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ABSTRACT 

It has been long recognized that particle crushing leads to a significant change in the properties 

of sensitive crushable soil. Thus, it is essential to study the deformation and failure of ground exhibiting 

particle crushing. The aims of this study are (1) to establish a mutual relationship between particle size 

distribution curve and grading index (2) to develop a new elastoplastic constitutive model considering 

particle crushing using grading index IG and its evolutional rule (3) to analyze the deformation and 

failure of ground exhibiting particle crushing using the proposed model.  

In the first part of this research, an elastoplastic constitutive model considering particle 

crushing  . Next, the effect of particle crushing was implemented to the critical state soil model (Roscoe, 

Schofield et al. (1963), Muir Wood (1990)) by incorporating the grading index IG and its evolution law 

due to crushing. Finally, the model was extended to incorporate the effect of density on the stress-strain 

characteristics by employing the concept of subloading surface (Hashiguchi and Ueno (1977)). The 

validation of the proposed model via a number of experimental laboratory triaxial tests under isotropic 

consolidation, consolidated undrained, and consolidated drained conditions has revealed the good 

performance of the model to capture the response of crushable soil. Furthermore, the effect of fine 

contents on the behavior of uncrushable soil was also discussed by our model. The advantage of our 

model is not only shearing and compression effect, but consolidation effect was also considered to the 

initiation of particle crushing. Also, the model can be used to study the behavior of both crushable and 

uncrushable soils. 

The second part of this study is to numerically analyze the deformation and failure of ground 

exhibiting particle crushing. To solve the non-linear equations with boundary conditions, the widely 

used numerical technique, Finite Element Method (FEM) was chosen. However, to overcome the 

volumetric locking problem in FEM with low order elements when dealing with critical state model, 

modified B-bar method (Commend, Truty et al. (2004)) was applied in this paper. The first practical 

application in this study is the analysis of bearing capacity of strip footing on Dogs Bay sand, a 

crushable soil. Parametric studies were conducted to evaluate the effects of parameters of the soil model 

to the bearing capacity of strip footing. It was found that (1) with 15 cm settlement, bearing capacity of 

strip footing slightly reduced (~10%) due to particle crushing in case of Dogs Bay sand, (2) the less 

crushing effect was observed for the larger the width of foundation. (3) with a specific allowable 

settlement, the effect of crushing on bearing capacity decreased when the footing size increased. (4) 

scale effect was also observed in our simulation; however, the ultimate bearing capacity was not 

observed in the simulation of Dogs Bay sand. (5) when assuming the bearing capacity under a certain 

settlement was “ultimate” bearing capacity, one interesting finding was that (the bearing capacity factor 

N  – strip footing width B) line of crushable soil in (log10-log10) scale was a straight line being shifted 
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downward from the (N-B) line of uncrushable soil. The second application is the analysis of passive 

and active earth pressure on Dogs Bay sand, a crushable soils. From the simulation results, it is observed 

that the occurrence of particle crushing significantly reduced passive earth pressure coefficient, around 

25% (from 7.4 to 5.8, to be more specific). On the other hand, active earth pressure is not much affected 

by particle crushing phenomenon.   
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 : Introduction 

1.1 Research background 

1.1.1 Particle crushing effect on geotechnical structures 

 There are a number of geotechnical structures in which soil beneath them exhibit particle crushing, 

such as highway embankments, earth dam (Tatsuoka (1991), Hattamleh, Al-Deeky et al. (2013)), or 

driven piles (Datta, Gulhati et al. (1980), Poulos and Chua (1985) ,  Alba and Audibert (1999)). Several 

examples of construction sites exhibiting particle crushing are (a) cone penetrometer test on carbonate 

soil in Dubai (Lees, King et al. (2013)), (b) piled foundations on carbonate soil at the North West Shelf, 

Australia (Senders, Banimahd et al. (2013)), etc. During their lives of operation or construction stages, 

soil particles can be broken into smaller ones due to large external forces or weak structure of the soil 

(Figure 1-1). Therefore, the initial physical properties of soil supporting these structures will change 

significantly. This crushing will greatly affect the soil strength and its stress-strain behavior at the 

elementary level (Hardin (1985)) because the soil after being crushed can significantly change its 

physical behavior. The increased level of crushing leads to a decrease in soil’s peak strength and a 

decrease in soil dilation angle (Hattamleh, Al-Deeky et al. (2013)). The variation in the original 

engineering properties can put the stability of such structures in danger. Hence, a proper consideration 

of particle crushing effect in soil properties of such geotechnical structures is vitally important to enable 

a safe design.  

 There are two main kinds of crushable soils: the first one is coarse-grained volcanic soils, for 

instance; volcanic soils from Hokkaido and Kyushu (Miura, Yagi et al. (2003)); the second one is 

carbonate soil, for instance, Dogs Bay sand from the west coast of Ireland is a highly crushable marine 

sediment. The Dogs Bay sand contained highly angular particles with a 94% carbonate content 

(Golightly and Hyde (1988)). 

 

Figure 1-1: Different modes of grain breakage.(Daouadji et al, 2001)  
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1.1.2 Grading index IG 

For a soil with an initial single sized grading, after being loaded to a large magnitude of s train, 

the initial PSD will gradually change to its limiting PSD in which the soil is not be able to be crushed 

anymore (for instance, Dog’s Bay sand in Figure 1-2). The key purpose of the study of particle breakage 

is to determine the degree of crushing that the particles are exhibiting. Thus, there have been many 

researchers attempting to propose a good grading index. There are two primary kinds of crushing indices 

in the literature, accounting for a particular particle size or the whole PSD. This part briefly reviews the 

existing grading indices and explains the reason why we choose grading index IG  Muir Wood (2007) 

for our model. 

 Lee and Farhoomand (1967) recommended the “relative crushing” index B15 which is the ratio 

of D15i/D15a, where D15i and D15a represent D15 size before and after crushing, respectively. Later, Lade, 

Yamamuro et al. (1996) proposed a similar index, B10. Marsal (1967) defined breakage index BM as the 

maximum percentage difference between the PSD curves before and after crushing at one certain 

diameter. Although these indices are easy to use, it is only able to observe a particular point on the PSD 

which is difficult to grasp the whole picture of crushable soil. Thus, a better approach is to use the 

parameter that can describe the whole  picture of PSD. 

 

Figure 1-2: Evolution of particle size distribution in ring shear tests on Dog’s Bay sand (after Coop et 
at., 2004) 
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Figure 1-3: a) Definition of grading index Br.   b) Definition of the modified grading index Br 

 
Figure 1-4:  Definition of grading index IG. 

 Hardin (1985) proposed a relative breakage index Br which is described in Figure 1-3a. The 

value of Br corresponding to the initial grading (AC curve), and the critical grading with maximum 

crushing level (AD line) are set to be 0 and 1, respectively. The value of Br at any other soil states (0 < 

Br < 1) is determined as the ratio between ABC area and ACD area in Figure 1-3a: 

 𝐵𝑟 =
𝑆𝐴𝐵𝐶
𝑆𝐴𝐶𝐷

 (1-1) 

Acknowledging that in reality, there is no PSD curve corresponding to Br = 1 in the way that 

Hardin proposed, and that the PSD should be bounded by a limiting distribution of PSD,  Einav (2007) 

proposed a modified version of Br based on the alternatively breakage potential (Br equals the ratio of 

ABC area over ABE area in Figure 1-3b)  

A lot of researchers have utilized Br index to measure the level of crushing. However, Br index 

is always equal to 0 for the initial soil state, regardless of different PSDs.  

Thus, the disadvantage of Br is that it is not possible to estimate the state of soil PSD based on 

only Br index. Muir Wood (2007) proposed a grading index IG whose definition is clarified in Figure 

1-4. Similar to the modified version of Br index Einav (2007a), Wood assumed that for each kind of 
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soil, the PSD gradually changes from the unit grading (vertical line AB)  to a critical grading (AD curve) 

that the soil tends to not exhibit any further significant crushing. In other words, during the loading 

process, each kind of soil is assumed to gradually reach its fractal critical PSD in which the soil will not 

exhibit any further crushing, irrespective of its initial grading. For unit grading and the critical grading, 

IG is set to be 0 and 1, respectively. Then, the crushing index IG corresponding to any arbitrary soil state 

(0< IG <1) is defined as: 

 𝐼𝐺 =
𝑆𝐴𝐵𝐶
𝑆𝐴𝐵𝐷

 (1-2) 

According to the definition of IG, the state of PSD of soil will be the same as long as they 

possess the same value of IG, regardless of their initial grading. Thus, it is able to observe the soil’s PSD 

state based on grading index. Therefore, in this research, the grading index IG will be used in the 

formulation of the soil model considering particle crushing.  

1.1.3 Grading indices and elastoplastic soil constitutive model considering particle 
crushing 

 The particle size distribution (PSD), which is one of the most widely measured properties of soil 

in laboratory tests, has been acknowledged to significantly control soil’s stress-strain relationship (Lade, 

Yamamuro et al. (1996), McDowell and Bolton (2000)). However, few models have incorporated the 

grain size evolution to consider particle crushing phenomenon. Yao, Yamamoto et al. (2008) developed 

a constitutive model considering crushing on sand based on Cam Clay model and a hardening parameter 

which is a revised plastic volumetric strain, depending on mean stress and volumetric plastic strain and 

crushing stress. Even though this model can capture crushable soil’s stress-strain behavior as well as 

the dilatancy of soil under different levels of stress and strain, there is no consideration of PSD in his 

model. Einav (2007a)proposed a modified version of the breakage index Br , which was originally 

proposed by Hardin (1985)and then used it to formulate a crushing model in the framework of 

thermodynamics. Unfortunately, it is unable to predict the PSD of soil based on Br grading index 

because the initial Br is always 0 irrespective of its initial PSD. Later, Kikumoto, Wood et al. (2010) 

extended the Severn Trent sand model (Gajo and Muir Wood (1999)) with an additional grading index 

parameter IG to take into account the effect of particle breakage due to the evolution of PSD.  However, 

the mutual relationship between grading index IG and particle size distribution curve has not been 

established. Also, the effect of compression and shearing on crushing were considered separately, which 

complicated the understanding of the model. Furthermore, the performance of Severn Trent sand based 

soil model considering crushing has not been validated with experimental results.  
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1.1.4 Critical state framework and particle crushing 

Based on experimental  tests by Coop (1993) on Dogs Bay sand considering isotropic compression test 

(Figure 1-5) and critical state after shearing (Figure 1-6), it can be seen that the state boundary surface, 

which contains the NCL and CSL, does exist for sand.  Sasitharan, Robertson et al. 1994, also found 

that state boundary surface exists for sand. 

 

Figure 1-5. Isotropic compression data of Dogs Bay sand (after Coop, 1993) 

 
Figure 1-6 Critical state of Dogs Bay sand (after Coop, 1993) 
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Figure 1-7:  Evolution of mobilized angle of shearing resistance with shear train of ring shear test 

(after Coop, 2004) 

 
Figure 1-8: Locus of critical states in stress space (Yang and Luo, 2018) (FSA, FSB, FSC, FSD are 

the same soil with different gradings) 

 

Particle crushing appears to have little effect on critical state friction angle (Coop (1990), Ghafghazi, 

Shuttle et al. (2014)). Also, the mobilized friction angle of shearing resistance is observed to be constant 

in ring shear test in Figure 1-7 (Coop, 2004). Similarly, Yang and Luo (2018) found in triaxial test with 

Fujian sand that the critical state friction angle is constant with different grading levels (for the same 

soil). Thus, critical state framework can be applied to particle crushing problems based on the 

assumption that critical state is reached in triaxial apparatus represent a balance between the volumetric 

compression by particle crushing and volumetric dilation arising from particle rearrangement, as 

suggested by Chandler (1985). 
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Regarding the movement of CSL due to particle crushing, it is observed that crushing caused a 

downward parallel shift in CSL in e-log(p’) space (Daouadji, Hicher et al. (2001), Muir Wood and 

Maeda (2007), Ghafghazi, Shuttle et al. (2014)). In this research, a critical state based soil constitutive 

model is developed with the assumption that the critical state line and the limited isotropic compression 

line are downward parallel shifted as crushing occurs. These downward movement is corresponding to 

the evolution of particle size distribution curve via the changing of grading index IG (Muir Wood (2007)). 

Then, the performance of the model is validated with the experimental results of Dogs Bay sand 

experimental elementary tests. The advantages of our proposed constitutive model are that (1) it can 

consider both shearing and consolidation in crushing phenomenon (2) it can be easily implemented into 

FEM code to simulate geotechnical structure problems. 

1.1.5 Finite element method and volumetric locking issue in 2D plane strain condition 

The numerical method FEM is widely used among engineers due to its high accuracy and 

stability. Unfortunately, when dealing with incompressible materials, the displacement based FEM 

formulation may exhibit an unrealistically stiff behavior. Similarly, elastoplastic soil constitutive 

models in which constant volume is predicted at critical state also witness this unrealistic stiffness in 

FEM. This is usually known as “volumetric locking” phenomenon. Volumetric locking problem occurs 

due to Gauss integration, a programming-friendly numerical integration technique in FEM. This 

volumetric locking occurs when a finite element mesh uses low order elements, such as constant strain 

triangle elements, or 4 nodes isoparametric quadrilateral element (Quad4). Zienkiewicz, Taylor et al. 

(1971) proposed the reduced integration method to resolve this volumetric locking. The idea of reduce 

the integration is simple: because the fully integrated elements cannot make the strain field volume 

preserving at all the integration points, it is tempting to reduce the number of integration points so that 

the constraint can be met. The slight loss of accuracy is counteracted by the improvement in 

approximation to real life behavior. However, this uniform-reduced integration may lead to the rank 

deficiency of the stiffness matrix (Hughes, Cohen et al. (1978)). Thus, the selective reduced integration 

(SRI) was proposed to overcome this rank deficiency problem (Hughes, Cohen et al. (1978)). The 

premise in SRI procedure is to use reduced integration only for the part of the stiffness that locks 

volumetric stiffness. While the SRI method is very efficient for isotropic elastic materials, in which it 

is easy to split up the stress into deviatoric and dilational parts, it is not straightforward to apply for the 

elastoplastic model in which the volumetric and deviatoric parts of the constitutive mode are coupled. 

An alternative method for SRI is B-bar method developed by Hughes (1980). Similar to SRI, the B-bar 

method works by treating the volumetric and deviatoric parts of the stiffness matrix separately. Instead 

of separating the volume integral into two parts, however, the B-bar method evaluates separately the 

shear and volumetric contribution of strain to element stiffness by modifying the definition of the strain 

in the element. In this method, shear strain is calculated with full integration as the normal FEM; 
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however, the volumetric strain is calculated with one order lower than that of standard FEM. In the 

plane strain condition, because B-bar method only satisfies the condition of zero strain in the out-of-

plane direction in a weak sense, it is essential to modify B-bar method to strictly satisfy the plane strain 

condition. In this research, the modified B-Bar method (Commend, Truty et al. (2004)) is used as a 

countermeasure to volumetric locking in FEM. 

1.1.6 Strip footing bearing capacity on crushable soil 

 One example of the application of our proposed model is to analyze the bearing capacity of 

footings on crushable soils. The bearing capacity analysis foundation is one of the most significant 

problems in geotechnical engineering. The bearing capacity equations of the widely used pile 

foundation and strip footing have been long established. The equation for estimating the bearing 

capacity of pile foundations is the summation of skin friction and pile end-bearing capacity. The famous 

equation for estimating the ultimate bearing capacity of shallow strip foundation by  Terzaghi (1944) is 

the summation of three distinct components: (1) the cohesive component of shear strength of the soil, 

(2) the surcharge pressure adjacent to the foundation, (3) the frictional resistance of the soil beneath the 

foundation. However, these equations do not consider crushing phenomenon in soil particles.  

In the context of bearing capacity of foundations, the applied pressures can cause the particle 

crushing phenomenon in soil particles, especially for the soils that are sensitive to crushing as mentioned 

in Section 1.1.1. This particle crushing phenomenon will result in the reduction of the footing’s bearing 

capacity. Thus, geotechnical engineers may jeopardize the safety of strip foundation in crushable soil 

areas. Several studies have attempted to consider particle crushing on the pile end-bearing capacity 

(Zhang, Nguyen et al. (2013), Kuwajima, Hyodo et al. (2009), Yasufuku and Hyde (1995)). These 

studies analyzed the reduction of end-bearing capacity due to particle crushing. Nevertheless, to the 

knowledge of the authors, there has been no or few studies considering the particle crushing effect on 

the bearing capacity of shallow foundations. Therefore, the aim of this study is to perform the numerical 

analysis of the particle crushing effect on the bearing capacity of strip footings. 

