantly varies under different seismic loadings, and therefore has 
an unneglectable impact on the validity of the distributions. As a result, not all the 
uncertain parameters can be always quantified effectively and precisely by using the 
observed response data under a certain earthquake event. This may require data of more 
than one event to accomplish an uncertainty quantification procedure. Hence, uncertainty 
quantification of the model parameters using the long-term monitoring data based on 
sensitivity analysis is expected to increase the reliability of the updated model parameters. 

 The precision of the posteriors directly affects to the accuracy of reliability 
estimations of the existing structures. Until today, no research work has been carried out 
to explain the uncertainty of updated structural parameters under different seismic 
characteristics, especially no consideration regarding the reliability of using these updated 
parameters in the reliability analysis. Henceforth, the current research work performed 
here is significant as it deals with two-folds: (1) evaluating sensitivity for uncertain model 
parameters of an existing complex structure under an “unhealthy” structural condition, 
(2) proposing an approach to simulate more reliable posterior distributions of the model 
parameters.  

1.3 Aims and Scope 

This study aims to generate optimal and efficient posterior distributions of the 
uncertain model parameters and realize the seismic risks of the existing structures using 
the properly updated numerical model. To reach the goal, sensitivity analysis and 
uncertainty quantification was conducted for numerical models under different seismic 
characteristics. The models that must be dealt with in this study include: (1) a base-
isolated asymmetric building with the large number of DOFs to represent a complex 
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geometry; (2) a seismically isolated bridge pier desinged in Japan Design Specifications 
of Highway Bridges. Both structures require nonlinear response analysis under large 
seismic excitations. Sensitivity analysis of the model parameters of the existing base-
isolated building can indicate potential risks which require paying attention to ensure the 
structure safety. Uncertainty analysis of the inferred posterior distributions using seismic 
response data was conducted on the isolated bridge pier. As a result, a sequential 
uncertainty quantification procedure using the long-term monitoring data was proposed. 
The procedure is expected to be applicable for any civil structures, such as buildings or 
bridges. Moreover, monitoring data of interest in this study is response data collected 
from rare earthquakes, hence the effective and efficient use of the long-term data to update 
the model parameters is also concerned. 

1.4 Thesis layout 

The current thesis is outlined as follows. After the introduction presented, including 
background, motivation, and the study goal in chapter 1. Chapter 2 presents theoretical 
descriptions about Kriging metamodeling, global sensitivity analysis, and Bayesian 
uncertainty quantification. The following texts presents the major work in this thesis. 
Firstly, seismic input and data acquisition, the configuration description of two structures, 
an existing base-isolated building and an isolated bridge pier in Japan Design 
Specifications of Highway Bridges are presented in chapter 3. For each structure, seismic 
response analysis, artificial monitoring data, and structural changes due to large 
earthquakes are presented at length. Later, chapter 4 is dedicated to applicability of 
Bayesian sensitivity analysis (BSA) to linear and nonlinear structures. Also, BSA is then 
applied on the existing building. Monte Carlo sensitivity analysis (MCSA) is introduced 
in chapter 5. This chapter includes Kriging metamodeling and MCSA for the isolated 
bridge pier under different seismic characteristics, magnitudes and frequency content. In 
chapter 6, uncertainty quantification using Markov Chain Monte Carlo and Differential 
Evolution Adaptive Metropolis algorithm is shown. At last, the author contributes to the 
civil engineering field with major conclusions.  
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Fig. 1.1  Summary of the study procedure of sensitivity analysis and uncertainty quantification 
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Methodologies 
 

Bayesian statistics is adopted in inverse propagation problems of the uncertainty of 
model parameters. The combination of sensitivity analysis and uncertainty quantification 
can enhance the reliability and efficiency of posterior distribution estimations. Since the 
expense to calculate those estimations may exceed serviceable computing capacity, 
reduced models, i.e., metamodels or surrogates, are supposed to alternate original models 
(full models). In this chapter, Bayesian uncertainty quantification, sensitivity analysis, 
surrogate models, and implementation methods of integrated formula in the Bayesian 
framework are briefly introduced.  

2.1  Kriging metamodeling 

Kriging is a metamodeling technique which considers true model responses as 
realizations of a Gaussian process. Suppose y = f(x) is a function representing the 
relationship between input and output of a numerical model. A d-dimensional input vector 
x = (x1, x2, …, xd) of concern is experimentally designed into a sample Xs = (x1, x2, ..., 
xn), and a corresponding output matrix is Ys = f (x1, x2, …, xn).  The target is to construct 
the function f(x) for any untried inputs; therefore, the pair of (Xs, Ys) can be considered 
as a training data set D. A Gaussian process (GP) can interpolate an output of a certain 
input in conjugation with the learning data via covariance functions, and defined as 
follows:  

 
0

( ) ( ) ( ) ( ) ( ),
k

j j
j

f m e h e
=

= + = +x x x x x  with k basic functions.                                            (2.1) 

Without prior knowledge about the input-output relationship, m(x) can be simplified 
as a one-degree polynomial with (d+1) basic functions (also called trend), β = 

 0 1, ,..., T
d   is the unknown regression vector, and h(x) =  11 d,x ,...,x  is the known 

corresponding function vector. The stochastic part e(x) is assumed as a zero-mean 
Gaussian process characterized by covariance function, possible formula given by 
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i

c r  
=

= − = −x x x x x x     (2.3) 

with 0j   is roughness parameters, and 2  is Gaussian process variance (Rasmussen, 

2006). Hyperparameters can be estimated using the maximum likelihood. Note that the 
choice of covariance function is flexible depending on which approach we use. For 
instance, the approach using metamodels independently with the Bayesian inference, the 
function in Eq. (2.2) is used, while Eq. (2.3) is adopted using random walk Metropolis-
Hasting updates. 

The function f (x) in Eq. (2.1) can be expressed via GP with a mean and covariance 
kernel instead. A GP conditional on the learning data can be denoted as follows: 

 2 '( ) ( ( ), ( , ))n n nF GP m sx x x x ,   (2.4) 

where 

( ) ( ) ( )( )' ' 1, , ( ) ( )T
n S S s s sm E Y m k Y m −= = +  −x Y X x x x  

( ) ( )2 ' ' 2 2 ' 1 ', ( ) ( ) , , , ( ) ( ) ( )T
n S S ss Cov Y Y r k k   −= = − − x x x x Y X x x x x  

and 

( )1( ) ( , ),..., ( , )T
nk c c=x x x x x  

where x’ is the new point; x and x’ are over standardized input space [0, 1]d. 

 For more information, the procedure of developing an emulator combining the 
training data following Bayesian approach is described in Kennedy and O’Hagan, 2001; 
Higdon et al., 2008. Separate emulators can be considered for multiple outputs. The 
emulator ( )nF x  is a statistical distribution which will be another GP for any input x’. A 

Kriging metamodel can estimate predictions from posterior Gaussian process conditional 
on the training dataset. This metamodel can be used as an empirical model for variance-
based sensitivity analysis, Bayesian uncertainty quantification which are presented in 
next section. 
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2.2 Variance-based sensitivity analysis 

In this section, the general definitions of Sobol’ sensitivity indices (SIs) based on 
Analysis-of-Variance (ANOVA) theorem are firstly introduced, and the theoretical 
descriptions of two methods to calculate sensitivity index; Bayesian sensitivity analysis 
(BSA) and Monte-Carlo sensitivity analysis (MCSA).  

2.2.1 ANOVA theorem  

The Sobol’ sensitivity indices are briefly introduced in this section. Readers can refer 
more background information in the previous study (Sobol’, 1993). Suppose a 
mathematical model that shows the relationship between input and output by a function 
Y=f (x1, x2, …, xk), with k uncorrelated input factors. Theory of variance decomposition 
is represented as follows:          

 12...( ) ...  ,
k k k

i ij k
i i j i

V Y V V V


= + + +   (2.5) 

where  

           ~
[ ( )]

ii x iV V E Y x=
, 

          ~
[ ( , )]

iji j x i j i jV V E Y x x V V= − −
, 

          …, 

with xi is i-th input variable, x~i denotes all inputs except for xi, E(Y|.) is the conditional 
expected value, V(Y) is summary of all partial variances including main variance 
contributions Vi and interaction variance contributions Vij, …, V12…k due to the interaction 
between two or more factors to the variance of Y.  

All above variance contributions can be nominalized by dividing them with V(Y) and 
defined as the sensitivity indices. Equation (1) becomes 

 12......
k k k

i ij k
i i j i

S S S S


= + + +   (2.6) 

First-order indices and total indices are commonly used for two reasons: (1) limited 
calculation capacity for higher-order sensitivities, (2) the ability to provide sufficiently 
necessary information for most concerned issues. 

• First-order sensitivity index or main effect index (main SIs) 
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• Total sensitivity index or total effect index (total SIs) 

 ~[ ( )]
( )

i
T

x iT i
i

E V Y xVS
V V Y

= =

 
(2.8) 

2.2.2 Monte Carlo sensitivity analysis (MCSA) 

The method shown in this section was proposed by Saltelli (2002), extended by the 
original papers (Sobol’, 1993; Homma and Saltelli, 1996). Let us consider two 
independent random matrices of d input variables, simplified by 1 1( , , )i d    and 

2 1( , , )i d    with i = 2:(d-1) and the size of (N, d) for each. The first-order sensitivity 

index in Eq. (2.6) of variable xi can be interpreted as the reduction of output variance as 
xi set constant. Therefore, Eq. (2.7) can be computed as follows:    

 
2

1 1 0( )
2 2

1 0

(1/ ) ( ) ( , , )

(1/ ) ( )

N
i djMC

i N

j

N f f f
S

N f f

   −
=

 −




 (2.9) 

Total sensitivity index in Eq. (2.8) represents the variability of the outputs as xi varies 
and others set constant. 
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 (2.10) 

with  

   
2

2
0 1

1

1 ( )
N

j
f f

N =

 
=  
 
 . 

The calculation of the Sobol’ indices based on random input sampling which depends 
on properties of random generation will have uncertainty to some degrees. MCSA thus 
needs to analyze convergence to gain precise results. Unfortunately, traditional Pseudo-
random samples often have clusters and gaps which will slow convergence rate of SIs. 
Hence, Sobol’ (1976) recommends using low-discrepancy (or quasi-random) sequences 
to enhance the rate. The method is also known as quasi-Monte Carlo. In this study, we 
prefer to use this sampling to enable available computation capacity. 
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Errors associated with SIs estimates can be evaluated using the probable error which 
equals to 0.6745 times the standard error (Homma and Saltelli, 1996). 95% confidence 
interval corresponding to 1.96 times the standard error can also be considered for more 
general evaluation. 

 
2

1.96 ,F Ierr
N
−

=  (2.11) 

with  

2 2
1 1

1 ( ) ( , , )N
i dj

F f f
N

  =  , 

1 1
1 ( ) ( , , )N

i dj
I f f

N
  =  . 

Equation (2.11) is proposed for errors of main SIs. Similarly, 2( )f  can be used to 

replace 1( )f   in Eq. (2.11) to estimate standard errors of total SIs. In general, convergence 

analysis and standard error estimation are required for achieving reliable SIs results. 
MCSA on full models is expected to give more reliable results than BSA which is based 
on surrogate models.  

2.2.3 Bayesian sensitivity analysis (BSA) 

Calculation of Sobol’ indices 

Sensitivity indices including first-order indices and total indices can be computed from 
the posterior distributions described above considering both mean and covariance 
structures of the GP model. The variance of ( )nm x in Eq. (2.4) conditional on an input of 

interest xi normalized by a total variance of emulated response nF can be used to measure 

first-order sensitivity index and given by: 
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, for i =1, …, d, (2.12) 

with   is the probabilistic space where Gaussian process F(x) lies. 

We can consider mean and variance of a random variable iS  for estimating sensitivity 

measures and their accuracy, respectively, and shown as follows; 
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, for i =1, …, d. (2.14) 

Similarly, an alternation of x~i in place of xi in (2.12) can measure total sensitivity index of 
xi. 

 Sensitivity measures can be quantified based on the posterior distributions of input 
parameters, and the predictive distributions of outputs through surrogate models using 
MCMC algorithms (Robert and Casella, 2004). The GPM/SA package developed by Los 
Alamos National Laboratory is adopted for constructing the emulator and estimations 
(Higdon et al., 2008). It is noted that the emulator in this paper constructed by physical 
features of output simulations instead of using a reduced dimension model as described 
in Higdon et al. (2008). The package is modified by the authors to reach further results 
regarding uncertainty estimation of sensitivity indices in Eq. (2.14).  

2.3  Uncertainty quantification 

Two approaches to quantify the uncertainty of model parameters following Bayesian 
statistics are used in this study. 

(1) Embed metamodeling process into a larger framework of Bayesian inference 
which implemented by Markov Chain Monte Carlo (MCMC) using random 
walk Metropolis-Hasting updates, encoded by GPM/SA software (Higdon 
et al., 2008). 

(2) Adopt complete metamodel as a basic model for Bayesian inference using 
enhanced algorithms of Differential Evolution Adaptive Metropolis 
(DREAM) (Vrugt, 2016).  

Both approaches use the reduced models instead of the original models to simulate 
outputs from untried input settings. Some pros and cons of two approaches are as follows: 

(1)    Pros:  
- Numerical modeling errors are accounted in complicated mathematical 

functions through discrepancy between model predictions and 
measurements. 

- Enable to solve multiple variable integrations of complicated 
mathematical functions via MCMC. 
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   Cons: 
- Convergence diagnostics of the metamodels and MCMC to obtain stable 

posterior distributions is unclear due to embedded modeling process of the 
reduced models into GPM/SA coding.  

- Aleatory uncertainty due to random effect cannot be avoided. 
- Computational cost is of concern for high-dimensional complicated 

models 
 

(2)    Pros:  
- The metamodels are constructed independently before Bayesian inference 

process is implemented, and hence it is better to evaluate the precision of 
the reduced models. 

- DREAM algorithm enables to run parallel chains, and hence allows multi-
chain convergence diagnostics, and reduce the computational cost. 

- Enable to draw samples from multi-modal, non-symmetric posterior 
distributions. 
 

   Cons: 
- High computation expense for convergence analysis of metamodels and 

posteriors via DREAM implementation. 
- Aleatory uncertainty due to randomness effect cannot be quantified. 

2.3.1 Bayesian inference using random walk Metropolis-Hasting updates 

A brief description of Bayesian inference implementation from Kennedy and 
O’Hagan, 2000 for the univariate case and Higdon et al., 2008 for the multivariate case 
is given in this section. The inference was implemented via MCMC using random walk 
Metropolis-Hasting updates. This method was applied for uncertainty quantification of 
uncertain input parameters on the existing base-isolated building. 

