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Abstract

Wireless communication technology is an indispensable technology in this era. It con-
tinues to play an important role in our daily activities. New systems are constantly
being introduced to live up to substantial amount and variety of applications and de-
sires for new services. The need for technological support to be used for standard tasks
has advanced to a level where a strong dependency on high–performance machines is
a reality. Mathematics is the foundation of wireless communication systems. It is the
path–breaker in the development of state of the art transmission procedures as well as
an important instrument in planning and optimization of wireless systems.

In the 5G and Internet of things era, high speeds and efficient systems are desired.
Currently, we are experiencing a boom in the number of connected devices. In order to
achieve high performance wireless systems, better hardware systems deployed together
with robust signal processing algorithms proves to be the best candidate/choice.

With the increasing amount of connected devices, antennas are beginning to be
installed in every electronic device. An antenna is very significant part of the wireless
communication system. In the future, it is expected that all devices will perform wireless
communication. This will therefore lead to the development of a large quantity of
antennas. It is easy to imagine that the usage environment of the device will further be
versatile according to this social transformation. Simple techniques in terms of reducing
the amount of time required for evaluating the performance of an antenna or wireless
communication system by speeding up the measurement process are certainly required.
On top of that, it is also significant to estimate the system’s performance characteristics
assuming various environmental conditions.

On the algorithm side, mathematical models plays a huge role since they are the
backbone of wireless communication system’s algorithms. The basic role played by
mathematics (matrices as an example) is indisputable especially when they are applied
to modeling and optimization of wireless systems. As the number of users as well as
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demand for wireless services increases exponentially, the need for extensive coverage area
and higher transmission quality rises. Smart–antenna systems therefore, present a solu-
tion to this problem. In this dissertation, we develop mathematical models that achieves
improved system performance. These models for wireless communications systems are
specifically applied to the problems of underdetermined direction of arrival (DOA) es-
timation for smart antenna systems and near field to far field reconstruction. The two
problems addressed in this dissertation utilizes underdetermined linear systems which is
an application area of Matrix Theory.

In Chapter 2, theoretic aspects of the application of underdetermined linear systems
to smart antennas is discussed. From current methods applied to DOA estimation prob-
lem, we explore the limitations of the current DOA estimation methods. Furthermore,
we briefly explore the methods in the reconstruction problem for near field to far field
transformation. A reconstruction method of the wave source distribution from mea-
sured electromagnetic field by inverse problem is used. Thus, Chapter 2 introduces the
numerical methods explored in this dissertation.

In Chapter 3, to improve DOA algorithm’s performance as well as achieve improved
DOA estimation characteristics, a nested sparse circular array is proposed. This is a
circularly configured array, which has the characteristics of conventional circular ar-
rays. Virtual sensors in concentric extension of the proposed array are utilized which
achieves increased degrees of freedom. Furthermore, mathematical models are developed
to explore the increased degrees of freedom such that the array is capable of underdeter-
mined DOA estimation. By using the method developed in Chapter 3, we are capable
of estimating mores sources (impinging signals) arriving at the array with fewer sensors
(antenna elements).

In DOA estimation problems, an ideal array model is assumed. In real use case
scenario for antenna arrays, mutual coupling affect the system performance in DOA
estimation. In Chapter 4, we consider the problem of mutual coupling compensation
in which a mutual coupling compensation method is proposed for nested sparse circu-
lar array discussed in Chapter 3. The mutual coupling compensation method attains
an improved DOA estimation performance, better RMSE, and lower average run–time
as compared to cases where conventional mutual coupling compensation methods are
employed.

In Chapters 3 and 4, the assumption is that we are employing narrowband signal
sources. This is not the case for all systems, since in some cases, wideband signals
are used. In Chapter 5, we discuss the case in which wideband signals are employed.
The mathematical models proposed in Chapters 3 and 4 are extended to cases where
the signal sources are wideband. The underdetermined DOA estimation performance is
verified in this chapter in which more sources are estimated as compared to the number
of sensors.

Chapter 6 discusses a mathematical model that is applied to antenna measurement
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problem. For a very large antenna system, it is very difficult to conduct conventional far
field measurements in an anechoic chamber. Thus, near field measurement provides a
leeway in which the far field can be calculated from the measured near field data without
the need of a very large anechoic chamber by utilizing near field to far field transformation
techniques. Therefore, we discuss a hemispherical near field measurement technique in
this chapter. In the far field reconstruction procedure, the effect of real ground (earth)
is considered.

In Chapter 7, the discussion from chapter 6 is extended to the case in which a
vehicular mounted antenna is considered. In this case, the whole body of the vehicle
affect the performance of the antenna. Thus, we do not consider the antenna only, but
we consider the whole system as device under test. An antenna’s performance in the
system provides an insight in terms of how we can improve the antenna performance.
The near field is measured hemispherically and far field is reconstructed which includes
the effect of real ground. In this chapter, we first consider a simple system and evaluate
the performance of the technique. This is further applied to a real car model.
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Chapter 1
Introduction

1.1 Background

Wireless communications has become an essential part of life to most people. It is

playing an ever increasing role in the consumer market [1], [2]. Currently, we have devices

that interconnect automatically and devices that enable communication from distance

wirelessly. Wireless communication therefore is defined as the transfer of information

or power across two or more points not connected by an electrical conductor [3], [4]. In

this technology, electromagnetic waves are used by a network or a terminal such as radio

frequency (RF), infrared, laser, visible light and acoustic energy as a substitute of wire

conductors for telecommunications [5].

In wireless communications, radio waves are the most commonly used [3]. In the

electromagnetic spectrum, the radio wave frequency ranges from 20 kHz to 300 GHz

[6], [7]. With radio waves, distances (range) can be short; a few meters in the case

of bluetooth and television remote control or the distance can be very large; millions

of kilometers for deep–space radio communications [3]. Various applications of radio

wireless technology continues to emerge. In the last decade, we have experienced a boom
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in the Internet of Things (IoT) sensors, driverless vehicles etc. By the year 2020, the

5G network will support 50 billion connected devices as well as 212 billion connected

sensors and it will permit access to 44 zettabytes (ZB) of data [8], [9], [10]. These

connected devices will range from smart–phones and tablets to smart watches, cars,

machinery, appliances, and remote monitoring devices [9], [11]. As shown in Fig. 1.1,

almost everything will be connected to the internet wirelessly [12]. Currently, connected

devices are generating massive amounts of data. This has led to a data driven society

where wireless technologies are employed to transmit data, which supports people’s daily

life. Since high–speed communication is significant, we have also experienced the advent

of 5G technologies in which billions of smart sensors are connected at high–speed data

rates of up to 10Gbps.

Although wireless communication technology has different applications, mobile com-

munication has a great economic consequence in today’s world. Since the introduction

of GSM in the early 1990s which is still the dominant mobile communications standard,

mobile communications has had an enormous impact on our social life [13]. The impor-

tance of mobile communications continues to grow with new fields of application. The

telecommunications industry has become broader as compared to as it was in the past

[14]. Now, it encompasses several service providers which includes; telephone companies,

wireless carriers, internet service providers (ISPs), cable system operators, and satellite

operators [14], [15]. As the telecommunications field evolve, the industry today includes

software–based applications having a communications emphasis as well as intermediate

layers of software incorporated into end–to–end communication services. The industry

further includes suppliers of telecommunications equipment and software products sold

directly to consumers and service providers [14].

New systems of mobile communication are being introduced regularly to live up to the

great variety of applications and desires for new services. This advancement would have

been impossible without the digitalization of mobile communication in which mathemat-

ics performed an indispensable role [13]. Mathematics is the foundation of information
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Figure 1.1: Basic idea in IoT in which everything is connected by Internet [12].

and communication theory. It is the path–breaker in the advancement of new trans-

mission procedures as well as an essential instrument in planning and optimization of

mobile networks. Some application examples of mathematics in wireless communication

technology field include; probability theory and discrete mathematics applied to infor-

mation theory, and linear algebra, convex optimization and game theory used in the

advancement of new transmission methods [13]. Thus, mathematical models are very

important in wireless communication systems.

In order to transmit or receive a radio signal, an antenna must be used. An antenna

is therefore an essential part of the wireless communication system. The subject of

smart antennas is currently enjoying enormous popularity due to the current exponential

growth in all forms of wireless communications and sensing [16]. Smart antenna is a

name given to antenna systems which are also called adaptive array antennas, digital

antenna arrays, and recently, MIMO. Smart antennas are antenna arrays that includes

smart signal processing algorithms that is used to identify spatial signal signatures for

example direction of arrival (DOA) of the signal, and use them to determine beamforming

vectors which are used to track and locate the antenna beam on the mobile/target [17].
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The term “smart antenna” generally refers to any antenna array, terminated with a

sophisticated signal processor, is capable of adjusting or adapting its own beam pattern

in order to emphasize signals of interest and to minimize interfering signals [18]. Smart

antennas typically encompass both switched beam and beamformed adaptive systems

[19], [20].

The rapid growth of smart antennas has been facilitated by advancing digital signal

processing hardware and also by the global interest in wideband wireless applications

[16], [21]. Many engineers in the wireless communications field are anticipating to utilize

smart antennas to boost capacities, increase signal–to–interference ratios, expand band-

widths, mitigate fading, and on top of that, improve MIMO communications. Smart

antennas are also important for defense application because they enable secure com-

munications [22]. On top of that, they can also be used in direction finding, waveform

diversity applications, MIMO radar, and multi–mission operations [16].

In smart antennas, two of the main types includes; switched beam smart antennas

and adaptive array smart antennas. In the case of switched beam systems, they have

several fixed beam patterns available. Thus, a decision is made as to which beam to

access at any given point in time which is based on system’s requirements [17], [20], [23].

On the other hand, adaptive arrays allow an antenna array to steer the beam to any

direction of interest while simultaneously nulling interfering signals [19]. Beam direc-

tion can therefore be estimated using direction–of–arrival (DOA) estimation methods

[24], [25]. In engineering applications, in which an incoming wave is detected and/or

measured by an array, associated signals at distinct position in space can be processed

to extract different types of information including their direction of arrival. In wireless

communications, algorithms for estimating DOAs in antenna arrays are often used to

increase the capacity and throughput of the wireless network [26].
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1.2 Brief Overview of DOA Estimation Methods

Over the last few decades, wireless technology has grown at an alarming rate in which

new, as well as improved services have been created at lower costs [27]. This has resulted

in an increase in airtime usage and the number of subscribers. As the number of users

and the demand for wireless services increases at an exponential rate, the need for wider

coverage area and higher transmission quality rises [27]. Smart–antenna systems provide

a solution to this problem. Smart antennas leverage the diversity effect at the source

and destination. This helps the wireless system to increase data speed as well as reduce

the error rate.

1.2.1 Methods for DOA Estimation

DOA estimation techniques using sensor arrays or direction finding has been an im-

portant subject in array signal processing [28]. The desired DOA algorithms are the

ones that realizes high spatial resolution and low computational complexity. There are

different methods to estimate DOA and are divided into three basic categories, classical

or conventional methods, subspace–based, and maximum likelihood (ML).

1.2.2 Basic Categories of DOA Estimation

Classical or conventional DOA methods are essentially based on the concepts or theory of

beamforming and null steering which requires large number of array elements to provide

high resolution. Classical techniques for DOA are the Delay and Sum [29], Bartlett, and

the Capon (Minimum Variance Distortionless Response (MVDR)) [30] methods. In clas-

sical methods, the idea behind is to scan a beam through space and measure the power

received from each direction. From this, the directions from which the largest amount of

power is received are taken to be the DOAs [28]. These methods are extremely depen-

dent upon physical size of array aperture, which results in poor resolution and accuracy

[27]. Subspace–based algorithms also referred to as high–resolution techniques; offer a
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good tradeoff between resolution and computational complexity. As opposed to conven-

tional methods, subspace methods exploit the information of the received data resulting

in high resolution [28]. Subspace based DOA estimation methods are generally based on

the eigen–decomposition [31]. The subspace methods include MUSIC and its variants,

Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) [32]

and the Minimum Norm (Min–Norm) methods. These algorithms deliver information

about number of incident signals and DOA of each signal. From the methods discussed,

subspace based DOA estimation algorithms such as MUSIC and ESPRIT provide high

resolution, more accurate and are not limited to physical size of array aperture.

1.3 Overview of Near Field Techniques

In every wireless communication system, the actual transmission of the waves in free

space is carried out by an antenna system [33]. For specific purpose, an antenna system

has to stick to particular specifications. Because of different specific purpose an antenna

system is used for, different types of antennas are required. In order to characterize the

antenna or an antenna system, there is need for antenna measurement. In the field of

telecommunications, antenna measurement techniques is defined as the testing of anten-

nas (or antenna systems) to ensure that the antenna or the system meets specifications

or simply to characterize it [33], [34]. Typical parameters of antennas that are of par-

ticular interest to engineers are gain, beamwidth, radiation pattern, polarization, and

impedance [35]. Antenna gain and pattern are measured in the far field. For larger

antennas, far field measurements are very difficult to implement and therefore compact

measurements or near field measurements comes into play. The near field methods allows

one to overcome the weaknesses which, for electrically large radiating systems, make un-

practical the measurement of the antenna pattern in a conventional far field range and

represent the better choice when complete pattern and polarization measurements are

required [36].
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In most cases, it is impractical or impossible to make antenna pattern measurements

on a conventional far–field range. This may be due to distance to the radiating far

field being too long. It may also be impractical to move an antenna from its operating

environment to an antenna range, or the desired amount of pattern data may require

too much time on a far–field range [37]. For these and other reasons, it is appropriate to

determine the far field antenna pattern from measurements made in the radiating near

field region. In Fig. 1.2, the different field regions of an antenna are shown.