1.1.7 Lateral earth pressure coefficient on crushable soils 

The second application of our proposed model is to analyze the effect of particle crushing 

phenomenon on the analysis of active and passive earth pressure coefficients, 𝐾𝑎  and 𝐾𝑝, respectivrely, 

on crushable soils. This is also a fundamental problem in geotechnical engineering. The famous 

equations for estimating active and passive earth pressures has been proposed by Rankine. However, 

his solution didn't consider particle crushing phenomenon. In the case of passive earth pressure, under 

high stress, the soil particle may be crushed and the soil strength reduced. I expected that this will lead 
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to the reduction of 𝐾𝑝,. The active earth pressure 𝐾𝑎, on the other hand, is not expected to suffer a 

significant effect of crushing.  

Even though, experimental testing is an attractive approach to study the effect of particle 

crushing to strip footing’s bearing capacity and lateral earth pressure coefficients; experimental 

validation is not a straightforward way because 1) it does not provide a simple way to visualize the 

evolution of this phenomenon. On the other hand, computer simulation can show this visualization. 2) 

the study of the effect of particle crushing on bearing capacity of foundations, will necessarily require 

the experimental tests of one type of uncrushable soil and another soil with the same set of parameters 

as this uncrushable soil, but exhibiting crushing phenomenon under loading. Apparently, this 

requirement cannot be satisfied in practice. This study, therefore, performed the numerical analysis to 

study the effect of particle crushing on 1) strip footing bearing capacity 2) lateral earth pressure 

coefficients. 

1.2 Research objectives 

The primary objectives of this research are (1) to develop a simple constitutive soil model 

considering particle crushing, and (2) to analyze the bearing capacity of strip footing on crushable soil 

based on the proposed model: The steps to obtain the above mentioned objectives are follows: 

1. To establish the mutual relationship between PSD curve and grading index IG. To do this, we 

propose a simple method to obtain the PSD curve based on the current value of grading index 

IG. (Chapter 2) 

2. To develop an elastoplastic constitutive model for crushable soils based on critical state 

framework by incorporating the evolution of grading index IG due to particle crushing. (Chapter 

2) 

3. To validate the proposed model based on elementary tests of Dogs Bay sand, a crushable soil, 

by triaxial tests under isotropic consolidation, consolidated undrained, and consolidated drained 

conditions. (Chapter 3) 

4. To overcome the volumetric locking problem in FEM with Quad4 element in 2D plane strain 

condition by employing the modified B-bar method. (Chapter 4) 

5. To analyze the strip footing bearing capacity on crushable soils based on our proposed 

constitutive model for crushable soil and FEM with modified B-bar approach (Chapter 5)  

6. To analyze the effect of particle crushing on the active and passive earth pressure coefficients 

on crushable soils based on our proposed constitutive model and FEM method. (Chapter 6) 

1.3 Outline of dissertation 

Chapter 1 Introduction 
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  Research background and research objectives of this study are described in this chapter 

including the outline of this dissertation 

Chapter 2: A constitutive model for soil considering particle crushing 

Chapter 2 explains the principle concepts used to develop the elastoplastic constitutive model 

for crushable soils. Firstly, an overview of the available grading indices is presented, and appropriate 

grading index is chosen for our model formulation. Then, a simple but effective method to obtain the 

PSD corresponding to a value of grading index is proposed. This method clarifies the mutual 

relationship between PSD and grading index. After that, the formulation of the particle crushing 

constitutive model in the framework of critical state theory utilizing the evolution of PSD due to 

crushing is described in detail.  

Chapter 3: Validation of soil constitutive model considering particle crushing 

In this chapter, the validation of the proposed model with experimental elementary tests and 

the parametric calibration of material parameters governing the crushing behavior is presented. 

Although the model is formulated in a simple way, it can not only capture stress-strain behavior of 

uncrushable soils but also can be used to observe the evolution of PSD curve. The parametric studies 

and parameter calibration is also presented in this chapter 

Chapter 4: Volumetric locking problem in FEM and its countermeasures 

When dealing with critical state soil model, FEM with low order elements may face volumetric 

locking problem, which leads to the inexact solution. Thus, this section reviews the characteristics of 

volumetric locking in FEM and its countermeasures including reduced integration, selective reduced 

integration, B-bar method. Finally, modified B-bar method, which is an appropriate method to deal with 

volumetric locking problem in 2D plane strain is described in detail. Also, the detail formulation of the 

modified B-bar method approach for Quad4 element is presented. The performance of FEM with the 

modified B-bar is validated in the appendix. There are two validation examples in this section including 

the beam bending problem and the strip footing bearing capacity with VonMises yielding criteria.  

Chapter 5: Analysis of strip footing bearing capacity on crushable soil 

Chapter 5 presents a numerical study of the strip footing bearing capacity on Dogs Bay Sand, 

a crushable soil, is conducted by using our particle crushing model and FEM with B-bar method. The 

parametric studies are also conducted to study the effect of material parameters to the strip footing 

bearing capacity. The scale effect of the calculation of bearing capacity of strip footing is also discussed 

in Chapter 5. 

Chapter 6: Active and passive earth pressure coefficient analysis on crushable soils 
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 This chapter studies the effect of particle crushing on the analysis of active and passive earth 

pressure coefficients analysis. In the first part of this chapter, FEM code is validated by comparing the 

analytical result of Rankine with the numerical simulation using Drucker-Prager model, with the 

parameters calibrated to be the same as Mohr Coloumb yield criteria under plane strain condition. Then, 

the developed soil model considering particle crushing is implemented to this FEM code.  

Chapter 7: Concluding remarks and future research 

 Chapter 6 concludes the substantive findings and novelty of this research and provides the 

prospects for future research. 

1.4 Notations and symbols 

As for the notations and symbols, bold letters denote vectors and matrices; “∙” denotes an inner 

product of two vectors (e.g., 𝐚 ∙ 𝐛 = 𝑎i𝑏i) or a single contraction of adjacent indices of two tensors (e.g., 

(𝐜 ∙ 𝐝)ij = 𝑐ik𝑑kj); “:” denotes an inner product of two second-order tensors (e.g., 𝐜: 𝐝 = 𝑐ij𝑑ij) or a 

double contraction of adjacent indices of tensors of rank two and higher (e.g., (𝐞: 𝐜)ij = 𝑒ijkl𝑐kl); ⊗ 

denotes a tensor product of two vectors (e.g., (𝐚 ⊗ 𝐛)ij = 𝑎i𝑏j) or a tensor product of two second-order 

tensors (e.g., (𝐜 ⊗ 𝐝)ijkl = 𝑎ij𝑏kl ); “‖ ‖” denotes the norm of a first-order tensor (e.g., ‖𝐚‖ =

√𝐚: 𝐚 = √𝑎i𝑎i) or a second-order tensor (e.g., ‖𝐜‖ = √𝐜: 𝐜 = √𝑐ij𝑐ij); 1 is the second-order identity 

tensor; 𝑰 is the fourth-order identity tensor (𝐼ijkl =
1

2
(𝛿ik𝛿jl + 𝛿il𝛿jk)); “ ̇ ” denotes the time derivative; 

and the subscript zero denotes the initial state (e.g., 𝑒0 = initial void ratio). 
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 : A Constitutive Model for Soil Considering 

Particle Crushing 

2.1 Grading index and particle size distribution curve 

2.1.1 Mutual relationship between particle size distribution curve & grading index IG 

From the definition of grading index, IG the initial value of IG can be determined from the 

current PSD and the assumption of the critical PSD, unit PSD for a particular soil. This section presents 

a simple method to obtain the mutual relation between PSD and 𝐼𝐺. In other words, from a single value 

of IG obtained in the simulation during loading processes, the corresponding PSD can also be obtained 

automatically by our proposed method.  

Due to the importance of PSD in the study of granular material, a lot of researchers have made 

efforts to propose a number of PSD equations. For example, Andreasen and Andersen (1930) proposed 

an equation describing the PSD grading down from the maximum diameter to a diameter equal to zero 

as follows: 

 𝑓(𝐷) = (
𝐷

𝐷𝑚𝑎𝑥
)
𝑛

 (2-1) 

where D is particle diameter, 𝐷𝑚𝑎𝑥is the maximum particle diameter, n is a constant parameter. The 

Equation 2-1 followed fractal particle size distribution with the dimension of n (Tyler & Stephen (1992)) 

In an attempt to better describe the curvature of PSD, Jaky (1944) proposed the equation of 

PSD as: 

 𝑓(𝐷) =  exp [−
1

𝑝2
𝑙𝑛 (

𝐷

𝐷0
)
2

] (2-2) 

in which 𝐷0 = 2mm and 𝑝 is a constant parameter. 

Recognizing that there is a limited minimum diameter of PSD for each kind of granular soil in 

practical situations, Dinger and Funk (1994) came up with a modified version to account for the 

minimum particle size (𝐷𝑚𝑖𝑛): 

 𝑓(𝐷) =
𝐷𝑛 − 𝐷𝑚𝑖𝑛

𝑛

𝐷𝑚𝑎𝑥
𝑛 − 𝐷𝑚𝑖𝑛

𝑛  (2-3) 
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Figure 2-1: A comparison between particle size distribution curve by experimental test (Coop, 2004) 

and by using Eq. (2-4) 

Table 2-1: Material parameters for PSD curve 

Dmax 0.425 

kunit 20 

kcritical 0.9 

To take the advantage of the preceding formulas, we proposed a simple equation for PSD 

considering both 𝐷𝑚𝑎𝑥 , 𝐷𝑚𝑖𝑛 and a good curvature. Furthermore, to consider the practical experiment 

tests in which the minimum size of the particle is controlled by the sieve’s size, we introduced a 

modified form of the PSD equation by Jaky (1944) but further considering 𝐷𝑚𝑎𝑥, 𝐷𝑚𝑖𝑛−𝑙𝑖𝑚𝑖𝑡: 

 𝑓(𝐷, 𝑘) =  exp [𝑘𝑙𝑜𝑔10
𝐷

𝐷𝑚𝑎𝑥
] ; 𝐷 = [𝐷𝑚𝑖𝑛−𝑙𝑖𝑚𝑖𝑡 , 𝐷𝑚𝑎𝑥] (2-4) 

in which the variable 𝑘 denotes curvature coefficient of PSD. Particle diameter 𝐷 ranges from the 

maximum diameter 𝐷𝑚𝑎𝑥 of PSD, to the minimum size 𝐷𝑚𝑖𝑛−𝑙𝑖𝑚𝑖𝑡 of PSD limited by the experiment 

of sieve analysis. Acknowleged that 𝐷𝑚𝑎𝑥 and 𝐷𝑚𝑖𝑛−𝑙𝑖𝑚𝑖𝑡  are constants in this equation, and PSD is 

just a function of the coefficient of the curvature of PSD and particle diameter. Our proposed equation 

for PSD is illustrated with the PSD of Dogs Bay Sands tested by Coop, Sorensen et al. (2004) as in 

Figure 2-1 with the material parameters for PSD curve described in Table 2-1. In chapter 5 of this thesis, 

we will also use Dogs Bay Sand for our model validation.  

Notice that Eq. (2-4) can be rewritten as: 

 𝑓(𝐷, 𝑘) = (
𝐷

𝐷𝑚𝑎𝑥
)
𝑘𝑙𝑜𝑔10𝑒

; 𝐷 = [𝐷𝑚𝑖𝑛_𝑙𝑖𝑚𝑖𝑡 , 𝐷𝑚𝑎𝑥] 
(2-4a) 

Thus, we assumed that our proposed PSD is always obey to the fractal distribution. Because fractal 

distribution has the form ( 𝐷

𝐷𝑚𝑎𝑥
)
3−𝑑

 , d is the dimension of fractal distribution. Our proposed equation 
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has a dimension of (3 − 𝑘𝑙𝑜𝑔10𝑒) during loading process.  So, we assumed the fractal distribution rule 

for PSD during the whole process of loading, not just the critical PSD. 

Based on curve fitting method, it is easy to obtain two constant parameters 𝑘𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and 𝑘𝑢𝑛𝑖𝑡, 

corresponding to the curvature coefficients of critical PSD and unit PSD for each kind of soil, 

respectively.  

Grading index 𝐼𝐺, as explained in the previous section, is defined by three different particle size 

cumulative functions: the current, unique, and ultimate cumulative functions as follows: 

  𝐼𝐺 =
𝑆(𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝑆(𝑘𝑢𝑛𝑖𝑡)

𝑆(𝑘𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) − 𝑆(𝑘𝑢𝑛𝑖𝑡)
  

 

(2-5) 

where S is the area of the segment which is defined by integrating the area of cumulative function over 

the 𝑙𝑜𝑔10 𝐷 scale,  

 𝑆 = ∫ 𝑓(𝑘, 𝐷)𝑑(log10𝐷)
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 (2-6) 

Note that when 𝑘 = 𝑘𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝐼𝐺 = 1; 𝑘 = 𝑘𝑢𝑛𝑖𝑡, 𝐼𝐺 = 0. When  𝑘𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ≤ 𝑘 ≤ 𝑘𝑢𝑛𝑖𝑡, S is the area of 

the segment between the PSD and x-axis form from 𝐷𝑚𝑖𝑛 to 𝐷𝑚𝑎𝑥 . Therefore, 𝑆(𝑘𝑢𝑛𝑖𝑡)  and 

𝑆(𝑘𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) are known values.  

Substituting Eq. (2-4) into Eq. (2-6) , we can derive the equation for S as follows: 

 𝑆 =
1

𝑘
[1 − 𝑒𝑥𝑝 (𝑘𝑙𝑜𝑔10

𝐷𝑚𝑖𝑛
𝐷𝑚𝑎𝑥

 )] (2-7) 

The current value of k can be numerically obtained by using bisection algorithm from Eqs. (2-5) 

& (2-7). Finally, from the obtained current 𝑘, the current PSD is readily to be plotted. Until now, the 

mutual relation between IG and PSD curve has been clarified. The initial value of IG can be determined 

from the initial PSD. Later, the variation of IG can be used to check the variation of PSD. This mutual 

relationship is particularly useful in studying the behavior of crushable soils. 

For example, in the 1D compression test, a crushable soil with material properties described in 

Table 2-2 after exhibiting a large compressive stress, the occurrence of soil particle crushing results in 

the changing of PSD. This variation of PSD leads to a change in the grading index IG. In turn, the new 

value of IG can be used to plot the new PSD (see Figure 2-2). Thus, during the loading process, we can 

not only observe stress-strain relationship of soil, but also, the evolution of PSD by using this method.  
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Figure 2-2 Isotropic consolidation of crushable soil and its variation of PSD & grading index IG 
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Table 2-2: Material parameters of crushable soil 

 

2.1.2 Evolution law of grading index IG 

Now, the evolution law of 𝐼𝐺 is necessary  Fortunately, because of the existence of a direct 

relation between 𝐼𝐺 and the evolution law of PSD due to the rushing effect, it is natural to relate 𝐼𝐺 to 

the crushing stress that the soil is exhibited   

 𝐼𝐺 = 1 − 𝑒𝑥𝑝 (−
𝑝𝑥 − 𝑝𝑥0
𝑝𝑟

) (2-8) 

Where, 𝑝𝑥 is the crushing stress at the time that particle crushing happens  𝑝𝑥0 is a constant material 

parameter representing the magnitude of mean stress that is necessary for the onset of particle crushing 

in the isotropic consolidation test of soil with unit grading (Figure 2-3a). 𝑝𝑟  denotes a constant 

parameter which controls the rate of particle crushing or the rate of convergence from 0 to 1 of IG after 

crushing has been initiated (Figure 2-3)  As the magnitude of 𝑝𝑟 decreases, i e  as the soil weakens, the 

value of IG converges faster to 1  The crushing behavior of soil particles obviously depends on the 

properties of individual grains (such as mineralogy, hardness, shape and size) and environmental 

conditions (such as packing density, particle size distribution, stress level, and mobilized friction), 

which would be to some extent reflected in soil parameters 𝑝𝑟  and𝑝𝑥0 . Eq  (2-8) ensures that IG 

monotonically increases from 0 to 1 with an increase in 𝑝𝑥  with its asymptote being infinity (Figure 

2-3)  Finally, 𝐼𝐺 is a stress dependent coefficient, and its evolution law can be derived as follows: 
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Figure 2-3: Variation of the grading index IG with the increase of crushing 

 
𝐼𝐺̇ =

1

𝑝𝑟
𝑒𝑥𝑝 (−

𝑝𝑥 − 𝑝𝑥0
𝑝𝑟

) 𝑝̇𝑥 =
1 − 𝐼𝐺
𝑝𝑟

𝑝̇𝑥 (2-9) 

In case of isotropic consolidation, particle crushing happens when the soil stress reaches crushing 

stress 𝑝𝑥  However, in case the soil exhibits shearing after isotropic consolidation, the combined effect 

of shearing and compressive stress will determine the occurrence of particle crushing  For the sake of 

simplicity, to judge the occurrence of particle crushing with the simultaneous effect of compressive and 

shearing stress, we proposed the crushing surface 𝑓𝑥 as: 

 𝑓𝑥 = 𝑙𝑛𝑝 +
2

𝛼
𝑙𝑛 {1 + (

𝜂

𝑀𝑥
)
𝛼

} − 𝑙𝑛𝑝𝑥
′  (2-10) 

where, 𝑀𝑥 is a material parameter that dictates the speed of crushing by controlling the slope of crushing 

surface  Compared to the larger value of 𝑀𝑥, the crushing surface with a smaller 𝑀𝑥 is smaller in size 

in comparison with a larger 𝑀𝑥 (Figure 2-4). In other words, the smaller value of 𝑀𝑥 implies that under 

a certain effective mean stress, the magnitude of shearing stress required to initiate particle crushing is 

smaller. 