At an input setting xi corresponding to observations yj (j = 1:m), with m is experiment 
or field measurement numbers, the observations are displayed as follows: 

 ( ) ( ) ( ),j j jy x x x = +      (2.15) 

where ( )jx denotes actual responses, ( )jx stands for observation errors. Herein, 

general notations of xi and yj signify for inputs and observations, respectively, in both 
univariate and multivariate cases. Input xi can be a scalar variable or a vector of variables. 
The observations can be statistically modeled by the simulator ( )jx  and the discrepancy

( )jx between the simulated response ( )jx  and the reality ( )jx .  
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 ( ) ( ) ( ) ( ),j j j jy x x x x  = + +  (2.16) 

Equation 2.16 indicates that modeling error can be involved in building the 
relationship between the experimental observations and simulations. The discrepancy 
term can stem from systematic errors in modeling process such as the approximation of 
mathematical representations, the lack of knowledge on input values, etc. The simulator 

( )jx  can be outputs from a full model. i.e., an original parametric model, or from reduced 

models or metamodels. In this study, a Gaussian process or Kriging in section 2.1 is 
adopted to build the surrogates. The metamodeling process occurs unknown 
hyperparameters which can be embedded in the inference process.  

The inference process is to quantify the uncertainty using Bayesian formalism. The 
Bayesian theorem can predict posterior distributions of model parameters by 
incorporating observed system responses and belief or prior knowledge (Kennedy and 
O’Hagan, 2000). The distributions of model parameters  can be derived following 
Bayes’ theorem: 

 ( ) ( ) ( ),p Y p f Y    (2.17) 

the Eq. (2.17) can be normalized as: 
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(2.18) 

where ( )p   and ( )p Y describe prior and posterior distributions of the uncertain 

parameter ,  ( )f Y   is likelihood estimation which quantifies the probability of the data 

Y for a given value of ,   is input parameter space. To rephrase, the prior ( )p   can be 
an informative distribution which poses less variance and better density shapes compared 
with noninformative one. When the parameters are nearly unknown, a uniform prior can 
be assumed. The likelihood density function ( )f Y   can be considered as the probability 

of  when the data is fixed.  

To derive the posterior in Eq. (2.18), further hyperparameters associated with the 
modeling process need to integrate out. However, it is not realistic to integrate the 
posterior analytically, especially in multi-dimensional variable space. Hence, sampling 
methods are desired to approximate target distributions. Markov Chain Monte Carlo using 
random walk Metropolis-Hasting updates (Robert and Casella, 2004) is adopted to draw 
samples from the posterior distribution. Expected results are stable distributions which 
are ideally considered as pseudo-random in the target posteriors. The GPM/SA package 
developed by Los Alamos National Laboratory is used for this study.  



2-18 

 

2.3.2 Bayesian inference using Differential Evolution Adaptive Metropolis 
algorithm 

A Differential Evolution Adaptive Metropolis (DREAM) algorithm proposed by Vrugt 
et al., 2008; Vrugt et al., 2009 is used in this study. The algorithm based on a simple 
adaptive random walk Metropolis developed by Ter Braak, 2006 with the enhancement 
of using subspace sampling and the correction of chain outlier to accelerate convergence 
rate of the posterior distributions. The DREAM algorithm has an advantage over the 
random walk Metropolis in section 2.3.1 at the ability of automatically tuning the scale 
and orientation of proposal distributions forward to the target distributions. Moreover, the 
DREAM also allows to parallelly running multi-chains, and hence significantly reduce 
computation time and improve the robustness of convergence analysis. This algorithm 
can solve inverse problems involving multimodality, high dimensionality, the 
nonlinearity of complicated dynamic models.  

Let define the vector of model parameters is 1 2( , ,..., )= θ d   in the space of d-

dimension. K Markov chains can be run parallelly. Each chain generates a vector 
( )

θ
i

 
(i=1:K). The algorithm DREAM is briefly introduced as follows: 

(1) For each chain ith, an initial sample is drawn from the prior distribution as a 
starting point for a jumping series of N iterations. 
 

(2) Calculate model response for initial samples of multiple chains. The Bayes’ 
theorem is applied to infer the posterior densities using the data Y . The density 

( )( )i
jp Y is then attained: 

            ( ) ( ) ( )( ) ( ) ( ),i i ip Y p f Y    
where i denotes each chain. 
 

(3) For next draws ( )i
jθ  (j = 2:N), where N is the total number of draws for obtaining 

stable posterior distributions, the proposal ( )i
pθ in the chain ith is proposed based 

on a jump interval ( )iθd . This interval is calculated by collecting samples from the 
chains in a subspace   of only d*-dimensions of model parameters. The whole 
space is in d-dimensions of inputs as defined in section 3.1. 

* *
( ) ( ) ( ) ( ) *

1 1
1

(1 ) ( , ) ( )i i i i a b
p j j d d

j

d d


     − −  

=

= + = + + + −θ θ θ θ , 
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*
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and *d , *d are sampled from normal and uniform distributions, respectively; 

,a b   are drawn from the other chains except the ith chain in the subspace 
( )a b i  . 

(4) Repeat the step (2) for the new candidate ( )i
jθ  at the jth iteration. 

(5) Accept or reject each proposal based on Metropolis probability ratio. If P = min 
[1, p( ( )i

pθ )/p( ( )iθ )] larger than a random draw from a uniform distribution in [0, 1], 

then the current sample point is accepted. Otherwise, it is rejected and kept at the last 
accepted sample. The iteration is continued until obtaining the limiting distribution. 

In general, both above methods are based on the generation of MCMC. Specifically, 
the DREAM is modified with the enhancements to enable to solve inverse problems 
involving multimodality, high dimensionality, the nonlinearity of complicated dynamic 
models. To sum up, two algorithms were applied on different structures to demonstrate 
the advantages and disadvantages of each method for simulating robust posterior 
distributions. The traditional MCMC was implemented to derive the posterior 
distributions of the uncertain inputs on the existing base-isolated building, while the 
DREAM was applied for the isolated bridge pier. The summary of theoretical methods 
applied on each structure is presented in Table 1. 

 

Table 1. Summary of content of thesis 

Chapter # Theory Test-bed structures 

Chapter 2 

Kriging metamodeling 
Isolated building Bayesian sensitivity analysis (BSA) 

UQ using random walk Metropolis-Hasting updates 
Kriging metamodeling 

Isolated bridge pier  Monte Carlo sensitivity analysis (MCSA)  

UQ using DREAM 

Chapter 3 Test-bed structures 
Isolated bridge pier  
Isolated building 

Chapter 4 Bayesian sensitivity analysis (BSA) Isolated building  
Chapter 5 Monte Carlo sensitivity analysis (MCSA)   Isolated bridge pier  

Chapter 6 
UQ using random walk Metropolis-Hasting updates Isolated building 
UQ using DREAM Isolated bridge pier  
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Test-bed structures 
 

Two seismically isolated structures, an existing base-isolated building and an isolated 
bridge pier following Japan specification of highway bridges are introduced. The choice 
of these structures is motivated by the ability to consider sensitivity evaluations and 
uncertainty quantification for different sorts of the structures under various earthquakes. 
Moreover, a collection of available measured data is advantageous to assess the safety of 
existing structures which is objective in this study. In this chapter, description of seismic 
input data, observed data, and the configuration of the base-isolated building and the 
isolated bridge pier are introduced. Numerical modeling and seismic response analysis 
are then presented. 

3.1  Seismic input data 

Three large earthquakes with different characteristics in magnitude and frequency 
content including Great East Japan (Tohoku) earthquake on 11th March 2011, Mid-
Niigata earthquake in 23rd October 2004, and Kobe earthquake in 16th January 1995 are 
used in this study. Earthquake information including station site, direction, moment 
magnitude, JMA seismic intensity, epicenter depth, peak ground acceleration (PGA), and 
occurred time and location of these large earthquakes are shown in Table 2. The Great 
East Japan earthquake is an undersea megathrust type off the coast of Japan that has a 
moment magnitude of 9.1 and JMA intensity of less than five at record site of Shibaura 
Institute of Technology. Kobe or Great Hanshin earthquake has a strike-slip mechanism 
with M.w. 6.9, JMA intensity of 6.5 at the site of Japanese Railway Takatori station. Mid-
Niigata earthquake has reverse fault type with M.w. 6.8 and JMA intensity of 6.2 at 
Tohkamachi site. Those data are collected from K-NET/ /National Research Institute for 
Earthquake Science and Disaster Prevention, Japan.   

Elastic response spectra and standard design spectra for three large earthquakes 
recorded at stations are discussed. Figure 3.1 shows that Tohoku earthquake has a 
dominant frequency range of 0.7-1.4s with a peak value of 1s. While Kobe earthquake 
dominates in a wide range of 0.1-2.5s period with a peak value at 1.25s, Mid-Niigata 
earthquake has low vibration period in a predominant range of about 0.03-0.7s with a 
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peak value of 0.22s. These spectra are computed for elastic systems with 5% damping. 
Standard design response spectra are figured out by smooth designs of seismic 
performance level 2 for two ground motion types I and II and three soil classifications, 
stiff, medium, and soft conditions. Those standards are defined in Japan Specifications 
for Highway Bridges, part V Seismic Design by Japan Road Association 2012 (JRA, 
2012). Level 2 consists of two design ground motion types, type I for interplate-type 
earthquakes and type II for inland-nearfield-type earthquakes. Type II is applied for Mid-
Niigata and Kobe earthquakes that are near-field earthquakes, type I is for Tohoku 
earthquake that is a far-field earthquake. Table 3 summarizes soil conditions and design 
ground motion types applied. Figure 3.1 (a) indicates that the acceleration response of 
Tohoku earthquake is far below the designed spectrum termed by Level 2-Type I-Group 
2/Group 3. Considering Kobe earthquake, the spectral response is relatively consistent 
with the smooth line defined by Level 2-Type II-Group 3 in general, as shown in Fig. 3.1 
(b). The spectrum of Mid-Niigata earthquake implies stiff soil condition at the site of 
record. This very large earthquake may cause severe damage for structures having a low 
period of smaller than 0.22 s or higher frequency of 4.5 Hz since the performance of 
spectral design standard (Level 2-TypeII-Group 1) is far lower than its spectral response, 
see Fig. 3.1 (b). To sum up, structures having fundamental natural frequencies out of the 
range of ground motion deems to suffer less damage or no damage than the ones that two 
frequency ranges coincide.  

Figure 3.2 depicts acceleration time history and its Fourier transfer for three 
earthquakes. The excitation duration of Mid-Niigata, Kobe, and Tohoku earthquakes are 
30s, 40s, and 600s, respectively, with peak ground acceleration (PGA) for each given in 
Table 2. The maximum ground acceleration of these three earthquakes reaches 1715, 599, 
and 168 cm/s2 at 6, 7 and 132 s, respectively. Figure also points out predominant 
frequency ranges for three large earthquakes. Fourier transfer points out different 
predominant frequency ranges, 3.5-5 Hz, 0.47-1Hz, and 0.7-1.3Hz for Mid-Niigata, 
Kobe, and Tohoku earthquakes, respectively.  
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Table 2.Characteristics of large ground motions 

Earthquake Station site Direction 
Moment  
Magnitud
e (Mw) 

JMA 
seismic  
Intensit
y 

Epicente
r 
Depth 
(km) 

Great East Japan, 
2011 
 (Tohoku) 

Shibaura Institute  
of Technology 

EW, N-S, U-
D 9.1 5- 24 

Mid-Niigata, 2004  Tohkamachi N-S 6.8 6.2 21 

Kobe, 1995 JR Takatori  N-S 6.9 6.5 17.9 

Earthquake Date and Time 
(JST) Source Coordinate PGA (gal) 

Great East Japan, 
2011  2011/03/11, 14:47 38.103N, 142.860E 168 

Mid-Niigata, 2004  2004/10/23, 17:56  37.128N, 138.74E 1715 

Kobe, 1995 
1/16/1995,  

20:46 
34.594N, 135.012E 599 

Note: E-W, N-S, U-D are East-West, North-South, Up-Down directions, respectively. 

 

 

Table 3. Ground motion types and soil conditions at record sites 

Earthquake Ground motion type Soil 
condition Soil property 

Great East Japan, 2011 
(Tohoku) Interplate far-field (type I) Group 2, 3 Medium/Soft soil 

Niigata, 2004 (Tahkamachi) Near-field (type II) Group 1 Stiff soil 

Kobe, 1995 (Takatori) Near-field (type II) Group 3 Soft soil 
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(a)  

(b)  

Fig. 3.1 Response acceleration spectra of original ground motions (a) 3 directions X, Y and Z of Tohoku 
earthquake, (b) the N-S component of Mid-Niigata and Kobe earthquake at record sites. 
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 (a)

 
 (b)

 

 
Fig. 3.2 Acceleration time history and its Fourier transfer of (a) Mid-Niigata earthquake, (b) Kobe 

earthquake, (c) Tohoku earthquake. 
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3.2  Existing base-isolated building  

An existing base-isolated asymmetric building located in Tokyo Bay area, Japan is 
described in this section. A large-scale sensor network has been installed since 2005 and 
has acquired seismic response data including the response in the Great East Japan 
Earthquake, occurred off the Pacific Coast of Tohoku zone in March 11, 2011 (Nishikawa 
et al., 2014). For seismic response analysis of the existing building, the authors basically 
followed previous studies by Siringoringo and Fujino (2014), (2015) to explain the 
interest structure, installed a monitoring system, dynamic properties, and modeling. We 
then conducted additional analyses by applying the system identification method and 
developing transfer functions to predict error sources between recorded and simulated 
results of the building under various shaking levels.  

3.2.1 Building description and data acquisition 

The existing building is an L-shaped reinforced concrete base-isolated building with 
the main structure made of braced steel frames. The building consists of two parts: a 7-
story building (building B) and a 14-story building (building C) connected by common 
elevator shaft and paths. A vertical opening in the middle of building C from the 2nd floor 
to 7th floor divides it into two sections named section Ca and section Cb, as shown in 
Fig. 3.3 (a), (b). All parts of the building are connected by a unique concrete slab placed 
on the top of the base isolation system. The base isolation system consists of a total of 
146 isolators and dampers units: 59 natural rubber bearing (NRB) units, 26 sliding bearing 
(SB) units, 28 lead damper (LD) units, and 33 U-shaped steel dampers (SD) units. 

In 2011, the huge earthquake with Mw 9.0 off the Pacific Coast of Tohoku zone 
attacked North-eastern Japan (hereafter referred to as the main shock). At the site of the 
base-isolated building in Tokyo, the peak ground acceleration (PGA) recorded 157.6 gal 
in the X direction and 167.9 gal in the Y direction. Before and after the main shock from 
2010 to 2012, there were five large earthquakes with PGA from 25 to 160 gal, and many 
small events including aftershocks less than 25 gal. Note that the building survived in the 
main shock without visible structural damage. The high-density seismic monitoring 
system provides 3-axis accelerations of the superstructure and the basement, and the 
relative displacements of the base-isolation floor with the sampling frequency of 100 Hz. 
The locations of sensors are illustrated in Fig. 3.3 (c). The system successfully recorded 
more than 140 earthquakes for 3 years from 2010 to 2012. The detail of the seismic 
monitoring system is given in the literature (Nishikawa et al., 2014). 
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(a)                                                                               (b) 

 

 

 

 

 

 

 

 

 

                                 

                                 (c) 

Fig. 3.3 The base-isolated building and the monitoring system: (a) the building, (b) layout of the 
isolation system, (c) sensor layout. 