AUT : 
Antenna Under Test

Far-Field



DD62.0


22DRange Distance
D : Aperture size
λ : Wavelength

Reactive 
Near-Field

Radiating
Near-Field

Field Distribution

Fresnel
Fraunhofer

Figure 1.2: Antenna field regions and amplitude pattern shape for different regions.

In near field measurements, one of the several advantages of this method is the re-

duction in measurement distance. The dimensions of a conventional test range can be

reduced by making measurements in the near field. From the measured near field, ana-

lytical methods can then be used to transform the measured near field data to compute

the far field radiation characteristics [37], [38], [39]. This process or method is what is

referred to as near field to far field (NFFF) transformation. Such techniques are fre-

quently used to measure patterns, and often carried out indoors [27]. Therefore, these
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techniques provide a controlled environment and an all–weather capability, the measure-

ment system is time and cost effective, and the computed patterns are as accurate as

those measured in a far field range.

In near field measurements, the near field region of the antenna to be measured is

defined by the electrical size determined by the physical size of the antenna under test

(AUT) and the measurement frequency. If the aperture diameter of the AUT is D and

the wavelength of the measurement frequency is λ. The region where the measurement

distance L from the AUT is L > 2D2/λ is defined as a far field and the region of

L ≤ 2D2/λ is defined as a near–field [40]. In near field measurements, electromagnetic

field is measured in the near field region, and characterizing the AUT performance based

on the measured information [38]. Near field measurements are mostly performed in an

anechoic chamber. This is because the output characteristics are obtained by numerical

processing based on the electromagnetic field acquired in a small scale measurement area

[40], [41]. The measurement operator does not need to secure an extensive measurement

space, and does not have to worry about disturbances by weather and interference waves

[27], [41]. Thus, near field measurements for antenna systems have various advantages.

In near field measurements, the electromagnetic field is measured or acquired by mov-

ing a measurement probe against the AUT. There are several types of scanning methods

using a probe as shown in Fig. 1.3. These methods are largely classified into planar,

cylindrical, and spherical near field measurement, largely depending on the scanning

method [36], [42], [43].

1.4 Limitations of Current Methods

Wireless technology is beyond shadow of a doubt an appropriate technology for many

applications. At the present time, although many people have access to wireless com-

munication technology, it should not be regarded as an all round solution for every

networking environment, despite enjoying massive development and advances in recent
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Probe

AUT AUT

Probe

AUT

Probe

Sampling
interval< λ /2

(a) (b)

(c)

Figure 1.3: Near field measurement methods (a) Planar scanning, (b) Cylindrical scan-
ning, and (c) Spherical scanning.

years. In various application areas in which mobility is not critical, a hard–wired con-

nection might provide a faster, more reliable as well as more cost–effective solution. In

specific scenarios, DOA estimation for example, the size of the array depends on the

number of signals to be estimated. Considering MUSIC algorithm for DOA estima-

tion as an example, conventionally, an array with M elements, will be able to resolve

D ≤M − 1 impinging signals. This implies that for a very large number of sources, the

array will be larger which is very costly (in financial and computation sense) as well as

complex signal processing techniques are required. Thus, new system is required that is

capable of performing underdetermined DOA estimation with better accuracy. Utilizing

advanced mathematical techniques, we can be able to resolve this kind of problem.

In another scenario, we consider antenna measurement problem. In antenna measure-

ments, in order to measure the far field of a vehicular mounted antenna or a very large
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antenna system (electrically large radiating systems), a very large anechoic chamber is

required which in most cases is not practical. Thus, near field measurement techniques

are utilized for very electrically large antenna systems. Spherical near field measure-

ment technique is the most accurate as well as complex technique. The measurement is

usually done in an anechoic chamber in which real use case scenario for the system is

not fully taken into account. In the reconstructed far field, only the freespace far field

is obtained and the effect of real ground is not taken into account.

1.5 Aim of the Dissertation

1.5.1 Scope

In the current wireless communication field, high data rates is one of the most impor-

tant component. In order to obtain improved system performance, robust algorithms

must be implemented together with better hardware systems. On the algorithm side,

mathematical models plays a very important part. Mathematics is the back bone of

most wireless communication system technology. This dissertation targets robust math-

ematical models to be implemented in wireless technology systems to ensure reduced de-

ployment costs. These robust mathematical models also ensures that the overall system

performance is not degraded. We therefore deal with two major application scenarios;

Advanced signal procession techniques in which more sources are estimated from few

sensors (Underdetermined DOA estimation) and Antenna measurement techniques in

which hemispherically measured near field data is transformed/reconstructed in the far

field including the effect of real ground (earth).

1.5.2 Objectives

The objective of this dissertation is to present novel mathematical techniques that are

implemented in wireless communication systems. This is achieved by utilizing advanced
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techniques in matrix theory in which underdetermined linear systems are utilized. The

techniques are robust, cost saving, and enable high performance wireless communications

systems.

1.6 Contributions

The contents of this dissertation are divided into two main topics, which falls under

mathematical models in wireless communications. The first sub–topic is Underdeter-

mined DOA estimation in which optimization techniques are applied to antenna array

to achieve DOA estimation for more sources than sensors. The discussion under this

sub–topic mainly focuses on the following

• Proposal of a novel nested circular array antenna called Nested Sparse Circular

Array (NSCA).

• A mathematical model based on sparse signal reconstruction or compressive sens-

ing. This method is suited to achieve underdetermined DOA estimation.

• A novel mutual coupling compensation method which improves DOA estimation

for the proposed nested sparse circular array.

• An extension of the underdetermined DOA estimation method from narrowband

sources to wideband signal sources.

In the second sub–topic, mathematical models in antenna measurement area are

discussed. We consider the problem of Near Field to Far field transformation. The

discussion focuses on;

• A hemispherical near field measurement technique as compared to conventional

spherical near field measurements including the effect of earth on the far field

pattern.
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• A proposal of the Moore–Penrose pseudo–inverse method for finding current dis-

tribution on the AUT.

• Application of near field to far field transformation techniques to vehicular mounted

antennas including the effect of earth (real ground).

1.7 Organization of the Dissertation

Chapter 1
Introduction

Chapter 2
Theory

Chapter 3
NSCA: Underdetermined DOA

Chapter 5
Wideband DOA

Chapter 4
Mutual Coupling

Chapter 6
Hemispherical Near Field

Chapter 7
Vehicular mounted Antenna 

NF-FF

Chapter 8
Conclusion

Figure 1.4: Organization of the dissertation.

The remaining part of this dissertation is organized as illustrated in Fig. 1.4. In

chapter 2, an overview of mathematical models in wireless communications is presented.

An explanation of basic theory in sparse signal reconstruction used in underdetermined

DOA estimation is provided. The mathematical models (compressive sensing methods)
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that are presented in this chapter are used in adaptive antenna arrays for direction of

arrival estimation. We further, provide a brief explanation of mathematical models that

are used in antenna measurements specifically the ones applied to the problem of near

field far field transformation.

In Chapter 3, Nested Sparse Circular array is proposed together with mathematical

models used in this array for underdetermined DOA estimation. The proposed math-

ematical models are robust since we assume sparse signals. In this case, we are able

to reconstruct signals from very few observations. This will ensure reduced deployment

costs since we can use smaller arrays in the estimation of more signals impinging on the

array. Direction of arrival estimation for more sources than sensors (also called underde-

termined DOA estimation) using the proposed Nested Sparse Circular array is evaluated

through simulations. The DOA estimation spectra, RMSE performance analysis against

SNR and number of snapshots (or underdetermined DOA estimation accuracy) is pre-

sented. Furthermore, a comparison of different circular array type’s performance is

discussed in this chapter.

Chapter 4 describes a Mutual Coupling Compensation Method for Nested Sparse

Circular Arrays. In this chapter, a novel symmetric banded–like circulant structure for

MCM is developed and is used to achieve underdetermined DOA estimation in nested

sparse circular arrays proposed in Chapter 3. The work in Chapter 3 is therefore ex-

tended to include the effects of mutual coupling in Chapter 4. The proposed Mutual

Coupling Compensation method achieves improved DOA estimation performance, bet-

ter RMSE as well as lower average run–time as compared to cases where conventional

Mutual Coupling Compensation Methods are employed.In this mutual coupling method,

as the number of snapshots increases, the RMSE performance becomes better.

Chapter 5 discusses the wideband DOA estimation for more sources than sensors.

In this chapter, unlike Chapter 3 in which narrowband signals are assumed, we use

wideband signals and propose a mathematical model that works with the nested sparse

circular array. Furthermore, we utilize the mutual coupling compensation method pro-
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posed in Chapter 4 to estimate DOAs. Thus, Chapter 5 is related to Chapter 3 and

Chapter 4 since it is an extension of the `1–based optimization and KR–MUSIC to

wideband signals.

Chapter 6 proposes a hemispherical near field far field transformation technique.

Antenna measurements techniques uses mathematical models based on Maxwell’s equa-

tions. From measured near field, current source is determined using Maxwell’s equations.

By using the method of moments, equivalent electric current source is determined from

the hemispherically measured near field data. To calculate the current distribution on the

AUT, we propose the Moore–Penrose pseudo–inverse method in this chapter. The sim-

ulation and measurement results are discussed in this chapter to verify the performance

of the proposed mathematical model applied to this problem. In the reconstructed far

field, the effect of real ground (earth) is included which provides an insight into the real

world performance of an antenna as compared to conventional freespace measurement

results.

Chapter 7 discusses the hemispherical near field far field transformation technique

in electrically large systems. In this chapter, a vehicular mounted antenna is discussed.

Chapter 7, is directly related to Chapter 6 since the applied mathematical models are

equivalent with the difference being that of the DUT model. The reconstructed far field

includes the effect of the car body as well as real ground. Far field results for simulation

and measurement data is compared in both freespace case and on real ground (earth).

Finally, concluding remarks for this dissertation are given in Chapter 8.



Chapter 2
Advanced Mathematical Techniques in

Wireless Systems

In this chapter, we formulate advanced mathematical techniques or models in wireless

systems that will act as a backbone to problems addressed in this dissertation. Firstly,

the problem of sparse signal reconstruction is considered by utilizing the compressive

sensing approach. The mathematical preliminaries for DOA estimation problem that

will be considered in Chapters 3 – 5 are discussed. We then give several definitions

and review important theory related to compressive sensing for accurate signal recovery.

Secondly, we give an overview of mathematical models considered in the problem of far

field reconstruction from near field measurements which is discussed in Chapters 6 and 7.

These two problems considered in this dissertation are optimization problems. Several

approaches considered in both underdetermined DOA estimation and near field to far

field reconstruction problems are applicable to sparse systems that are too large to be

handled by a direct implementation or other direct methods. These kind of problems

often arises when numerically solving partial differential equations and in other cases,

optimization problems. Therefore, we apply underdetermined linear systems to problems

in DOA estimation and near field far field reconstruction in this dissertation.
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Sparse Signal Reconstruction: A Compres-

sive Sensing Approach

2.1 Mathematical Preliminaries

Array processing generally deals with signal processing applications that use arrays

of spatially separated sensors of the same type [44]. These sensors typically sample

an incoming wavefront generated by emitters from the far field. For communication

applications, antenna arrays are used. In other applications such as classical radar and

sonar, the sensor array is used to focus and steer the energy of a signal in the spatial

domain, so that a potential target return is enhanced in favor of surrounding interference,

clutter and noise [44]. On transmit, this is done by distributing the signal waveform over

the various sensor elements with suitable time delays, which will make the energy from

all sensors add coherently in the desired (look) direction, while it is attenuated in other

directions. The same technique is used on receive, by first applying the same time delays

to sensor outputs, and then summing the result.

In array signal processing, space–time signal model is considered in which both spa-

tial and temporal samples of signals are collected and processed simultaneously [45].

The signal model in signal processing is developed by considering both the physics of

electromagnetic (EM) wave propagation and the statistical model of the incoming sig-

nals. We consider the most basic case, which is the localization of narrowband sources

in the far field of an array. The signal E(t, r) (e.g., EM field) at a time t and location

r = (x, y, z)T is governed by the wave equation [44].

∂2E(t, r)

∂x2
+
∂2E(t, r)

∂y2
+
∂2E(t, r)

∂z2
=

1

c2

∂2E(t, r)

∂t2
(2.1)

where c represents the speed of propagation. Assuming a relatively small array of sensors
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situated in the far–field, the function becomes

E(t, r) = s(t − r/c) (2.2)

s(t) as the signal at some origin which is near the sensor array and far from the signal

source and r is the distance between the observation point r and the source. r can be

replaced by r ⋅ ur, where ur is a unit vector pointing in the direction of propagation

and r is the coordinates of the observation point [44]. In the narrowband case, signal

s(t) = Aejωt , which leads to

E(t, r) = Aejω(t−r⋅ur/c) = Aej(ωt−r⋅k) (2.3)

where k = ω/c is the wave number and k = kur is the wave vector. In the Cartesian

coordinates k is given by

k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kx

ky

kz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos φcos θ

cos φsin θ

sin φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.4)

where θ represents the azimuth angles and φ denotes the elevation angles respectively

see Fig. 2.1.

In many applications, the transmitted signal occupies a very small bandwidth B

as compared to its center frequency ω. Using a complex–valued representation, such

a signal can be expressed as A(t)ejωt, where the complex amplitude A(t) varies much

slower than ejωt, so that it can be modeled as constant throughout the propagation of

the wave across the array [44], [45]. Suppose a narrowband signal is received by an

array of M sensors at positions rm, m = 1,⋯,M relative to the origin. If the Radio–

Frequency (RF) signal E(t, rm) is captured by an ideal sensor, and the resulting signal

is down–converted to baseband, the resulting output of the m−th sensor is given by

xm(t) = e
−jk⋅rms(t) (2.5)
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z
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Figure 2.1: Representation of the coordinate System.