 When particle crushing occurs, 𝑓𝑥(𝜎𝑖𝑗, 𝑝𝑥) = 0 & 𝑑𝑝𝑥 > 0 , the consistency condition of  𝑓𝑥 

requires that 𝑑𝑓𝑥(𝜎𝑖𝑗, 𝑝𝑥) =  0, which leads to:  

 

 𝑝̇𝑥 = 𝑝𝑥
𝜕𝑓𝑥
𝜕𝝈𝑖𝑗

 𝝈̇𝑖𝑗        (2-11) 
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Figure 2-4: Mx parameter & crushing surface 

From this basic idea of the proposed evolution law of grading index IG, we can incorporate to any model 

to considering particle crushing. 

2.2 A constitutive soil model considering particle crushing  

An elastoplastic constitutive model exhibiting particle crushing is developed based on 

continuum mechanics. The proposed model is formulated based on the extension of critical state soil 

model (Roscoe, Schofield et al. (1963) and Muir Wood (1990)) to incorporate the effect of packing 

density on the stress-strain characteristics by introducing the concept of subloading surface. Then, the 

effect of particle crushing is further implemented by considering the evolution of particle size 

distribution due to crushing stress change and its effect on the constitutive behavior. 

2.2.1 Small strain assumption 

First of all, we assume additive decomposition of the total strain rate tensor as: 

 𝜺̇ = 𝜺𝐞̇ + 𝜺𝐩̇ (2-12) 

where 𝜺ė and 𝜺ṗ are elastic and plastic strain rate tensors, respectively  

2.2.2 Elastic stress-strain relationship 

For elastic stress–strain relationship, we assume a conventional, nonlinear elastic bulk modulus 

𝐾 given as: 

 𝐾 =
𝜐0
𝜅
𝑝′ (2-13) 

where, 𝑣0 is initial specific volume, κ is swelling index that represents the slope of elastic volumetric 

relationship in semi-logarithmic ln p'–v plane and p' is mean effective stress given by 𝑡𝑟𝑎𝑐𝑒(𝝈′) where 

𝝈′ is the Cauchy’s effective stress tensor  The shear modulus 𝐺 is given as:  
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𝐺 =

3𝐾(1 − 2𝜐𝑒)

2(1 + 𝜐𝑒)
 

(2-14) 

where the Poisson’s ratio 𝜈e is assumed to be constant in this model   

Thus, the rate form of the elastic relationship is derived as: 

 𝝈̇′ = 𝑫𝒆: 𝜺̇𝒆 = 𝑫𝒆: (𝜺̇ − 𝜺̇𝒑) (2-15) 

where 𝑫e denotes the elastic stiffness tensor given as: 

 
𝑫𝒆 = 𝐾𝟏⊗ 𝟏+ 𝟐𝐺 (𝑰 −

𝟏

𝟑
𝟏⊗ 𝟏)    (2-16) 

As an inverse tensor of the elastic stiffness tensor always exists, we get, 

 𝜺̇𝒆 = (𝑫𝒆)−𝟏: 𝝈̇′ (2-17) 

Taking the trace on both sides of Eq. (2-15), we get the elastic volumetric strain as: 

 𝜺𝒗
𝒆 =

𝜅

1 + 𝑒0
𝑙𝑛
𝑝′

𝑝0
′  (2-18) 

2.2.3 Yield function 

Critical state is an ultimate condition towards which all states of soil finally approach when the 

soil is sheared. The critical state line (CSL) has been chosen as linear in a semi-logarithmic compression 

plane, which is the specific volume, v (= 1+e), versus the logarithm of mean effective stress, ln p'. 

Similar to the critical state line (CSL), Limiting Isotropic Consolidation Line (LICL) is a reference line 

in the v-ln p’ plane where any stress state finally approaches under isotropic compression. It is 

customary to utilize the sstate boundary surface containing CSL and LICL (Figure 2-5) in the formation 

of critical state model Roscoe, Schofield et al. (1963). Specific volume on the state boundary surface, 

vsbs, which defines the loosest state of soil at the current stress (𝑝, 𝜂)  is given by considering the 

combined effects of compression and dilation as: 

 𝜐𝑠𝑏𝑠 = 𝑁 − 𝜆𝑙𝑛
𝑝′

𝑝𝑎
+ (Γ − 𝑁)𝜁(𝜂) (2-19) 

where, 𝜂(= 𝑞/𝑝′) is stress ratio, 𝑞 is deviator stress, 𝑝𝑎(= 98𝑘𝑃𝑎) denotes atmospheric pressure, l is 

compression index, 𝜁(𝜂) is a monotonic increasing function of stress ratio η satisfying 𝜁(0)=0 on LICL 

and 𝜁(𝑀) = 1 on CSL. 𝛭 is critical state stress ratio (=𝜂𝑐𝑠). N and  represent specific volumes on 

LICL (𝜂 = 0) and CSL (𝜂 = Μ) at 𝑝′ = 𝑝𝑎, respectively. It is postulated that different functions of 𝜁(𝜂)  

are used for different versions of critical state models (Figure 2-6): 

 𝜁(𝜂) =
𝑙𝑛 {1 + (

𝜂
𝑀)

𝛼
}

𝑙𝑛2
 (2-20) 



Chapter 2 A constitutive model for soil considering particle crushing 

 

21 

 
Figure 2-5 : Specific volume of soils in loosest state 

 
Figure 2-6:  a) Variation of 𝜁(𝜂) with respect to 𝛼.     b) Different shapes of yield function with 

respect to 𝛼  

 
Figure 2-7: State boundary surface considering particle crushing effect 

 

The particle crushing effect on soil behavior is then incorporated by extending the critical state 

concept. As noticed by a lot of researchers, breakage caused a downward parallel shift in the  

CSL in e-logp’ space ( Daouadji, Hicher et al. (2001), Wood and Maeda (2008), Ghafghazi, Shuttle et 

al. (2014), Bandini and COOP (2011)) and that the downward shift is a parallel shift of CSL in e-log p’ 
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space (Ghafghazi, Shuttle et al. 2014). The occurrence of particle crushing will lead to a denser state of 

the soil; therefore, our key concept in the formulation the model for particle crushing here is that the 

particle crushing effect of soils is considered by the downward parallel movement of the state boundary 

surface in the volumetric plane of p' and v. For this purpose, a state variable   is newly introduced to 

represent the downward shift of the state boundary surface in the (𝑙𝑛𝑝′, 𝜁(𝜂), 𝑣) space as indicated in 

Figure 2-7 . From this, the state parameter   is a non-negative variable defined as the volumetric 

distance between the state boundary surfaces for soil with and without crushing effect.   works as a 

state variable controlling the elastoplastic response in the constitutive model. The specific volume on 

the state boundary surface of crushed soil, 𝑣𝑠𝑏𝑠𝑐𝑟𝑢𝑠ℎ𝑒𝑑, is thus given in a similar way as Eq. (2-19). 

 

 
𝜐𝑠𝑏𝑠
𝑐𝑟𝑢𝑠ℎ𝑒𝑑 = 𝜐𝑁𝐶 + 𝜓 = Ν − 𝜆𝑙𝑛

𝑝′

𝑝𝑎
+ (Γ − Ν)𝜁(𝜂) + 𝜓 (2-21) 

Since the soil whose states lie under the state boundary surface do exhibit plastic strain together 

with elastic strain, subloading surface concept proposed by Hashiguchi and Ueno (1977) is further 

introduced to portray this behavior. Using a state parameter 𝛺, the combination of specific volume and 

mean effective stress to describe the changing strength and stiffness is incorporated in this model. As 

all states of soil locate on or below the state boundary surface in Figure 2-8, the state boundary surface 

defines the loosest, upper limit of specific volume of soils. Consequently, the state parameter 𝛺 is thus 

defined as the specific volume difference between the current state and the loosest state under the same 

stress (𝑝, 𝜂) on the state boundary surface as shown in Figure 2-8. 

According to this concept, soil exhibits irreversible deformation below the state boundary 

surface and gradually approaches the state boundary surface with loading  Taking a state variable 𝛺 that 

is the difference between the specific volume of the current state and that on the state boundary surface 

under the same stress (p', 𝜂), we can represent an arbitrary specific volume 𝑣: 

 

Figure 2-8: Modeling of volumetric behavior of soil considering particle crushing and density 

effect 
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 𝜐 = 𝜈𝑠𝑏𝑠
𝑐𝑟𝑢𝑠ℎ𝑒𝑑 − 𝛺 = Ν − 𝜆

𝑙𝑛𝑝′

𝑝𝑎
+ (Γ − Ν)𝜁(𝜂) + 𝜓 − 𝛺 (2-22) 

The definition of the state variable 0W is illustrated in Figure 2-8. Though Been and Jefferies (1985) 

proposed a similar state parameter as volumetric distance of the soil from the reference state on the 

steady state line under current mean effective stress, our parameter 𝛺 always refers to the volumetric 

distance from the current state to the loosest state of soil (specific volume on the state boundary surface) 

under the current stress condition p' and q and the current state parameter for crushing level   

During plastic flow W  decreases gradually with the development of plastic deformation and 

finally converges to zero  An evolution law of W  can, therefore, be chosen as: 

 

 

 

𝛺̇

𝜐0
= −𝑄(𝛺)‖𝜺̇𝒑‖ (2-23) 

where, 𝜺̇𝑝 is plastic strain rate tensor and 𝑄(𝛺)is a function of 𝛺 given as: 

 𝑄(𝛺) = 𝜔𝛺|𝛺| (2-24) 

where 𝜔 is a parameter controlling the effect of density  

From the current specific volume 𝜐  by Eq  (2-22), we can also calculate the initial specific 

volume 𝑣0 by substituting the initial states: = 𝜐0, 𝜓 = 𝜓0, 𝛺 = 𝛺0,  𝑝′ = 𝑝0′ , 𝑞 = 𝑞0 : 

 𝜐0 = Ν− 𝜆
𝑙𝑛𝑝0

′

𝑝𝑎
+𝜓0 −𝛺0  (2-25) 

Total volumetric strain (compression is taken to be positive) generated from the initial state to the 

current state is given by: 

 𝜀𝑣 = −
𝑑𝜐

𝜐0
=
𝜐0 − 𝜐

𝜐0
 (2-26) 

By substituting Eqs  (2-22) and (2-25) for Eq  (2-26), we get, 

 

 
𝜀𝑣 =

1

𝜐0
{𝜆𝑙𝑛

𝑝′

𝑝0
+ (Ν − Γ)ζ(η) − (ψ − ψ0) + (𝛺 − 𝛺0)} (2-27) 

Plastic volumetric strain can be determined by taking a difference between the total volumetric 

strain given by Eq  (2-27) and the elastic volumetric strain is given by Eq  (2-14): 

 

 
𝜀𝑣
𝑝
=
1

𝜐0
{(𝜆 − 𝜅)𝑙𝑛

𝑝′

𝑝0
+ (Ν − Γ)ζ(η) − (ψ − ψ0) + (𝛺 − 𝛺0)} (2-28) 

 

From Eq  (2-28), yield function f for soil considering the effect of particle crushing can be 

written as follows: 

 

 
𝑓 =

1

𝜐0
{(𝜆 − 𝜅)𝑙𝑛

𝑝′

𝑝0
+ (Ν − Γ)ζ(η) − (ψ −ψ0) + (𝛺 − 𝛺0)} − 𝜀𝑣

𝑝 (2-29) 



Chapter 2 A constitutive model for soil considering particle crushing 

 

24 

2.2.4 Flow rule 

Assuming associated flow rule in the proposed model, we obtain the plastic strain rate tensor 

as: 

 𝜺̇𝒑 = 〈Λ̇〉
𝜕𝑓

𝜕𝝈′
 (2-30) 

where 𝛬̇  is the rate of the plastic multiplier  The loading criterion is thus given by 𝛬̇ > 0  As unlimited 

distortional strain is exhibited at critical state without any change in stress or volume, 

𝑡𝑟𝑎𝑐𝑒(𝜕𝑓/𝜕𝝈)becomes zero when  𝜂 is equal to Μ. (Ν − Γ)is thus equal to 2𝑙𝑛2(𝜆 − 𝜅)/𝛼) in case Eq. 

(2-20) is applied and the yield function is finally given as follows: 

 

 

 

𝑓 =
𝜆 − 𝜅

𝜐0
[𝑙𝑛

𝑝′

𝑝0
+
2

𝛼
𝑙𝑛 {1 + (

𝜂

𝑀
)
𝛼

}] −
ψ −ψ0
𝜐0

+
𝛺 − 𝛺0
𝜐0

− 𝜀𝑣
𝑝 (2-31) 

Notice that if subloading effect is necessary in this model if the crushing surface is smaller than yield 

surface. This is because plastic strain due to crushing phenomenon occurs even when the soil state 

locates inside the yield surface. On the other hand, if yield surface is smaller than crushing surface, then 

subloading concept is not a must in the formulation of this model. However, because plastic strain is 

always observed in the behavior of soil, regardless of the occurrence of crushing, subloading concept 

should be implemented in the model 

2.2.5 Hardening rule 

Evidently, particle crushing will increase the soil’s density  Since we know  IG accounts for the 

level of particle crushing and  . is responsible for the packing & density effect on soil, IG and 𝜓 has a 

close relationship  Thus, it is possible to relate 𝐼𝐺 and  as follows: (see Figure 2-9) 

 𝜓 = 𝜉(1 − 𝐼𝐺)  (2-32) 

In which 𝜉 is the distance from the NCL of the initial state of soil to NCL of the soil when PSD reaches 

its critical grading.  

 

Figure 2-9: Relationship between grading index IG and state parameter   
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The evolution law of 𝜓 is derived by taking the time derivative of both sides of Eq  (2-32): 

 𝜓̇ = 𝜉𝐼𝐺̇  (2-33) 

From Eqs  (2-33), (2-9) and (2-11) we obtain: 

 𝜓̇ =
𝜕𝜓

𝜕𝐼𝐺   

𝜕𝐼𝐺
𝜕𝑝𝑥   

𝜕𝑝𝑥
𝜕𝝈𝑖𝑗  

𝝈̇𝑖𝑗 = −
𝜉

𝑝𝑟
(1 − 𝐼𝐺)𝑝𝑥

𝜕𝑓

𝜕𝝈𝑖𝑗
𝝈̇𝑖𝑗 (2-34) 

2.2.6 Elastoplastic stiffness matrix  

During purely elastic regime, the rate of the multiplier 〈𝛬̇〉 remains zero. Meanwhile, during 

elastoplastic deformation, the stress state remains to stay on the yield surface and the yield function f 

remains zero. The time derivative of the yield function 𝑓̇ consequently vanishes whenever the rate of 

the plastic multiplier 〈𝛬̇〉 is positive. Hence, we can write the consistency condition that has a general 

validity regardless of elastic or elastoplastic deformation as: 

 0 = 〈Λ̇〉𝑓̇ (2-35) 

During plastic flow, we apply the consistency condition to the time derivative of the yield 

function 𝑓̇(𝝈′, 𝜀v
p
, 𝛹, 𝛺) calculated from Eq  (2-31) as: 

 𝑓̇ =
𝜕𝑓

𝜕𝝈′
: 𝝈′̇ +

𝜕𝑓

𝜕𝜓
: 𝜓̇ +

𝜕𝑓

𝜕𝛺
: 𝛺̇ +

𝜕𝑓

𝜕𝜀𝑣
𝑝 : 𝜀𝑣

𝑝̇
=
𝜕𝑓

𝜕𝝈′
: 𝝈′̇ −

𝜓̇

𝑣0
+
𝛺̇

𝑣0
− 𝜀𝑣

𝑝̇
= 0 (2-36) 

Inserting Eqs. (2-23), (2-30), (2-34) into Eq. (2-36), we get, 

 [
𝜕𝑓

𝜕𝝈′
+
1

𝑣0

𝜉

𝑝𝑟
(1 − 𝐼𝐺)𝑝𝑥

𝜕𝑓

𝜕𝝈′
] : 𝝈′ + [𝑄(𝛺) ‖

𝜕𝑓

𝜕𝝈′
‖ − 𝑡𝑟 (

𝜕𝑓

𝜕𝝈′
)] 〈Λ̇〉 = 0 (2-37) 

Thus, we obtain the plastic multiplier as: 