3.2.2 Long-term variability of resonant mode characteristics 

System identification 

Here, the MIMO time-variant SRIM system identification (Juang, 1997) was adopted 
to extract the resonant modes from each earthquake record. The system identification of 
the target structure was successfully performed by the same method by Siringoringo and 
Fujino (2015). We first identified the first three resonant modes of the building by 
applying the SRIM method to records of the main shock, as shown in Fig. 3.4. Here, the 
first mode is the translational mode that has a large horizontal modal displacement at the 
isolator layer and smaller modal displacement at the upper structure, identified at about 
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0.45-0.58 Hz. Although the base isolation system functions well at the first mode, Fig. 
3.4 also indicates large displacements of upper floors. It is because the building has an 
asymmetric geometry which can amplify the response of the upper structure.  The second 
and third modes are torsional responses with large modal displacements at the corner of 
building Cb in a range of 0.58-0.68 Hz and building B from 0.68 to 1 Hz respectively. 
Similarly, frequency ranges of the first mode, the second mode, and the third mode for 
small earthquakes were approximated at 0.55-0.5 Hz, 0.7-0.8 Hz, and 1.1-1.2 Hz, 
respectively. 

 
Fig. 3.4  First three mode shapes of the base-isolated structure under the main shock produced from 

the SRIM system identification. 

 

Variability of resonant frequencies during the long-term data observation 

Sequential variability of resonant frequencies of the first three modes during the long-
term earthquake observation is shown chronologically in Fig. 3.5. A set of 42 earthquakes 
including 10 events before the main shock and 31 events after the main shock was used 
to investigate the variability. The response of one event can be divided into time segments 
of 50s each. For instance, considering the first mode under the main shock on March 11, 
2011, the resonant frequency starts from a low value at the beginning of the excitation 
and increases gradually towards the end. Figure 3.5 reveals that the frequencies of the 
first three modes under events after the main shock are generally lower than those before 
the main shock. The decrease in the frequencies of events after the main shock is clearest 
in mode #3 and less explicit in mode #1. Figure also indicates that the first mode’s 
frequency can recover after four months from the main shock in comparison with its value 
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before the shock. It is because a stiffness reduction due to Mullin’s effect of base isolators 
has a temporary and recoverable characteristic in modulus under strain cycling of rubber 
isolators. This can be demonstrated in section 3.2.4. However, the recovery does not 
happen to mode #3 which signify the torsional response of the superstructure. Hence, it 
is predicted that there was the possibility of structural changes inside the superstructure, 
especially large displacement parts in mode #3. 

 

 
Fig. 3.5 The long-term sequential variability of dominant frequencies corresponding to the first three 

modes of the building over time. 
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3.2.3 Numerical model verification 

Modeling 

The numerical model of the target base-isolated building, which the authors used in 
this study, was the one constructed in the previous study by Siringoringo and Fujino 
(2014). The building consists of 26 floors and one rigid base slab. Here, 81 degrees of 
freedom (DOF) were adopted to construct a lumped-mass model as shown in Fig. 3.6 (a). 
The general formula of the motion equation can be described by the following formula: 

 - ( )+ + = +b gMu Cu Ku MR u u
  (3.19) 

where M is a diagonal mass matrix of the structure, C is the damping coefficient matrix, 
K is the stiffness matrix, and R is input influence coefficient matrix. Denotations �̈�, �̇�, 
and u present floor acceleration, velocity and displacement vectors relative to the base, 

bu is a base acceleration vector relative to the ground,  gu is ground acceleration vector. 

Stiffness K and mass M were constructed based on design parameters while damping 
ratios 𝜉, which was used to construct the Rayleigh damping matrix C, was assumed to be 
0.02 for the superstructure and 0.05 for the base. For base isolation units, bilinear models 
were applied to calculate the first stiffness and the second stiffness for each. The stiffness 
matrix of the base was approximated as the summary of the stiffness of all isolator units 
in each of X, Y, Z direction-oriented following to the building’s main directions.  

Numerical calculations were conducted for some significant earthquake inputs, large 
and small earthquakes, for validating the model. Figure 3.6 (b) shows a good agreement 
between the numerical output and the recorded data in both time domain and frequency 
domain under the main shock. The small discrepancy between simulation results and 
measurements can be considered as acceptable errors because of the complexity of the 
real structure and the assumed simplification of the numerical model. However, there is 
not good agreement in the response of small earthquakes before and after the main shock 
especially in the frequency range of 0.7-1.2 Hz, for example in Fig. 3.6 (c). This specified 
frequency range dominates the torsional responses of the building. The model can hence 
be updated through response analysis of the superstructure modes.  
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(a)  

(b)  

(c)  

Fig. 3.6 (a) 3D lumped-mass model of the base-isolated building; dynamic performances of the 
structure overlayed between simulated and recorded accelerations of sensor C110 in X-direction 

under (b) the main shock on March 11, 2011, and (c) the foreshock on March 9, 2011. 

 

 Prediction errors under various earthquakes 

This section considers the relationship between the percentage of RMSE of normalized 
prediction errors regarding response accelerations and PGA of a variety of earthquakes 
with different intensities. A set of 93 earthquakes including 26 foreshocks, 66 aftershocks, 
and one main shock on March 11, 2011, was chosen to develop this relationship. The 
percentage of RMSE is defined as follows:  

 2model data

1 data

-1(%) ( ) 100 ,
N

i i

i i

X XRMSE
N X=

= 
 

(3.20) 
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where Ximodel is numerically calculated acceleration, Xidata is recorded acceleration. 
Figure 3.7 points out that there is a tendency that larger earthquakes give smaller RMSE. 
Large RMSE are found in small earthquakes, especially events after the main shock. 
Moreover, even small earthquakes with same PGAs also give a wide range of various 
RMSE percentages. Therefore, error sources causing this should be clarified, and the 
model of the existing structure needs to be updated with time. 

 

(a)  

(b)  

Fig. 3.7 The relationship between peak ground acceleration (PGA) and RMSE (%) of the prediction 
errors between simulated and recorded accelerations of (a) sensor C111 in X-direction and (b) sensor 

B105 in Y-direction under various earthquakes. 
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3.2.4 Detail analysis of structural property changes 

In this section, an explicit investigation of structural property changes was 
implemented by developing the transfer functions in terms of floor accelerations and the 
variability analysis of equivalent effective stiffness of the isolation system over time. 

 

Transfer functions of the superstructure 

The transfer functions represented transfer ratios between specified floors of the 
building, i.e., the ratios between the top and the 4th floor, the 4th floor and the upper base 
layer of building B; the top and the 9th floor, the 9th floor and the base layer of building 
C, with respect to translational floor accelerations on their respective weak axes. Spectra 
of transfer functions were constructed by a set of 65 recorded earthquakes before and after 
the main shock from 2010 to 2011. Most of these events were small earthquakes. The set 
was divided into two subsets including 25 foreshocks and 40 aftershocks. Their 
performance analysis can be conducted through evaluating mean and standard deviation, 
as shown in Fig. 3.8. Figure shows that the transfer functions of seismic forces from the 
ground to upper floors decreases following floors’ height development. The lower floors 
have clear peaks with higher transfer ratios than the ones of upper floors in their dominant 
torsional frequency ranges. By comparing the magnitudes of these peaks, Fig. 3.8 also 
indicates that the transfer ratios of the aftershocks were higher than the ones of the 
foreshocks. That is, the behavior of the structure in the aftershocks became more flexible 
than they were in the foreshocks. It thus can be concluded that there was the possibility 
of structural stiffness reduction after the main shock. These results were consistent with 
the previous indication in section 3.2.2 as considering the long-term changes of the modal 
responses. 
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(a)  

(b)  

 (c)  

 (d)  

   Fig. 3.8 Transfer functions of floor accelerations: (a), (b) the 4th floor/ the upper base layer and the 
7th floor/ the 4th floor of building B; (c), (d) the 9th floor/ the upper base layer and the 14th floor/ the 

9th floor of building C, respectively. 
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The equivalent stiffness of isolators over time 

An approximation of equivalent stiffness through recorded accelerations and 
displacements was conducted to assess the possibility of the stiffness changes of the 
isolation system after the main shock. The force-deformation relationship of the system 
can be approximated through the equivalent hysteretic loops of the accelerations and the 
displacements. The equivalent stiffness was calculated through the ratio between the 
discrepancy of maximum and minimum accelerations and that of respective 
displacements, simply illustrated by the straight line on the hysteretic loop of a natural 
rubber bearing, as shown in Fig. 3.9 (a). The variability of the approximated effective 
stiffness of the isolation system over time is shown in Fig. 3.9 (b). The stiffness decreases 
gradually from the foreshock on February 5, 2011, towards the lowest value at the main 
shock on March 3, 2011 and recovers again on July 15, 2011. The recovery happened in 
4 months after the main shock. The delay can be explained to be due to the stiffness 
reduction of isolator devices as a characteristic of Mullin’s effect. The Mullin’s effect is 
known as the property of temporary and recoverable reduction in modulus under strain 
cycling of rubber isolators.  The delay is understandable to be because consecutive events 
after the main shock caused a prolonged effect on the effective modulus recovery of the 
isolators.   

 

(a)    

(b)  

Fig. 3.9 (a) The hysteretic loop of a natural rubber bearing located at the base of building Cb under 
the main shock, (b) approximated effective stiffness of the base-isolated system for earthquakes in 

2011. 
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3.3    Seismically isolated bridge pier  

The test-bed structure is a seismically isolated bridge pier based on Japan design 
specifications of highway bridges (JRA, 2012). This structure is commonly used for 
verifying the applicability of seismic isolation techniques in Japan. In this study, it is used 
for analyzing and quantifying the uncertainty of numerical models under structural 
change conditions subjected to seismic excitations. This section presents modeling 
process, nonlinear seismic response analysis of the bridge under different earthquake 
characteristics, artificial monitoring data supply. 

3.3.1 Seismic input data 

Input ground motion for nonlinear seismic analysis for the seismically isolated bridge 
pier is records from 1995 Kobe earthquake Mw 6.9 at JR Takatori station with 40s 
duration and 2004 Mid-Niigata earthquake at Tahkamachi station. These two earthquakes 
have different magnitude and frequency content as presented in section 3.1. Kobe 
earthquake has PGA of 600 gal dominated in the range of 0.47-1 Hz while Mid-Niigata 
earthquake has PGA of 1715 gal with the high-frequency range of 3.5-5 Hz. The N-S 
component of these earthquakes was adopted to excite the bridge in its longitudinal 
direction. 

For examining input parameter sensitivity, 20 levels of earthquake magnitudes 
corresponding to 20 percentage scales of the real time-history records was assumed for 
both Kobe and Mis-Niigata earthquakes, see Table 4. Different scales were designed to 
have approximately equal magnitudes for the sake of comparison of parameter sensitivity 
under varying seismic characteristics. Herein, seismic magnitudes are considered by peak 
ground acceleration (PGA). 

Spectral acceleration response of various levels of Kobe and Mid-Niigata ground 
motions are shown in Fig. 3.10, Fig. 3.11. Type 2-Type II-Group 3 stands for Kobe 
earthquake under the soft soil condition. Mid-Niigata earthquake measured at 
Tahkamachi site is categorized for Type 2-Type II-Group 3 in Japan design specifications 
of highway bridges  (JRA, 2012). Figure 10 indicates that the spectra of earthquake levels 
owning PGA of larger than 480 gal are over the design standard. These seismic levels are 
more susceptible to be damaged. Similarly, the response spectra of Mid-Niigata 
earthquake levels, shown in  Fig. 3.11, points out that earthquakes with PGA more than 
500 gal are susceptible to be damaged than the ones under the smooth line. Collapsed 
structures subjected to very large earthquakes can be ignored in SA due to practical usage. 
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Fig. 3.10  Spectral acceleration of Kobe earthquake recorded at Takatori station. Red lines define 

earthquake levels with PGA > 480 gal, black lines are earthquake levels with PGA < 420 gal, Level 
2-Type II-Group 3 termed the design spectrum of the inland-nearfield earthquake at soft soil site. 

 
Fig. 3.11 Spectral acceleration of Mid-Niigata earthquake recorded at Tahkamachi station. Red lines 
define earthquake levels with PGA > 503 gal, black lines are earthquake levels with PGA < 480gal, 
Level 2-Type II-Group 1 termed the design spectrum of the inland-nearfield earthquake at stiff soil 

site. 
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Table 4 Earthquake scales by percentages of the original ground acceleration. 

PGA (cm/s2) Kobe earthquake, 
scale (%) 

Mid-Niigata earthquake, 
scale (%) 

3 0.5 0.17 

6 1 0.35 

12 2 0.7 

30 5 1.75 

60 10 3.5 

90 15 5.25 

120 20 7 

150 25 8.74 

180 30 10.5 

210 35 12.2 

240 40 14 

300 50 175 

360 60 21 

420 70 24.4 

480 80 28 

503 90 29.3 

600 100 35 

720 120 42 

840 140 49 

960 160 56 

 

Table 5 Configuration of the isolated bridge pier 

Member Component Value 

Superstructure 
Span (mm) x the number of spans 40000 × 5 

Mass (ton) 604 

RC pier 

Section (mm x mm) 5000 × 2200 

Height (mm) 10000 

Mass (ton) 346.3 

Isolator (LRB) 

Section (mm x mm) 600 × 600 

Total thickness of LRB (mm) 154 

Diameter (mm) and the number of lead plugs 85 × 4 
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(a)  

  (b)                                

 
 (c) 

Fig. 3.12 Configuration of the isolated bridge pier (unit: mm): (a) side view of the longitudinal 
direction bridge, (b) cross-section of the superstructure, (c) front view, side view, and plan view of 

the pier in the order from left to right. 
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3.3.2 Description of the seismically isolated bridge pier 

The design of the target seismically isolated bridge pier is based on Japan design 
specifications and bearing manual of highway bridge (JRA, 2012)(JRA, 2004), as shown 
in Fig. 3.12. The structure consists of reinforced concrete pier, steel girders and five 
laminated lead rubber bearings (LRB) at the top of a pier, as shown in Table 2. Figure 
3.12 (a) shows longitudinal direction view or side view of the bridge including five spans 
with 40 m for each. The total length is 200m. The height of each column is 10 m, one of 
abutments is 8.15 m, the foot height of columns is 2 m. Figure 3.12 (b) and (c) show the 
cross-section of the superstructure and the pier, respectively. 