From 2.5, considering an M -element array, the output of the array x(t) is given by

x(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(t)

x2(t)

⋮

xM(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= a(θ, φ)s(t) (2.6)

Where a(θ, φ) is the steering vector (or array response vector) given by

a(θ, φ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e−jk(θ,φ)⋅r1

e−jk(θ,φ)⋅r2

⋮

e−jk(θ,φ)⋅rM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.7)

When we consider an M -element uniform circular array (UCA) in which D signals

are impinging on the array, the element–space steering vector matrix of the UCA may

be written as A = [a1(ς, φ), a2(ς, φ),⋯, aD(ς, φ)], where

ad(ς, φ) = [e
jςcos (φd−γ0), ejςcos (φd−γ1),⋯, ejςcos (φd−γM−1)]T (2.8)
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For d = 1,2, . . . ,D, ς = κrsin θ, r is the radius and γM−1 = 2πm/M , (m = 0,1,⋯,M −

1) is the sensor location [46]. In the presence of multiple emitters we can apply the

superposition principle resulting in the data model below;

x(t) = A(θ, φ)s(t) + n(t) (2.9)

where n(t) is Additive white Gaussian noise (AWGN). The noise is modeled as a station-

ary, second–order ergodic, zero–mean spatially and temporally white circular complex

Gaussian process. In most cases. In order to estimate the DOAs, estimation is based

on a finite set of N samples of x(t), taken at arbitrary time intervals tn, n = 1,⋯,N .

Replacing x(tn) by the discrete–time notation x(n), we express the available data as

x(n) =A(θ, φ)s(n) + n(n), n = 1,2, . . . ,N (2.10)

Most of the methods employed for DOA estimation use only second–order properties

of the data (i.e second–order statistics) [47], [48]. The array correlation matrix is defined

as Rxx = E[x(n)xH(n)], where E[●] is statistical expectation and (●)H denotes complex

conjugate and transpose (the Hermitian operator). If the signal and noise vectors are

assumed to be independent zero–mean stationary random processes with correlation

matrices Rss = E[s(n)sH(n)] and Rnn = E[n(n)nH(n)] respectively, we obtain

Rxx =A(θ, φ)RssA
H
(θ, φ) +Rnn (2.11)

As previously alluded to, the noise is often modeled as spatially white, i.e., Rnn = σ2I,

where I is the M ×M identity matrix and σ2 is the noise power [44]. If this is not

the case, but Rnn is known, then x(n) can be pre–multiplied by an inverse square–

root factor R−1/2
nn of Rnn, which renders the resulting noise white (and also alters the

steering vectors in a predictable way). The array correlation matrix is approximated

from available data by sample correlation matrix
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R̂xx =
1

N

N

∑
n=1

x(n)xH(n) (2.12)

Under mild assumptions on the involved random processes, it holds that R̂xx →Rxx

as N → ∞. Many estimation methods are based on properties of the “true” array

correlation matrix Rxx, but applied to the sample correlation [44]. If the sample size

is large enough and the data model is sufficiently good, such an approach can result in

highly accurate DOA estimates.

2.1.1 MUSIC Algorithm

MUSIC is an acronym which stands for MUltiple SIgnal Classication [49]. It is a rela-

tively simple and efficient spectral estimation method, which is based on matrix eigen-

value decomposition [50], [51]. In the geometric field, the signal processing of the obser-

vation space can be decomposed into signal subspace and noise subspace. In [49], it was

proved that these two spaces (signal and noise) are orthogonal [28].

In the analysis of MUSIC algorithm, eigenvectors of signals that corresponds to re-

ceived signal subspace from the array data covariance matrix which is composed of

the noise subspace has the smallest eigenvalue from the covariance matrix of eigenvec-

tor. MUSIC algorithm therefore uses the orthogonality between the two complementary

spaces to estimate the direction of the signal in space [28]. Noise subspace of all vectors

is used to construct the DOA spectrum. The peak position which corresponds to the

wave’s azimuth and elevation is the spectrum of all spatial directions. Thus, MUSIC

algorithm tremendously enhance the resolution direction finding, while adapting to an

antenna array of arbitrary shape. In the case of MUSIC algorithm, from covariance

matrix;

Rxx =A(φ)RssA
H
(φ) + σ2I (2.13)

Rxx =
M

∑
m=1

λmemeHm = EsΛsE
H
s +EnΛnE

H
n (2.14)
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where Es = [e1,e2, . . . ,eD] contains all signal, vectors, and the noise eigenvector matrix

En = [eD+1,eD+2, . . . ,eM] obeys AHEn = 0. In this case D <M i.e overdetermined DOA

estimation. The sample covariance matrix therefore becomes

R̂xx =
1

N

N

∑
n=1

x(n)xH(n) = ÊsΛ̂sÊ
H

s + ÊnΛ̂nÊ
H

n (2.15)

The MUSIC method therefore searches for the D largest peaks of the MUSIC pseudo–

spectrum

DMUSIC =
1

∥aH(φ)Ên∥
2 =

1

∥aH(φ)ÊnÊ
H

n a(φ)∥
2 (2.16)

Thus, the location of the peaks will coincide with the true DOAs.

Figure 2.2: MUSIC DOA estimation for 6 element UCA [28].

In Fig. 2.2, the DOA estimation using MUSIC algorithm is shown. The 2 peaks are

accurately estimated which coincides with the true DOAs.
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2.1.2 Limit of Conventional MUSIC Method in DOA Estima-

tion

In the array signal processing field especially DOA estimation; MUSIC [49] is the most

commonly used technique. However, this technique has a notable drawback that it is

restricted by the dimensionality of the covariance matrix [52]. The MUSIC algorithm

requires the residual subspace of the observation to be reserved only for noise [53].

Hence, using conventional MUSIC algorithm [49], accurate estimation is achieved at the

time when the number of impinging DOAs on the array D <M . In an overdetermined

DOA estimation scenario, MUSIC has the limit of estimating D =M − 1 sources. Thus,

MUSIC algorithm can resolve up to M − 1 DOAs. When the number of sources D ≥M ,

the MUSIC method fails to resolve all the DOAs correctly.

Figure 2.3: Limit of MUSIC DOA estimation for 6 element UCA [28].

To this extent, in order to estimate DOAs of D signals arriving on an array, M(>D)

antenna elements (sensors) are required. As the number of sources D approaches M , the

DOA estimation performance degrades. One of the solutions to improve the estimation
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performance of DOA estimation algorithm is to increase the number of sensors. There-

fore, a very large sensor array is required for the DOA estimation of a large number of

sources.

Another limitation of MUSIC method is that it requires priori knowledge on the

number of sources which at times may be difficult to obtain [54]. Additionally, MUSIC

requires a sufficient number of data snapshots to accurately estimate the data covariance

matrix. Moreover, the method can be sensitive to source correlations that tend to cause

a rank deficiency in the sample data covariance matrix [54]. Thus, new methods have

been proposed that utilizes techniques in sparse representation and compressed sensing

methods [55], [56], [57]. The sparse estimation (or optimization) methods can be applied

in several demanding scenarios, including cases with no knowledge of the source number,

highly or completely correlated sources, and limited number of snapshots such as single

snapshot cases [58].

2.2 Compressive Sensing

Compressed sensing is one of the prominent recent application of sparsity–related ideas

which is popular and rapidly expanding area of modern signal processing [59], [60]. It

is a signal processing technique for efficiently acquiring and reconstructing a signal,

which is achieved by finding solutions to underdetermined linear systems. It is also

called compressive sensing, or compressive sampling [55], [56]. In this technique, the

idea is that the majority of real–life signals, such as images, audio, or video, can be

well approximated by sparse vectors, given some appropriate basis, and that exploiting

the sparse signal structure can dramatically reduce the signal acquisition cost. Thus,

accurate signal reconstruction can be achieved in a computationally efficient way, by

using sparse optimization methods [54], [60]. The idea behind this method is based

on the principle that, through optimization or mathematical analysis, the sparsity of

a signal can be exploited to recover it from far fewer samples than required by the
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Shannon–Nyquist sampling theorem.

2.2.1 Shannon–Nyquist Sampling Theorem

In the Shannon–Nyquist sampling theorem, the theorem states that sampling rate of

a signal must be at least twice the maximum frequency present in the signal (which

is called Nyquist rate). Consider x(t) to be a signal with Continuous-Time Fourier

Transform (CTFT) X(ω). If X(ω) = 0 for all ∣ω∣ > π/ω, then x(t) can be reconstructed

from samples x(nT ) using reconstruction formula

x(t) = ∑
n∈Z

x(nT )sinc(
t − nT

T
) (2.17)

where

sinc(t) =
sin(πT )

πT
(2.18)

This asserts that for a signal that is bandlimited to π/T , it can be recovered from its

uniformly spaced samples with period T , or sampling rate f = 1/T [59].

In the field of wireless communications especially signal processing, we would like

to reconstruct a signal from measured data. In most cases, the information acquisition

process is linear, which reduces the problem to solving linear system of equations [61],

[62]. In mathematical stipulations, observed data y ∈ Cm is related to signal x ∈ Cn of

interest through

Ax = y (2.19)

where matrix A ∈Cn×m represents the linear measurement process. Thus, we can recover

the vector x ∈Cn by solving the linear system shown above. From the Shannon–Nyquist

sampling theorem, the amount of measured data m, ought to be at least as large as the

signal length N (in other words, the number of components of x) [61].

This principle described above is the basis for most devices that are being used in

current technology. The examples of the areas that apply this principle includes mobile
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communication, radar, analog–to–digital conversion, and medical imaging. If m < N ,

then the linear system (2.19) is underdetermined and there are infinitely many solutions.

Thus, if we do not have additional information, it is impossible to recover the signal x

from measurements y in the case m < N . Although this is the case, under certain

assumptions, it is possible to reconstruct or recover signals x when the number m of

measurements available is smaller as compared to the signal length N . We thus introduce

some of the algorithms that exist for signal reconstruction. The fundamental assumption

that makes all this possible is sparsity in which most of the signal’s components are zero

[61], [63].

2.2.2 Normed Vector Spaces

A normed vector space is described as a vector space over the real or complex numbers,

on which a norm is defined [59]. In sparse vectors, `p–norms play a key role in their

treatment. The `p–norm for p ∈ [1,∞] of a vector x ∈Rn is defined as

∥x∥p =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(∑
n
i=1 ∣xi∣

p
)

1
p , if p ∈ [1,∞),

max
i=1,2,...,n

∣xi∣ , p =∞
(2.20)

where ∣xi∣ express the absolute value of the i–th component of x. The two most commonly

used `p–norms are; (i) `1–norm and (ii) `2–norm expressed as;

∥x∥1 =
n

∑
i=1

∣xi∣ (2.21)

∥x∥2 =

¿
Á
ÁÀ

n

∑
i=1

∣xi∣
2

(2.22)

In some instances, `p–norm is extended to cases where p < 1. In the case when

0 < p < 1, `p–norm as defined above does not satisfy the triangle inequality. Consequently,

it cannot be called a norm. Alternately, it is called a quasinorm as it satisfies the weaker



26

version of the triangle inequality (2.23) (i.e it becomes a quasinorm because it fails to

satisfy the triangle inequality [59], [62], [63]).

∥x + y∥p ≤ c(∥x∥p + ∥y∥p) (2.23)

With c = 21/p−1. The `p–norms and `p–quasinorms have different properties for different

values of p. This is illustrated in Fig. 2.4. In this figure, a unit sphere is shown for

`p–quasinorms and `p −−norms. The choice of p therefore has a significant effect on the

properties of the resulting approximation error [60].

Figure 2.4: Normed Vector Spaces unit ball.
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2.3 Sparse Signal Recovery

In this section, we consider solving the compressed sensing signal recovery problem; given

y and A, find sparse signal x such that y =Ax (2.19) exactly or approximately [59]. In

the compressed sensing field, a sparse signal, which is represented by sparse vector x,

is recovered from undersampled linear measurements y, specifically, the system model

(2.19) applies for M << N [54]. In this frame of reference, y is referred to as the

compressive data, and A is sensing matrix. Sparse signal recovery can be formulated

as finding a minimum–cardinality solution to a constrained optimization problem [60].

`0–minimization is one of the approach. The objective function is the cardinality of x,

i.e. the number of non-zeros, which is often denoted ∥x∥0 and called `0–norm of x [60].

Given measurements y (i.e let y be the signal that we observe) and the knowledge

that the signal x is sparse. We desire to sparsely represent y using the model (2.19).

We can therefore recover/reconstruct x as a solution of the combinatorial optimization

problem;

noiseless case minimize ∥x∥0 subject to Ax = y (2.24)

noisy case minimize ∥x∥0 subject to ∥y −Ax∥2 ≤ ε (2.25)

Consequently, we search for the sparsest vector consistent with the measured data

Ax = y. Unfortunately, the `0–minimization problem is NP–hard [61] i.e ∥x∥0 is non–

convex and therefore difficult to solve. A very computationally efficient recovery tech-

nique is basis pursuit or `1–minimization. This consists of finding a minimizer of the

problem.