 〈𝚲̇〉 = 〈
[
𝜕𝑓
𝜕𝝈′

+
1
𝑣0

𝜉
𝑝𝑟
(1 − 𝐼𝐺)𝑝𝑥

𝜕𝑓
𝜕𝝈′]

: 𝑫𝒆: 𝑑𝜺

𝑄(𝛺) ‖
𝜕𝑓
𝜕𝝈′‖

− 𝑡𝑟 (
𝜕𝑓
𝜕𝜎′

) + [
𝜕𝑓
𝜕𝝈′

+
1
𝑣0

𝜉
𝑝𝑟
(1 − 𝐼𝐺)𝑝𝑥

𝜕𝑓
𝜕𝝈′]

: 𝐷𝑒:
𝜕𝑓
𝜕𝝈′

〉 (2-38) 

Consequently, the rate form of the elastoplastic stress-strain relationship is obtained from Eqs  

(2-15), (2-30)and (2-38): 

 

𝝈′̇ = [𝑫𝒆 − 〈
[
𝜕𝑓
𝜕𝜎′

+
1
𝑣0

𝜉
𝑝𝑟
(1 − 𝐼𝐺)𝑝𝑥

𝜕𝑓
𝜕𝜎′]

: 𝑫𝒆: 𝑑𝜺

𝑄(𝛺) ‖
𝜕𝑓
𝜕𝝈′‖

− 𝑡𝑟 (
𝜕𝑓
𝜕𝝈′

) + [
𝜕𝑓
𝜕𝝈′

+
1
𝑣0

𝜉
𝑝𝑟
(1 − 𝐼𝐺)𝑝𝑥

𝜕𝑓
𝜕𝝈′]

:𝑫𝑒:
𝜕𝑓
𝜕𝝈′

〉] : 𝜺̇ 

(2-39) 

 When the rate of the plastic multiplier Λ̇ = 0 the soil’s behavior is purely elastic with the elastic 

stiffness De. On the contrary, when the rate of the plastic multiplier is  Λ̇ > 0 , the soil exhibits 

deformation under elastoplastic deformation. Then, the occurrence of particle crushing will be 

available if (𝑑𝑓𝑥 > 0 & 𝑝𝑥 = 0). In this case, it can be identified that the soil exhibits particle crushing 

phenomenon together with plastic flow under the elastoplastic stiffness 1
epD :  
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 𝑫𝟏
𝒆𝒑
= 𝑫𝒆 −

[
𝜕𝑓
𝜕𝝈′

+
1
𝑣0

𝜉
𝑝𝑟
(1 − 𝐼𝐺)𝑝𝑥

𝜕𝑓
𝜕𝝈′

] :𝑫𝒆: 𝑑𝜺

𝑄(𝛺) ‖
𝜕𝑓
𝜕𝝈′

‖ − 𝑡𝑟 (
𝜕𝑓
𝜕𝝈′

) + [
𝜕𝑓
𝜕𝝈′

+
1
𝑣0

𝜉
𝑝𝑟
(1 − 𝐼𝐺)𝑝𝑥

𝜕𝑓
𝜕𝝈′

] :𝑫𝒆:
𝜕𝑓
𝜕𝝈′

 

 

(2-40) 

 Nevertheless, if particle crushing does not occur (𝑓𝑐 < 0), then 𝑑𝑝𝑐 = 0 which in turn lead to 

the fact that soil exhibits elastoplastic deformation with the stiffness 𝑫2
𝑒𝑝as follows:  

 

 𝑫𝟐
𝒆𝒑
= 𝑫𝒆 −

𝜕𝑓
𝜕𝝈′

: 𝑫𝒆: 𝑑𝜺

𝑄(𝛺) ‖
𝜕𝑓
𝜕𝝈′

‖ − 𝑡𝑟 (
𝜕𝑓
𝜕𝝈′

) +
𝜕𝑓
𝜕𝝈′

: 𝑫𝒆:
𝜕𝑓
𝜕𝝈′

 
 

(2-41) 

2.3 Conclusion 

A simple model considering the particle crushing phenomenon for soil has been developed in 

the framework of continuum mechanics. The key strength of this model is that the consideration of the 

effect of particle crushing during consolidation and shearing in a unique manner. Furthermore, the 

evolution of the particle sized distribution due to particle crushing is fully obtained by a single grading 

state index in our model. Also, the easy adoption of the model to FEM reveals the large applicability of 

the model.  
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 : Validation of Soil Constitutive Model 

Considering Particle Crushing 

3.1 Purpose 

Table 3-1: Material parameters for numerical simulation of Dogs Bay Sand 

 

This section presents the performance of the proposed model in capturing the behavior of Dogs 

Bay Sand, a crushable soil, via experimental tests by Coop and Lee (1993). These elementary tests used 

in this chapter include isotropic consolidation triaxial test, consolidated undrained triaxial tests, 

consolidation drained triaxial tests with constant mean stresses, and consolidated drained triaxial tests 

with constant radial stresses. The material parameterss for simulation are listed in Table 3-1. The 

calibration process to obtain these material parameters will alsobe explained in section 3.2. 

3.1.1 Isotropic consolidation triaxial test 

Coop and Lee (1993), carried out the isotropic consolidation test on Dogs Bay Sand, from a 

unit grading at initial state, up to a high value of mean stress. As observed in Figure 3-1 , the variation 

of grading index IG revealed that the soil had been crushed during loading process. The simulation 

showed the movement of LICL with respect to the changing of PSD state of soil from unit grading (IG 

= 0) to critical grading (IG = 1). This numerical simulation showed that our model can capture not only 

stress-strain behavior but also the variation of grading index of the crushable soil. In this experiment, 

IG value did not reach its maximum value, which means the soil has not reached its critical PSD. 

However, in the following sections of CD and CU tests, the soil is initially isotropically compressed, 

and then sheared up to its critical PSD 

compression index
swelling index
critical state stress ratio(=hcs)
specific volume v on NCL at p = 98 kPa
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Figure 3-1: Isotropic consolidation test of soil (Coop & Lee, 1993) and its corresponding simulation 

 

3.1.2 Consolidated undrained triaxial tests 

Figure 3-2 and Figure 3-3 showed the results of experimental CU test under high and low 

confining pressures, respectively by Coop and Lee (1993) and their corresponding simulation by our 

model. In high confining pressure CU test, crushing occurs much more (IG = 0.6) than with relative low 

confining pressure (IG is approximately 0.15). 

The corresponding Br index (Hardin (1985)) is also shown in Figure 3-4.  By observing the simulation 

results, we can see that the model could depict very well the stress-strain behavior of soil under high 

confining pressure (with crushing phenomenon) and low confining pressure (without crushing) with 

different confining pressures via controlling crushing parameters. Furthermore, Figure 3-3b revealed 

that the critical state of the crushable soil was unique, by experimental tests and this was captured by 

our proposed model.  
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Figure 3-2: Undrained shearing tests of crushable soil (Coop & Lee, 1993) and their simulations 
under high confining stress 

 

Figure 3-3: Undrained shearing tests of crushable soil (Coop & Lee, 1993) and their simulations 
under low confining stress 

 

Figure 3-4: Variations of grading index IG in CU tests 
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3.1.3 Consolidated drained triaxial tests 

 Luzzani and MR (2002) presented constant mean effective stress CD triaxial test and constant 

confining pressure CD triaxial test of high values of confining pressure to assure the occurrence of 

crushing in Dog Bay Sand. In these tests, the confining pressures were very high (more than 3200 kPa), 

which caused the significant crushing of soil. Thus these simulations assumed that the soil reached its 

critical grading after being shearing at such a high confining pressures of CD test with constant radial 

stresses. Figure 3-5 and Figure 3-6 compared the experimental data and its corresponding simulation 

results by our proposed model. Our model showed good performance when capturing well the overall 

trend of the negative dilatancy behavior of soil exhibiting particle crushing under CD elementary test 

(both constant mean stress CD trixial test and constant confining pressure CD test) as shown in the 

figures.  

 

Figure 3-5: A comparison between simulation results and experimental results by Luzzani & Coop, 
2002 

 
Figure 3-6: Variation of IG in CD tests 
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3.1.4 The non-uniqueness of critical state line for crushable soil under loading 

 

 

 

 
Figure 3-7: The non-unique of critical state line observed by numerical simulation results 
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Figure 3-8: Correlation between from the critical state surface of normally consolidated soil to that of 

the overconsolidated soil 

 The non-unique CSL of crushable soil during loading process was observed in experimental 

tests by Tojo, Yamada et al. (2009) (Figure 3-7c) as well as the DEM simulation by Cheng, Bolton et 

al. (2005) (Figure 3-7b ). Firstly, the CSL of NC soil was obtained by compressing NC soil 

isotropically, then shearing it up to its critical state. After that, the CSL of OC soil was also checked 

by firstly compressing NC soil up to large mean stress then unloading it to a small magnitude of mean 

stress, following by shearing it to its critical state. Tojo, Yamada et al. (2009) indicated that the CSL 

of NC soil and OC soil when they exhibit crushing effect is not unique. Similarly, our model could 

also describe the non-uniqueness characteristic of CSL when simulating the behavior of NC and OC 

crushable soil in the same process. In our model, after being compressed to large mean stresses, the 

occurrence of crushing move the state boundary surface down which resulted in the downward 

movement of CSL. The movement of CSL with respect to the level of crushing in our model was 

explained in Figure 3-8. The more crushing the soil exhibited, the farther the new CSL was from the 

original CSL. On the way moving down of CSL due to crushing, when shearing processes were 

applied, the final critical states were obtained in Figure 3-8. The CSL in Figure 3-8 was the CSL of 

difference IG values, in which CSL of each IG value was a straight parallel line. 
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3.1.5 Effect of fine contents to soil behavior 

Another possible application of our model is to study the behavior of the same soil with 

different fine contents. Zlatović and Ishihara (1995) experimentally studied the effect of fine content 

to the behavior of Toyoura sand via CU tests by analyzing the stress-path with a variety of PSD with 

respect to a wide range of fine content Fc (Figure 3-9c). The different CU stress paths (Figure 3-9b) 

of Toyoura sand with different silt contents were observed in Figure 3-9a. On the basis of his 

experimental observations, we can conclude that the same soil with a large number of fine content 

should have a weaker strength in comparison with the soil with a small amount of fine content. In the 

same way, our proposed model was able to check the behavior of the same soil material exhibiting no 

crushing, but with different particle size distribution corresponding to various fine contents (Figure 

3-9a).  

The simulation results indicated that among the soils that were only different in IG but the same 

in other properties, the soil that has a small value of IG grading index showed the larger shear strength. 

xOverall, the simulation results in this section revealed the good performance of this model in 

(1) capturing the behavior of crushable soil in various elementary tests such as isotropic consolidation,  

 
Figure 3-9: Stress path simulation of the same soil 102.with different PSD curve exhibiting non-

crushing under CU test 
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CU, CD test (2) capturing the non-unique of CSL of crushable soil during loading processes. (3) 

depicting the behavior of uncrushable soil with different amounts of fine contents.  

3.2 Parametric studies & parameter calibrations 

3.2.1 Initiation of crushing under isotropic compression stress. 

px0 is a material parameter representing the maximum magnitude of mean stress that the soil with 

uniform grading can suffer without particle crushing. A wide range of initial particle crushing px0 from 

100kPa to 10000kPa has been simulated to study its effect on stress-strain relationship and the grading 

index IG (Figure 3-10). Simulation results illustrated the definition of px0 when showing that the larger 

px0 is, the slower the onset of crushing is initiated, and the stronger crushing resistant the material is. As 

such, the stronger to the initiation of crushing the soil is, the larger value of px0 parameter should be. 

From this simulation, px0 can be obtained by performing isotropic consolidation test up to a high 

magnitude of mean stress and checking the PSD by sieve analysis. The level of mean stress that initiates 

the evolution of PSD is px0. 

 

 

Figure 3-10: Effect of crushing stress px0 material parameters on the model responses 
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Figure 3-11: Effect crushing resistance pr material parameter on the model response 

3.2.3 Particle crushing resistance  
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Figure 3-12: Effect of the constitutive parameter on the shearing behavior in CU test (Mx – slope of 
crushing surface in p-q plane) 

 

Figure 3-13: Effect of the constitutive parameter on the shearing behavior in CU test (Mx – slope of 
crushing surface in p-q plane) 
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3.3 Potential of the model to simulate crushable and uncrushable 
soil 

The ability of the proposed model to predict both the behavior of crushing soil and that of soil 

exhibiting no crushing can be seen in Figure 3-14. For the soil exhibiting no crushing or too hard to be 

crushed, we can either set the resistance to crushing pr or px0 parameter of soil to large values. The 

combined effect of shearing stress and compressive stress on crushing can be visualized in Figure 3-15. 

When only compressive stress is applied, the variation of IG index corresponds to 𝜂 = 0 line. When the 

𝜂 = 𝑀 stress path is used, the soil is crushed with a faster convergence to 1 of IG. For the same mean 

stress, the larger the value of deviator stress, the larger the effect of crushing will occur. 

 
Figure 3-14: Effect of particle crushing on the response in CD test (calculation results by the 

proposed model and the model in which IG is kept constant (IG =0.0-unit grading) 

 
Figure 3-15: Grading index evolution law for crushing and non-crushing soils 
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3.4 Conclusions 

.   A number of validations of the proposed model via experimental tests have proved the potential 

of the model to well predict the crushing soil behavior under different loading conditions: isotropic 

compression test, consolidated undrained tests, isotropic consolidation test. Not only stress-strain 

behavior, but also the changing of grading index are well depicted by our proposed model. Furthermore, 

the advantage of this model is that it can be used both for crushable soil and uncrushable soil.   
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 : Volumetric Locking Problem in Finite 

Element Method & Its Countermeasures 

4.1 Review of the framework of Finite Element Method 

4.1.1 Strong form of mechanical problems 

The equilibrium equations in the general 3D case:  

 

{
  
 

  
 
𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦
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 (4-1) 

Or in contract form: 

 𝛻𝑆
𝑇𝝈 + 𝒃 = 0 (4-2) 

Constitutive equation: 

 𝝈 = 𝑫: 𝜺   (4-3) 

Kinematic equation: 

 𝜺 = 𝛁𝒔𝒖  (4-4) 

Thus, (4-1) can be rewritten as: 

 𝛻𝑆
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/       /        0

   0          /      /  

/           0        /  

S

x

y

z

y x

z y

z x

  
 

  
  
  =
    
 

    
 
    
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 
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 
 
 

s  (stress vector), 
x
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z

b
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b

 
 

=  
 
 

b  (force vector), 

w
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v
 
 
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 
 

u  (displacement vector), 
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 
 
 
 
 
 
 
 
 
  

 (stiffness matrix) 

Boundary condition: 

We consider the boundary condition Γ = Γ𝑡 ∪ Γ𝑢 . In which, Γ𝑡   is the boundary where the 

traction is prescribed, and Γ𝑢  is the portion of the boundary where the displacement is prescribed. The 

traction boundary condition is described as: 

 𝒏:𝝈 = 𝒕̅  on the boundary t  (4-6) 

in which 𝒏 is the normal vector.  

The displacement boundary condition is described as: 

 𝒖 = 𝒖̅   on the boundary Γ𝑢 (4-7) 

4.1.2 Derive weak form from strong form 

In Finite Element Method, our purpose is to find an approximate solution of the strong form 

equation (4-5), with boundary equations (4-6) and (4-7). The approximation solution may not satisfy 

the partial derivative equation exactly at every point inside the domain. The residual of the solution is: 

 𝛻𝑆
𝑇(𝑫:∇𝑆𝒖) + 𝒃 = 𝑹 (4-8) 

We want to minimize the residual 𝑹 by multiplying the (4-8) with a weight function 𝒗𝑇(𝑥) =

[𝑣1  𝑣2  𝑣3] and integrating over the domain. By doing that, we obtain a continuous weak form: 

 ∫ 𝑹𝒗𝑑𝑥 = 0
𝛺

 (4-9) 
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If it satisfies for any 𝒗 then R will approach zero, and the maximum solution will approach the exact 

solution. In the above equation, 𝒗 is an arbitrary function, and equation (4-9) has to fulfill for all 

functions of 𝒗. The arbitrariness of test function 𝒗 is crucial as otherwise a weak form is not equivalent 

to the strong form. Now, (4-9) becomes: 

 ( ) ( ): 0T T T
S Sv d v d

W W

   W+  W =  D u b  (4-10) 

Recall the integration by parts: 

 ( )
b b b

a a a

du d dvv dx uv dx udx
dx dx dx

= -    (4-11) 

Also, recall Divergence theorem: 

 
S

fd nfdS
W

 W =   (4-12) 

in which, S is the boundary of the domain W, and n is the normal vector of the domain W 

Firstly, integration by parts is applied to (4-10): 

( ) ( ) ( ) ( ): 0TT T
S S Sd d d

W W W

    W-    W+  W =
     sv v D u v b  (4-13) 

Notice that in the above equation is stress tensor [3x3] 

Next, Divergence theorem is applied to (4-13): 

( ) ( ) ( ) ( ): : : 0TT T
S Sn d d d

 W W

-    W+  W =  sv v D u v b  (4-14) 

Notice that in the above equation has size [6x1] 

Because Γ = Γ𝑡⋃Γ𝑢, (4-14) becomes: 

( ) ( ) ( ) ( ) ( ): : : : : 0
u t

TT T T
u t S Sn d n d d d

  W W

 +  -    W+  W =   s sv v v D u v b  (4-15) 

As 𝒗 is arbitrary, we choose 𝒗 that is vanished on the boundary u .Also, using (4-7) condition, (4-15) 

is simplified as: 

 ( ) ( ) ( ) ( ): 0
t

TT T
t S St d d d

 W W

  -    W+  W =  v v D u v b  (4-16) 

Finally, the continuous weak form is derived as: 

 
( ) ( ) ( ) ( )

( , ) ( )

:
t

T T T
S S t

v u f v

d d t d

a

W W 

   W =  W+    v D u v b v  
(4-17) 
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The name “weak form” comes from the fact that solutions to the weak form need not to be as smooth 

as solutions of the strong form, i.e. they have weaker continuity requirements. Furthermore, the second 

derivative equation in strong form (4-5) is transferred into the first derivative equation in weak form 

(4-17).  