3.3.3 Numerical modeling of the RC bridge pier and seismic isolation 
bearing 

A numerical analysis is crucially required for sensitivity analysis and uncertainty 
quantification. The isolated bridge pier was modeled as a 2-DOF lumped mass system. 
The force-deformation relationships of isolators and pier were idealized by hysteresis 
loops using a Takeda hysteresis model (Takeda, Sozen and Nielsen, 1970) and a bi-linear 
model, respectively, as shown in Fig. 3.13. Takeda model is broadly used in the nonlinear 
seismic analysis of reinforced concrete structures. In this study, a modified Takeda model 
with the unloading stiffness degrading parameter, α = 0.3; and the reloading parameter, β 
= 0.6 was chosen. These parameters directly influence the Takeda loop shape, i.e., energy 
dissipating capacity of seismic pier responses. Based on previous experiments (Tyler and 
Robinson, 1984), (Robinson, 1982), the bilinear model is suitable for approximating 
hysteresis loop of the lead rubber bearing. A Newmark-beta method incorporating 
Newmark Raphson iterations was used to integrate numerically 2-DOF motion equations 
with 0.001s time increment. Here, Rayleigh damping was applied with the assumption of 
2% and 0% for damping ratios of the pier and isolators, respectively. In numerical 
integration process, the stiffness of the bearing and pier is updated for each time step. 
Numerical results deem to be accurate since the time increment taken small enough that 
is smaller than one-tenth of the highest fundamental natural period of the bridge. The 
detailed presentation of modal analysis will be presented later in this subsection. The 
integration time increment is also smaller than the time interval of the input ground 
motion records of Kobe and Mid-Niigata earthquakes. 

 



3-40 

 

      
(a)                         (b)                                                       (c) 

Fig. 3.13 Hysteresis loops of the isolators and the bridge pier approximately modeled by (a) 2-DOF 
isolated bridge pier (b) bi-linear model, (c) Takeda degrading model (K1, first stiffness; Kp, post-

yielding stiffness; Ku, unloading stiffness; Dy, yield deformation; Dm, max deformation; Dp, plastic 
deformation; α, unloading stiffness degrading parameter; β, reloading parameter; r, ratio between 

post-yielding stiffness and initial stiffness; Qy, yield force). 

3.3.4 Nonlinear seismic response analysis under original earthquakes 

The nonlinear response analysis of structural elements of the isolated bridge pier was 
conducted under two earthquakes with different seismic characteristics, Kobe earthquake 
with the dominant frequency in 0.47-1 Hz and high-frequency Mid-Niigata earthquake in 
the range of 3.5-5 Hz. Figure 3.14 shows acceleration time-history and its Fourier transfer 
of the pier and superstructure under Kobe earthquake. The peak accelerations of the pier 
and superstructure are 870 cm/s2 and 981 cm/s2 at 3s and 6s, respectively. The overlay 
time-history between the acceleration of the pier and superstructure indicates the longer 
period response of the isolators than that of the pier. The seismically isolated function of 
the isolators was well-engaged with no critical time lag between their response and the 
ground motion during the earthquake. Dominant frequencies of the pier and isolators are 
nearly 2.7 Hz and 0.8 Hz, respectively. Figure 3.15 shows acceleration time-history and 
its Fourier transfer of the structural components under Mid-Niigata earthquake. The peak 
accelerations of the pier and superstructure are 2583 cm/s2 and 1780 cm/s2 at 3s and 6s, 
respectively. The response acceleration of the pier reaches 2583 cm/s2 that is nearly one 
and a half times than the one of the superstructures. Moreover, the excitation period of 
these components is almost the same to each other. The isolation system is concluded to 
be not well-functioned under Mid-Niigata earthquake.  

Fundamental natural frequencies of the structure are 1.08 Hz and 3.3 Hz corresponding 
to the 1st mode and second mode of the structure, as shown in Fig. 3.16. These free 
vibration frequencies were calculated using the initial stiffness of the pier and 
superstructure. The two frequencies are in the predominant range of Kobe earthquake but 
are lower than the one of Mid-Niigata earthquake. The effect of these two earthquakes 
can be indicated via nonlinear response models of the pier and isolators in Fig. 3.17. 
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Although PGA of Mid-Niigata earthquake is mostly more three times than the one of 
Kobe earthquake at station sites, relative displacement of the pier with the ground and the 
isolators with the pier under Kobe earthquake is much larger than under Mid-Niigata 
earthquake. It is recognized that large earthquakes with a high-frequency range that is out 
of the range of the structure may cause little effect on the structure.  

 

(a)  

(b)              
Fig. 3.14 Simulated response time histories and Fourier transfer of acceleration during Kobe 
earthquake; (a) 30s full-time duration of excitation, (b) enlarged time-history from 2 to 12s. 
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(a)  

(b)                    
Fig. 3.15 Simulated response acceleration time-histories and Fourier transfer during Mid-Niigata 

earthquake; (a) 30s full-time duration of excitation, (b) enlarged time-history from 5 to 10s. 

 

 
Fig. 3.16  Mode shapes of the isolated bridge pier at fundamental natural frequencies. 
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(a)   (b)  

Fig. 3.17 Hysteresis loops of the bridge pier and bearings under (a) Kobe EQ and (b) Mid-Niigata EQ 

3.3.5 Nonlinear seismic response analysis under various earthquake levels 

Linearity and nonlinearity in the response of the structure depending on various 
seismic characteristics are demonstrated in this section. Structural dynamic behavior is 
examined for different seismic levels by taking various percentages of the original 
records, Kobe and Mid-Niigata earthquakes. 

Kobe record at Takatori station 
Different earthquake levels are categorized into three groups in terms of PGA; group 

I, small EQs, 0-30 gal (0.5-5% levels); group II, large EQs, 30-210 gal (10-35% levels); 
and group III, very large EQs, more than 210 gal (40% level). The levels and 
corresponding PGA are presented in Table 4. These groups are classified based on 
different dynamic response characteristics of the isolators and the bridge pier, as shown 
in Fig. 3.18. The responses of the pier and bearings are perfectly linear in small EQs; 
however, nonlinearity occurs in the response of the bearings from 10% level in large EQs 
and in both the ones of the bearings and pier in very large EQs.  

Mid-Niigata record at Tahkamachi station 
Different levels of Mid-Niigata earthquake, as shown in Table 4, are adopted to 

examine structural behaviors. For comparison, these scales of Mid-Niigata earthquake 
were chosen to have the same PGA values with the ones of Kobe earthquake. The 
transform of response characteristics of the structural elements from linearity to 
nonlinearity is depicted in Fig. 3.19. However, this transform is not significant since the 
impact of this earthquake with high frequency content on the structural behavior is little 
even with very large magnitudes (PGA).  
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(a)   (b)  (c)  

Fig. 3.18 Hysteresis loops of the bridge pier and bearings under three different Kobe earthquake 
levels of 5%, 25% and 100% levels corresponding to categorized in 3 groups: a) small earthquakes, 

b) large earthquakes, c) very large earthquakes, respectively. 

 

(a) (b)  (c)  
Fig. 3.19  Hysteresis loops of the bridge pier and bearings under three different Mid-Niigata 

earthquake levels of 29.3%, 49% and 56% levels corresponding to 600, 720, and 840 gal, 
respectively. 
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3.3.6 Monitoring data 

Monitoring data is essentially required for the uncertainty quantification of model 
parameters. In this study, an artificial data set is created by adding zero-mean Gaussian 
noise to simulated time-history responses of the structure. A high signal-to-noise (SNR) 
of 80 dB, i.e., RMS amplitude of the signal being 10000 times that of noise, was assumed 
for acceleration responses.  

 
Fig. 3.20 Acceleration time-history of the earthquake measured on 21 Sep., 2011 at ground level 

from sensor 112. 
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Bayesian sensitivity analysis to an existing 
base-isolated building 
 
 

4.1 Applicability of Bayesian sensitivity analysis to linear and 
nonlinear dynamic responses 

The applicability of the BSA on nonlinear dynamic responses under seismic 
excitations is verified by comparing with MCSA. Here, an experimental three-story shear 
building, which was worked on by one of the authors at the Los Alamos National 
Laboratory (Nishio et al., 2016), is used for the verification.  

4.1.1  Small-scaled structure and data acquisition 

The test-bed structure was the three-story shear building structure as shown in Fig. 4.1 
(a). Its numerical model and measurement data were already worked on in the previous 
study (Nishio et al., 2016). Notice that the structure, the experimental data, and the 
numerical model here belong to Los Alamos National Laboratory. The structure was 
assembled using aluminium columns (0.177 × 0.025 × 0.006 m) and floors (0.305 × 0.305 
× 0.025 m) via bolted joints. The structure could slide on the rails in the uniaxial direction. 
An additional centered column (0.150 × 0.025 × 0.025 m) suspended from the top floor 
and a bumper attached on the 2nd floor was to create a nonlinear response mechanism 
under random excitations. The gap between column and bumper could be adjusted to 
obtain different response levels, i.e., the nonlinearity could be obtained by reducing the 
gap from 10 mm to approximately 0.1 mm. Notice that the entire system is placed on a 
rigid foam. For data acquisition, a force transducer was attached at the end of the stinger 
to measure input forces transferring from the shaker to the structure, and four 
accelerometers placed on the four floors including the base to measure accelerations for 
each. The shaker creates only lateral vibrations along the centreline of the structure. 
Analog signals were discretized at 4096 points with the sampling frequency of 640Hz. 
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Two random excitation levels, 1.5V RMS and 2.5V RMS, were generated for the linear 
and nonlinear cases, respectively. 

4.1.2 Numerical model verification 

A numerical analysis was crucially required for the variance-based sensitivity analysis. 
The structure was modelled as a 4-DOF lumped-mass system with nominal input 
parameters, for mass, Mi (i = 1, …,4); stiffness, Ki (i = 1, …,4); and damping ratios, Ci (i 
= 1, …,4). The equation of motion was described as follows:  

 ( )t+ + =Mx Cx Kx F
 (3.21) 

where M, K, and C are the mass, stiffness, and damping matrices, respectively; x is a 
displacement vector, and F(t) is input force vector. The mass Mi in M is determined from 
actual measurement of structural elements of each story. The stiffness Ki (i = 2,3,4) in K 
is the sum of bending stiffness of four columns; however, K1 was assigned with a 
relatively small value of 0.1 N/cm because of neglectable friction between the base and 
the rails. The damping C was constructed in uncoupled motion equations with modal 
values of mass, frequency, and damping ratios estimated from experimental data. The 
Runge-Kutta numerical integration incorporating Rayleigh damping was applied to solve 
Eq. (12) with 0.001s time increment. Figure 4.2 shows the four resonant modes of the 4-
DOF structure. The first mode is the rigid body mode due to low stiffness for modeling 
rail performance, and the three later modes were the modes of the superstructure with 
identified frequencies of 28.8 Hz, 55.2 Hz, and 71.5 Hz, respectively. 

A comparison between calculated and experimental results was performed for the 
model validation. The model accuracy to some extent is qualitatively evaluated via the 
overlay in Fig. 4.3 since very high-dimensional features of time history results are hard 
to quantify adequately in the same dimension. Figure 4.3 shows relatively good 
agreement between simulated and measured results in both time domain and frequency 
domain. 
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(a) Three-story building                              (b) 4-DOF model 

Fig. 4.1 Test-bed structure and 4-DOF model (Nishio et al., 2016) 

 

 

Fig. 4.2 Mode shapes of the three-story building 
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(b)                   

Fig. 4.3 Overlays of simulated and recorded accelerations of the 3rd floor in terms of the nonlinear 
case in (a) time domain, (b) frequency domain. 

4.1.3 Sobol’ index comparison between BSA and MCSA 

In this context, we present estimated Sobol’ index results for two linear and nonlinear 
response cases on the experimental model. Eight uncertain variables include mass, M1, 
M2, M3, M4, and stiffness, K1, K2, K3, K4 of floors from the base to the top, as defined in 
Fig. 4.1(b), were concerned. Herein, the root mean squared error (RMSE) of prediction 
errors between measured and simulated output accelerations was chosen as an appropriate 
feature for performing GSA incorporating experimental observations. A uniform 
variability of ±10% was equally proposed for each variable. We applied the Latin 
hypercube sampling and quasi-random sequences for BSA and MCSA, respectively. A 
learning sample of size 200 was generated to construct the metamodels in BSA. For 
designing experimental samples in MCSA, convergence analysis is firstly performed to 
identify a proper sample size. Convergence analysis was basically done following Central 
Limit Theorem. The sample size was increased gradually by independent replicas of a 
base sample of 1000, SIs then were calculated for each increased sample. The procedure 
was kept until SIs approximately unchanged. The convergence rate of the total SIs in Eq. 
(2.10) is inherently higher than the one of main SIs in Eq. (2.9) since all variables except 
for a variable of interest in Eq. (2.10) were set constant meanwhile, this is converse in Eq. 
(2.9). Figure 4.4 shows the convergence plots of main SIs computed by MCSA for both 
linear and nonlinear cases. Figure points out that convergence is obtained at about 12,000 
runs for factor ranking (FR) and 18000 runs for sensitivity indices (SIs) in the linear case. 
Whereas a slower convergence rate is found at approximately 19,000 runs and 23,000 
runs for FR and SIs, respectively. The convergence of FR is reached if the ordering of 
variables remains stable meanwhile the convergence of SIs is achieved if the SIs values 
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are kept unchanged. In fact, models are more complex; more runs are required to obtain 
a convergence point.  

Considering sensitivity of the parameters, Fig. 4.4 also indicates that stiffness of lower 
floors K2 and K3 has higher SIs than others, especially K2 in both cases. It is recognized 
that stiffness changes of the lower floors significantly affect the response of the structure, 
i.e., vibration frequency, and magnitudes. Another interesting point is that mass M1, and 
M4 in the nonlinear case have higher sensitivity than M2 and M3, particularly M1 with the 
highest index. It can be explained that with a predetermined input force, M1 plays an 
important role to transfer force from the stinger to the structure through the base, the 
variability of M1 critically changes input acceleration at the base. Along with the 
nonlinear response of the structure, the variability of M1 predominantly affects the 
acceleration of the top floor than the linear case. Practically, without the support of SA 
tools, it is hard to quantify the variability of different structural parameters which 
influence output responses at specific locations under various excitations. 

The accuracy of SIs results produced by the two approaches was evaluated through the 
standard errors. One sample result of the sensor located at the third floor in the nonlinear 
model, as shown in Table 6, indicates that 95% confidence interval of the standard errors 
of the main indices as defined in Eq. (11) is smaller than the ones of total indices. Both 
methods have very small standard errors which can be neglected. The comparison of the 
coefficient of variance (COV) of input variables produced by BSA indicates that COVs 
of K1 and K4 are high especially in the nonlinear case while the others have small COVs 
of less than 10%, see Table 7. Nevertheless, these variables are non-influential input 
factors with very low indices, as referred from Table 6, and thus their variance has a 
negligible effect on the output’s variance. Additionally, there is not much difference 
regarding COVs of SIs between linear and nonlinear response cases except for the ones 
with very low indices. Therefore, either linear or nonlinear models can still be adopted 
using the BSA method.  