2.3.1 `1–norm Minimization

In this method, in order to translate problem (2.19) into a manageable problem, ∥x∥0

is replaced with its convex approximation ∥x∥1. The practical approach to sparse signal

recovery is based on the convex relaxation. In this problem, the `0–norm is replaced by
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its tightest convex relaxation, the `1–norm [54]. A computationally efficient recovery is

possible by solving a convex optimization problem:

min ∥x∥1 subject to Ax = y (2.26)

This problem can be reformulated as a linear program and accordingly solved by

standard optimization techniques easily [60]. Furthermore, even if measurements are

contaminated by noise, sparse recovery is still stable in a sense that recovered signal is

a close approximation to the original provided that the noise is sufficiently small, and

that the design matrix satisfies certain properties such as RIP [55]. A sparse signal can

be recovered by solving a “noisy” version of the above `1–norm minimization problem

min ∥x∥1 subject to ∥y −Ax∥2 ≤ ε (2.27)

In the presence of noise, (2.27) results in a quadratic optimization problem which is

solvable using polynomial time methods [64]. An unconstrained optimization, using the

corresponding Lagrangian for some appropriate Lagrange multiplier λ uniquely defined

by ε, is written as

min
x

1

2
∥y −Ax∥

2
2 + λ ∥x∥1 (2.28)

For some λ > 0. In order to solve the optimization problem numerically, a matlab based

modelling system for convex optimization is used called CVX [65].

2.3.2 Other Algorithms

In this section, we provide an overview of several other common algorithms for sparse

signal recovery. There are several approaches such as basis pursuit (in which `1–norm

minimization is an example), greedy algorithms, active set methods, block–coordinate

descent, iterative thresholding, and proximal methods [60].

Greedy algorithms are essentially iterative and select columns of A homologous to
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their correlation with measurement y [59]. In greedy algorithms, Matching Pursuit (MP)

is one example. It is a sparse approximation algorithm that comprises of finding the

best matching projections of multidimensional data onto the span of an over–complete

(in other words, redundant) dictionary [66].

Orthogonal Matching Pursuit (OMP) is another greedy method that builds up the

support set of the reconstructed sparse vector iteratively by adding one index to the

current support set at each iteration [66], [67]. OMP is an algorithm that is based on

Matching Pursuit. The selection operation is greedy on the grounds that the index is

chosen to minimize the residual at each iteration [61]. In OMP, the algorithm starts

by finding the column of a matrix A that resembles the most with the residual, and

then this column will be added into a set of selected columns [67]. OMP re–compute

the coefficients of all variables in the current support, by solving the full OLS problem

over the support augmented with the new variable. As the result of this operation, the

residual becomes orthogonal to the support variables [61]. The algorithm will update

the residuals by projecting the vector b onto the space spanned by the selected columns

in the set. After each step, the residuals are orthogonal to all the selected columns.

Thus, no column is chosen twice.

Another greedy method is compressive sampling matching pursuit (CoSaMP). It is

an effective compressive sensing algorithm that holds rigorous estimation error bounds

and low computational complexity, when it is dealing with additive noise signal model in

the observation domain [68]. It combines selection of multiple columns per iteration with

a pruning step. At each iteration, this methods selects several elements of the support

set and then refines this selection [69]. There are multiple extensions and improvements

to the basic greedy schemes, including Stagewise OMP (StOMP) [70], regularized OMP

(ROMP) [71], and several others [60].

Iterative Hard Thresholding algorithm (IHT) is different from all the previous al-

gorithms [72]. IHT solves a local approximation to the problem. Instead of directly

handling the problem, a surrogate objective function is introduced. Each x can then be
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optimized independently [60]. The algorithm uses a nonlinear operator that sets all but

the largest s elements of its argument to zero [73]. As demonstrated in [72], this method

gives near–optimal error guarantees and is robust to noise. The performance guarantees

for IHT are uniform but depends on sparsity of the signal and sampling operator.

2.3.3 Sparse Recovery Performance Comparison

In this subsection, we compared the recovery performance of sparse signals by using three

compressive sensing algorithms. In this example, `1–minimization, Orthogonal Match-

ing Pursuit (OMP), and compressive sampling matching pursuit (CoSaMP) algorithms’

performance is compared. In terms of the empirical error as a function of sparsity, we

observe in both Fig. 2.5 and Fig. 2.6 that `1–minimization has better performance as

compared to OMP and CoSaMP. As the sparsity increases, the error for `1–minimization

is not as pronounced as in the other algorithms. Thus, `1–minimization is robust in per-

formance as compared to greedy algorithms for both noiseless case Fig. 2.5 and noisy

case Fig. 2.6.

Figure 2.5: Different CS Algorithm recovery performance comparison for noiseless case.
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Figure 2.6: Different CS Algorithm recovery performance comparison for noisy case.

Far Field Reconstruction from Near Field

Measurements

2.4 Near Field to Far Field Methods

In the field of antenna measurements, near field to far field transformation methods have

been extensively investigated in the last five decades [38], [40], [74]. They have been used

for applications ranging from cellular phone antennas to large phased arrays and complex

multi–beam communication satellite antennas [36], [74]. These methods allow antenna

engineers to overcome the shortcomings related to electrically large radiating systems,

which makes them unpractical to measure the antenna pattern in a conventional far

field range. These methods also represent a better choice when complete pattern as well

as polarization measurements are required [36]. On top of that, near field techniques

provides significant information to work out the radiating field on the surface of the

antenna [75].
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In comparison to far field measurements, the size of a conventional test range (such

as anechoic chamber) can be reduced by performing near field measurements [27]. From

the measured near field information, we can use analytical methods to transform the

measured near field data to compute the far field radiation characteristics [37], [38], [39],

[76]. These techniques are ordinarily used to measure antenna pattern and are often

performed indoors. Consequently, these methods provide a controlled environment and

an all-weather capability, and computed patterns are accurate as the patterns measured

in a conventional far field range [27]. However, the drawback of such kind of methods is

that they require more complex and expensive systems, extensive calibration procedures,

sophisticated computer software, and patterns are not obtained in real time.

In the process of measuring the near field data, regular amplitude and phase distri-

butions are measured by a scanning field probe over a preselected surface which may

be a plane, a cylinder, or a sphere [27]. Measured information is then transformed to

far field using analytical Fourier transform methods. The complexity of the analytical

transformation increases from planar to cylindrical, and from cylindrical to spherical

surfaces. The choice of the method/technique to be used for near field measurement is

primarily determined by the type of antenna or antenna system to be measured. Con-

ventionally, planar system is better suited for high–gain antennas such as phased arrays.

This method requires the least amount of computations and no movement of the an-

tenna [77]. In spite of the fact that cylindrical system requires more computations as

compared to planar, for most antenna systems, its measuring, positioning, and probe

equipment are the least expensive. Of all the three near field measurement systems,

spherical system requires the most expensive computation, and antenna and probe po-

sitioning equipment, which can become significant for large antenna systems [27]. The

spherical near field measurement system is best suited for measurements of low–gain

and omnidirectional antennas.
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2.4.1 Method of Moment

The Method of Moment (MOM) is a method of transforming differential equations and

integral equations into simultaneous equations and numerically solving them [78], [79],

[80]. The method of moment in electromagnetic field analysis finds current distribution

on the conductor surface by solving integral equation satisfied by electric field on the

conductor surface derived from the Maxwell equations. Since it is difficult to solve

the integral equation directly, it is possible to numerically solve by spreading current

distribution to the sum of piecewise functions and transforming it into simultaneous

linear equations (matrix equations). When an electric field Ein enters an antenna or

scatterer of perfect conductors, surface current density is generated on the conductor

surface S. The scattering electric field Es generated by this current Js depends on the

boundary condition on surface S.

ns × {Ein
(r) +Es

(r)} = 0, r on S (2.29)

where, ns is a normal vector to surface S. From this equation, electric field integral

equation with respect to surface current density Js of the conductor surface S is;

Ein
(r) = jωµ0∫

S
Ḡr, ŕ ⋅ Js(ŕ) × nsdŚ (2.30)

where Ḡ is free space Dyadic Green function [81]. The Green function is used to obtain

radiation/scattering by arbitrary wave source distribution and shows radiation from the

point source as shown in the following equation;

Ḡr, ŕ = (
∇∇

k2
+ Ī)

e−jk∣r−ŕ∣

4π ∣r − ŕ∣

=
1

k2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2

∂x2 + k
2 ∂2

∂x∂y
∂2

∂x∂z

∂2

∂y∂x
∂2

∂y2 + k
2 ∂2

∂y∂z

∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2 + k
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

e−jk∣r−ŕ∣

4π ∣r − ŕ∣
(2.31)
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where k is the propagation constant in free space. In order to solve the electric field inte-

gral equation of (2.30), unknown surface current density Js is first expanded using basis

function (expansion function) f n(ŕ) and an unknown current coefficient In is expanded

as follows

Js(ŕ) =
N

∑
n=1

Inf n(ŕ) (2.32)

Therefore, by substituting (2.32) into (2.30) and as well as introducing a weight

function wm(r), the integral equation of (2.30) becomes;

N

∑
n=1

ZmnIn =Vm (m = 1,2,3,⋯,N) (2.33)

where, the voltage coefficient Vm is a known coefficient determined by incident electric

field Ein and Zmn is the self and mutual impedance matrix. Vm and Zmn are given by

the following equations;

Vm = ∫
S

wm(r) ⋅E
in
(r)dS (2.34)

Zmn = jωµ0∫
S
∫
S

wm(r) ⋅G(r, ŕ) ⋅ fn(ŕ)dŚdS (2.35)

From the equations above, an unknown current coefficient In can be obtained by solving

the simultaneous equations of the formula (2.33) numerically. From the solution, one

can obtain the formulas (2.34) and (2.35). Therefore, since the surface current density

Js of the conductor surface can be obtained from the expression (2.32), the scattering

electric field from conductor can be calculated.

Therefore, in this dissertation, the moment method is calculated by a point matching

method which performed using piecewise linear function (triangular function) given by

the following equation for the basis function and trial function.

f(n) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin k(∆−∣z−zn∣)

sin k∆l
, (∣z − zn∣ ≤∆l)

0, otherwise

(2.36)
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A piecewise linear function overlaps adjacent elements and becomes a linear function

within each element. By using this function, the current distribution is approximated

to a polygonal line together with the current coefficient.

2.4.2 Near Field

The near electromagnetic field generated from the object to be analyzed can be consid-

ered by the electromagnetic field generated by the linear current wave source [82]. The

near field observation system is shown in Fig. 2.7. The electromagnetic field that the

current source J at the position rs in the region v forms at the observation point r is

represented by the Maxwell equation.

E = −jωµ0 (A +
∇∇ ⋅A

k2
) (2.37)

H = ∇×A (2.38)

A = ∫
v
G(rs, r)J(rs)drs (2.39)

G(rs, r) =
e−jk∣r−rs∣

4π ∣r − rs∣
(2.40)

∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
) (2.41)

In order to consider the electromagnetic field generated by the linear wave source,

the region v is a line l, and assuming that l̂ is a unit tangent vector along a line, the

equations (2.37) and (2.38) are the p component of the orthogonal coordinate system

about (p = x, y, z), where;

Ep(r) =
jZ0

k
[∫ I(l)

∂

∂p
{
∂G(rs, r)

∂l
}dl − k2

∫ I(l)(p̂ ⋅ l̂)G(rs, r)dl] (2.42)

Hp(r) = ∫ I(l)(p̂′′ ⋅ l̂)
∂G(rs, r)

∂p′
dl − ∫ I(l)(p̂′ ⋅ l̂)

∂G(rs, r)

∂p′′
dl (2.43)

Where, (p, p′, p′′) is obtained by replacing (x, y, z) with circular coordinates. However,

equations shown above shows near field in rectangular coordinate system (x, y, z). For
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Figure 2.7: Near field observation system.

near field in polar coordinate system (r, θ, φ) coordinate transformation is used as follows;

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Er(Hr)

Eθ(Hθ)

Eφ(Hφ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ −sin θ

−sin φ cos φ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ex(Hx)

Ey(Hy)

Ez(Hz)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.44)

2.4.3 Far Field

Far field is usually defined by the far electric field (Eθ,Eφ). It is obtained by setting

the observation point at infinity point (r = ∞) in the near electric field equation. The

method of moments for a scattered conductor in a semi–infinite space where z = 0 is

a complete conductor ground plane. The radiation direction from the wave source at

the position rn to the observation point r is uniquely represented by r̂. Therefore, the

phase change due to the wave source position with respect to the observation point is

determined by the inner product of rn and r̂. In addition, the electric field component

(Eθ,Eφ) generated at the observation point by the wave source in the l̂n direction is the
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inner product (l̂n ⋅ θ̂, l̂n ⋅ φ̂). Therefore, the far field by the linear wave source is given by;

Eθ(r, θ, φ) =
jZ0ke−jkr

4πr
Fθ(θ, φ) (2.45)

Eφ(r, θ, φ) =
jZ0ke−jkr

4πr
Fφ(θ, φ) (2.46)

Fθ(θ, φ) =
N

∑
n=1

I n∆ln(l̂n ⋅ θ̂)e
jkrn⋅r̂ (2.47)

Fφ(θ, φ) =
N

∑
n=1

I n∆ln(l̂n ⋅ φ̂)e
jkrn⋅r̂ (2.48)

where θ̂ = ( cos θ cos φ, cos θ sin φ,− sin θ), and (φ̂ = − sin φ, cos φ,0).



Chapter 3
Underdetermined DOA Estimation

using Nested Sparse Circular Arrays

3.1 Introduction

In signal processing area, direction of arrival (DOA) estimation, which is also refereed to

as spatial spectra estimation has been an active research area [24], [25], [83]. It is playing

a crucial role in many application areas, such as electromagnetic, seismic sensing, and

acoustics. The breakthroughs in array signal processing discipline has influenced the

development of high resolution DOA estimation techniques for narrowband signals [25],

[49] and their wideband extensions [84], [85].