4.1.3 Shape function matrix of elements 

Displacement components of element 𝒖𝑒  are interpolated from the node displacement 
ed  

through shape function matrix of elements 𝑵𝑒(𝑥): 

 𝒖𝒆 = 𝑵𝒆(𝒙)𝒅𝒆  (4-18) 

in which: 

 

1

2

( )

( )

  

( )
d

e

e
e

e
n

u x

u x

u x

 
 
 

=  
 
 
  

u  (4-19) 

In the calculation in FEM, we usually arrange the displacement vector 𝒅𝑒 of element 𝛺𝑒 in the nodal 

order: 
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d
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d
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e
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e

e

e

e
n

e

e
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n

d

d

d

d

d

d

d

d

d

 
 
 
 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
 
 
 
 

d

 displacement component of node 1

 displacement component of node 2

 displacement component of node 

d

d

d n

n

n

n n























  

(4-20) 

Shape function 𝑵𝑒(𝑥) matrix of element 𝛺𝑒  is described as: 
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1 2

1 2

( )      0        0       0        ( )     0       0       0        ...  ( )      0       0        0

    0     ( )     0        0          0      ( )   0       0        ...       
( )

n

e e e
n

e e

e

N N N

N N
x =

x x x

x x
N

d

1

Node 1 (n  components)

 0      ( )  0       0

                                                                                                         

    0          0       0    ( )

n

e
n

e

N

N

x

x
d d

2

Node 1 (n  components) Node  (n  components)

     0         0         0    ( )   ...       0         0       0   ( ) 
n

n

e e
n

n

N N

 
 
 
 
 
 
 
 
 

x x

  (4-21) 

Or in concise form: 

 1 2( ) ( )  ( )   ( )
n

e e e e
nx x x x =  N N N N  (4-22) 

in which ( )e
I xN ,  1,  2,  ...,  nI n=  is shape function matrix of element 𝛺𝑒 corresponding to node I: 

 

( )     0             0

   0       ( )        0
( )

                          

   0          0          ( )

e
I

e
Ie

I

e
I

x

 
 
 

=  
 
 
 

N x

N x
N

N x

 (4-23) 

Strain-displacement matrix of element ( ) ( )
e e

e e e ed
d


= = =




u N x d B x d
x x

: 

 
1 2

1 2

( ) ( ) ( )  ( )   ( )

         ( )  ( )   ( )

n

n

e e e e e
S S S S n

e e e
n

x x x x x

x x x

 =  =    

 =  

B N N N N

B B N
 (4-24) 

in which ( )e
I xB is strain-displacement matrix of the element corresponding to node I. 

4.1.4 Derivation of system equations  

From the continuous weak form, we will change it to a discrete one. In other words, instead of 

finding an unknown function, we want to find “n” unknowns. We will need a system of discrete 

equations, and eventually obtain the system equation in the form: KU = F. K is the stiffness of the 

system, U is the displacement vector of nodes. F is the vector of forces applied to the systems. The 

following will describe the process in detail. 

Interpolation of displacements by using shape function 𝑵(𝒙) and nodal displacement, d : 

 

1

2
1 2( ) [ ( )  ( )... ( )]

n

n

N

N

 
 
 

= =  
 
 
 

d

d
u N x d N x N x N x

d

 (4-25) 
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Interpolation of strain by using strain-displacement matrix 𝑩(𝒙): 

 

1

2
1 2

( ) ( ) ( )  ( )  ...  ( )
n

n

N

N

d x x x
d

 
 

  
 = = = =     

 
 



d

du N x d B x d B B B
x x

d

 (4-26) 

From continuous weak form, we choose nN  test functions 1 2( ), ( ),..., ( )N nv x v x v x . Each function 

gives one equation, thus, we obtain nN  equations. In Galerkin FEM method, we simply choose the 

test functions 1 2( ), ( ),..., ( )Nv x v x v x the same as shape functions 1 2( ), ( ),..., ( )
nNN x N x N x . Substituting 

these nN functions of ( )v x  into (4-17): 

 ( ) ( ) ( ) ( ):
t

T T T
S I S I Id d d

W W 

   W =  W+    N D u N b N t     (4-27) 

ni which n,  I 1,  2,  ...,  N= . 

Using ( ) ( )SB x = N x and substituting (4-26) into (4-27), we obtain, 

 
( ) ( ) n: : ,    I 1,  2,  ...,  N

t

T T T
I I Id d d d

W W 

 
W =  W+   = 

 
  B D B N b N t

 

(4-28) 

in which the transpose of the global strain-displacement matrix is: 

 

1

2

 

n

T

T
T

T
N

 
 
 

=  
 
 
  

B

B
B

B

 (4-29) 

We can expand (4-28) into a system of equations: 
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1 1 2 1 1

2 1 2 2 2

1 2

[   ... ]d  

[   ... ]d  

                                          

[   ... ]d  

n

t

n

t

n n n n

t

T T T
N

T T T
N

T T T
N N N N

d d

d d

d d

W W 

W W 

W W 

 
W = W+  

 

 
W = W+  

 

 
W = W+  

 

  

  

  

B D B B B d N b N t 

B D B B B d N b N t 

B D B B B d N b N t 














 (4-30) 

Or we can write the matrix form of (4-30): 

1 1 1 2 1

2 1 2 2 2

1 2

d    d     d

d    d     d

                                                        

d   d  ... d

n

n

n n n n

T T T
N

T T T
N

T T T
N N N N

W W W

W W W

W W W

 W W W
 
 
 W W W
 
 
 
 

W W W 
 

  

  

  

B DB B DB B DB

B DB B DB B DB

B DB B DB B DB

1 1

1

2 22

 

 

                 

 

t

t

t

T T

T T

N T T
N N

d d

d d

d d

W 

W 

W 

 W+ 
 

   
    W+ 

    =    
    
      W+  
    

 

 

 

N b N t 
d

N b N t d

d
N b N t 

 (4-31) 

Eq. (4-31) can be further simply written as: 

 =Kd F     (4-32) 
in which, global stiffness matrix is expressed as: 

 

1 1 1 2 1

11 12 1

2 1 2 2 211 12 1

11 12 1

d    d     d
      ...  

d    d     d      ...  

                                     
      ...  

n

n

nn

n

T T T
N

N
T T T

NN

N

W W W

W W W

W W W

 
 

W W W 
= = 
 
 
 

  

  

B DB B DB B DB
K K K

B DB B DB B DBK K K
K

K K K
1 2

                                  

d   d  ... d
n n n n

T T T
N N N N

W W W

 
 
 
 
 
 
 
  W W W  
  B DB B DB B DB

 (4-33) 

Force vector is described as: 

 

1 1

2 2

 

 

                 

 

t

t

t

T T

T T

T T
N N

d d

d d

d d

W 

W 

W 

 W+ 
 
 
 W+ 
 =
 
 
 

W+  
  

 

 

 

N b N t 

N b N t 
f

N b N t 

 (4-34) 

In the calculation of FEM: 
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1

e

e

N
T T

e
d d

=W W

= W = W K B DB B DB  (4-35) 

In FEM, we will calculate the components of stiffness matrix ijK  in which , 1,  2,  ... , nI J N=  

based on the elements eW and assemble them together: 

 1

e

e

e
IJ

N
T T

IJ I J I J
e

K

d d
=W W

= W = W K B DB B DB  
(4-36) 

The calculation of e
IJK  is only based on the element eW , thus, we only consider the 

component inside the element in the integration, and ignored the others outside. Thus, the element 

stiffness matrix becomes: 

 ( )
e

Te e e
IJ I J d

W

= WK B DB  (4-37) 

in which e
IB is the portion of IB  in the element eW , 

 e e
I S I=B N  (4-38) 

Similarly, the force vector is calculated as: 

 
1

  
e

t t

N
T T T T

J J J J J
e

d d d d
=W  W 

= W+  = W+    f N b N t N b N t  (4-39) 

The element force vector is expressed as: 

 ( )  ( )
t

e T T
J J Jd d

W 

= W+  f N x b N x t  (4-40) 

 ( ) ( )( )  ( )
e

e t

T Te e e
J J Jd d

W 

= W+  f N x b N x t  (4-41) 

4.2 Volumetric locking introduction 

Section 4.1 described the numerical method FEM which is widely used among engineers due to 

its accuracy and stability. Unfortunately, when dealing with an incompressible material, the 

displacement based FEM formulation can exhibit an unrealistic stiff behavior.  In the similar manner, 

elastoplastic soil constitutive models in which constant volume is predicted at critical state, also witness 

this unrealistic stiffness in FEM  This is usually known as “volumetric locking” phenomenon (Hughes 

(2012)). Volumetric locking problem occurs due to Gauss integration, a programming-friendly 

numerical integration technique in FEM. This volumetric locking occurs when a finite element mesh 
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with low order element, such as constant strain triangle elements, or Quad4 elements, with full 

integration to model incompressible material. While simple Quad8 elements or other higher order 

elements can provide good results for both bending and high incompressibility, they use much more 

computational cost. To obtain a theoretically accurate solution with less computational cost, several 

countermeasures have been proposed to address volumetric locking in FEM.  

Firstly, Zienkiewicz, Taylor et al. (1971) proposed the reduced integration to resolve this 

volumetric locking. The idea behind the reduced integration is very simple: because the fully integrated 

elements cannot satisfy the constant volumetric strain conditions at all the integration points, the number 

of integration points are reduced to meet the constraints. The slightly loss of accuracy is counteracted 

by the improvement in approximation to real-life behavior. However, this uniform-reduced integration 

may lead to the rank deficiency of the stiffness matrix (Hughes, Cohen et al. (1978)) (for instance, in 

Quad4 element). Thus, the selective reduced integration (SRI) was proposed to overcome this rank 

deficiency problem (Hughes, Cohen et al. (1978)). The premise in SRI procedure is that we only use 

reduced integration for the part of the stiffness that locks volumetric stiffness. While the SRI method is 

very efficient for isotropic elastic materials, in which it is easy to split up the stress into deviatoric and 

dilational parts, it is not straightforward to apply for the elastoplastic model in which the volumetric 

and deviatoric parts of the constitutive model are coupled. 

4.3 B-bar method 

The SRI method is effective to prevent the volumetric locking for incompressible materials, 

without the effect of the rank deficiency. Nevertheless, this method is only efficient for isotropic elastic 

materials, it may not be possible to extend the SRI to the case in which the volumetric and deviatoric 

parts of the constitutive model are coupled. For this reason, another method, called the B-bar method 

(Hughes (1980)), is commonly used. Similar to SRI method, the B-bar method treats the volumetric and 

deviatoric part of the stiffness matrix separately. 

However, instead of separating the volumetric integral into two parts, the B-bar method modified 

the definition of the strain in the element. In this B-bar method, while shear strain is calculated with full 

integration as normal FEM, volumetric strain is calculated with one order lower than that of the standard 

FEM. 

4.3.1 B-bar method formulation: 

Recall the element stiffness: 

 
e

d
W

= W
e TK B DB  (4-42) 
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in which B is the strain-displacement matrix given as: 

 1 2[   ... ]nnodes=B B B B  (4-43) 

where enn is the number of element nodes. In 3D analysis, a typical submatrix may be written as: 

 

 

1

2

3

1 2

2 3

3 1

   0     0

0        0  

0     0    

      0

0        

   0     

a

B

B

B

B B

B B

B B

 
 
 
 
 =
 
 
 
 
  

B  (4-44) 

in which 

 / ,     1 3i a iB N x i=      (4-45) 

where, aN is the shape function associated with node a  , and ix  is the ith Cartersian coordinate. 

To be able to apply to nearly incompressible cases, these expressions must be modified. Let dil
aB

denote the dilational part of aB . The deviatoric part of aB is then defined by: 

 dev dil
a a a-B = B B  (4-46) 

 

1 2 3

1 2 3

1 2 3

2 1

3 2

3 1

2 1 1        
3 3 3
1 2 1           
3 3 3
1 1 2          
3 3 3

                           0

      0                      

                  0          

dev
a

B B B

B B B

B B B

B B

B B

B B

 
- - 

 
 
- - 
 
 = - - 
 
 



 

B





 (4-47) 

To achieve an effective formulation for nearly incompressible application, dil
aB need to be 

replaced by an “improved” dilational contribution, which we shall denote by 
dil
aB : 
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dil
aB  (4-48) 

Instead of aB , we now use, 

 devdil
a aaB = B + B  (4-49) 

 

1 2 31 2 3

1 2 31 2 3
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2 1
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3 3 3 3 3 3
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 
 
 
 
 
 
 
   

(4-50) 

4.3.2 Drawback of B-bar method 

If we deal with 2D plane strain problem, by reducing the traditional B-bar method described 

above from 3D to 2D, then: 

 33 1 1 1 2 2 2 3 2 3
1 1 1 1 1 1
3 3 3 3 3 3

B B u B B u B B u
     

= - + - + -     
     

 (4-51) 

The condition 33 0 =  is not strictly kept in this way. 

4.4 Modified B-bar method for 2D plane strain condition 

4.4.1 Formulation 

A modified B-bar method for plane strain condition can be developed by modifying the standard 

B-Bar method which satisfies 33 0 =  condition only in a weak sense. To exactly satisfy 33 0 =  at 

any point within the element, the B-Bar method can be constructed by replacing dilB  matrix by meanB  

matrix (Commend, Truty et al. (2004)). 
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meanB  (4-52) 

and the devB  and 
*

B are expressed as follows: 

 

1 2
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2 1
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2 2
1 1       
2 2
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devB  (4-53) 
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*
1 21 2

2 1
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B B B B
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 
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 
 

= - + 
 
 
  

B  (4-54) 

Which corresponds to use of a “modified” mean strain *
1 2

1 ( )
2m  = +  instead of the standard mean 

strain 1 2 3
1 ( )
3m   = + ++ . 

In 3D form, we can choose Bmean and Bdev as:  

 

1 2 3

1 2 3

      

       

0     0     01
2 0     0     0

0     0     0

0     0     0

B B B

B B B
 
 
 
 
 =
 
 
 
 
 

meanB  (4-55) 
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(4-56) 

At every single point inside the element, this modified B-bar satisfies:  

 11 21 31 1 12 22 32 2 13 23 33 3( ) ( ) ( ) 0dev dev dev dev dev dev dev dev dev
kke B B B u B B B u B B B u= + + + + + + + + =  (4-57) 

 33 3 3 0B u = =  (4-58) 

Finally, stiffness matrix is calculated as follows: 

 
elV

dV= 
T

elK B DB  (4-59) 

Notice that v in the element is everywhere equal to its mean value in B-bar method. 
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4.4.2 Quad4 element – 2D plane strain – Modified B-bar method 

This section presents in detail the modified B-bar matrix of Quad4 element, which is used in 

this study to analyze the bearing capacity of strip footing. Quad4 element has 4 nodes. Each node has 

two translation displacements and one rotation displacement. Therefore, the strain-displacement B 

matrix of Quad4 element is expressed as follows: 

 

31 2 4

31 2 4

3 31 1 2 2 4 4

    0          0         0         0

0            0         0           0     

               

NN N N
x x x x

NN N N
y y y y

N NN N N N N N
y x y x y x y x

   
 
    

   
=  

    
       
 
         

B  (4-60) 

When applying modified B-bar method, we separate B matrix into: 

 𝑩 = 𝑩𝒅𝒆𝒗 + 𝑩𝒎𝒆𝒂𝒏 (4-61) 

in which, 
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 (4-62) 
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 
 
 
 

 (4-63) 

In this thesis, I utilize Quad4 element, in which volumetric strain is integrated with only 1 Gauss 

point, and shear strain is fully integrated with 4 Gauss point. Take as the reduced rule the one-point 

Gauss rule, then the value of 𝑩𝒎𝒆𝒂𝒏 at any location, (𝜉, 𝜂). in the interior of the element, is set equal to 

the value of the specific array at the origin of the element, (𝜉 = 0, 𝜂 = 0). In other words, the strain-

displacement array of the element is defined as follows: 
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 𝑩(𝜉, 𝜂) = 𝑩𝒅𝒆𝒗(𝜉, 𝜂) + 𝑩𝒎𝒆𝒂𝒏(𝜉, 𝜂) = 𝑩𝒅𝒆𝒗(𝜉, 𝜂) + 𝑩𝒎𝒆𝒂𝒏(0, 0)  (4-64) 
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 : Analysis of bearing capacity of strip footings 

on crushable soils 

5.1 Validation of the implementation of soil constitutive model 
considering particle crushing to FEM code 

To simulate the bearing capacity of strip footing. our proposed soil model considering particle 

crushing has been implemented in FEM code. However, the validation of this implementation is needed 

to be conducted before the simulation of strip footing of bearing capacity. Therefore, in this section, the 

simulation results of oedometer test between elementary tests and FEM simulations are compared. The 

Dogs Bays sand parameters calibrated in this research are listed in Table 5-1.  The initial soil state 

condition used in these simulations is also described in Table 5-1. 