Regarding main and total SIs, Fig. 4.5 and Fig. 4.6 illustrates that the SIs computed by 
BSA and MCSA against RMSE of simulated and measured accelerations of the third floor 
are quite close each other in both time and frequency domain. Sensitivity analysis in the 
frequency domain (Fig. 4.6) indicates the variability of parameter importance in three 
dominant frequency ranges, 20-40 Hz, 50-60 Hz, 70-80 Hz corresponding to mode #2, 
mode #3, and mode #4, respectively. For instance, Fig. 4.5 depicts that K2 is most 
influential to the prediction errors in the time domain. However, its ranking is varying in 
the different frequency ranges with the highest SIs at mode #2, see Fig. 4.6. On the other 
hand, the high discrepancy between main and total SIs indicates that interaction between 
the parameters significantly increase their impact on the output variance, and therefore it 
needs to be critically considered in GSA.  
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(a)  (b)  

Fig. 4.4 Convergence plots of eight variables against RMSE of the prediction errors between 
observed and simulated output accelerations for (a) linear model, and (b) nonlinear model. 

 
Table 6.  SIs and standard errors of BSA and MCSA against RMSE of the prediction errors between 

recorded and simulated output accelerations of the 3rd floor for the nonlinear model. 

Var. 

BSA MCSA 
Main SI Total SI Main SI Total SI 

i

T
S  95% CI 

i

T
S  95% CI ( )MC

iS  95% CI ( )T MC
iS  95% CI 

M1 0.089 1.33E-04 0.382 3.25E-

04 

0.098 

 

9.48E-04 0.386 

 

4.28E-

03 M2 0.013 6.04E-05 0.263 2.40E-

04 

0.013 1.21E-04 0.252 3.21E-

03 M3 0.006 3.55E-05 0.271 3.76E-

04 

0.020 1.83E-04 0.271 3.22E-

03 M4 0.063 1.19E-04 0.239 2.97E-

04 

0.078 7.12E-04 0.259 3.02E-

03 K1 1.45E-

04 

5.77E-06 8.05E-

04 

8.32E-

05 

1.23E-

05 

 

1.58E-05 5.29E-

05 

6.85E-

05 K2 0.083 6.62E-05 0.564 3.64E-

04 

0.105 9.91E-04 0.572 6.32E-

03 K3 0.025 7.05E-05 0.131 3.70E-

04 

0.041 3.66E-04 0.116 1.48E-

03 K4 5.73E-

05 

3.18E-06 3.27E-

04 

9.25E-

05 

2.03E-

05 

1.63E-05 3.92E-

04 

5.07E-

05 
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Table 7. The coefficient of variance (COV) of the SIs produced by BSA against RMSE of the 
prediction errors between recorded and simulated output accelerations of the 3rd floor for linear and 

nonlinear models 

Var. 
Linear model Nonlinear model 

COV (Main SI) COV (Total SI) COV (Main SI) COV (Total SI) 

M1 5.06% 2.90% 2.42% 1.38% 
M2 9.04% 1.05% 7.75% 1.47% 
M3 5.94% 1.64% 9.12% 2.24% 
M4 2.59% 1.64% 3.04% 2.00% 
K1 46.00% 114.91% 64.39% 166.68% 
K2 1.77% 0.67% 1.28% 1.04% 
K3 3.99% 4.27% 4.60% 4.56% 
K4 34.01% 17.85% 89.48% 456.61% 

 

 

Fig. 4.5 Sensitivity indices of BSA and MCSA against RMSE of the prediction errors between 
observed and simulated output accelerations in time domain at the 3rd floor in the nonlinear model. 
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(a)  

(b)   

   (c)  

Fig. 4.6 Sensitivity indices of BSA and MCSA against RMSE of the prediction errors of Fourier 
amplitudes transferred from the response accelerations of the 3rd floor in three dominant frequency 

ranges a) 20-40 Hz, b) 50-60 Hz, c) 70-80 Hz corresponding to three first torsional modes of the 
nonlinear model. 

4.2 Bayesian sensitivity analysis to the existing building 

Comparison between numerical results and recorded data indicated small error levels 
in large earthquakes but large errors in small earthquakes. The study also indicates that 
there is the possibility of the structural stiffness reduction after the main shock. Although 
the numerical results of the main shock showed an acceptable error level, accumulated 
structural changes attributed to large earthquakes or consecutively small earthquakes 
possibly lead to critical errors in future large earthquakes. Moreover, seismic risk 
prediction should be implemented on a properly updated model. The numerical model 
hence requires being updated with time. In this section, BSA using the metamodels was 
performed to calculate SIs for each output. It is noted that  
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4.2.1 Global input variables 

In this study, two uncertainty sources are considered: the systematic uncertainty due 
to lack of knowledge on material properties in modeling process and the uncertainty of 
structural properties resulting from external effects on the structure under large 
earthquakes. The former always exists, simply because the predicted results have never 
been matched with measurements. Therefore, all input parameters of numerical models 
can be considered as uncertain parameters. In this section, the authors first conducted 
GSA for all input variables of the model such as mass Ms, stiffness Ks and damping ratio 

s of the superstructure, stiffness Kb and damping ratio of the base b . These variables are 
termed global input variables. It is also noticed that damping ratio, an assigned parameter 
in the initial design phase can be independent of others. However, in a theoretical sense, 
they should be treated as correlated variables, and hence Sobol’ decomposition in Eq. 
(1.1) cannot be interpreted accurately. In cases with either uncorrelated or correlated 
variables, main SIs can still be a good interpretation of how a variable’s variance 
influences on the variance of output without interaction effect between variables. 

BSA on global inputs was carried out for two earthquakes with different intensities, 
one is the foreshock on March 9, 2011, with PGA of 5 gal in the X direction and 6 gal in 
the Y direction and the other is the main shock with 160 gal and 170 gal in the X direction 
and Y direction, respectively. The structural response under large earthquakes is supposed 
to be nonlinear. To create experimental input samples for BSA, we first assumed bounds 
of the uncertain parameters. In this study, an assumption of ±10% uniform variability for 
Ms, Ks, Kb, and uniform distributed ranges of 0.01-0.03 and 0.025-0.075 for s and ,b

respectively, were applied. 

Bayesian sensitivity analysis was implemented by MCMC with random walks in 
single chain. Therefore, convergence analysis is required to obtain stable sensitivity 
indices for each run case. A rule of thumb for iteration number of M = 50000 including 
m = 5000 burn-in were called through MCMC. The burn-in iterations were finally 
discarded. The final posteriors were derived by a thinning interval of n = 5. The total 
iteration number equal to N = M + m × n, i.e., N being 75000. Figure 4.7 indicates that 
draws of the parameters is close to pseudo randomness. This implies the convergence of 
the chain. In other words, the mean value of the draws or the point estimate of the 
posterior distributions approach stationary. The last 50000 iterations are used to derive 
the posterior distributions. Figure 4.8 indicates the convergence of the chain after 300 
draws in 5000 burn-in. By this way, the number of iterations can be reduced to save 
computational cost. However, MCMC was implemented on a single chain which was too 
early to say that the posterior has reached a converged distribution. Therefore, the author 
keeps running a long chain to obtain good estimate. Convergence diagnostics by trace 
plots and running mean were performed for all sensitivity cases under each earthquake.   
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Fig. 4.7 Trace plot of MCMC iterations of the model parameters Ms, Ks, s of the superstructure and 
Kb, b of the base for the response measured at sensor C111 under the foreshock on March 9, 2011. 

 

Fig. 4.8 Running mean of the model parameters Ms, Ks, s of the superstructure and Kb, b of the base 
for the response measured at sensor C111 under the foreshock on March 9, 2011. 

 

Figure 4.9 shows that the input parameters of the superstructure Ms, Ks and s  
significantly influenced RMSE between simulated and recorded accelerations in 
comparison with Kb and b in the foreshock. Comparing this with the ones of the main 
shock in Fig. 4.10, the sensitivity of the parameters in the main shock has an inverse trend, 
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i.e., SIs of Ms and Ks of the superstructure are lower while Kb and b of the base are higher 
than the ones in Fig. 4.9. This can be explained to be because the base isolation function 
was well engaged in the structure’s response to the main shock while the upper structure’s 
behavior was dominant in the foreshock. Subsequently, any structural changes in the 
superstructure can also cause high errors in small earthquakes, which can be concerned 
in model updating. Another remarkable characteristic is that the variability of the 
superstructure parameters Ms, Ks significantly affects to RMSE at building C in the X 
direction and building B in the Y direction, as shown in Fig. 4.9 and Fig. 4.10. The 
damping ratio s  notably influences to building B and one side of building C (at the 
locations of sensors C103, C106, C108, C110) in the foreshock, see Fig. 4.9; however, it 
is more dominant to the other side of building C in the main shock (at the locations of 
sensors C104, C107, C109, C111), as shown in Fig. 4.10. It can be hence said that with a 
high-density sensor deployment, SA with above global variability assumption of inputs 
can partially specify the influence of inputs on outputs at various locations of the building. 
A more comprehensive analysis with local variability assumption is performed to analyze 
input-output relation in more detail and predict structural changes or modeling errors in 
the next section. 

(a)    

(b)  

Fig. 4.9  Main sensitivity indices of uncertain parameters against RMSE between recorded and 
simulated output accelerations in the time domain in (a) X-direction and (b) Y-direction under the 

small foreshock on March 9, 2011. 
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(a)   (b)  

Fig. 4.10 Main sensitivity indices of uncertain parameters against RMSE between recorded and 
simulated output accelerations in the time domain in (a) X-direction and (b) Y-direction under the 

main shock on March 11, 2011. 

4.2.2 Local input variables 

As aforementioned, there was the possibility of the structural changes after the 
mainshock, i.e., the stiffness reduction of the superstructure after the largest earthquake 
and the stiffness variance of the isolation system due to Mullin’s effect. The change of 
the isolation system’s stiffness was temporal and recoverable; therefore, the authors 
concentrated on SA of the stiffness parameters of the upper structure. Stiffness parameters 
herein are termed local input variables. 

 By functioning BSA on the structural stiffness parameters, the aim of predicting which 
parameter was the most influential, which ones are uninfluential to the errors can be 
obtained. Here, the aftershock on September 21, 2011, with small PGA of 5.26 gal in the 
X direction and 4.4 gal in the Y direction was chosen for BSA with the fact that a high 
error level was found on this small earthquake. The building was divided into eight 
groups, B1, B2, Cb1, Cb2, Ca1, Ca2, C1, and C2, as shown in Fig. 10 (a), corresponding 
to 8 local stiffness parameters KB1, KB2, KCb1, KCb2, KCa1, KCa2, KC1, KC2. A learning sample 
of the parameters from Latin hypercube sampling with ±10% uniform variability for each 
was adopted for BSA.  

To estimate the influence of one parameter to the structural responses at distinct 
positions of the building, the simultaneous variability of all inputs should be involved in 
sensitivity measures; and therefore, the total SIs were used to obtain this. By the factor 
ranking using the total SIs, the relation between model inputs and outputs can be 
interpreted explicitly. Figure 4.11 shows total SIs in terms of RMS of simulated output 
accelerations in the time domain. The variability of KCa1 impacts significantly on the 
response of low floors at the corner of building C and decreases its influence on higher 
floors in the X direction. While KCa1 is most influential to response at its location, KB1 
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and KB2 indicate large impact on B2 and B1 in Y direction, respectively. The variability 
of KC1 has a high impact on the top of building B. Obviously, this topology is hard to 
learn about complex structures in general without the support of SA tools. 

In the time domain, RMSE of the prediction errors between simulated and recorded 
accelerations was chosen to roughly predict significant parameter uncertainties under 
unknown local stiffness changes. The main SIs estimated in the time domain, as shown 
in Fig. 4.12, illustrates that the uncertainty of local stiffness parameters affects the errors 
in diversified degrees, some of which emerges as critically sensitive parameters while 
others seem to be uninfluential. When relatively comparing SIs in terms of each output at 
a sensor location, the stiffness of lower parts, KB1, KCa1, KC1 have higher sensitivity to the 
errors than the ones of upper parts; KB2, KCa2, KC2. It is consistent with findings in section 
4.4.1 that high transfer ratios are found at the low parts of the building. It is predicted that 
the lower parts have a higher possibility of stiffness reduction than others do.  

In the frequency domain, RMS of Fourier amplitudes transferred from simulated 
output accelerations in three frequency ranges 0.3-0.5 Hz, 0.6-0.9 Hz and 0.9-1.2 Hz 
corresponding to mode #1, mode #2, and mode #3, respectively was chosen as an 
appropriate feature for BSA of the local parameters. It is interesting that sensitivity of the 
local stiffness in the frequency domain, as shown in Fig. 4.13, are strongly related to mode 
shapes as presented in section 4.2. Considering the first mode (mode #1) that has large 
displacement at the base, the parameter uncertainty more influences on the response 
variance of model parts in which they were defined. For instance, KB1 significantly affects 
the response of building B while KCa1 is more influential to building Ca. Regarding mode 
#2, highly sensitive parameters are found at building C in the X direction and building B 
in Y direction where have large modal displacements, e.g., the variance of KB1 
significantly influences to the corner Ca of building C in the X direction and building B 
in the Y direction. Regarding mode #3, since the response of the structure was oriented 
following to Y direction, higher sensitivity was found at positions of the building in this 
direction, e.g., KB1  is the most sensitive parameter in the Y direction. To sum up, there is 
a strong relationship between mode shapes and the superstructure parameters’ sensitivity 
indices when considering the response at different positions on the building and hence 
contribute to comprehensive understanding about the structure’s modal responses and 
input-output relations.  
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Fig. 4.11 Total sensitivity indices of local stiffnesses against RMS of simulated output accelerations 
in time domain under the aftershock on September 21, 2011. 

 

Fig. 4.12 Main sensitivity indices of local stiffnesses against RMSE of the prediction errors between 
recorded and simulated output accelerations in time domain under the aftershock on 
September 21, 2011. 
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(a)  

(b)  

Fig. 4.13  Main sensitivity indices of local stiffnesses against RMS of Fourier amplitudes transferred   
from simulated output accelerations in the frequency domain in (a) X-Direction, (b) Y-
Direction under the aftershock on September 21, 2011. 
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(a)  

(b)  

 

Fig. 4.14 Main sensitivity indices of local stiffnesses against RMSE of Fourier amplitudes 
transferred from simulated output accelerations in the frequency domain in (a) X-

Direction, (b) Y-Direction under the aftershock on September 21, 2011. 
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(a)  

(b)  

Fig. 4.15  Main sensitivity indices of local stiffness against RMSE of Fourier amplitudes transferred 
from simulated output accelerations in three frequency ranges, 0.3-0.5 Hz, 0.6-0.9 Hz and 0.9-1.2 Hz 
corresponding to mode #1, mode #2, and mode #3 of the structure, respectively in (a) X-direction, b) 

Y-direction under the aftershock on September 21, 2011. 
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sensor location, see  Fig. 4.12. For example, considering the sensitive degree of KCa1 at 
different sensor locations shows that sensor C104 with the highest SI can be chosen for 
updating KCa1 in both directions. A similar work can be done in three dominant frequency 
ranges of 0.3-0.5 Hz, 0.6-0.9 Hz and 0.9-1.2 Hz corresponding to mode #1, mode #2, and 
mode #3 for more detail concerns, as shown in Fig. 4.15. In this figure, SIs of the 
parameters from the selected sensors were referred from Fig. 4.14. Different sensitivity 
degrees of the parameters in dissimilar frequency ranges can narrow data to required 
bandwidths from the large observed data volume. For instance, needed data of sensor 
C104 for updating KCa1 in both X and Y directions can be limited in the frequency range 
of 0.3-0.5 Hz since KCa1 in other frequency ranges have very small sensitivity indices 
which can be neglected. 
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Monte Carlo sensitivity analysis  
 
 

Monte Carlo sensitivity analysis (MCSA) can be applied in a broad field of 
engineering including linear or nonlinear structural dynamics. Unlike Bayesian sensitivity 
analysis (BSA), which was presented in the previous chapter, using Markov Chain Monte 
Carlo iterations to estimate sensitivity indices (SIs) in the Bayesian scheme by statistical 
moments, MCSA uses pseudo-random or quasi-random Monte Carlo to generate random 
samples for sensitivity calculations of uncertain parameters. Both methods can be 
computed based on the Analysis-of-Variance algorithm in global space. In this chapter, 
MCSA for the seismically isolated bridge pier in Japan Design Specifications of Highway 
Bridges will be introduced. Sensitivity analysis (SA) will be examined for two various 
seismic characteristics of Kobe and Mid-Niigata earthquake regarding different 
magnitude scales and frequency content.  