In antenna arrays, DOA estimation nonetheless has been restricted to uniform linear

arrays (ULA) and uniform circular arrays (UCA) [50]. On the algorithm side, subspace

based methods such as MUSIC [49] for example can resolve up to (M − 1) sources for

an array with M elements [31], [50]. In order to estimate more sources than the number

of physical sensors also refereed to as underdetermined DOA estimation, [86] proposed

nested linear arrays. This work on nested arrays was further extended to arrays with

higher geometries [87], [88] and co–prime arrays [89]. We thus consider non–uniform

circular arrays and propose a novel array structure. The proposed array structure has
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the ability to provide an increase in degrees of freedom (DOFs) and subsequently is

capable of resolving more sources than physical sensors called Nested Sparse Circular

Array (NSCA). This proposed array is obtained by combining two or more sub-circular

arrays. We demonstrate that by using NSCA, we can achieve underdetermined DOA

estimation.

In DOA estimation, uniform circular arrays are of particular importance. They are

capable of providing 360○ azimuthal coverage and estimate both azimuth and elevation

angles simultaneously [90]. In addition to these capabilities, due to their circular sym-

metry, UCAs also possesses an azimuthally invariant beampattern. Thus, UCAs have

a lot of characteristics that makes them useful in terms of estimating DOAs [24]; e.g.,

directional patterns that are synthesized with UCAs can be electronically rotated in

the plane of the array without significant change of beam shape [51]. The geometry of

the UCA can further be extended to uniform concentric circular array (UCCA) which

comprises of multiple circular arrays or rings in which elements are located on rings with

different radius [91]. UCCAs are significant in that they enable wideband DOA estima-

tion as well as 2D-DOA estimation. Thus utilizing concentric arrays in DOA estimation

improves estimation accuracy, reduces angular dependency as well as enables wideband

DOA estimation.

In recent years, underdetermined DOA estimation which is refereed to as the esti-

mation of more sources than the number of physical sensors available has been receiving

considerable interest [92], [93]. One of the most effective approach to underdetermined

DOA estimation is to construct a new array that has an extended aperture (from virtual

elements) which has higher degrees of freedom as compared to those obtained from the

physical array. Sparse spatial sampling in this case provides a remarkable improvement

in degrees of freedom, and typical array structures employed include nested linear arrays

[86] and co-prime arrays [89], [93], [94]. Recently, a different form but effective DOA

estimation technique called `1–SVD based on sparse signal reconstruction came to light

[95]. In single measurement case, `1 optimization is considered attractive to sparse signal
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recovery due to its guaranteed recovery accuracy [96], [97]. However, for an array with

M sensors, similar to subspace based methods, `1–based approach in [95] resolve up to

M − 1 signals impinging on the array.

In earlier works, underdetermined DOA estimation for UCA has barely been con-

sidered. In [98], to resolve more than (M − 1) sources, Khatri-Rao (KR) [92] subspace

method was considered for quasi–stationary signals applied to UCA. In signal processing,

quasi–stationary signals are in a class of nonstationary signals whose signal statics are

locally static over a short period of time [92]. Some of the examples of quasi–stationary

signals are speech and audio signals. The problem related to using quasi–stationary

signals is that this method can not be applied to stationary sources [86].

In order to perform wideband estimation, [99] proposed a Nested Circular Array

(NCA). The NCA method proposed in [99] has advantages over conventional methods in

that, it is used to eliminate spatial aliasing for counting and DOA estimation of multiple

simultaneous speakers. In NCA, each microphone pair is only used in appropriate sub-

band according to its inter-microphone distance which enables the proposed method

in [99] to achieve an acceptable performance in both reverberant and noisy conditions.

Although this is the case, NCA is basically a Uniform Circular Array in structure and

not extension of nested arrays as proposed in [86]. The authors in [99] did not provide

any theoretical background of the proposed array structure as has been shown in this

chapter. In [100], optimal array structures were evaluated. In this case, optimal and

nearly optimal schemes operating both in a periodic and non–periodic form were designed

by considering linear compression schemes classified as dense or sparse. In the case of

linear array, the length–10 minimal sparse ruler (SR) was found to be an optimal sparse

array. On the other hand, its counterpart, length–20 circular SR, which was designed

with a length–10 linear SR was found to have sensors or elements positioned on one side

of the array which results in angular dependency for DOA estimation hence reduced

performance. The performance comparison of the length–20 circular SR to our proposed

array configuration NSCA in underdetermined DOA estimation is carried in this chapter.
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In this chapter, we firstly propose a new array structure called “Nested Sparse Cir-

cular Array” that has the ability of estimating more sources than physical sensors. The

array is synthesized into a non–uniform concentric array through KR approach. The

virtual elements synthesized by the KR approach are inside the original circle which

works as a non–uniform concentric circular array and is effective for wideband DOA

estimation. Synthesized non–uniform concentric array increases the DOFs and there-

fore assist us to perform underdetermined DOA estimation for both narrowband and

wideband signal models. This makes the proposed NSCA a good candidate for both

narrowband and wideband underdetermined DOA estimation. We extend the subspace

based approach MUSIC proposed in [49] and used in [92] for quasi–stationary signals

to the proposed NSCA. Furthermore, an `1 optimization method based on compressive

sensing or sparse signal recovery is used which takes advantage of the KR product of

covariance matrix.

3.2 Nested Sparse Circular Arrays

3.2.1 Nested Array

The class of arrays called nested array was first proposed in [86]. The “two level” nested

array as described in [86] is in fact similar to the array structure originally proposed in

[101]. Nonetheless, in [86] the concept of nested arrays was generalized to more than

two levels such that there is a considerable increase in the degrees of freedom. In the

basic case, a two level nested linear array is a series of two interconnected uniform linear

array (inner–level 1 and outer–level 2) with the inner ULA having M1 and the outer

ULA having M2 elements. A two level nested linear array can achieve 2M2(M1 + 1) − 1

freedoms in the co–array using M1 +M2 elements only [86].

Figure 3.1 also shows the two level nested array. The optimal distribution of sensors

in the two levels by finding M1, M2 that maximize the total degrees of freedom, 2M2(M1+

1) − 1, under the constraint of fixed total number of sensors, i.e., M1 +M2 = M [45].
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M Optimal M1,M2 DOF

even M1 =M2 =
1
2M

M2
−2

2 +M

odd M1 =
M−1

2 ,M2 =
M+1

2
M2
−1

2 +M

The solution for optimal sensors in the case of even or odd number of elements is given

in Table above.

0   1   2   3                   7                  11

Level 1 Level 2

Figure 3.1: A two level nested linear array.

Since linear arrays fails to implement 2D–DOA estimation which also applies to

nested linear arrays, another type of two–dimensional (2D) arrays, known as the 2D

nested arrays, was proposed in [87] and [88], whose difference co–array [102] was demon-

strated to have a larger number of virtual elements in 2D as compared to the available

number of physical sensors and able to accomplish 2D–DOA estimation. This new class

of 2D arrays has sensors on lattice(s) whose difference co–array give rise to a virtual

2D array with much larger number of elements on a dense lattice [88]. In our concept

therefore which is explained in the next section, by utilizing the circular array geometry,

we can estimate DOAs both in one and two dimensions.
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3.2.2 The Concept of Nested Sparse Circular Array

In case of nested linear array [86], the ability of this array to resolve more sources than

physical sensors is dependent on its difference co–array that obtains significantly more

degrees of freedom than the original array. In related works, types of Minimum Redun-

dancy arrays (MRAs) [103], [104] were utilized to achieve increased DOFs. The problem

with MRAs is that they require an extensive computer search to construct the array

[86]. In [105], a joint sparsity approach was used by adopting convex relaxation idea

with co–prime arrays for off–grid targets in sparse DOA estimation. A generalization of

the co–prime array concept was proposed in [106]. Until recently, most of the work asso-

ciated with underdetermined DOA estimation has been implemented mainly considering

nested linear arrays, co–prime arrays, and MRAs.

In our work, we consider circular arrays and attempt to provide a solution for un-

derdetermined DOA estimation using NSCA. Figure 3.2 shows a nested sparse circular

array which has two sub–circular arrays concatenated and a single element at the origin

which is used in KR formulation. The center of the NSCA is considered as the origin. For

an M–element NSCA, the first and second sub–circular arrays have (M − 1) physical

elements in total. The first sub–circular array has M1 physical elements with inter–

element spacing of d1 whilst the second sub–circular array has M2 physical elements

with inter–element spacing of d2.

For NSCA, spacing d1 = 2π/((M − 1)2/2) and d2 = m(M1 + 1)d1. Employing the

union of first and second sub–circular arrays, we obtain the nested sparse circular ar-

ray. The element positions are given by Cfirst = m1d1, where m1 = 1,2,⋯,M1 and

Csecond =m2(M1 +1)d1, where m2 = 1,2,⋯,M2. The steering vector of the NSCA will be

represented by;

a(θ, φ) = [1, ejkr sin θ cos(φ−γ1), ejkr sin θ cos(φ−γ2),

..., ejkr sin θ cos(φ−γM−1)]T (3.1)
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Figure 3.2: A 7 element Nested Sparse Circular Array with one element at the origin.

where γm is the angular position of the m-th element. The assumption we make is that

elevation angle θ is fixed at 90○ [31]. From this, the steering vector of the NSCA given

in (3.1) as a(θ, φ) will be reduced to a(φ).

To find the virtual elements and extend the array aperture, the Khatri-Rao subspace

approach [92] is applied. By using this approach, we can extend the DOFs of the NSCA

and be able to perform underdetermined DOA estimation. This approach therefore is

described in the following subsection.

3.2.3 The Khatri-Rao Subspace Approach

In several works, increased degrees of freedom has been exploited using different tech-

niques such as augmented matrix approach [103], [104], fourth–order cumulant based

methods [107] and quasi–stationary signal based methods [92]. However, these schemes

are applied to linear arrays and there is insufficient work related circular array’s DOA
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estimation for more sources than physical sensors. Based on that account, in this sub-

section and the following, we will exploit the increased degrees of freedom by using the

Khatri–Rao subspace approach [92] and extend the KR–MUSIC and `1–based optimiza-

tion approach to underdetermined DOA estimation using NSCA.

We extend the Khatri–Rao (KR) subspace approach proposed in [92] to DOA esti-

mation. Consider A which is an L×D matrix and B an M×D matrix having an identical

number of columns, their KR product is given by

A⊙B = [a1 ⊗ b1,a2 ⊗ b2, ...,aD ⊗ bD] (3.2)

where A⊙B results in an LM×D matrix. The Kronecker product A⊗B is the LM×DD

block matrix:

A⊗B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11B a12B ⋯ a1DB

a21B a22B ⋯ a2DB

⋮ ⋱ ⋯ ⋮

aL1B aL2B ⋯ aLDB

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.3)

For two vectors a and b, their Kronecker product is given by

a⊗ b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1b

a2b

⋮

alb

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= vec(baT ) (3.4)

Subsequently, from KR subspace approach,a new array model is found for the pro-

posed NSCA. In the DOA estimation problem formulated in Section 2.1, we apply vec-

torization to (2.11) to obtain

y= vec(Rxx)

= vec (ARssA
H) + vec (σ2

mI)
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=(A∗ ⊙A)p + σ2
m1Tm (3.5)

where p = [σ2
1, σ

2
2, ..., σ

2
D]

T and 1m = [eT1 ,e
T
2 , ...,e

T
M] and ei is a column vector that has

all zeros except a 1 at the i–th position. p in this case is equivalent to source signal

vector and noise becomes a deterministic vector that is given by σ2
m1m and can easily

be eliminated. In this case of vector y behaves like the array’s received signal whose

manifold is given by (A∗⊙A). Hence, (A∗⊙A) is a manifold of a longer array i.e., array

with virtual elements with a larger array aperture than the one when it is not vectorized.

Consider B = (A∗ ⊙A), therefore, the steering matrix of array with virtual elements

is given by B = [b(φ1),b(φ2), ...,b(φD)]T which is an M2
×D matrix. By applying the

Kronecker product, M2
× 1 steering vector is

b(φ)= vec(a(φ)aH(φ)) = a∗(φ)⊗ a(φ)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

ejkr cos(φ−γ1)

ejkr cos(φ−γ2)

⋮

ejkr cos(φ−γM−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∗

⊗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

ejkr cos(φ−γ1)

ejkr cos(φ−γ2)

⋮

ejkr cos(φ−γM−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1

⋮

bi

⋮

bM2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.6)

for i = 1,2, ...M2. Instead of using (2.9) in this case, we apply the problem of DOA

estimation to the data obtained in (3.5).
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3.2.4 Concentric Extension of Nested Sparse Circular Array

In this part of the chapter, we discuss the concept of a non–uniform concentric array

which is realized as a consequence of a co–array of the NSCA. The concentric extension

of the nested sparse circular array enables an increase in degrees of freedom provided by

the co–array, such that we are capable of performing underdetermined DOA estimation.

For an array having M sensors, with the position of an i–th sensor denoted as x⃗i, its

difference co–array is defined as

Cd = x⃗ i − x⃗ j, ∀i, j = 1,2, ...,M (3.7)

In the difference co–array, Cd(i, i) refers to the origin of the co–array since x⃗ i − x⃗ i = 0.

Although we are able to obtain M2 distinct pairs of array elements in the co–array using

the Khatri–Rao product, some of the positions in the co–array are redundant co–array

points. This reduces the number of virtual elements and we therefore end up having less

than (M2) distinct points [108]. The other co–array points therefore are influenced by

two distinct pairs (x⃗ i, x⃗ j) and (x⃗ j, x⃗ i) with x⃗ i ≠ x⃗ j. As illustrated in [108], co–array of

a circular array with odd number of elements is M(M − 1) + 1 while for an array with

even number of elements is (M2/2 + 1) but in our case, the synthesized co–array points

were found to be more than in [108].