Table 5-1: Material parameters of Dog Bays sand and its initial condition for oedometer test 
simulation* 

 

 

Compression index

Recompression index

Specific volume on NCL at p = 98 kPa 

Critical stress  ratio

Poisson  ratio

Parameter controlling density effect

Parameter controlling crushing resistance

 Parameter controlling the shape of crushing surface

Volumetric distance between NCL of IG = 0 and IG = 1

Crushing stress when  IG = 0:  (kN/m2)

Modified Cam Clay

Subloading Concept

Particle Crushing 

0.265

0.0015

1.8

1.65

0.2

500

5000

0.58

0.55

98

Parameter Classification Value

* These material parameters of Dogs Bay Sand were calibrated from the elementary triaxial tests.  
The initial soil state (e0 = 1.75, p0 = 98 kPa, IG0 = 0)
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Figure 5-1: Comparison of elementary test and FEM simulation of oedometer test using particle 
crushing constitutive model 

As can be observed from Figure 5-1, the simulations of oedometer test from both elementary 

simulations and FEM simulations generated the same results in stress-strain behavior. Also, the same 

evolution of IG when mean stress increases were observed in this figure. Thus, our proposed soil 

constitutive model considering particle crushing has been successfully implemented into FEM code. 
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5.2. Analysis of strip footing bearing capacity on crushable soil 

The bearing capacity analysis is carried out by using our proposed model for soil considering 

particle crushing, and the finite element method is used for solving nonlinear equations with boundary 

conditions. The soil medium is discretized  by Quad4 element. A typical finite element mesh used is 

shown in Figure 5-2. It consists of 1080 Quad4 elements with the courser mesh near the edge of the 

footing. The nodes representing the footing width are incrementally displaced by an equal amount in 

the vertical direction, simulating a rigid footing condition with a uniform vertical settlement but without 

any rotation. Smooth footing conditions are simulated by not restraining horizontal movement of these 

nodes. The footing load for each increment is the summation of the nodal forces back-computed from 

the conversed stress field after each increment. 

Table 5-2: Material parameters of Dogs Bay sand and its initial condition for strip footing bearing 
capacity analysis* 

 

Compression index

Recompression index

Specific volume on NCL at p = 98 kPa 

Critical stress  ratio

Poisson  ratio

Parameter controlling density effect

Parameter controlling crushing resistance

 Parameter controlling the shape of crushing surface

Volumetric distance between NCL of IG = 0 and IG = 1

Crushing stress when  IG = 0:  (kN/m2)

Modified Cam Clay

Subloading Concept

Particle Crushing 

0.265

0.0015

1.8

1.65

0.2

500

5000

0.58

0.55

98

Parameter Classification Value

* These material parameters of Dogs Bay Sand were calibrated from the validation of elementary tests.  
The unit weight ( = 18 kN/m3) is applied by the gravity load with the initial soil state (e0 = 2.5, p0 = 0.01 
kPa, IG0 = 0) before applying the loading process.
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Figure 5-2: Analytical domain, boundary conditions, and grid mesh (1080 elements) of strip footing 

 

Figure 5-3: Stress generalization before loading and distribution of the initial value of IG 

5.2.1 Soil self-weight generation 

In this simulation, the soil unit weight ( = 18 kN) was applied by the gravity load with the 

initial soil state (e0 = 2.5, p0 = 0.01 kPa, IG0 = 0) before applying the loading process to the footing. The 

phase after generating soil self-weight was shown in Figure 5-3 with the initial uncrushed state IG0 = 0 

at all elements and the mean stress variation with depth). The soil self-weight generation process was 

checked by comparing the sum of the reaction forces in the vertical axis with the magnitude of .S, in 

which S is the area of the domain. 

5.2.1 Mesh density and number of calculation steps  
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Figure 5-4 : Load-displacement curve of strip footing B = 1m, with a variation of                                                           
(a) The number of elements (with 2500 calculation steps)   (b) The number of steps (with 1080 

elements) 
 

 

Figure 5-5: A comparison of the load-displacement curve of strip footing on crushable and 
uncrushable soil 

 

The load-displacement curve was analyzed with the same 2500 calculation steps with a variety 

of meshes in which the number of elements varies from 40 to 1080, are shown in  Figure 5-4a. It could 

be seen from this figure that the simulation result was converging as the number of elements is large 

enough. Furthermore, the number of steps also vary from 1500 to 3000 with 1080 elements, and they 

still showed the same result (Figure 5-4b). The same result was due to the effect of subloading concept, 

in which plastic strain occurs immediately at the loading time, which was much more stable than that 

of the VonMises model where there is a sudden change between elastic and plastic region. Thus, the 

number of calculation steps does not have a significant effect on the calculation result of our model. 

5.2.3 Strip footing bearing capacity analysis of Dogs Bay Sand 
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Figure 5-6: IG  distribution with the variation of settlement 

 

Figure 5-7: Deviatoric stress distribution with the variation of settlement  

The bearing capacity of strip footing on Dogs Bay sand when considering and not considering 

particle crushing behavior was shown in Figure 5-5. It can be observed from the figure that bearing 

capacity reduced when particle crushing phenomenon occurred, and a larger load application resulting 

more crushing.  

Figure 5-6 showed the distribution of grading index, IG within the considered domain with 

different level of displacements. We can see that, the more displacement of the footing resulted in the 

clear evolution of IG. Furthermore, the area at the edge of the footing exhibit the highest magnitude of 

IG. Figure 5-7 revealed the deviatoric strain distribution in the domain with different settlement level of 

strip footing. The simulation results showed that only punching failure was observed with Dogs Bay 

sand parameters. As a result, the ultimate bearing capacity was not obtained in these simulations, but 

the bearing capacity only increased with the increase in displacement. The grid displacement, 

displacement vector of element nodes and the direction of principle stresses were shown in Figure 5-8. 
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Figure 5-8: Displacement and principle stress result with 1080 elements. (a) Grid displacement (scale 
4 times) (b) Displacement vector and nodes of elements (c) Principle stress: direction and magnitude 

 

Figure 5-9: Grid mesh and position of analyzed elements 1, 2 and 3 under loading 

To further explore the behavior of strip footing bearing analysis, the stress-strain and stress-

grading index of element 1, 2, and 3 (Figure 5-9) were examined. Element 3 was near the edge of strip 

footing, while element 1 was located in the middle of the footing. Firstly, from Figure 5-10, element 3 

near the footing suffered the highest shearing stress among the three elements. Element 2 has the largest 

mean stress among the three. Even though the soil state before the loading simulation is 

overconsolidated soil (Figure 5-11), all of the elements did not reach the critical state when the 

settlement reached 0.15 m (Figure 5-10). Thus, the soil element is still being compressed under loading 

condition, and the ground failure is just a punching failure mode, not general failure mode. In this Dogs 

Bay sand, the effect of shearing stress to particle crushing was more significant than the mean stress 

(Mx = 0.58). 
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Figure 5-10: Stress paths of elements 1, 2 and 3 under loading 

 

Figure 5-11: Variation of void ratio e and mean stress p of elements 1, 2, 3 under loading 

 

 

Figure 5-12: Variation of grading index IG versus mean stress p of elements 1, 2 and 3 under loading 

Figure 5-12 showed that IG of element 3 was the largest among the three elements. Furthermore, 

due to the highest crushing suffering, the void ratio in element 3 decreases smallest at the final step of 

simulation. In other words, element 3 had the highest density because of the most serious crushing 

exposure. 
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Figure 5-13: Variation of grading index IG at element 1, 2, 3 

Figure 5-13 showed the relation between the bearing capacity and grading index, IG at element 

1, 2 and 3. It could be seen from the figure that after particle crushing has been initiated, the more 

crushing is observed when more load is applied. Also, the point located near the edge of strip footing 

exhibited more crushing than the elements far away from the footing edges. 

5.3 Parametric studies of the material parameters 

In the parametric studies below, the material parameters for Modified Cam clay, subloading 

effect, self-weight  are kept constant. Only the parameters controlling particle crushing mechanism are 

varied systematically. 

5.3.1 Initial crushing under isotropic compression stress  

Regarding the unit grading of soil (IG = 0), under isotropic confining pressure, the magnitude 

of stress required for the onset of crushing depends on the parameter px0. Thus, soils that are sensitive 

to crushing when suffering confining pressure will possess a small value of px0. With a smaller value of 

px0, the crushing phenomenon occurs earlier (during the loading process), which leads to the reduction 

of the strength or stiffness of the soil sooner. Similar case occurs in the simulation of strip footing 

bearing capacity, a smaller value of px0 will lead to the sooner occurrence of particle crushing, which 

leads to the sooner reduction in the soil strength during the loading. This results in a smaller bearing 

capacity in case of a smaller value of px0 (Figure 5-14). In our model, when px0  is sufficiently large, the 

bearing capacity of soil considering crushing effect will approach the bearing capacity of soil when not 

considering particle crushing effect. 
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Figure 5-14: The effect of px0 parameter (crushing stress corresponding to IG = 0) on the bearing 
capacity of strip footing on crushable soil  (a)  Load-displacement curve   (b) Normalization of 

bearing capacity considering and not considering crushing effect 

 

  

Figure 5-15: The effect of pr parameter on the bearing capacity of strip footing on crushable soil  (a)  
Load-displacement curve   (b) Normalization of bearing capacity considering and not considering 

crushing effect 

 

5.3.2 Particle crushing resistance  

Figure 5-15 shows the effect of particle crushing resistance parameter pr to the bearing capacity 

of strip footing on crushable soil by variating a wide range of pr from 3000 to 9000. In our constitutive 

model, After the crushing phenomenon has been initiated, the resistance to crushing parameter pr, 

controls the evolution rate from the original PSD to the critical PSD.  In other words, pr governs the 

speed of crushing in the soil. A larger the value of pr results in a slower rate of crushing occurs. High 

level of crushing the weakens the soil; therefore, the larger the value of pr is,  the closer the bearing 

capacity considering particle crushing effect is to the bearing capacity when particle crushing is not 
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considered. Regarding Dogs Bay sand, pr is calibrated to be 5000, and the bearing capacity of Dogs 

Bay sand when considering crushing  

effect is approximately 86% to 96% of the bearing capacity when not considering crushing effect. 

However, when pr is large enough, crushing effect is prevented and bearing capacity will approach the 

bearing capacity when not considering crushing effect. 

5.3.3 Effect of shearing stress on the initiation of crushing 

Figure 5-16 showed how Mx, the parameter controls the simultaneous effect of shearing and 

compression stresses, through crushing surface shape, on the bearing capacity of strip footing on the 

crushable soils. It should be noticed that the onset of crushing depends on the simultaneous effect of 

mean stress and deviator stress. In our crushing soil model, this combination effect is simply but 

effectively implemented via the crushing surface: under the same mean stress, the larger Mx is, the more 

significant deviator stress needs to be applied to initiate crushing. Therefore, under the same confining 

pressure, the soils that are strong in crushing resistance to deviator stress will have a larger magnitude 

of Mx compared to that of the weak one. From the above analysis, the larger the value of Mx, the larger 

bearing capacity the soil can sustain. It should be noticed that even for an infinitely large number of Mx, 

the bearing capacity when considering crushing effect also cannot reach the bearing capacity when not 

considering crushing effect. A large value of Mx means that the deviatoric stress is not dominant in the 

initiation of crushing. However, due to the effect of mean stress in the crushing surface, when the small 

value of px0 is set to a small value, then crushing will always occur irrespective of Mx. 

 

Figure 5-16: The effect of Mx parameter on the bearing capacity of strip footing on crushable soil. 
(a)  Load-displacement curve   (b) Normalization of bearing capacity of crushable over uncrushable 

soil 
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5.4 Effect of the width of strip footing  

The particle crushing effect significantly influences the strip footing bearing capacity. To be 

more specific, the bearing capacity of the crushed soil was around 90-92% of the bearing capacity of 

uncrushed soil (Figure 5-17, Figure 5-18), in case of using Dogs Bay sand parameters. 

As seen in Figure 5-17 and Figure 5-18, within the assumed limit allowable settlement (0.15 

m), to achieve a higher bearing capacity, we can increase the size of strip footing. Also, noticed from 

(Figure 5-18), when the width of the foundation was increased 2.5 times (from 1 1.0 m to 2.5 m), the 

bearing capacity of strip footing on crushable soil was only reduced around 2% when being normalized 

with the bearing capacity of strip footing on crushable soil. Thus, the particle crushing effect was 

slightly reduced when the footing size increased. 

 
Figure 5-17: The bearing capacity of the strip footing with variation footing sizes on crushable and  

uncrushable soils 

 

Figure 5-18:  Normalization of the bearing capacity of the strip footing on crushed soil with that of 
uncrushed soil with various widths of foundation 
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5.5 Scale effect 

Experimental data collected by De Beer (1965) have clearly shown that the bearing capacity 

factor 𝑁𝛾 decreases with an increase in the size of foundation. Experiments carried out in a centrifuge 

demonstrated that the magnitude of 𝑁𝛾 increased almost linearly with a decrease in footing size on a 

log-log scale (Kutter, Abghari et al. (1988); Clark (1998); Ueno (1994)). As a result, model footings 

always overpredict the bearing capacity factor 𝑁𝛾  as compared to field footings. The dependency of 

𝑁𝛾  on footing width (B) was found to be primarily due to the pressure level effect (Tatsuoka (1991), 

Tatsuoka (1994)), which caused the reduction of peak friction angle (which is the arcsine of the peak 

value of (𝜎1 − 𝜎3)/(𝜎1 − 𝜎3) when the applied pressure becomes larger. In this simulation of Dogs 

Bay sand with a high value of critical state ratio (M = 1.65), the general failure did not occur, but only 

punching failure mode did. In this work, we tried to analyze the bearing capacity factor in the same 

manner, when choosing the bearing capacity at the displacement of 0 15m as the “ultimate” bearing 

capacity.  

  

Figure 5-19: Variation with depth of bearing capacity factor 𝑁𝛾 on:  
 (a) uncrushable soil        (b) crushable soil 

 
Figure 5-20 : Comparison of the variation of bearing capacity factor N  with footing width B between 

FEM simulation and equation.   (a) linear-linear scale     (b) log10-log10 scale 
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Shiraishi (1990) developed the following empirical expression for determining 𝑁𝛾 

𝑁𝛾 = 𝑁𝛾
∗ (
𝐵

𝐵∗
)
−𝛽

 

where, 𝑁𝛾 = reference bearing capacity factor; 𝐵∗= reference footing width; and 𝛽 = factor to account 

for the dependency of 𝑁𝛾 on the confining stress level. In this simulation with Dogs Bay sand, 𝐵∗= 

0.5m, 𝛽 = 1.49 are the optimum parameters to obtain appropriate results. (Figure 5-20). 

An interesting finding was that the bearing capacity factors N of crushable soil and uncrushable 

soil were almost straight lines in log-log scale of N -B (same as the other researcher findings). 

Furthermore, these lines were parallel to each other, which suggest a downward shift of N  on crushable 

to N  of uncrushable soil. This finding was useful for the design of strip footing because the ratio 

between the bearing capacity of strip footing on crushable soil can be conveniently calculated from the 

bearing capacity on uncrushable soil by multiplying a factor (N crushable/ N uncrushable). 

=
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 : Active and passive earth pressure coefficient 

analysis on crushable soils 

 In this chapter, we will examine the effect of particle crushing on the active and passive earth 

pressure coefficients through the simulation of retaining wall using our proposed model for crushable 

soils. To achieve this purpose, firstly, our FEM code to simulate the active and passive earth pressure 

problem is validated with Drucker-Prager model and then compared the results with analytical results 

by Rankine. Then, the proposed soil model for crushable soil is used to study the effect of particle 

crushing on the variation of active and passive earth pressure. 