Sensitivity estimations via Monte Carlo simulations will be implemented for 
concerned response features. Reducing high dimension of selected features is desired to 
enable computing capacity of serviceable computers. The SA of modal responses via 
resonant modes was conducted in many previous studies. However, the implementation 
of SA in the time domain has not done much so far. In this section, weighted features in 
the time domain and frequency domain are adopted to global sensitivity analysis for 
uncertain model parameters of the isolated bridge pier. The procedure of sensitivity 
analysis for both earthquakes is summarized as in Fig. 5.1. The following chart starts with 
the original numerical model which was constructed in section 3.3.3, simulated response 
samples is created following an input set by Latin Hypercube sampling. These simulated 
results are weighted by the root mean square of response acceleration time-history and 
transfer ratios in the time domain and frequency domain, respectively. Later, global 
sensitivity analysis (GSA) using ANOVA theorem is conducted to obtain sensitivity 
effects or sensitivity indices. It is noticed that, unlike BSA presented in the previous 
chapter, the surrogate models are completely constructed before adopting them in GSA. 
In all cases of sensitivity analysis based on Monte Carlo simulations, convergence 
analysis is required to attain stable and precise sensitivity results. 
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Fig. 5.1  Summarized procedure of Monte Carlo sensitivity analysis (MCSA) 

5.1 Monte Carlo sensitivity analysis in Kobe earthquake 

5.1.1 Kriging metamodeling 

Kriging metamodels constructed based on the training samples of input parameters and 
corresponding outputs of the bridge. These metamodels can be used for SA to reduce 
computational cost. Various earthquake levels in Table 4 causes different nonlinear 
seismic responses, and hence developing the metamodels based on the training samples 
requires sample sizes are dissimilar. Leave-one-out (LOO) cross-validation (Stone, 1974) 
is used to measure the error of the metamodels. LOO error defines the average of 
discrepancy between simulated response by an input sample including all experimental 
points and the ones by the sample except a considered point. Smaller error values indicate 
better metamodels which are closer to the original model. Kriging metamodels were 
constructed whenever different response features chosen. 

Considering surrogate models in case of time-domain features, while an experimental 
Latin Hypercube sampling (LHS) of size 200 is appropriate for constructing the 
metamodels with low errors (ELOO < 0.1) for small EQs of 0.5%, 1%, 2%, 5% levels and 
very large EQs of 140% and 160%, larger training data of sizes from 300 to 900 is 
required for approximately similar accuracy of the remaining EQ levels, e.g., the 
metamodels of 25% and 30% levels necessitate sample sizes 900 and 700, respectively. 

Isolated bridge pier 
model 

Kriging meta-modeling 

Weighted acceleration 
time-history 

Response samples LHS input sample 

Weighted transfer 
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MCSA 



5-66 

 

LOO errors are listed in Table 8. It is realized that the earthquake level of 25% causes the 
most dispersible variability of simulated responses based on training input data.  

Similarly, the metamodels in case of transfer ratios were also validated via the LOO 
error. LOO errors are listed in  

 

Table 9. Error measures are slightly different from the case of selected features in the 
time domain in Table 8. The sample size of 650 is needed for earthquake scales of 20, 25 
and 30% while others require less size. As presented in section 3.3.5, different earthquake 
levels are categorized into three groups in terms of PGA; group I, small EQs, 0-30 gal 
(0.5-5% levels); group II, large EQs, 30-210 gal (10-35% levels); and group III, very large 
EQs, more than 210 gal (40% level). In general, the large earthquakes from 90 to 240 gal 
defined as group II requires more training input data than group II and III for both features 
in the time domain and frequency domain.  

 

Table 8. LOO errors of metamodels with RMS of acceleration time-history feature under different 
Kobe earthquake levels. 

Scale 
(%) PGA (gal) Sample 

size 
LOO error   
RMS-Pier RMS-Super. 

0.5 3 200 0.098 0.020 
1 6 200 0.098 0.020 
2 12 200 0.098 0.020 
5 30 200 0.098 0.020 
10 60 300 0.096 0.015 
15 90 600 0.112 0.014 
20 120 650 0.107 0.021 
25 150 900 0.112 0.033 
30 180 700 0.102 0.027 
35 210 600 0.107 0.025 
40 240 600 0.098 0.025 
50 300 550 0.102 0.049 
60 360 550 0.102 0.049 
70 420 550 0.105 0.041 
80 480 400 0.093 0.022 
90 503 400 0.096 0.018 
100 600 300 0.086 0.021 
120 720 500 0.068 0.011 
140 840 200 0.052 0.011 
160 960 200 0.037 0.009 

                           Note: bolded numbers are the scale with a maximum sample size 
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Table 9.  LOO errors of metamodels with RMS of acceleration transfer ratio under different Kobe 
earthquake levels. 

Scale 
(%) PGA (gal) Sample 

size LOO error 

0.5 3 200 0.070 
1 6 200 0.075 
2 12 200 0.070 
5 30 200 0.073 
10 60 300 0.100 
15 90 600 0.101 
20 120 700 0.091 
25 150 650 0.076 
30 180 650 0.045 
35 210 600 0.073 
40 240 600 0.076 
50 300 550 0.044 
60 360 550 0.019 
70 420 550 0.015 
80 480 400 0.014 
90 503 400 0.016 
100 600 300 0.020 
120 720 500 0.015 
140 840 200 0.015 
160 960 200 0.012 

Note: Bolded numbers are scales with maximum sample sizes 

5.1.2 Sensitivity analysis of RMS response acceleration time-history 

Eight uncertain parameters consist of mass of the superstructure and pier, Mu, Mrc; 
initial stiffness, post-yielding stiffness and yield force of the pier, Krc1, Krc2 and Qrc; the 
ones of the isolators, Ki1, Ki2, and Qy, respectively. A ±10% uniform variability is assumed 
equally for all the parameters for sensitivity analysis. Training input data was created by 
random Latin Hypercube sampling. The selected features are root-mean-square (RMS) of 
response acceleration of the pier and superstructure.  

Convergence analysis is critically required for SA based on random generation to 
obtain stable and precise results. The procedure describes in 4.1.3 using Central Limit 
Theorem (CLT) is only realistic when it is applied for a simple structure with few required 



5-68 

 

experimental tests and small parameter number. However, it is not suitable for 
complicated response surface or many cases required to check convergence. Since this 
study requires convergence analysis of each concerned feature for 20 earthquake levels; 
therefore, an alternative bootstrap method (Archer, Saltelli and Sobol, 1997) with less 
computational cost is chosen. Bootstrapping is adopted to get mean and confidence 
interval of main effects for each earthquake level. Assuming a m-size base sample, n 
resamples with replacement is constructed. Then, new statistical moments including mean 
and 95% confidence interval (CI) are calculated for each increase of base sample size. 
The advantage of this method is that resampling with replacement is conducted without 
any additional run on the models. Figure 5.2 shows convergence plots of eight parameters 
for acceleration time-history features of the pier and superstructure. Figure 5.2 and Fig. 
5.3 points out how many model runs needed for converged sensitivity results of each 
parameter. A consideration of a total model run number is around 106 for RMS of 
acceleration time-history of the pier (RMS-Acc-pier) and a smaller number of 5×106 for 
the one of superstructure (RMS-Acc-Super.).  

 

 

Fig. 5.2 Convergence plots performing mean and 5% and 95% quantiles of Bootstrap samples 
regarding RMS of pier acceleration time-history feature (RMS-Acc-pier). 
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Fig. 5.3 Convergence plots performing mean and 5% and 95% quantiles of Bootstrap samples 

regarding RMS of superstructure acceleration time-history feature (RMS-Acc-Super.) 

 

The time-history features including RMS of acceleration of the pier and superstructure 
with the 30 s time duration (T = 30s), termed as RMS-Acc-Pier, RMS-Acc-Super. are 
firstly considered. Figure 5.4 shows main and total effects of the model parameters under 
two selected seismic inputs including PGA 60 gal and 600 gal. The noninfluential 
parameters Mrc, and Krc indicated by low total effects in both earthquakes can be fixed at 
their nominal values. Narrowing the dimensionality of input space can reduce 
computational expenses and high correlation between the parameters in the multi-variable 
inference, which will be presented in the next section. Moreover, factor ranking can be 
addressed by comparing main effects of the parameters under the same earthquake. For 
instance, the parameter Mu is specified as the most sensitive factor to RMS of acceleration 
time-history of the superstructure under PGA of 60 gal, Ki2 holds the most influential 
parameter in the case of PGA 600 gal (the original earthquake). The difference in the 
sensitivity degree of the parameters under dissimilar earthquake magnitudes is expected 
to have a notable effect on the uncertainty of inference results in the next section.  



5-70 

 

Sensitivity degrees of chosen output features for each uncertain parameter under 
different earthquake magnitudes are performed via nonnormalized sensitivity effects, i.e., 
the numerators of Eq. (2.9). The main effect of the parameters has different trends for 
each seismic level group. High sensitivity is mostly found in group II and III. However, 
there are extreme points at which the effect decreases dramatically in the same group. For 
instance, sensitivity degree in group II significantly reduces at 25% level as considering 
the trend of Mu in terms of RMS of acceleration of the superstructure, then increases again 
to reach the peak value at 40%. The trend is like the lowest value at 60% level as 
considering Krc1 in group III. Moreover, the variability of nonlinear parameters Krc2, Ki2, 
Qrc and Qy highly affect one of responses at large earthquakes in group III. Particularly, 
Krc2 is quite small compared with others. The indication of highly sensitive parameters in 
different earthquake levels can be helpful to obtain precise posterior densities which are 
presented in next section. In contrast, low sensitive parameters can be fixed to reduce the 
dimensionality of the input space. A well-known term for this in sensitivity analysis is 
called ‘factor fixing’. More factors are fixed, SA is more efficient.  

 

 
Fig. 5.4  Main effect and total effect (sum of main and interaction effects) of the model parameters 

against the RMS of acceleration time-history of the superstructure under two earthquake levels, PGA 
60 gal (scale 10%) and PGA 600 gal (scale 100%, Kobe earthquake). 

5.1.3 Sensitivity analysis of RMS acceleration transfer ratio 

In this section, the SA procedure is carried out in the frequency domain. Selected 
features are weighted transfer ratios, i.e., RMS of acceleration transfer ratios. Transfer 
ratios were calculated from well-known transfer function or frequency response function 
between acceleration responses of the pier and superstructure in the frequency domain. 
Like SA in the time domain, eight parameters including Mu, Mrc, Krc1, Krc2, Qrc, Ki1, Ki2 
and Qy were considered. Latin Hypercube sampling technique with the assumption of 
±10% uniform variability for each parameter was adopted to create training input data.  
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Figure 5.6 shows the unnormalized main effect of eight uncertain parameters in terms 
of RMS of transfer ratios. It is interesting that high sensitivity is found in small and very 
large earthquakes corresponding to group I and III. Ki1 and Krc1 have high effect on the 
output responses in group I but small in group III. It is because the linear response is 
predominant at smaller earthquake levels in group I. In contrast, Ki2, Qrc, and Qy have high 
sensitivity in group III but small in group I since high nonlinearity occurs in larger 
earthquakes. Particularly, the least sensitivity happens at Krc2 with the computed main 
effect being nearly zero. Hence, it is predicted that the uncertainty of this parameter 
cannot be reduced effectively in Bayesian statistics, which will be presented in chapter 6. 
This parameter can be hence fixed at its nominal value in global sensitivity analysis.  
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(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

(g)  

(h)  
Fig. 5.5  Unnormalized main effect of eight uncertain parameters in terms of RMS acceleration time-

history: (a) Mu, (b) Mrc, (c) Krc1, (d) Krc2, (e) Qrc, (f) Ki1, (g) Ki2, and (h) Qy in various earthquake 
levels with different scale (%) of the Takatori earthquake. (Unit: (cm/s2)2) 
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Fig. 5.6  Unnormalized main effect of eight uncertain parameters Mu, Mrc,, Krc1, Krc2, Qrc, Ki1, Ki2, 
and Qy in terms of RMS of transfer ratios in various earthquake levels with different scale (%) of 

Takatori earthquake. 

5.2 Monte Carlo sensitivity analysis (MCSA) in Mid-Niigata 
earthquake 

Sensitivity analysis using Kriging metamodels for Mid-Niigata earthquake, which is 
same to MCSA for Kobe earthquake, was also conducted following the procedure in Fig. 
5.1.  A uniform variability of ±10% was applied for eight uncertain parameters Mu, Mrc, 
Krc1, Krc2, Qrc, Ki1, Ki2 and Qy. In this section, Kriging metamodeling and GSA for the 
response in time domain and frequency domain under Mid-Niigata earthquake are 
presented.  

5.2.1 Kriging metamodeling 

Kriging metamodels in terms of RMS acceleration time-history and RMS transfer 
ratios are constructed for different earthquake levels, as shown in Table 10. Since the 
impact of the high-frequency earthquake on the structure is insignificant, the response of 
structures under large earthquakes is almost linear. The requirement of training sample 
size is equally 200 for all the cases. Three large earthquakes with PGA of larger than 700 
cm/s2 have LOO error of around 0.11 in terms of RMS of response acceleration of the 
pier, the error of the others is quite small. This demonstrates that the surrogates have high 
accuracy with limited input samples.  
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Table 10. LOO errors of metamodels under different Mid-Niigata earthquake levels. 

Scale 
(%) PGA (gal) Sample 

size 
LOO error   
RMS-Pier RMS-Super. 