To synthesize virtual elements developed from the NSCA using the KR product,

we consider b(φ). From (3.6), let m, l ∈ {Cfirst Csecond}. The first 2M points will be

determined by 1 ⊗ ejkr cos(φ−γl) and ejkr cos(φ−γm) ⊗ 1 that are redundant points and the

remaining points are given by;

bml(φ)=e
jkr cos(φ−γm) ⊗ ejkr cos(φ−γl)

=ejkr{cos(φ−γm)−cos(φ−γl)} (3.8)
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from trigonometric addition, b(φ) becomes;

bml(φ)=e
−j2kr{sin((2φ−γm−γl)/2) sin((γm−γl)/2)}

=e−j2kr{sin(φ−(γm+γl)/2) sin((γm−γl)/2)} (3.9)

From this equation, it is observed that we end up with virtual elements located on posi-

tions having different radius from the origin implying that using KR approach together

with NSCA, we synthesize virtual elements onto a non–uniform concentric circular array.

Figure 3.2 shows NSCA whilst in Fig. 3.3, the synthesized version of the array is shown

having with virtual elements. This is basically a concentric extension of NSCA.

The number of elements in the concentric extension of the NSCA as shown in Fig. 3.3

(which is given by Cd) determines the values of the cross correlation values in the co-

variance matrix of the received signal by NSCA [86]. By carefully using cross correlation

values, we substantially increase the degrees of freedom, thus, we are able to detect or

estimate more number of sources than the number of physical elements using the NSCA.

From the synthesized non–uniform concentric circular array, we can easily perform wide-

band underdetermined DOA estimation as well.

3.2.5 KR–MUSIC based Underdetermined DOA Estimation

We use an ideal MUSIC [49] based approach for exploiting the degrees of freedom of the

nested sparse circular array with virtual elements. At first, unknown noise covariance

is eliminated and then we perform dimension reduction [92]. In order to get rid of the

noise covariance, we consider q�1M
to denote an orthogonal complement projector, where

q�1M
= IM − (1/M)1M1TM . By operating a projection on (3.5), we obtain

yq�1M
= (A∗ ⊙A)(q�1M

p)T (3.10)
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Figure 3.3: Synthesized Concentric extension of Nested Sparse Circular Array. Physical
element positions are given by ⊗ and virtual element positions by ○.

The singular value decomposition (SVD) of yq�1M
is therefore

yq�1M
=
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⎦

∗

(3.11)

where Us the left and Vs is the right singular matrix that is associated with nonzero

singular values for signals respectively, Un and Vn are the left and right singular matrices

associated with zero singular values for noise respectively, and ∑s is a diagonal matrix

whose diagonals contain the nonzero singular values.

It was proved in [92] that for (A∗ ⊙A) to yield a full column rank i.e rank = D the

sufficient and necessary condition is when D ≤ 2M − 1. Thus, before applying subspace

approach to DOA estimation problem such as MUSIC, we ought to reduce the dimension

problem. The dimension reduction idea as proposed in [92] is as follows; Let the virtual

array response matrix (A∗⊙A) =GB where B is a dimensionally reduced virtual array

response matrix which is (2M)×D given by B = [b(φ1),b(φ2), ...,b(φD)]T as compared
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to one given in (3.6) which is an M2
×D matrix and G is an (M2

+M) × (2M) matrix

given by

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎣

0 ⋯0 0 IM

0 ⋯0IM 0

⋮ ⋰⋰ ⋰ ⋮

0 ⋰⋰ ⋰ ⋮

IM 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.12)

where IM is an M ×M identity matrix, and 0 is an M × 1 zero vector. From (3.12), it

can verified that G is column orthogonal [92]. Let F =GTG, this implies that

F = diag(1, 2, ...M − 1,M,M − 1, ...,2,1) (3.13)

from (3.10), this problem can therefore result in

ŷ=F−
1
2 GT [yq�1M

]

=F−
1
2 GT
(A∗ ⊙A)(q�1M

p)T

=F
1
2 B(q�1M

p)T (3.14)

the dimension reducing transformation F−
1
2 GT has orthonormal rows. We apply sub-

space based method to ŷ that is (2M − 1) × 1. MUSIC is therefore applied to the

dimensionally reduced problem, whose spectrum is given by

P (φ) =
1

∥UH
n F

1
2 b(φ)∥

2 (3.15)

over φ ∈ [0, π]. From this, we pick D largest peaks of P (φ) as the DOA estimates.
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3.2.6 `1–based Optimization DOA Estimation

Sparse signal representation employs the ideas of enforcing sparsity by `1 penalization

and at the same time, restricting error by `2–norm which facilitates the reconstruction

of sparse signals [95]. Through the sparsity framework, multiple measurements vectors

are employed to this problem of estimating an unknown sparse parameter. Thus, the

DOA estimation problem is extended to a problem of finding the sparsest solution to an

underdetermined linear system [55]. In this work, we develop an `1–based optimization

method initially proposed in [95] and extend it to underdetermined DOA estimation such

that we increase the DOFs to 2M. We consider (3.5) as a sparse signal representation

problem given by

y = Bp + σ2
m1m (3.16)

where B is as defined in section 3.2.3. To extend `1 penalization to (3.16), we are

required to appropriately choose the optimization criteria which is given by; min∥p∥1

subject to ∥y −Bp∥
2
2 ≤ β

2. From this, β is a parameter specifying how much noise we

desire to allow. An unconstrained form of this objective function is

min ∥y −Bp∥
2
2 + λ ∥p∥1 (3.17)

The `2 term in (3.17) forces the residual y−Bp to be small and the λ term controls

tradeoff between the sparsity of the spectrum and residual norm [109].

In a practical setting, y in (3.16) can be estimated from N snapshots such that

∆y = ŷ − y. The estimate error [110] is asymptotically normal distribution (AsN ), thus

∆y = vec(∆Rxx) ∼ AsN (0M2,1,
1

N
RT
xx ⊗Rxx) (3.18)

which then leads to

W−
1
2 ∆y ∼ AsN (0M2,1, IM2) (3.19)

where W−
1
2 =
√
NR

−
T
2

xx ⊗R
−

1
2

xx is the weighting matrix in which W = 1
NRT

xx ⊗Rxx. Let
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us consider p̂ to be the estimate of p. From this, the DOA estimation problem can be

given by the following `1–norm minimization

min
p̂
∥ŷ −Bp̂∥

2
2 + λ ∥p̂∥1 (3.20)

from (3.19) and (3.20) we further deduce that

W−
1
2 [ŷ −Bp̂] ∼ AsN (0M2,1, IM2) (3.21)

which then results in

W−
1
2 ∥ŷ −Bp̂∥

2
2 ∼ Asχ

2(M2) (3.22)

where Asχ2(M2) expresses the asymptotic chi–square distribution with M2 degrees of

freedom. The parameter β is then introduced such that ∥W−
1
2 [ŷ −Bp̂]∥

2

2
≤ β2. There-

fore, DOA estimation problem is reduced to

min
p̂
∥p̂∥1 subject to ∥W−

1
2 [ŷ −Bp̂]∥

2

2
≤ β2 (3.23)

where β =
√
χ2(M2). The problem (3.23) is a second–order cone (SOC) program prob-

lem. For numerical solution of this SOC problem, off the shelf optimization softwares

such as CVX [65] which is a Matlab Software for Disciplined Convex Programming and

SeDuMi [111] can also be used to efficiently solve the SOC problem.

3.3 Simulation Results

3.3.1 Specifications of Simulation

We implement simulation experiments to assess the effectiveness of NSCA in estimating

more sources than the number of physical sensors. In this section, numerical examples

conducted shows superior performance of the proposed array geometry in terms of de-
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grees of freedom for underdetermined DOA estimation as well as root mean square error

(RMSE). For some of the examples presented in this chapter, a 7 element NSCA antenna

system (M = 7) is examined as shown in Fig. 3.2 with two sub-circular arrays concate-

nated and one element at the center of the array. 8 narrowband sources (D = 8) are

impinging on the array from the directions φ = [15○,36○,46○,70○,90○,112○,130○,145○],

all having the same amount of power. In case when 10 narrowband sources (D = 10)

are used, φ = 54○ and 162○ directions are added. In terms of the radius size of the array,

r = λ is used for the NSCA. The noise is assumed to be spatially and temporally white.

3.3.2 Underdetermined DOA Estimation Spectra

Figure 3.4(a) presents the DOA spectra when we apply the subspace based approach

MUSIC for underdetermined DOA estimation. In this case, we observe that all DOAs

are resolved correctly and the peaks are sharp but we obtain a low dynamic range.

In Fig. 3.4(b) we inspect the DOA spectra of `1–based optimization for sparse signal

recovery in an underdetermined case. In the case of `1–based optimization, all DOAs are

resolved and the estimation is accurate. The peaks in this method are very sharp and

we obtain a very high dynamic range. Both methods in Fig. 3.4 requires more snapshots

to resolve DOAs correctly but the `1–based technique have higher dynamic range as

compared to MUSIC based method. In Fig. 3.5, DOA estimation spectra for 10 DOAs

is shown. This case also has similar results and observations as the one in Fig. 3.4. Both

methods use a total number of snapshots of 2000, and an SNR of 0 dB.

3.3.3 SNR Performance Comparison for Underdetermined DOA

Estimation

We examine the performance comparison of MUSIC algorithm, the `1–based optimiza-

tion technique and the cramer–rao lower bound (CRLB) [112], [113]. This is achieved by

examining the RMSE of angular estimates as a function of signal to noise ratio (SNR).
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(a) (b)

Figure 3.4: DOA estimation spectra using NSCA. M = 7, D = 8, snapshots = 2000,
and SNR = 0 dB in the case of using (a) MUSIC and (b) `1–based optimization.
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Figure 3.5: DOA estimation spectra using NSCA. M = 7, D = 10, snapshots = 2000,
and SNR = 0 dB in the case of using (a) MUSIC and (b) `1–based optimization.
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Thus, CRLB is used as the benchmark for an unbiased estimator. We perform the com-

parison for the cases of 8 sources (D = 8) and 10 sources (D = 10). The performance

is found to be not angular dependent since similar observations were made at different

angles. The number of trials used in this example is 100. The RMSE is defined as

RMSE =

¿
Á
ÁÀ 1

Tr

Tr

∑
tr=1

{
1

D

D

∑
d=1

(φ̂d − φd)2} (3.24)

where Tr is the number of trials, φd shows the true DOAs and φ̂d represents estimated

DOAs. In these simulations, the number of snapshots is 10000.

In Fig. 3.6(a), the RMSE as a function of SNR is presented. In this figure, 8 DOAs

are assumed to be impinging on the nested sparse circular array for 10000 snapshots

averaged over 100 monte carlo simulations. In both methods, the estimation performance

improves as the SNR increases. However, subspace based technique MUSIC has lower

RMSE performance as compared to `1–based optimization method but becomes closer

to `1–based method at an SNR of 20 dB. In Fig. 3.6(b) we observe the RMSE of MUSIC

and `1–based optimization as a function of SNR for 10 DOAs impinging on the NSCA. In

this case, the observation is that `1–based optimization method outperforms subspace

method MUSIC. For `1–based method, it achieves an RMSE of about 0.18 degrees.

From the results in Fig. 3.6(a) and (b) `1–based optimization method is clearly a better

method than MUSIC–based method.

3.3.4 Snapshots Performance Comparison for Underdetermined

DOA Estimation

In this subsection, we investigate the performance comparison of nested circular array

in relation to the RMSE of the angle estimates and the number of snapshots in an

underdetermined DOA estimation scenario. We first consider 8 signals arriving on the

array in the case of the number of physical elements M = 7. We consider an SNR of 20

dB averaged over 100 monte carlo simulations. In Fig. 3.7(a) we observe that the more
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Figure 3.6: RMSE performance versus SNR of MUSIC and `1–based optimization for
underdetermined DOA estimation using NSCA with M = 7, Snapshots = 10000 for (a)
D = 8, and (b) D = 10.

snapshots we have, the better the RMSE performance will be. The RMSE of `1–based

optimization method in this figure is better than that subspace based method MUSIC

and at 18000 snapshots, its performance becomes closer to the CRLB. For the case of

10 signals impinging on the nested circular as shown in Fig. 3.7(b), we have the same

observation in which the increase in the number of snapshots leads to better RMSE

performance but the `1–based optimization method has better RMSE than subspace

based technique MUSIC as well.

3.3.5 Degrees of Freedom

In the next example we take into consideration the degrees of freedom obtained by the

`1–based optimization approach. Because of its reduced dimension, MUSIC method

obtains 2M-2 degrees of freedom but the extended `1–based optimization approach

has improved DOFs. Figure 3.8 shows the DOA estimation using the `1–based op-
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(a) (b)

Figure 3.7: RMSE performance comparison as a function of number of snapshots for
NSCA using MUSIC and `1–based optimization. M = 7, SNR = 20 dB for (a) D = 8,
and (b) D = 10.

timization approach for 13 signals impinging on the NSCA from the directions φ =

[15○,32○,43○,58○,73○,80○,90○,98○,112○,124○,135○,145○,162○]. Thus the method obtains

up to 2M − 1 degrees of freedom for an array with odd number of sensors.

For the results shown in Fig. 3.8, we considered an array with an odd number of

sensors. We therefore extend this analysis to the case in which the array has an even

number of sensors. In the case, we consider an array in which the number of sensors is

even (M = 6). Using the `1–based optimization technique, the underdetermined DOA

estimation achieved 2M DOFs which is illustrated in Fig. 3.9.

3.3.6 Average Run–time

The last example in this subsection presents the average CPU run–time as a function

of the number of incoming signals. In this problem, we compare the performance of the

two algorithms; subspace based method MUSIC and `1–based optimization using NSCA
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Figure 3.8: Degrees of freedom obtain by `1-based optimization technique. D = 13,
Snapshots = 10000.