6.1 Validation of the FEM code to the problem of active and passive 
earth pressure analysis by Drucker-Prager criteria 

6.1.1 Drucker-Prager yield function: 

A yield function of Drucker Prager: 

 𝑓 =  −𝛼𝐽1 + 𝐽2
1/2

− 𝑘 (6-1) 

where 𝛼 and 𝑘 are positive constants. 𝐽1 is the sum of principle stresses: 

 𝐽1 = 𝜎11 + 𝜎22 + 𝜎33 (6-2) 

J2 is the second invariant of the stress deviation: 

 𝐽2 =
1

6
[(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2 + (𝜎33 − 𝜎11)

2] + 𝜎12
2 + 𝜎23

2 + 𝜎31
2  (6-3) 

 

6.1.2 Calibrate Drucker-Prager model parameters for Mohr-Coulomb 
criteria in plane strain condition 

To be able to compared with Rankine earth pressure, we need to use Mohr Coulomb yield 

criteria. However, the yield function of Drucker-Prager can be reduced to the Mohr Coulomb rule in 

the case of plane strain condition (Drucker and Prager, 1952 or Appendix C in this thesis) 

 𝛼 =
𝑠𝑖𝑛𝜙

√3√3 + 𝑠𝑖𝑛2𝜙
 (6-4) 

 

 
𝑘 =

√3𝑐. 𝑐𝑜𝑠𝜙

√3 + 𝑠𝑖𝑛2𝜙
 (6-5) 
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6.1.3 Domain & boundary condition 

The domain considered in this research is a rectangle area of 4x14m (Figure 6-1).  The material 

parameters are displaced in Table 6.1 The bottom of the domain is restrained with the horizontal and 

vertical displacements. The left hand side of the domain is restrained by the horizontal displacement.  

The active and passive earth pressure coefficient analysis are carried out by using Drucker Prager model 

with material parameters calibrated from Mohr Coulomb model for plane strain condition. FEM is used 

for solving nonlinear equations with boundary conditions. The analysis domain is discrete by Quad4 

element. A finite element mesh of 400 elements is shown in Figure 6-1. The nodes representing the 

retaining wall are incrementally displaced by an equal amount in the horizontal direction, simulating a 

rigid wall condition with uniform horizontal displacement. Smooth retaining wall conditions are 

simulated by not restraining vertical movement of these nodes. The initial stress in the soil elements are 

generated by k0 initialization. The mean stress distribution is shown in Figure 6-2 

The total of pressure acting on the retaining wall is calculated as the integration of the average 

horizontal stress acting on the wall. To be convenient for calculation, we use passive or active 

coefficients 𝐾𝑝, 𝐾𝑎, respectively. 

 𝑃𝑝,𝑎 =
1

2
𝐾𝑝,𝑎𝛾𝐻

2, 𝑜𝑟 𝐾𝑝,𝑎 = 2𝑃𝑝,𝑎/(𝛾𝐻
2) (6-6) 

Analytical solution of Rankine active and passive earth pressure coefficients: 

 𝐾𝑝 = tan
2 (450 +

𝜙

2
) = 3 (6-7) 

 

 𝐾𝑎 = tan
2 (450 −

𝜙

2
) =

1

3
 (6-8) 

 

Table 6-1: Material parameter for Drucker Prager model 

Young’s modulus
Poisson  ratio
Cohesion

Friction angle

70000
0.499

0
300

Parameter Value

*  The unit weight ( = 18 kN/m3) is applied by k0 distribution 
with k0 = 0.5 before applying the loading process.
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Figure 6-1: A mesh of 400 elements 

 

Figure 6-2: Distribution of mean stress due to self-weight with k0 initialization 

 

Analytical solution of Rankine active and passive earth pressure coefficients: 

 𝐾𝑝 = tan
2 (450 +

𝜙

2
) = 3 (6-11) 

 

 𝐾𝑎 = tan
2 (450 −

𝜙

2
) =

1

3
 (6-12) 
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6.1.4 Simulation results 

 

Figure 6-3:  Active and passive coefficient earth pressure analysis with Drucker Prager model 

 

 

Figure 6-4: Earth pressure distribution for Drucker-Prager, passive case 
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Figure 6-5: Earth pressure distribution for Drucker-Prager, active case 

As can be seen in Figure 6-3, the simulation results matched well with analytical solution by 

Rankine active and passive earth pressure. This confirm the accuracy of our FEM code regarding the 

active and passive earth pressure analysis problem. 

To have a deeper understanding of the simulation results, we can observe the distribution of 

earth pressure in the passive and active case in Figure 6-4 and Figure 6-5, respectively. It is seen that 

after a displacement of about 4cm, the passive earth pressure coefficients has reached at all of the 

elements. On the other hand, with only 1cm of displacement, al of elements has reached Ka.  

In this calculation, explicit method is used, so, the convergence of simulation results can be 

confirmed via Figure 6-6 and  Figure 6-7 for passive and active case, respectively. As expected, the 

higher the number of calculation steps is, the closer it is to the analytical solution. 
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Figure 6-6 The convergence of earth pressure coefficient analysis for Drucker-Prager model, active 
case 

 

Figure 6-7: The convergence of earth pressure coefficient analysis for Drucker-Prager model, passive 

case 
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6.1.5 Conclusion 

Our FEM code has been validated for the case of active and passive earth pressure analysis 

using Drucker-Prager criterial. The FEM simulation results matched well with the analytical results by 

Rankine. Thus, in the next section, we will use our developed FEM code for the analysis of active and 

passive earth pressure on crushable soil using our proposed model. 
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6.2 Analysis of active and passive eath pressure coefficients on 
crushable soils 

6.2.1 Material parameters & initial condition of soils 

Dogs Bay sand with the material parameter described in Table 6.2 is used in these analysis. The 

detail of initial soil state condition used in these simulations is also described in Table 6.2. 

The active and passive earth pressure coefficient analysis are carried out by using our proposed 

model for soil considering particle crushing. FEM is used for solving nonlinear equations with boundary 

conditions. The analysis domain is discrete by Quad4 element. A finite element mesh of 833 elements 

is shown in Fig. The nodes representing the retaining wall are incrementally displaced by an equal 

amount in the horizontal direction, simulating a rigid wall condition with uniform horizontal 

displacement. Smooth retaining wall conditions are simulated by not restraining vertical movement of 

these nodes.  

Table 6-2: Materials parameters for Dogs Bay sand and initial soil condition 

Compression index

Recompression index

Specific volume on NCL at p = 98 kPa 

Critical stress  ratio

Poisson  ratio

Parameter controlling density effect

Parameter controlling crushing resistance

 Parameter controlling the shape of crushing surface

Volumetric distance between NCL of IG = 0 and IG = 1

Crushing stress when  IG = 0:  (kN/m2)

Modified Cam Clay

Subloading Concept

Particle Crushing 

0.265

0.0015

1.8

1.65

0.2

500

5000

0.58

0.55

98

Parameter Classification Value

* These material parameters of Dogs Bay Sand were calibrated from the validation of elementary tests.  
The unit weight ( = 18 kN/m3) is applied by k0 distribution with k0 = 0.75 (e0 = 2.5, IG0 = 0) before 
applying the loading process.
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Figure 6-8: Analytical domain, boundary condition and grid mesh with 833 Quad4 elements 

 
Figure 6-9: Distribution of mean stress before loading 

 
Figure 6-10: Distribution of grading index IG before loading 
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6.2.2 Simulation results: 

 

Figure 6-11: Passive and active earth pressure coefficients analyasis on crushable and noncrushable 

soil (3000 calculation steps) 

 

Figure 6-12: The effect of mesh fineness to Kp, Ka analysis on crushable soil 
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Figure 6-13: The effect of mesh fineness to Kp, Ka analysis on noncrushable soil 

Figure 6-12 and Figure 6-13 shows the convergence of simulation results when the number of 

elements increased, we can observed the convergence of the results. Thus the simulation is stable. With 

the number of elements of 833, the results almost reached their ultimate convergence values. 
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6.2.3 Simulation results of Kp analysis  

 Crushable soil 

 
Figure 6-14: Deviatoric strain distribution of Kp analysis on crushable soil 

 
Figure 6-15: Grading index IG  distribution of Kp analysis on noncrushable soil 

 

The highest shear strain is observed at the bottom of the retaining wall due to strain localization. 

The ocurence of particle crushing is observed based on the distribution of IG as in Figure 6-15, with the 

highest value of IG at the bottom of the wall 
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 Noncrushable soil 

 

 

Figure 6-16: Deviatoric strain distribution of Kp analysis on noncrushable soil 

 
Figure 6-17: Grading index IG  distribution of Kp analysis on noncrushable soil 

 

Particle crushing reduced soil strength, which leads to the reduction of Kp in comparison with Kp of 

uncrushable soil. Also, shear band in case of crushable soil (Figure 6-14)is smaller than that of 

noncrushable soil (Figure 6-16). This is likely due to the decrease of dilation when crushing occurs. The 

decrease of area in shear band can explain why Kp in crushable soil is smaller than that of noncrushale 

soil.  
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6.2.4 Simulation results of Ka analysis  

 Crushable soil 

 
Figure 6-18: Deviatoric strain distribution of Ka analysis on crushable soil 

 

 

Figure 6-19: Grading index IG  distribution of Ka analysis on noncrushable soil 

Figure 6-18 and Figure 6-19 show the distribution of deviatoric stress and grading index IG in the 

analysis of Ka coefficient, respectively. As can be seen, the slip zone of passive earth pressure analysis 

(Figure 6-14) is much wider than that of active earth pressure analysis (Figure 6-18). This has been 

widely recognized in the literature, and this is confirmed in our simulation results. 
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 Noncrushable soil 

 

Figure 6-20: Deviatoric strain distribution of Ka analysis on noncrushable soil 

 

 
Figure 6-21: Grading index IG  distribution of Ka analaysis on noncrushable soil 

6.3 Conclusion: 

In the first part of this chapter, the validation of FEM code on the analysis of passive and active 

earth pressure coefficient was confirmed by comparing simulation results using Drucker-Prager model 

and Rankine solutions.  

The second part of this chapter focused on the effect of particle crushing on the analysis of 

passive and active earth pressure coefficient. Based on the simulation results using Dog Bays sand, 
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passive earth pressure Kp significantly decreased together with the occurrence of particle crushing, from 

7.8 to 5.8 when crushing occurs. On the other hand, Ka almost remains constant when crushing occurs. 

This suggests that it is necessary to consider particle crushing when design retaining wall on crushable 

soil because the stability of the wall may be put in danger when crushing is not properly considered. 
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 : Concluding remarks and future research 

In this dissertation, a critical state constitutive model considering particle crushing was 

developed and validated. Also, the bearing capacity of strip footings on crushable soils was analyzed. 

In this final chapter, the principles findings and novelties of this research are summarized and prospect 

for future researches are discussed. 

7.1 Contributions 

The key findings and the novelty of the dissertation are summarized as follows: 

Firstly, the mutual relationship between PSD curve and grading index was clarified. This can 

also help us further improve the accuracy in capturing soil behavior in elementary laboratory test by 

using soil constitutive model.  

Secondly, a new soil constitutive model considering particle crushing was developed in critical 

state framework. The particle crushing phenomenon was implemented by using the evolution law of 

grading index IG. An advantage of this model is that, not only compression and shearing effects, but 

also consolidation effect to particle crushing is also considered in this model. Also, the performance of 

the proposed model has been validated by a number of laboratory triaxial tests under isotropic 

consolidation, consolidated drained, and consolidated undrained condition.   

Finally, one simple method to overcome the volumetric locking problem in FEM when using 

Quad4 elements has been validated with examples of elastic bending problems and strip footing bearing 

capacity analysis using VonMises model. As a first application of the proposed model for particle 

crushing, I performed the analysis of the bearing capacity of strip footing on Dog Bay sand. It was 

found that (1) with 15 cm settlement, bearing capacity of strip footing slightly reduced around 10% due 

to particle crushing in case of Dogs Bay sand, (2) under a specific allowable settlement, the effect of 

crushing on bearing capacity decreased when the footing size increases. (3) scale effect was also 

observed in our simulation; however, the ultimate bearing capacity was not observed in the simulation 

of Dogs Bay sand. (4) when assuming the bearing capacity under a certain settlement is “ultimate”, one 

interesting finding was that (the bearing capacity factor N  – strip footing width B) line of crushable 

soil in (log10-log10) scale was a straight line which shifted downwards from the (N-B) line of 

uncrushable soil. 

Another application of the proposed model was the analysis of passive and active earth pressure 

coefficient on crushable soils. It was found that the occurrence of particle crushing phenomenon reduced 

the passive earth pressure coefficient from 7.4 to 5.8 (corresponding to 0.3m displacement of the wall). 
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On the other hand, active earth pressure coefficient Ka is not significantly effected by particle crushing 

phenomenon  

 

7.2 Future research  

In this dissertation, the constitutive model considering particle crushing was developed based 

on the implementation of the changing of particle crushing curve. For future research activities, the 

particle shape effect on particle crushing is an interesting topic that can be further implemented. Also, 

the time effect of crushing is also an interesting topic to be observed in the long-term settlement of 

geotechnical structures. The third application is the modeling of the behavior of very coarse granular 

materials (diameter up to ~30cm), by considering the size effect of particle, which is similar to the 

research by Yin et al, (2016). Thus, I expect to obtain information about the effect of particle shape to 

crushing and the time effect to particle crushing in practical or experimental tests. 

In the near future, I would like to analysis the effect of the height of the wall to the analysis of 

passive and active earth pressure coefficient. This maybe similar to the scale effect in strip footing 

bearing capacity. Furthermore, the effect of the mode of wall movement on Ka and Kp of retaining wall 

on crushable soil is also an interesting topic when considering. Regarding the speed of calculation in 

numerical method, instead of explicit method in FEM, an implicit method will both reduce accumulated 

errors as well as save computation time
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APPENDIX 

A. Verification of FEM with modified B-bar method approach in 2D 
plane strain condition 

A1. Elastic beam bending problem 

As an example to illustrate the performance of modified B-bar method to incompressible material, 

the behavior of a cantilever shown in Figure A- 1 has been studied. The bending of an incompressible 

elastic beam is a typical problem in which significant volumetric locking is exhibited (Flanagan and 

Belytschko (1981) Belytschko and Bindeman (1991)). The boundary condition of cantilever problem is 

analyzed as in Figure A-A . The cantilever is of dimension H = 60 mm, L = 480 mm, and the applied 

end load is equivalent to a uniform stress of 1 unit per unit area (P = 6000 kPa). The material properties 

used are Young modulus E = 3107 kPa, and Poisson ratio n = 0.499 (nearly incompressible). The 4-

node isoparametric element is used in this simulation. Different mesh densities are conducted. The 

Cartesian coordinates (x, y) are set along the parallel and normal directions to the beam axis, 

respectively. 

The theoretical solution Timoshenko (1936) of the vertical deflection is expressed as:  

 2 2 213 ( ) (4 5 ) (3 )
46y

Pu vy L x v H x L x x
EI

 
= - + + + - 

 
 (0-1) 

in which: 

 3
2

1 ,    ,     
12 1 1

E vI H E v
v v

= = =
- -

 (0-2) 

Here, the deflection is positive in the y direction, and I is the second moment of area when the unit depth 

is assumed.  

            

Figure A- 1 Coordinate system for the cantilever beam. 
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Figure A- 2. Cantilever problem analyzed. 
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Figure A- 3: Distribution of deflection (traditional FEM) 
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Figure A- 4: Error in tip deflection  (traditional FEM) 
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Figure A- 5: Distribution of deflection (FEM with modified B-bar). 
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Figure A-6: Error in tip deflection (FEM with modified B-bar method) 

It is clearly seen (Figure A-3 to Figure A-6) that without modified B-bar approach, the beam’s 

displacement is far different from analytical solution. On the other hand, B-bar method has a really 

good effect on the behavior of nearly incompressible bar as long as the number of DOF is large enough. 

For a fine mesh of DOF = 3782, the simulation result agrees well with the theoretical solution. Therefore, 

the results demonstrate that the B-bar approach improved the performance of FEM when dealing with 

incompressible material or critical state model. Thus this B-bar method will be applied in the analysis 

of bearing capacity of strip footing. 
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A2. Finite element analysis of the ultimate bearing capacity of strip footing using von 
Mises model 

A2.1 von Mises yielding criteria 

Yield surface 

In von Mises model, hydrostatic stress is assumed to have no contribution to plasticity but only 

deviatoric stress does. Equivalent von Mises stress is defined as: 

 2
33
2eq ij ijJ s ss = =  (0-3) 

in which 1
3ij ij kk ijs s s = -  

Assuming that under loading, the material is yielding when eq Ys  , yield surface in Figure A-

7 is defined as: 

 2( ) 3ijf J Ys = -  (0-4) 

or in terms of the so-called equivalent stress  

 ( ) eq yf s s= -s  (A-2) 

( ) ( ) ( )

( ) ( ) ( )

1
22 2 2

1 2 2 3 3 1

1
22 2 2 2 2 2

1 1 1
2 2 2

1 1 1     3 3 3
2 2 2

  

eq

x y y z z x xy yz zx

s s s s s s s

s s s s s s   

 
= - + - + - 
 

 
= - + - + - + + + 
 

 

where 1, 2, 3 are the principle stress directions.  