0.17 3 200 0.039 0.085 
0.35 6 200 0.037 0.083 
0.7 12 200 0.038 0.083 
1.75 30 200 0.038 0.086 
3.5 60 200 0.038 0.082 
5.25 90 200 0.037 0.082 
7 120 200 0.043 0.079 
8.74 150 200 0.038 0.084 
10.5 180 200 0.037 0.083 
12.24 210 200 0.037 0.084 
14 240 200 0.037 0.082 
17.49 300 200 0.037 0.085 
20.93 360 200 0.041 0.083 
24.42 420 200 0.038 0.081 
27.92 480 200 0.036 0.083 
29.32 503 200 0.039 0.083 
34.92 600 200 0.039 0.090 
41.97 720 200 0.106 0.054 
48.97 840 200 0.113 0.053 
55.96 960 200 0.071 0.058 

5.2.2 Sensitivity analysis of weighted response acceleration time-history 

Figure 5.7 shows unnormalized main effect of eight uncertain parameters under the 
same earthquake levels with the case of Kobe earthquake. In general, the sensitivity of 
model parameters under Mid-Niigata earthquake is quite small in comparison with the 
one of Kobe earthquake. The parameters Mrc and Krc1 are highly sensitive parameters with 
the gradual increase of main effect according to the rise of magnitude (PGA). However, 
the trend suddenly decreases at PGA of 720 cm/s2 and increase again since this coincides 
with the transform of nonlinear response characteristics of the pier starting at that level, 
as previously analyzed in section 3.3.5. It is reasonable to realize that most of the 
parameters are sensitive to RMS of acceleration time-history of the pier except that the 
variance of Mu actively affects RMS of acceleration of the superstructure. It is because 
the isolation system placing on the pier top is not well-functioned under this earthquake.  
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(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

(g)   

(h)  

Fig. 5.7  Unnormalized main effect of eight uncertain parameters in terms of RMS acceleration time-
history: (a) Mu, (b) Mrc, (c) Krc1, (d) Krc2, (e) Qrc, (f) Ki1, (g) Ki2, and (h) Qy in various earthquake 

levels with different scale (%) of Niigata earthquake. (Unit: (cm/s2)2) 
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5.2.3 Sensitivity analysis of weighted acceleration transfer ratios 

The process of sensitivity analysis for RMS of the transfer ratio between the 
superstructure and pier acceleration under varying seismic levels of Mid-Niigata 
earthquake was performed similarly to the one of Kobe earthquake in section 5.1.3. While 
Fig. 5.6 shows quite large bias between different magnitudes, Fig. 5.8 depicts 
insignificant effect on RMS of the transfer ratios at nonlinear parameters Krc2, Qrc, Ki2, Qy 

and the mass of the supertructure Mu. Whereas, linear parameters Krc1, Ki1, and Mrc has 
higher sensitivity, especially for nearly equal effects to the transfer ratios for almost all 
levels except few levels of very large magnitudes being larger than 800 cm/s2.  

 

 

Fig. 5.8 Unnormalized main effect of eight uncertain parameters Mu, Mrc,, Krc1, Krc2, Qrc, Ki1, Ki2, 
and Qy in terms of RMS of transfer ratios in various earthquake levels with different scale (%) of 

Mid-Niigata earthquake. 
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Uncertainty quantification 
 

Uncertainty quantification (UQ) for model updating of target existing structures is 
applied in this study. The uncertainty of the structures stems from structural changes 
under large earthquakes or the epistemic uncertainty due to lack of knowledge in 
modeling process. Results of UQ returns probabilistic distributions (posteriors) after 
involving both prior knowledge and real observations inverse uncertainty propagation in 
the Bayesian framework. The inference implemented under an earthquake event may not 
result in precise densities for all concerned model parameters due to different sensitivity 
degree of each under varying seismic characteristics. Therefore, utilizing data acquisition 
of many earthquakes is helpful for this problem. Moreover, generating random walks in 
Markov Chain Monte Carlo (MCMC) scheme requires advanced algorithms to solve 
problems of multimodality, high dimensionality for highly nonlinear dynamic models. 
Therefore, two methods including a traditional MCMC using Metropolis-Hasting updates 
and Different Evolution Adaptive Metropolis (DREAM) were used to implement the 
Bayesian inference in this chapter. Two software packages with MATLAB coding 
implementation, GPM/SA using the traditional MCMC (Higdon et al., 2008) and the 
DREAM_ZS adopting the DREAM algorithm (Vrugt, 2016) were used for the inverse 
propagation. GPM/SA is applied on the existing base-isolated building under a specific 
earthquake events, while DREAM_ZS is for the isolated bridge pier in Japan Design 
Specifications of Highway Bridge (JRA, 2012) using response data from various seismic 
characteristics. 

6.1 Uncertainty quantification using Markov Chain Monte 
Carlo algorithm (MCMC) 

Bayes’ theorem is generally described following the formula in Eq. 2.15 or a 
normalized one in Eq. 2.16 to infer posterior densities. In GPM/SA software, the 
metamodels are developed parallel with the inference process. The procedure of Bayesian 
inference via the inverse propagation of the uncertainty is implemented by MCMC using 
Metropolis-Hasting updates. The method was proposed by Kennedy and O’Hagan, 2000 
for the univariate system and expanded for multi-variate systems by Higdon et al., 2008.  
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The Bayesian inference procedure follows the sensitivity analysis of the base-isolated 
building on eight local stiffness parameters KB1, KB2, KCb1, KCb2, KCa1, KCa2, KC1, and KC2 

under the earthquake on September 21, 2011 in section 4.2.2. Stiffness parameters at the 
lower floors of the building KCa1, KC1, KCb1, and KB1 has higher sensitivity than ones of 
the upper floors. It is also predicted that the lower parts have a higher possibility of 
stiffness reduction than others do. Therefore, uncertainty quantification was implemented 
for four stiffness parameters KCa1, KC1, KCb1, and KB1 at the lower part of the structure. 
Based on bar plot of total sensitivity indices in Fig. 4.11, measured data at sensors C104, 
C106, C108 in the X direction, and B105 in the Y direction are chosen for UQ of KCa1, 
KC1, KCb1, and KB1, respectively.  

The first crucial step in the inference procedure is to predict the prior distributions of 
the concerned parameters. Herein, the priors were represented by uniform distributions 
with an assumption of ±10% variance equally for all the parameters. Input samples size 
200 were created by Latin Hyper Cube sampling on the uniform distributions. Structural 
responses were simulated for the input samples.  

Field data was acquired from sensors installed on the building. For each earthquake, 
we can collect only one data set from each sensor. This is disadvantage in the Bayesian 
inference since all updates are based on measured data associated with the uncertainty in 
probabilistic scheme. Moreover, noise always exists in the field data. Therefore, an 
indication of noise presence is required. In this study, noise of observed data was assumed 
to be equal to RMS of acceleration time history in last 10 seconds of the vibration. Normal 
distribution with zero mean and standard deviation of approximately 0.0005 m/s2 was 
assumed for all sensing data.  

It should be careful about how precise the calibrated prediction is. Hence, visual check 
was done to detect any strange outlier between the field data can the calibrated prediction 
based on the reduced models. The simulators ( )x  were constructed from Gaussian 
process in section 2.1. The modeling error was involved to the Bayesian implementation 
by adding the discrepancy ( )x  in Eq. 2.16 to the simulator. Figure 6.1 shows the 
calibrated simulator, prediction and the discrepancy between the simulator and actual data 
considering measured data from sensor B105 in the Y direction. The sum of the calibrated 
simulator in Fig. 6.1 (a) and discrepancy is known as calibrated prediction in Fig. 6.1 (b). 
Since the discrepancy between the simulator and the actual response is quite small, 
adjusted features seem not clearly different from the calibrated simulator. Note that the 
actual response was assumed by the mean of the system output. It can be concluded that 
the surrogate models are adequately accurate to represent the actual response of the 
structure. 

As the procedure presented in section 2.3, maximum likelihood acceptance criteria 
play a crucial role to decide whether a proposal point in MCMC moves to a next point or 
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stay at the current point. Herein, the key role of MCMC is to draw samples from further 
posteriors and keep moving forward to the target distribution. The process is implemented 
until obtaining stable posterior distributions. A single-chain MCMC using Metropolis-
Hasting updates was applied to calculate the posteriors in Eq. 2.17. As all traditional 
methods based on Monte Carlo simulation, MCMC requires to analyze convergence to 
ensure the stability of the target posterior distributions. Some convergence diagnostics 
such as using trace plots, and correlation analysis were used.  

The MCMC presented in this section was implemented with the total 75000 iterations 
including 25000 burn-in runs. Figure 6.2 shows trace plots of the parameters in MCMC 
procedure. The convergence was obtained before the stage of the burn-in process 
completed. In other words, a shorter length of 10000 runs can be applied for saving the 
computational time and storage capacity. Moreover, the draws for the eight parameters 
shows the randomness which can be a measure of the convergence, as shown in Fig. 6.3. 
Another convergence diagnostic is to use autocorrelation function to demonstrate 
independent draws in a trace. Figure 6.4 depicts very low correlation at lag 25 for all the 
parameters. It is hence concluded that 50000 walks after discarding the initial stage of 
burn-in is good to obtain reliable UQ results.  
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(a)  

(b)  

(c)  

(d)  

Fig. 6.1 Calibrated simulator and the discrepancy between the simulator and the actual response of 
the base-isolated building using field data from (a) sensor C104 in X dir., (b) sensor C 106 in X dir., 
(c) sensor C108 in X dir., (d) sensor B105 in Y dir. (blue circles are the field data at sensor 105 in Y 

direction, the black lines shows 5% and 95% pointwise quantiles of confidence interval of the 
simulator, yellow lines are the output responses computed from the LHS samples). 
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Fig. 6.2  Trace plots of hyperparameters of MCMC draws with betaV, betaU, lamVz, lamUz, 

lamWs, lamWOs, lamOs, logLik, logPrior, LogPost being hyperparameters defined in MCMC 
process. 
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Fig. 6.3 Trace plots of draws of the eight parameters KB1, KB2, KCb1, KCb2, KCa1, KCa2, KC1, and KC2 
regarding RMS of acceleration time-history of sensor 105 in the Y direction under the earthquake 
21th September, 2011, (note: Y axis shows sample values of the parameters normalized in [0,1]d). 
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Fig. 6.4 Sample autocorrelation of eight model parameter KB1, KB2, KCb1, KCb2, KCa1, KCa2, KC1, and 

KC2 regarding RMS of acceleration time-history of sensor 105 in the Y direction under the 
earthquake 21th September, 2011, (note: 95% confidence interval is in red color) 

 

The resulting posterior distributions using data from sensor B105 in the Y-direction 
under 21th Sep. 2011 earthquake are shown in Fig. 6.5. The posterior density of the 
parameter KB1 is better constrained by the data than others. It is because the variability 
KB1 has larger effect on the output at sensor B105 than others do. The parameters are less 
sensitive, their posterior distributions tend to have similar shape with the prior’ ones. 
However, the shape of KB1 still does not have clear tails of a Gaussian distribution. The 
UQ results using data from sensors C104, C106, C108 in the X-direction also indicates 
unexpected results, as shown in Fig. 6.6. It is hence concluded that acquired data under 
the small earthquake on 21th Sep. 2011 is not appropriate to update the model parameters. 
Moreover, the inference using one earthquake event was not able to update all parameters 
of interest. In the next section, the Bayesian inference will be implemented using the 
innovated algorithm DREAM using response data from more than one earthquake with 
different characteristics in magnitudes and frequency content. The DREAM is expected 
to overcome the limitations of the traditional MCMC such as multi-modality, increasing 
the mixing speed of drawn samples.  
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Fig. 6.5 The posterior distributions of eight stiffness parameters KB1, KB2, KCb1, KCb2, KCa1, KCa2, KC1, 
and KC2 regarding RMS of acceleration time-history of sensor B105 in the Y direction under the 

earthquake 21th Sep. 2011. 

 

 

      
Fig. 6.6 The posterior distributions of four stiffness parameters KB1, KCb1, KCa1, and KC1 regarding 

RMS of acceleration time-history of sensor B105 in the Y direction, sensor C104, C106, and C108 in 
the X direction, respectively under the earthquake 21th Sep. 2011. 
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6.2 Uncertainty quantification using Differential Evolution 
Adaptive Metropolis algorithm (DREAM) 

Updating all uncertain input parameters by simulating the optimal posterior 
distributions is essential to achieve a properly updated model. However, it is not always 
able to update all the parameters with high reliability without using more than one seismic 
response data induced by different earthquakes. For this reason, the parameter uncertainty 
of the isolated bridge was quantified using the response data from different levels of Kobe 
earthquake. The reason to choose this earthquake is because its seismic characteristics 
including the magnitude and frequency content cause damage-sensitive behavior on the 
structure. Unlike many previous studies using modal responses extracted at dominant 
modes in the Bayesian inference (Nishio et al., 2012; Au, 2012), this study quantifies the 
uncertainty using the responses in both time domain and frequency domain. Since no 
clear peak can be realized in the nonlinear responses by modal feature extraction, e.g. 
peak amplitudes in Fourier transfer functions, it is challenging to point out the dominant 
frequencies. To cope with this problem, an alternative solution is to use transfer ratios 
corresponding to all frequencies less than 5 Hz. Another solution is to use the responses 
in time domain by taking RMS of acceleration time-history for small time segments. This 
is because the incapability of constructing the metamodels and quantifying the 
uncertainty with very high-dimensional time-history features. However, the usage of the 
weighted time-history responses needs to be verified to ensure that there is no significant 
bias between its derived posteriors and “given true” values. The implementation of 
Bayesian inference is conducted using the DREAM algorithms (Vrugt et al., 2008; Vrugt 
et al., 2009) encoded in DREAM software package (Vrugt, 2016). The algorithm is an 
enhancement of MCMC. The important reason of use is that multi-chain DREAM 
algorithm can overcome limitations of the traditional MCMC adopted in section 6.1. 
DREAM can solve posterior sampling problems such as bimodality and nonsymmetric of 
the posterior distributions. The UQ procedure is briefly introduced in Fig. 6.7.  