Figure 3.9: Degrees of freedom obtain by `1-based optimization technique for an even
number of sensor array. D = 12, Snapshots = 10000.



59

with different number of signals impinging on the array. In Fig. 3.10, the performance

comparison shown. From the results in Fig. 3.10, it is observed that MUSIC requires

very little amount of time to run. As compared to MUSIC, the `1–based optimization

technique requires almost twice the amount of time. Although `1–based optimization

method requires much more amount of run time,the method has superior performance

as compared to MUSIC in terms of DOA estimation spectra and RMSE.

Figure 3.10: Average CPU runtime comparison versus DOAs for MUSIC and `1–based
optimization using NSCA. M = 7, D = 8, SNR = 20 dB, and Snapshots = 10000.

3.4 Distributed Source Underdetermined DOA Es-

timation

In the field of array signal processing, the direction of arrival (DOA) estimation problem

has the assumption that signals sources are point sources [114]. On the contrary, in

reality, signals that are received at an array include not only a direct path signal (which

can be regarded as a point source) but are also angularly spread signals. This means
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that these signals are coherent, phase–delayed, and amplitude–weighted replicas of the

direct path signal [115], [116]. As an example, low–elevation radio links are subject to

ground reflections resulting in distributed signal source [114]. Therefore, signals detected

by an array can then be a continuum of directions [115]. A distributed source model

is more suitable for a realistic scenario due to some environmental phenomenon. In

this section, we consider distributed sources as applied to underdetermined direction of

arrival estimation.

3.4.1 Numerical Simulations for Distributed Sources

To evaluate the performance of distributed source underdetermined DOA estimation

using nested sparse circular array, numerical simulations were conducted. We investigate

the performance of a 6 element nested sparse circular array (M = 6) with 7 narrowband

distributed sources (D = 7). The distributed sources are impinging on the array from

the directions φ = [20○,35○,65○,80○,110○,130○,145○]. In terms of distributed sources,

two classes are investigated; (i) same spreading parameter ρ = 0.7, and (ii) different

spreading parameter values ρ = [0.6, 0.8,0.7,0.6,0.9,0.7,0.8].

In Fig. 3.11, the DOA estimation spectrum is presented. In this figure, we compare

the case with same spreading parameter ρ in Fig. 3.11(a) and different values spreading

parameter ρ in Fig. 3.11(b) of utilizing MUSIC algorithm. In Fig. 3.12, we apply `1–

based optimization algorithm for the two cases as well Fig. 3.12(a) same value of ρ and

Fig. 3.12(b) different value of ρ. As observed in Figs. 3.11 and 3.12, all the seven

distributed sources are resolved for both case (i) and case (ii). For the case using same

spreading parameter ρ (i), it achieves better performance as compared to the case with

different spreading parameters (ii). We also note that it is not always the case that all the

sources or DOAs can be resolved. When we have smaller SNR values, smaller spreading

parameters, and/or fewer samples, there is a high probability of false estimation [116].
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(a) (b)

Figure 3.11: MUSIC DOA estimation spectrum for distributed sources (a) same ρ and
(b) different values of ρ , SNR = 10 dB, Number of Snapshots = 1000.

(a) (b)

Figure 3.12: `1–based optimization DOA estimation spectrum for distributed sources
(a) same ρ and (b) different values of ρ , SNR = 10 dB, Number of Snapshots = 1000.
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3.4.2 RMSE for Distributed Sources

The RMSE performance as a function of SNR is represented in Fig. 3.13. In Fig. 3.13(a)

MUSIC algorithm is applied whilst in Fig. 3.13(b) we use the `1–based optimization

algorithm. In Fig. 3.13(a), we observe that when we have lower SNR levels, both cases

of ρ (i) and (ii) have poor performance but as the SNR levels increases, case (i) with

same values of ρ obtains better DOA estimation performance as compared to the case

(ii) that uses different spreading parameter values. In Fig. 3.13(b), we compare the

performance when using `1–based optimization algorithm. In this figure, we observe

that in both cases, with same spreading parameter or different spreading parameter

values, the performance does not change. This indicates that `1–based optimization

algorithm has robust performance even when the signal sources are distributed. To this

extent, we conclude that the underdetermined DOA estimation accuracy of `1–based

optimization is not affected by angularly spread signal or distributed sources.

(a) (b)

0

1

2

3

4

5

-15 -10 -5 0 5 10 15

R
M

SE
 (d

eg
.)

SNR (dB)

Diff.
Same
CRLB

0

0.4

0.8

1.2

1.6

-15 -10 -5 0 5 10 15
SNR (dB)

Diff.
Same
CRLB

Figure 3.13: RMSE versus SNR performance for distributed sources (a) MUSIC and (b)
`1–based optimization.
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3.4.3 Probability of Resolution

In DOA estimation problem, there is an increasing demand for higher accuracy of tar-

get angular measurements when using various techniques for angle spectrum estimation.

Nearly all the estimation techniques exploit angle information in one way or the other,

from the second–order statistics of the array data, in the form of a sensor covariance

matrix [117]. Since high resolution is the main motivation for the development of mo-

dem spectrum estimation techniques, the resolution capability is undoubtedly the most

important performance index of DOA estimation algorithms.

In this subsection, we analyze the probability of the MUSIC and `1–based optimiza-

tion algorithm in resolving two spatially separated signal sources in the context of array

processing. The problem is tackled in a fashion where the different circular array’s prob-

ability of resolving signals is compared when using a distributed source signal with same

value of spreading parameter ρ. In this comparison, two closely spaced impinging signals

are used with φ = [20○,25○] for Fig. 3.14(a). In this figure, performance of probability of

resolution as a function of SNR is shown. For the two algorithms, `1–based optimization

has better performance since it is able to resolve closed spaced signals for very low SNR

levels.

In Fig. 3.14(b), we verify probability of resolution for the two algorithms (MUSIC

and `1–based optimization) as a function of angular change. In this case, we start at an

angle φ and add ∆φ to φ. It is verified in Fig. 3.14(b) that `1–based optimization can

resolve very closely spaced signals as compared to MUSIC algorithm.
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Figure 3.14: probability of resolving closely spaced signals for MUSIC and `1–based
optimization.

3.5 Optimal Array

In circularly configured arrays, there are few geometries that deals with underdetermined

DOA estimation, for example, NSCA [47], and SR [100]. In the case of limited number

of antenna elements available, the problem of optimum array geometry naturally arises

[118]. A class of non uniformly spaced arrays also known as sparse arrays provide a better

solution. In [100], optimal array structures were examined. Optimal and nearly optimal

schemes operating both in a periodic and non–periodic form were designed by considering

linear compression schemes. [99] proposed a nested circular array (NCA) which has

advantages over conventional methods in that, it is used to eliminate spatial aliasing

for counting and DOA estimation of multiple simultaneous speakers. In NCA, each

microphone pair is only used in appropriate sub-band according to its inter–microphone

distance which enables the proposed method in [99] to achieve an acceptable performance

in both reverberant and noisy conditions. Although this is the case, NCA is basically

UCA in structure.
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In this section, we analyze the performance of three circular array geometries for

underdetermined DOA estimation. By utilizing a sparsity–aware technique with `1–

penalization, we are able to estimate more sources than sensors. In the simulation

examples, the results confirms that NSCA is capable of performing underdetermined

DOA estimation better than SR and UCA.

As an example in this section, the performance comparison of different array ge-

ometries is performed to ascertain an optimal array configuration in underdetermined

DOA estimation. We examine 3 circular array configurations shown in Fig. 3.15; (a).

Nested Sparse Circular Array (NSCA) proposed in this chapter, (b). the length-20 cir-

cular sparse ruler proposed in [100], and (c). Uniform Circular Array (UCA) which is a

conventional circular array type and is also similar to an array type considered in [99].
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Figure 3.15: Different array geometries (a). Nested Sparse Circular Array (NSCA), (b).
the length–20 circular sparse ruler (SR), and (c). Uniform Circular Array (UCA).
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3.5.1 Spectra Performance Comparison for Underdetermined

DOA Estimation

In this subsection, simulation results for optimum array configuration is reported. We

compared NSCA, SR and UCA. In Fig. 3.16, we consider the spectra performance com-

parison when eight sources are impinging on a six element array with φ = [15○,36○,46○,70○,

90○,112○,130○,145○]. In Fig. 3.16, we observe the spectra for underdetermined DOA es-

timation for the three arrays compared in this subsection. From this figure, we observe

that NSCA has better DOA estimation performance. This is followed by SR whilst UCA

has poor performance. In the case of UCA, although the array is capable of resolving

the DOAs, there are errors in estimation as well. On top of this, we also observe low dy-

namic range for UCA estimation performance whilst we have higher dynamic range for

NSCA in both (a) MUSIC and (b) `1–based optimization methods for underdetermined

DOA estimation.

(a)

(b)

Figure 3.16: Underdetermined DOA estimation spectra for different arrays (a). Using
MUSIC method, and (b) `1–based optimization for (NSCA), SR and UCA from left to
right.
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3.5.2 RMSE Performance Comparison for Underdetermined

DOA Estimation

In Fig. 3.17, we consider the accuracy of DOA estimation by examining the RMSE as a

function of SNR. In this figure, we compare the RMSE performance when eight sources

are impinging on a six element array. As observed in Fig. 3.17 as well as from previous

subsection 3.5.1, NSCA has better RMSE performance amongst the different circular

array geometries. NSCA configuration provides a better distribution of virtual elements

which are significant in the underdetermined DOA estimation [118].

(a) (b)

(c)

Figure 3.17: RMSE versus SNR underdetermined DOA estimation comparison for (a)
UCA, (b) SR, and (c) NSCA.
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3.5.3 Probability of Resolution for Different Arrays

In this subsection, we analyze the probability of the MUSIC and `1–based optimization

algorithms in resolving two spatially separated signal sources in the context of array

processing as a continuation of the discussion in subsection 3.4.3. However, in this sub-

section, the probability of resolution problem is tackled in a fashion where the different

circular array’s probability of resolving signals is compared. We compare the proba-

bility of NSCA, SR, and UCA to resolve closely spaced signals. In Fig. 3.18, we show

the probability of resolution for two closely spaced impinging signals φ = [20○,25○]. In

Fig. 3.18(a), MUSIC algorithm is used. In this figure, we observe that NSCA is capable

of resolving two closely spaced signals with lower SNR levels as compared to the other

two circular geometries (SR and UCA). This is the case as well when using `1–based

optimization method in Fig. 3.18(b) where by NSCA has better probability of resolution.

(a) (b)

Figure 3.18: Probability of Resolution for different arrays (a) MUSIC and (b) `1–based
optimization.
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3.5.4 Underdetermined DOA Angular Dependency

In the last part of the numerical examples, we examine performance of `1–based optimiza-

tion approach in relation to angular dependency. We consider the RMSE comparison of

the 3 circular array configurations examined in 3.5. In terms of DOAs, the case of of

(D = 8) is used. In terms of the results, we observe RMSE behavior for the 3 circular

arrays when the initial DOA values are varied from their initial positions by ∆φ, where

∆φ ranges from 0○ to 90○. In Fig. 3.19, we observe that there is very little change in the

RMSE behavior for NSCA and UCA while sparse ruler has higher change hence it has

higher angular dependency. The NSCA case also obtains better RMSE as compared to

the other two configurations over all DOA angles. UCA has no RMSE change as DOAs

change in terms of angular dependency between 45○ and 90○. Therefore we conclude

that NSCA has little angular dependency in the case of ∆φ between 0○ and 90○ and a

better RMSE performance as compared to the other two array configurations.

Figure 3.19: Angular dependency of NSCA, SR, and UCA using `1-based optimization
technique for underdetermined DOA estimation. D = 8, SNR = 20 dB, and Snapshots
= 10000.
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3.6 Summary

In this chapter, a nested sparse circular array was proposed. The proposed array and

its geometry solves the problem of underdetermined DOA estimation. The concentric

extension of the NSCA provides virtual sensors which are synthesized on a non–uniform

concentric circular array. By utilizing the virtual sensors in the concentric extension,

the NSCA achieves increased degrees of freedom. In this chapter, two strategies were

explored that are used with the NSCA; subspace based technique MUSIC and `1–based

optimization method. In both methods, we confirmed that NSCA has the ability to esti-

mate more sources as compared to the number of physical sensors. We also investigated

the RMSE performance in relation to SNR and number of snapshots. We observed that

the number of snapshots plays a crucial role in the underdetermined DOA estimation.

Using the nested sparse circular array, an increase in the degrees of freedom is guaran-

teed especially on the `1–based optimization method which obtains 2M − 1 degrees of

freedom and has no angular dependency. The work was also extended to cases in which

signals are distributed. It was confirmed that the underdetermined DOA estimation

accuracy of `1–based method was not affected by distributed sources.



Chapter 4
Mutual Coupling Compensation

Method for Nested Sparse Circular

Arrays

4.1 Introduction

The problem of evaluating parameters of superimposed signals which utilizes sensor

arrays has numerous practical applications and is one of the most researched area in

array signal processing. Direction of arrival (DOA) estimation is consequently an active

research area in signal processing and plays an important role in various application

areas, such as wireless communications, seismic sensing, acoustics, and radar [24], [25],

[83]. The advancements in array signal processing discipline have led to high resolution

DOA estimation techniques for narrowband signals [25], [49] and wideband signals [84],

[85]. In most cases, DOA techniques fall into two general classifications; 1) spectral–

based methods and 2) statistical parametric methods. However, the performance of

these techniques or strategies are generally restricted which prompted new techniques

for sparse signal reconstruction (SSR).

In the last couple of years, linear sparse arrays have received significant attention.