 

Figure A- 6: Visualization of von Mises yield surface in principle stress state 

s11

s33

s22

s11 =s22 =s33

23J

s22

s33

s11



Appendix 

 

95 

A2.2 von Mises yield criteria in 2D plane strain problem 

In plane strain problems, we have the following conditions:  

 3 23 13 0  = = =  (A-3) 

If this is to be valid for all strains, it must hold that: 

 3 23 13 0e e ed  = = =  (A-4) 

and 

 3 23 13 0p p pd  = = =  (A-5) 

Meanwhile, when assumed associated flow rule:  

 '
p fd d 
= 




s
 (A-6) 

We can derive 

 ( )3 3 1 22p

e

fd d s s s
s


=  - -


 (A-7) 

When assumed perfect plasticity at failure mode, the increment of plastic strain would be same as the 

increment of total strain: 3 3
pd d = . Then, the expression of 3

pd  gives the condition for the normal 

stresses as: 

 ( )3 1 2
1
2

s s s= +  (A-8) 

Yield function becomes 

 ( )1 2
3( )

2 yf s s s= - -s  (A-9) 

In which 1 2 2cs s- = , c is soil cohesion. Thus, the condition ( ) 0f =s  will lead to 3y cs =   

Finally, yield function of von Mises model in 2D plane strain is written as: 

 ( ) 3eqf cs= -s  (A-10) 
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A2.3 Derivation of elastoplastic stiffness matrix of von Mises model 

Elastic stiffness matrix 
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 (A-11) 

Assume small strain behavior 

 𝒅𝜺 = 𝒅𝜺𝒆 + 𝒅𝜺𝒑 (A-12) 

Flow rule: 

 Associated flow rule is assumed 

 p fd 
= 




s
 (A-13) 

Increment of stress 

 𝑑𝝈 = 𝑫𝒆: 𝑑𝜺𝒆 = 𝑫𝒆: (𝑑𝜺 − 𝑑𝜺𝒑)  (A-14) 

Consistency condition: 

 𝑑𝑓 = 0 ⟺
𝜕𝑓

𝜕𝝈
: 𝑑𝝈 = 0   (A-15) 

Substituting (A-13) and (A-14) into (A-15), we derive 
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e

e

f d

f f
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 
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
s

s s

D

D
 (A-16) 

Elastoplastic stiffness matrix 

Substituting (A-13) and (A-16) into (A-14): 
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:
: :

e e

e

e

f f

f f
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D D
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D
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When the rate of the plastic multiplier 0 = , the soil’s behavior is purely elastic with the elastic 

stiffness. On the contrary, when the rate of the plastic multiplier the soil exhibits deformation under 

elastoplastic deformation with the elastoplastic stiffness: 

 
: : :

: :

e e

ep e

e

f f

f f

 

 = -
 

 

s s

s s

D D
D D

D
   (A-18) 

A2.4 Validation of the implementation of von Mises model into FEM 

Before moving to the bearing capacity analysis under 2D plane strain condition using von Mises 

yielding criteria, in this section, the simulation of oedometer test under both elementary level test and 

FEM simulation is conducted with the material described in Table A.1 

 

Figure A- 7:  Comparison of FEM and elementary test under oedometer test condition 

Table A- 1: Materials parameters for von Mises model 

 

By observing the exact simulation result between elementary test simulation and our FEM 

simulation in 2D plane strain (Figure A- 7), we can confirm that the von Mises model has been 

successfully implemented into our FEM code. 
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A2.5 Verification of modified B-bar method to the ultimate bearing capacity of strip 
footing using von Mises model 

In this section, the performance of FEM with modified B-bar method applied to elastoplastic 

analyses of soils is examined through the bearing capacity analysis of the vertically loaded strip footing 

on cohesive soil using Von-Mises model. This problem usually suffers from volumetric locking because 

the volumetric strain of soil during failure is governed by plastic flow regardless of the setting of the 

elastic parameters as Poisson’s ratio. Figure A- 8 shows the analytic domain, boundary condition and 

mesh grid of the current problem. The analytical domain is set to be sufficiently large so that the 

boundary conditions do not affect the simulation results. The lateral side of the ground is fixed in the 

horizontal direction, and the bottom of the ground is fixed in all directions. Meshes with different 

fineness, with the finer meshes elements near the footing position are considered. Explicit method with 

sufficient large number of calculation steps (6000) to reach to convergence solution has been performed. 

The ground is modeled as elasto-perfectly plastic material using von Mises’s failure criterion, 

assuming associated flow rule. It should be noted that the weight of the material are ignored to compare 

the simulation result with theoretical solution (Prandtl (1920)) of the bearing capacity of a strip footing 

on a weightless cohesive ground. 

 
Figure A- 8:  Analytical domain, boundary condition, and mesh (1080 elements) of strip footing & 

material parameters 

 

 

 

 

 

 

Ground: Material parameter is listed in Table 1
Prantl’s solution: Qult = (2+p).B.c = 51.4 kPa
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A-2: Material parameters for von Mises model 

 

 

Figure A- 9: Bearing capacity of strip foundation using von Mises model by traditional FEM with 
6000 calculation steps 

 

Figure A- 10:  Error of bearing capacity when compared with Prandtl’s solution by von Mises model 
& traditional FEM  
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The computed relationships between the footing displacement and the applied force with 

respect to the traditional FEM and FEM with modified B-bar approach are shown in Figure A- 9 and 

Figure A- 11. In these the figures, Prandtl’s solution is indicated by the straight line. 

 𝑄 = (2 + 𝜋). 𝑐. 𝐵 (0-5) 

in which, c is the cohesion of the soil, B is the footing width. Thus, Q ≈ 51 4 kN in the current problem, 

where c = 10.0 kPa, and B = 1.0 m. When using the B-bar method, the vertical load converged to an 

almost constant value, and the ultimate load could be easily determined. 

 
Figure A- 11:  Bearing capacity of strip foundation using von Mises model by FEM with modified B-

bar method 

 

Figure A- 12:  Error of ultimate bearing capacity when compared with Prandtl’s solution by von 
Mises model & FEM with modified B-bar method 
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compared to the analytical solution is reduced from 275%  to on around 45% compared to the exact 

solution (Figure A-11). Even though up to 12000 elements is used, the solution is still far away from 

the analytical solution. This is due to volumetric locking problem as presented in Chapter 4. Thus, from 

this analysis, we can see that the traditional FEM cannot be used to observe the ultimate bearing capacity 

as well as the correct failure surface.  

On the other hand, modified B-bar approach in FEM significantly improved the calculation 

result, in which the ultimate bearing capacity showed a good convergence to the analytical solution 

(Figure A- 11) as the number of elements increased. The simulation results were only around 2% and 

0.5% different from the analytical result corresponding to the number of elements 1080, 12000, 

respectively (Figure A- 12). Furthermore, the failure surface in general failure model as shown by 

Prandtl could also be obtained by this B-bar method as seen in Figure A- 13. The displacement of the 

ground, as well as the principle stresses, was shown in Figure A- 14. 

The above FEM simulation results proved the effectiveness of modified B-bar method in 

solving the volumetric locking problem of bearing capacity of strip footing with elastoplastic model. 

Simulation results were in good agreement with Prandtl’s analytical solution   

 

Figure A- 13. FEM analysis result of strip footing bearing capacity using von Mises criteria with a 
mesh of 1080 elements: 

(a) Deviatoric strain distribution (b) Displacement vector (scale 4 times) 

  

(a) (b)

0.05 0.1 0.2 0.5 1 2 5 10 20 50 1000
Deviatoric strain (%)

45o
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Figure A- 14: FEM analysis result of strip footing bearing capacity using von Mises criteria with a 
mesh of 1080 elements:   

(a) Grid displacement after loading (scale 4 times)(b) Principle stresses distribution   

 

(a) (b)

= 0.02m= 0.02m 100 kPa
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B- Calculating grading index IG based on stress values: 

We can directly obtain grading index 𝐼𝐺  value from the soil’s stress values after crushing has been 
occured. 

Equation of crushing surface (Equation 2-10): 

 

 
𝑓𝑥 = 𝑙𝑛𝑝 +

2

𝛼
𝑙𝑛 {1 + (

𝑞

𝑝𝑀𝑥
)
𝛼

} − 𝑙𝑛𝑝𝑥 
(B-1) 

When particle crushing occurs, 𝑓𝑥 = 0, which leads to : 

 
𝑝𝑥 = 𝑝 [1 + (

𝑞

𝑝𝑀𝑥
)
𝛼

]

2
𝛼

 
 

 (B-2) 

At the time of loading, unloading and reloading process, stress magnitude can fluctuate. Crushing stress 
can be calculated as the maximum of the left hand side of Eq. (B-2):  

 

     𝑝𝑥 = 𝑀𝑎𝑥 (𝑝 [1 + (
𝑞

𝑝𝑀𝑥
)
𝛼

]

2
𝛼
) 

 

 (B-3) 

Then, from the equation of 𝐼𝐺: 

 
𝐼𝐺 = 1 − 𝑒𝑥𝑝 (−

𝑝𝑥 − 𝑝𝑥0
𝑝𝑟

) (B-4) 

Therefore, after the initialization of crushing, 𝐼𝐺 can be calculated directly from stress magnitude:  

 

𝐼𝐺 = 1 − 𝑒𝑥𝑝

(

  
 
−

𝑀𝑎𝑥 (𝑝 [1 + (
𝑞
𝑝𝑀𝑥

)
𝛼
]

2
𝛼
) − 𝑝𝑥0

𝑝𝑟

)

  
 

 

 

(B-5) 

In which 𝑝𝑥0,  𝑝𝑟 ,  𝑀𝑥 , 𝛼 are constant material parameters for a specific soil. 
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C- Matching Drucker-Prager a d Mohr Coulomb criteria in plane strain 
condition: 

C1. Extended Coulomb’s criteria: 

C D B

A

sx

xy



s

sy

E F
f c

 

Figure C-1: Mohr-Coulomb yield criteria 

We can derive the extended Coulomb’s criteria by calculating 𝑠𝑖𝑛𝛷 from Figure C-1: 

 𝑠𝑖𝑛𝛷 =
𝐴𝐵

𝐶𝐷 + 𝐷𝐵
 =
[(
𝜎𝑥 − 𝜎𝑦
2

)
2

+ 𝜏𝑥𝑦
2 ]

1/2

𝑐
𝑐𝑜𝑠𝛷
𝑠𝑖𝑛𝛷 +

𝜎𝑥 + 𝜎𝑦
2

 (C-1) 

Thus, the extended Coulomb’s criteria can be written in this form 

 [(
𝜎𝑥 − 𝜎𝑦

2
)
2

+ 𝜏𝑥𝑦
2 ]

1
2

= c. 𝑐𝑜𝑠𝜙 +
𝜎𝑥 + 𝜎𝑦

2
𝑠𝑖𝑛𝛷 

 

(C-2) 

C2. Drucker-Prager: 

C2.1 Yield criteria:  

 𝑓 =  −𝛼𝐼1 + 𝐽2
1/2

− 𝑘 (C-3) 

Where 𝛼 and 𝑘 are positive constants of the material. 

𝐼1is the sum of principle stresses: (note that in soil mechanics, compressive stress is assumed to be 

positive) 
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 𝐼1 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧 (C-4) 

𝐽2is the second invariant of the stress deviation: 

 𝐽2 =
1

6
[(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ (𝜎𝑦𝑦 − 𝜎𝑧𝑧)

2
+ (𝜎𝑧𝑧 − 𝜎𝑥𝑥)

2] + 𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑧𝑥
2  (C-5) 

C2.2 Flow rule:  

Associated flow rule is assumed in this model.  

 𝜀𝑖̇𝑗
𝑝
= 𝛬

𝜕𝑓

𝜕𝜎𝑖𝑗
 (C-6) 

Substituting (C-4) into (C-7) 

 𝜀𝑖̇𝑗
𝑝
= 𝛬 [𝛼𝛿𝑖𝑗 +

𝑠𝑖𝑗

2
𝐽2
1/2
] (C-7) 

 

C3 Matching Drucker Prager and to Mohr Coulomb criteria in plane strain: 

If the Drucker-Prager and Coulomb criteria are expected to give identical plastic collapse loads for the 

plane strain case, then two conditions need to be met: (1) same limit load, and (2) plane strain. In the 

case of plane strain condition, with the out of plane direction “z”, then 𝜀𝑧𝑧, 𝜀𝑥𝑧, 𝜀𝑦𝑧 vanish. Furthermore, 

to derive the form of Drucker-Prager criterion in a plane strain condition, perfectly plastic behavior is 

assumed. This means that at the instant of collapse, the strain rates are purely plastic. This is because, 

in most problems of elasticity, that changes in geometry are negligible. 

From Eq. (C-7): 

 𝜀𝑥̇𝑧 = 𝜆(𝛼𝛿𝑥𝑧 +
𝑠𝑥𝑧

2𝐽2
1/2
)  = 0  ;  (𝛿𝑥𝑧 = 0) ⇒ 𝑠𝑥𝑧 = 𝜏𝑥𝑧 = 0 (C-8) 

 𝜀𝑦̇𝑧 = 𝜆(𝛼𝛿𝑦𝑧 +
𝑠𝑦𝑧

2𝐽2
1/2
) = 0;  (𝛿𝑦𝑧 = 0) ⇒ 𝑠𝑦𝑧 = 𝜏𝑦𝑧 =  0 (C-9) 

 𝜀𝑧̇𝑧 = (𝛼𝛿𝑧𝑧 +
𝑠𝑧𝑧

2𝐽2
1/2
)  = 0; (𝛿𝑧𝑧 = 1) ⇒ 𝑠𝑧𝑧 = 2𝛼𝐽2

1/2 (C-10) 

From the definition of 𝑠𝑧𝑧: 

 𝑠𝑧𝑧 = 𝜎𝑧𝑧 −
𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧 

3
 (C-11) 

From (C-11) and (C-10): 
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𝜎𝑧𝑧 = −3𝛼𝐽2

1
2 +

𝜎𝑥𝑥 + 𝜎𝑦𝑦 

2
 

 
(C-12) 

Substituting (C-12) into (C-4): 

 
𝐼1 =

3

2
(𝜎𝑥𝑥 + 𝜎𝑦𝑦) − 3𝛼𝐽2

1/2 

 
(C-13) 

Substituting (C-8), (C-9) and (C-12) into (C-5): 

 
 

𝐽2 = [(
𝜎𝑥𝑥 − 𝜎𝑦𝑦

2
)
2

+ 𝜏𝑥𝑦
2 ] /(1 − 3𝛼2) 

(C-14) 

Substituting (C-13) and (C-14) into the yield function (C-3): 

 𝑓 = −3𝛼
𝜎𝑥 + 𝜎𝑦

2
+ (1 − 3𝛼2)𝐽2

1/2
− 𝑘 (C-15) 

At failure state, 𝑓 = 0, Eq. (C-15) becomes: 

 𝑘

(1 − 3𝛼2)1/2
= −

3𝛼

(1 − 3𝛼2)1/2
𝜎𝑥 + 𝜎𝑦

2
+ [(

𝜎𝑥 − 𝜎𝑦

2
)
2

+ 𝜏𝑥𝑦
2 ]

1/2

 (C-16) 

 

Or we can rewrite Eq. (C-16) in the following form: 

 [(
𝜎𝑥 − 𝜎𝑦

2
)
2

+ 𝜏𝑥𝑦
2 ]

1/2

=
𝑘

(1 − 3𝛼2)1/2
+

3𝛼

(1 − 3𝛼2)1/2
𝜎𝑥 + 𝜎𝑦

2
 (C-17) 

Yield function of Drucker-Prager(Eq. C-17)  becomes identical with Yield function of Mohr-Coulomb 

(Eq. C-2) we set: 

 
𝑠𝑖𝑛𝛷 =

3𝛼

(1 − 3𝛼2)1/2
 

(C-18) 

 𝑐 𝑐𝑜𝑠𝛷 =
𝑘

(1 − 3𝛼2)1/2
 (C-19) 

Solving (C-18, C-19), we get: 

 𝛼 =
𝑠𝑖𝑛𝜙

√3√3 + 𝑠𝑖𝑛2𝜙
 (C-21) 

Substituting (C-20) into (C-19), 𝑘 is obtained: 

𝑘 =
√3𝑐. 𝑐𝑜𝑠𝜙

√3 + 𝑠𝑖𝑛2𝜙
 (C-22) 
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