In this section, the authors firstly demonstrate that the significantly sensitive 
parameters against the extracted response features which found in different earthquake 
magnitudes will have more precise posterior densities than ones whose variability have 
less impact on the responses. As a result, the accuracy of UQ results can be verified based 
on this clarification. The optimal posterior for each parameter can be then generated using 
response data acquired from different earthquakes. Finally, a sequential uncertainty 
quantification procedure using the long-term monitoring data is developed, which is 
expected to be applicable for any structures including building and bridges. 
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Fig. 6.7. The procedure of Bayesian uncertainty quantification 

6.2.1 Posterior distribution verification using Kobe earthquake response 
data 

The precision of the posterior distributions needs to be verified under two scenarios: 
(1) the applicability of the Bayesian inference using weighted time-history responses, (2) 
the effect of sensitivity evaluations on the reliability of derived posterior densities. To 
cope with these issues, two seismic levels, 10% and 100% corresponding to PGA 60 and 
600 gal were adopted to excite the bridge in its longitudinal direction. Two major 
ingredients which are most concerned in the inverse propagation in Eq. (2.17) constitute 
the prior knowledge on the parameter uncertainty and the choice of the observed data. 
The prior knowledge about the inputs was assumed to be uniform distributions produced 
by Latin Hypercube sampling in a limited range of ±10% variability. To facilitate the 
inverse inference, the sample values were normalized by coefficient bounds between 0.9 
and 1.1, with 1 being nominal coefficient. The observed data was created by adding white 
noise to the acceleration time-history and performed as normal distributions, as presented 
in section 3.3.6. These observations were exhibited by features in both time domain and 
frequency domain. The verification will be conducted with the assumption that the 
structure is in an undamaged condition. 
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Convergence diagnostics 
The Bayesian inference in Eq. (2.17) was implemented by the DREAM algorithm, 

which is an enhancement of the traditional MCMC to generate samples from complex 
multi-modal posterior distributions. The total of 30 weighted responses taken by RMS of 
acceleration time-history for each 1s and 40 transfer ratios between the response 
acceleration of the superstructure and pier corresponding to the frequencies less than 5 
Hz, respectively. Some diagnostics adopted include qualitative methods such as trace 
plots, convergence rate, and autocorrelation, and quantitative method as multi-chain Ȓ-
statistic of (Gelman and Rubin, 1992). The convergence diagnostics using Ȓ-statistic is 
known as the most powerful tool as it can indicate when the sampled chains have been 
obtained the limiting distributions. A Ȓ-statistic of 1.2 can be considered as a good proxy 
to diagnose how many samples can be discarded as burn-in, and the remaining samples 
can be used to build up the posterior distributions. Herein, convergence analysis results 
are shown for an example case of the original Kobe earthquake (PGA = 600 gal). The 
selected output feature is RMS of superstructure acceleration time-history for each 1s. 
The observed data was assumed to be the response of the actual model with input 
parameters designed at nominal coefficients under the undamaged condition. The 
observations were normal distributions with zero mean and 0.05 gal standard deviation 
(SNR = 40 dB).  

Convergence analysis must be done for every MCMC using DREAM algorithm in 
different seismic loadings. In this section, the analyses were performed for both PGA 60 
and 600 gal. However, only the case of PGA 600 gal is presented here for basic 
explanation of the uncertainty quantification procedure. The trace plots in Fig. 6.8 depict 
generations of each chain with different starting points. Figures show good mixing 
between the Markov chains after less than 1000 samples, i.e., 5000 runs for burn-in 
discarded. On the other hand, as shown in  Fig. 6.9, autocorrelation analysis for each 
parameter indicates small correlation coefficients of nearly zero at lag 30. Some 
parameters can be tolerated to consider autocorrelation at lag 50. This is not strictly 
required to predict the convergence since this method cannot determine when the 
convergence is obtained. Another proxy for convergence diagnostics is considering the 
acceptance rate which can dictate the mixing speed convergence rate. Figure 6.10 
indicates the rate is larger than 10% which can be considered as efficient mixing of the 
chains. The convergence evaluation via Ȓ-statistic indicate the convergence happens at 
early 20000 runs. As above analyzed, the total 50000 iterations including 5000 burn-in 
with a thinning interval of 5 can be called through MCMC.  
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Fig. 6.8 Chain convergence plot of the parameters 
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Fig. 6.9  Autocorrelation function of the eight uncertain parameters for 3 chains of walks. 

 

 
Fig. 6.10 Evolution of acceptance rate 

 

 
Fig. 6.11 Convergence diagnostics of sample chains, (note: dash line indicates critical threshold valued 

at 1.2). 
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Verification of posterior distributions of the model parameters 

The applicability of the Bayesian inference using weighted time-history responses is 
verified by comparing with one using transfer ratios at all frequencies of less than 5 Hz. 
The latter has been expected to provide more reliable posterior distributions owing to the 
ability of capturing responses in the wide dominant frequency range of the structure. The 
posterior distributions are derived by accepting any responses across the deviation 
interval of the observation noise. Figure 6.12 shows resulting marginal posterior densities 
of the model parameters using the features characterized by RMS of acceleration time-
history for each 1s and transfer ratios under the Kobe earthquake (PGA = 600 gal). It is 
interesting that the simulated distributions in terms of the weighted acceleration time-
history usage shift to the left side; in contrast, ones using transfer ratios concentrate to the 
right side of the nominal point. i.e., the coefficient equal to 1. It can be interpreted that 
the probabilistic distributions using the weighted time-history responses tend to 
underestimate the “true” value of the model parameters, this is contrary to the derived 
distributions using transfer ratios. The maximum bias between the posterior mean of Qrc 
and the “true” coefficient in term of the weighted time-history responses is at approximate 
1.6×10-4, i.e., around 0.016% variance that is even smaller than one using the features in 
frequency domain. The small bias is considered not affecting much on the reliability of 
posterior distributions. This conveys that the inference using the weighted time-history 
response features in small time segments can be applied to simulate the posterior precision 
with high reliability.  

The effect of sensitivity evaluations on the reliability of derived posterior densities will 
be proved by comparing the posterior densities of the eight parameters under two different 
earthquake magnitudes, with PGA of 60 and 600 gal. It is noticed that the sensitivity was 
roughly evaluated by using the responses characterized by RMS of the whole time-
histories (T = 30s) or RMS of all transfer ratios at the frequencies of less than 5 Hz (f < 5 
Hz). For UQ, increasing the number of features as much is essential to reduce ill-posed 
inverse problems, e.g., the maximum likelihood estimation. Under the undamaged 
condition, the posterior distributions are expected to have point estimates, i.e., Maximum-
A-Posterior (MAP) and mean, valued at a nominal coefficient of 1. As presented in 
section 5.1.2 regarding the sensitivity evaluations of the model parameters, Mu, Krc1, Ki1, 
Qy in case of 60 gal PGA hold higher main effect, and the others have less effect to the 
responses than ones in the original EQ (see Fig. 5.4). Correspondingly, Fig. 6.13 shows 
that the posterior distributions of Mu, Krc1, Ki1, Qy  under 10% level have point estimates 
approximately 1 and less uncertainty than ones in the 100% EQ level. However, the 
opposite indication is dedicated for the remaining parameters Mrc, Krc2, Qrc, Ki2.  While 
Mu is the most sensitive parameter, Krc2 and Qrc have no effect to the responses under 
earthquake PGA = 60 gal. The posterior distribution of Mu is hence well-constrained by 
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the observed data and has the most probable point estimates, MAP and mean being closely 
equal to 1. In contrast, the distributions of Krc2 and Qrc have wide uncertainty that is 
theoretically supposed to be a uniform distribution with the fact that no nonlinear response 
is found under this small earthquake. However, the little correlation between the 
parameters is supposed to cause the bias in the distribution quality. Therefore, it is 
suggested that fixing the noninfluential parameters which have very low total effect may 
eliminate this problem in the multivariate inference. Regarding to UQ results under the 
original EQ, the most sensitive parameter Ki2 shows the most precise distribution with 
MAP and mean of 1.0001. To sum up, the precision of derived posteriors strongly 
depends on the sensitivity degree of each model parameter. By examining sensitivity 
under various seismic loadings, the optimal posterior distributions for each parameter can 
be achieved. 

 
Fig. 6.12  Empirical posterior density of uncertain parameters in terms of RMS of superstructure 
acceleration time-history for each 1s and transfer ratios of all frequencies less than 5 Hz under the 

original Kobe earthquake (100% level). 
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Fig. 6.13  Empirical posterior density of uncertain parameters in terms of RMS of superstructure 

acceleration for each 1s under two earthquake levels, 10% and 100% corresponding to PGA of 60 and 
600 gal of Kobe earthquake. 

6.2.2 A sequential procedure for model updating using data from various 
earthquake levels 

Response feature is RMS of acceleration time-history 

This section presents an updating procedure of the uncertain parameters using 
available long-term data. The response acceleration of the superstructure and pier was 
weighted by RMS for each 1s due to the incapability of constructing the metamodels and 
quantifying the uncertainty with very high-dimensional time-history features. 
Consequently, a total of 30 RMS features of the 30s excitation duration was adopted. 
Considering inverse propagation capability of the uncertainty, a deterioration condition 
of the bridge was assumed with 5% reduction of Krc1, Krc2, Ki1 and Qy and the other factors 
with no change. To facilitate the inverse inference, uniform distributed parameter values 
following Latin Hypercube sampling was normalized through coefficient bounds between 
0.9 and 1.1, with 1 being nominal coefficient. The total 50000 iterations including 5000 
burn-in were called through MCMC. The convergence analysis is also performed for case 
under each earthquake levels to ensure the posterior distributions approaching 
convergence. Figure 5.5 indicates that Mu, Mrc, Krc1, Krc2, Qrc, Ki1, Ki2 and Qy highly affect 
the response features at 10%, 60%, 40%, 160%, 60%, 40%, 100%, and 15% levels, 
corresponding to PGA 60, 360, 240, 958, 360, 240, 600, and 90 gal, respectively. 
Marginal posterior distributions obtained by UQ under these earthquakes are shown in 
Fig. 6.14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
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Maximum a posterior (MAP) and distribution mean of Mu, Mrc, Qrc, and Ki2 are found 
at approximate 1 while ones of Krc1, Krc2, Ki1, and Qy values at around 0.95. In general, 
the posterior densities in Fig 6.14 are well-constrained by the experimental data and well-
defined by nearly Gaussian distributions. It is concluded that a sequential uncertainty 
quantification procedure can be constructed by comparing unnormalized main effects 
considering available long-term measured data.  

 

 

 
 

Fig. 6.14 Marginal posterior distributions of the eight uncertain parameters regarding extracted 
response features in time domain under the healthy and deteriorated conditions of the bridge. 
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Response feature is transfer ratios 
The UQ procedure was also conducted for response features in frequency domain. 

Herein, transfer ratios in frequency range less than 5 Hz were adopted. Figure 5.6 points 
out that 7 parameters Mu, Mrc, Krc1, Qrc, Ki1, Ki2 and Qy except for Krc2 are highly affect 
the response features at PGA 180, 420, 30, 420, 60, 503, 360 gal. Marginal posterior 
distributions obtained by UQ under these earthquakes are shown in Fig. 6.15. Maximum 
a posterior (MAP) and distribution mean of Mu, Mrc, Qrc, and Ki2 are found at approximate 
1 while ones of Krc1, Ki1, and Qy values at around 0.95. It is noticed that Krc2 with 
sensitivity nearly zero in all considered seismic magnitudes cannot inferred using 
earthquake responses in frequency domain.  

 

 

 

                        
Fig. 6.15 Marginal posterior distributions of the seven uncertain parameters (except for Krc2) 
regarding RMS of transfer ratios under the healthy and deteriorated conditions of the bridge 
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Summary, Conclusion, and Future Work 
 

7.1 Summary of major contributions 

The core idea in this thesis is to generate reliable posterior distributions of the uncertain 
model parameters and realize the seismic risks of the existing structures using the updated 
numerical models. To obtain this, sensitivity analysis and uncertainty quantification were 
conducted using Kriging metamodels under different seismic characteristics. The models 
that must be dealt with in this study include: (1) a base-isolated asymmetric building with 
the large number of DOFs to represent a complex geometry; (2) a seismically isolated 
bridge pier desinged in Japan Design Specifications of Highway Bridges.  

Bayesian sensitivity analysis (BSA) using a small learning sample with physical output 
features can be applied on complex building structures under various seismic excitations 
with high accuracy and efficiency. Running time is drastically decreased when using 
metamodels in BSA in comparison with Monte Carlo sensitivity analysis (MCSA) which 
is commonly applied on full models.  

Transfer function for a set of earthquakes before and after the main shock indicates 
that there were stiffness reduction indicators of the superstructure due to the large 
earthquake of March 11, 2011. The analysis of equivalent stiffness variance of the 
isolation system over time also points out that the stiffness variance of the isolation 
system was temporal and could recover in 4 months after the main shock.  

Global sensitivity analysis on local stiffness parameters of the superstructure indicates 
which parameters of lower floors should be considered in model updating. By comparing 
SIs against RMS and RMSE of outputs, parameter uncertainties due to local stiffness 
changes and modeling errors can be predicted. Moreover, the influence level of one factor 
to the dynamic response at various positions of the building can be also indicated. As a 
result, this can strongly influence parameter selection in model updating. Further, GSA 
of structural parameters has a strong relationship with characteristics of dominant mode 
shapes. The multi-input multi-output relation of numerical models can be interpreted 
comprehensively in any earthquakes. It is hence recommended for understanding the 
dynamic response of existing buildings better. Furthermore, GSA results in the frequency 
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domain can support selection of appropriate sensors in model updating. The study also 
suggests a strategy for effective monitoring data usage by limiting data acquisition to 
appropriate bandwidths via main sensitivity index. 

To evaluate sensitivity of the model parameters under random seismic excitations, 
there is a strong need to consider uncertainties from both loading history and structural 
response features. Sensitivity analysis was conducted on two different earthquake 
characteristics: Kobe earthquake with PGA of 600 gal and the frequency content 
coinciding with the frequency of the bridge, and Mid-Niigata earthquake with PGA of 
1715 gal and dominant frequency range of larger than 5 Hz. Kobe earthquake causes 
much higher sensitivity effect on the parameters than Mid-Niigata earthquake does. This 
indicates that structures having fundamental natural frequencies out of the range of 
ground motion will exhibit less sensitivity effect than the ones having two frequency 
ranges coinciding. Therefore, its effect on sensitivity results can be neglected. Moreover, 
by considering the most sensitive effects of the parameters under different earthquake 
characteristics and responses in time and frequency domain, response data and features 
can be selected for the uncertainty quantification procedure. 

The precision of the posterior distributions was verified under two scenarios: (1) 
Bayesian inference using small segment time-history responses tends to underestimate 
“true value” of the parameters. However, this bias is small to affect the precision of the 
posteriors; hence, UQ using response features in time domain can be conducted instead 
of using modal responses. (2) Sensitivity evaluations have strong effect on the reliability 
of UQ results. More sensitive parameters are verified to have more precise posterior 
distributions derived by UQ.  

The study proposes a sequential uncertainty quantification procedure based on 
sensitivity analysis using long-term monitoring data to derive optimal and efficient 
posterior distributions of the structural model parameters. The procedure can quantify 
epistemic uncertainties, i.e., structural changes subjected to large earthquakes and 
modeling errors using the long-term data measured from the considered damaging 
earthquake and later. Moreover, the procedure allows the effective and efficient use of 
the long-term monitoring data in reliability analysis. This proposed procedure is expected 
to be applicable for any civil structures under seismic excitations.  
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7.2 Future work 

Sensitivity analysis and uncertainty quantification in Bayesian framework are 
commonly applied in many fields including aerospace. However, it is not widely explored 
in structural engineering according to the author. Since the Bayesian statistics can solve 
many uncertainty problems, e.g., in the structure modeling, some limitations are required 
for further research. 

Strong correlation between the parameters as considering solving Bayesian statistics 
in multi-variate space will make the resulting posterior distributions less reliable. This 
problem is actively concerned recently. Intrinsically, if the parameters of concern are 
highly correlated, it seems inefficient to reduce the correlation by increasing the number 
of generations, i.e., Monte Carlo iterations in this study. Therefore, we expect to have 
better solutions to countermeasure the recent limitation in future work. 

The aim of generating optimal and efficient posterior distributions of the parameters 
has been achieved. These posterior distributions can be involved in reliability estimation 
to obtain new fragility curve of existing structures. 
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