72

These arrays have an advantage of performing underdetermined DOA estimation, which

is the estimation of more number of sources than sensors [119]. Sparse arrays, for

example, nested linear arrays [86], co–prime arrays [89], and minimum redundancy arrays

(MRAs) [120] achieve increased degrees of freedom (DOFs) and are capable of performing

underdetermined DOA estimation. In spite of the fact that this is the case, sparse

arrays with a circular configuration has received very little consideration. Due to their

geometry, circular arrays are capable of providing 360○ azimuthal coverage [24], [31]. On

top of this 360○ estimation, circular arrays have no or minimal angular dependency, and

suitable of performing 2D–DOA estimation. As a consequence, circular arrays are more

advantageous as compared to their linear counterparts.

In a situation or an instance where two antenna elements are closely spaced and one

is transmitting, the second element will receive a portion of the transmitted energy. The

received amount depends on the separation distance between the antenna elements and

their relative orientation [121]. Moreover, antennas re–scatter an amount of any incident

wave. In this manner, they act like small transmitters despite the fact that fundamen-

tally, they are only receiving which results in energy interchange between a particular

element of an array and a remote point [121]. This effect is a clear manifestation of the

mutual coupling that exists between array antennas.

In DOA estimation, most algorithms assume an ideally or perfectly uncoupled array

manifold. On the contrary, in practice, the array manifold is often affected by unknown

array characteristics such as mutual coupling [24], [122], which seriously degrades the

performance of DOA estimation algorithm [123], [124]. In the event that mutual coupling

is properly accounted for, the performance loss can be restored [125]. The effects of

mutual coupling can neither be completely eliminated nor its variability predicted since

the electromagnetic environment encompassing the antenna is evolving [126]. Along

these lines, if calibration procedures to estimate and compensate for the mutual coupling

are available, design constraints with respect to coupling could be relaxed by antenna

designers to improve other aspects of the antenna, without affecting the DOA algorithm’s
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performance [126].

The impact of mutual coupling depends on both type of antenna and array structure.

Uniform linear array (ULA) that is well balanced has a banded Toeplitz mutual coupling

matrix structure, i.e. coupling between any two equally spaced sensors is the same [127].

In uniform circular arrays (UCA), mutual coupling matrix (MCM) is expressed by three

bands; a center band, upper right–hand corner band, and a band at the lower left corner.

This entails that a good UCA exhibit a circulant [128] MCM structure [127]. An array

having an arbitrary geometry does not have any of these structures with the exception of

that the mutual coupling matrix (MCM) is symmetric [129]. Mutual coupling between

an antenna array’s elements accumulated in MCM depends on the self and mutual

impedances between array elements [130]. Several strategies have been proposed with

a specific goal of modeling mutual coupling between array elements. In [131] a blind

calibration method was proposed in which the mutual coupling coefficients were adjusted

by utilizing dummy elements. This technique enhanced estimation accuracy of MUSIC

algorithm. In [132], an effective way to correct the actual voltage matrix using the

terminal impedance matrix derived from the method–of–moments’ (MOM) impedance

matrix was proposed which realized invariably superior result as compared to ideal case.

However, this approach is complex in terms of implementation and execution, time

consuming, and only constrained to overdetermined DOA estimation problem.

In literature, there are several methods that are used to compensate for mutual cou-

pling in ULAs and UCAs. On the other hand at present, there is no existing method for

nested sparse circular arrays proposed in [47]. Nested sparse circular array is a circu-

larly configured array in which two sub–circular array are nested together. One part of

the array is dense and the other part is sparse. This array has more advantages as con-

trasted to uniform circular arrays because since it achieves better underdetermined DOA

estimation performance, very little angular dependency, capable of 2D–DOA estimation

and wideband underdetermined DOA estimation. To solve the problem of array mutual

coupling in nested sparse circular arrays, we propose a simple symmetric banded–like
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circulant structure for MCM that will be utilized to perform underdetermined DOA es-

timation. The two strategies; MUSIC and `1–optimization based on compressive sensing

or sparse signal recovery for DOA estimation methods are used in the presence of mutual

coupling in this chapter. Simulation results confirms that the proposed simple MCM

structure is capable of performing underdetermined DOA estimation for sparse circular

arrays without degrading the array performance.

Notations

In this chapter, some of the commonly used notations are given as follows. Capital

boldface letters are used to represent matrices (e.g., A). On the other hand, vectors

are represented by lowercase boldface letters (e.g., a). A transpose is represented by

superscript T , whilst superscript H represents conjugate transpose, whereas superscript

∗ represents conjugation without transpose. ∥●∥p represents the `p norm. The symbol

⊙ represents the Khatri–Rao product between two matrices of appropriate size and the

symbol ⊗ is used to represent the left Kronecker product.

4.2 Mutual Coupling Problem Formulation

In this chapter, We examine an M element omnidirectional, nested sparse circular array

[47] as shown in Fig. 4.1. We assume D sources that are narrowband having a wavenum-

ber of k = 2π/λ are arriving on the NSCA from the directions φ1, φ2, ..., φD where, φ is

the azimuth angle and λ is wavelength. In the presence of mutual coupling, the received

signal vector is given by

x(t) =CAs(t) + n(t) (4.1)

where s(t) is a D × 1 signal vector, and n(t) is an M × 1 noise vector. C is the mutual

coupling matrix (MCM) and A is array manifold given by

A = [a(φ1),a(φ2), ...,a(φD)] (4.2)
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where a is the steering vector. The number of sources is a priori known or accurately

estimated [31], [133]. Furthermore, we assume that signal sources are uncorrelated. As

such, the source autocorrelation matrix of s(t) is diagonal. Therefore,

Rxx = E[xx
H] =CARssA

HCH
+ σ2I (4.3)

where Rss is signal covariance matrix given by the diagonal of signal powers and I is an

identity matrix. In order to exploit the increased DOFs, a Khatri-Rao subspace approach

[92] is utilized to the DOA estimation problem in the presence of mutual coupling. From

(4.3), the covariance matrix is vectorized such that

y = vec(Rxx)

= vec(CARssA
HCH

) + vec(σ2I)

= (Ã
∗

⊙ Ã)p + vec(σ2I) (4.4)

in which Ã = CA. From the output signal above, DOA estimation algorithm such

as MUSIC or `1–based optimization approach is applied [47]. Hence, we are capable

of performing underdetermined DOA estimation because of increased DOFs from this

formulation.

4.3 Proposed Mutual Coupling Matrix for Nested

Sparse Circular Arrays

4.3.1 Generic Formulation

In antenna arrays, antenna elements affect each other through mutual coupling. In

order to compensate for this effect through signal processing algorithms, a mutual cou-

pling matrix is formulated. This mutual coupling matrix depends upon self and mutual

impedances between array elements [130]. One of the earliest methods to model cou-
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Figure 4.1: A Nested Sparse Circular Antenna Array.

pling matrix is called open–circuit method [124]. In this method, an antenna array is

considered as a bilateral terminal network which relates uncoupled voltages with cou-

pled ones using a mutual impedance matrix. An extension of the open–circuit method

was proposed in [134], where two types of mutual impedances are depicted; (i) trans-

mission mutual impedance and (ii) re–radiation mutual impedance. Another mutual

coupling matrix compensation method was proposed in [135] in which the receiving–

mutual impedance method (RMIM) is depicted for use in receive–only antenna arrays.

In that capacity, the method provides a more precise coupling model in DOA estima-

tion applications. In RMIM, each antenna pair is considered separately to compute the

receiving mutual impedances [130], [135].

In mutual coupling compensation scenario, mutual coupling coefficients between two

antenna elements are inversely related to their separation distance in an array [127]. In

the case of nested sparse circular arrays, we propose a simple symmetric banded–like

circulant matrix to represent the mutual coupling matrix in which the elements of the
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coupling vector c are given by

c = [c0, c1, c2,⋯, cL−2, cL−1,0,⋯,0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M

]T (4.5)

where L = M/2 + 1, c0 is self coupling, and c∣i−j∣(i, j = 1,2, ..., L for i ≠ j) denotes the

coupling between an i–th element and a j–th element. Since the effect of mutual cou-

pling decreases as the distance between the antenna elements increases, the effect of

mutual coupling in the sparse part of the array shown in Fig. 4.1 is assumed to be

insignificant and therefore ignored. Thus, the mutual coupling matrix will exhibit a

symmetric banded–like circulant matrix structure. In the case of an M–element nested

sparse circular array, mutual coupling matrix will be;

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0 c1 c2 ⋯ cL−1 0 0 ⋯ 0

c1 c0 c1 ⋯ cL−2 0 0 ⋯ 0

c2 c1 c0 ⋯ cL−3 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮

cL−2 cL−3 cL−4 ⋯ c0 0 0 ⋯ 0

cL−1 cL−2 cL−3 ⋯ c1 c0 0 ⋯ 0

0 0 0 ⋯ 0 0 c0 ⋮ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋱ ⋮

0 0 0 ⋯ 0 0 0 ⋯ c0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.6)

The number of unknown coupling coefficients for an M–element nested sparse circular

array is L.

4.3.2 Example of a 6 element Nested Sparse Circular Array

In this subsection, we give an example of the proposed mutual coupling matrix. For the

NSCA in Fig. 4.1, the symmetric banded-like circulant matrix structure of a 6 element
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nested sparse circular array will be given by;

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c0 c1 c2 c3 0 0

c1 c0 c1 c2 0 0

c2 c1 c0 c1 0 0

c3 c2 c1 c0 0 0

0 0 0 0 c0 0

0 0 0 0 0 c0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.7)

4.4 DOA Estimation using `1–based Method in the

Presence of Mutual Coupling

Recently, in the field of signal processing, compressive sensing [56] has become extremely

popular and is rapidly expanding [60]. The key idea in compressive sensing is that major-

ity of real–life signals can be approximated by sparse vectors. In this way, by exploiting

the sparse signal structure, signal acquisition cost can dramatically be reduced, and ac-

curate signal reconstruction can be accomplished in a computationally efficient way [60].

The emerging field of sparse representations therefore, has given renewed interest to the

DOA estimation problem [136]. The idea of enforcing sparsity to a general framework

using an `1–SVD method which has applications in a wide variety of practical DOA

estimation problems was investigated in [95]. We extend `1–SVD in [95] to an `1–based

optimization [47] for underdetermined DOA estimation in the presence of mutual cou-

pling such that we can utilize the increase in DOFs using the Khatri–Rao approach. We

consider (4.4) as a sparse signal representation problem which is given by

y = (Ã
∗

⊙ Ã)p + vec(σ2I) (4.8)
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In order to extend `1–penalization to (4.8), we need to appropriately determine an

optimization criteria which is

min ∥p∥1 subject to ∥y − Ã
∗

⊙ Ãp∥
2

2
≤ β2 (4.9)

where β is a parameter specifying how much noise we wish to allow. Therefore, an

unconstrained form of this objective function is

min ∥y − Ã
∗

⊙ Ãp∥
2

2
+ λ ∥p∥1 (4.10)

The `2 term in (4.10) forces the residual to be small and λ controls the tradeoff between

the sparsity of the spectrum and residual norm [109]. In practice, from N snapshots, the

output y in (4.8) can be estimated by ŷ such that ∆y = ŷ − y. The error in estimation

is asymptotically normal distribution (AsN ), therefore

∆y = vec(∆Rxx) ∼ AsN (0M2,1,
1

N
RT
xx ⊗Rxx) (4.11)

leading to

W−
1
2 ∆y ∼ AsN (0M2,1, IM2) (4.12)

where the weighting matrix W−
1
2 =
√
NR

−
T
2

xx ⊗R
−

1
2

xx with W = 1
NRT

xx⊗Rxx. Let p̂ be the

estimate of p, the DOA estimation problem can then be given by

min ∥ŷ − Ã
∗

⊙ Ãp̂∥
2

2
+ λ ∥p̂∥1 (4.13)

from (4.12) and (4.13) we further deduce that

W−
1
2 [ŷ − Ã

∗

⊙ Ãp̂] ∼ AsN (0M2,1, IM2) (4.14)
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which then results in

W−
1
2 ∥ŷ − Ã

∗

⊙ Ãp̂∥
2

2
∼ Asχ2(M2) (4.15)

where Asχ2(M2) denotes the asymptotic chi-square distribution with M2 DOFs. Hence,

a parameter β is introduced such that ∥W−
1
2 [ŷ − Ã

∗

⊙ Ãp̂]∥
2

2
≤ β2. Therefore, DOA

estimation can be reduced to

min
p̂
∥p̂∥1 subject to ∥W−

1
2 [ŷ − Ã

∗

⊙ Ãp̂]∥
2

2
≤ β2 (4.16)

where β =
√
χ2(M2). Thus (4.16) is a second–order cone programming problem.

4.5 Simulation Results for DOA Estimation in Pres-

ence of Mutual Coupling

4.5.1 Specifications

In order to evaluate the capability of nested sparse circular array in terms of estimating

more sources than sensors, we carry out simulation experiments. In the examples given

in following subsections, we examine a 6 element nested sparse circular array antenna

system (M = 6) as shown in Fig. 4.1. We consider eight narrowband sources (D = 8)

arriving on the array from the directions φ = [15○,36○,70○,90○,112○,130○,145○,162○], all

with the same amount of power. The radius of the nested sparse circular array is r = λ/2.

The noise is assumed to be spatially and temporally white.

4.5.2 Numerical Mutual Coupling Matrix and Estimation Per-

formance

To evaluate the performance of the proposed approach, we conducted numerical evalua-

tion of NSCA with (M = 6) and 8 sources. The number of unknown coupling coefficients

is L =M/2 + 1 = 4. The coupling vector c was estimated from random values with the
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criteria 1 ≥ c ≥ 0 where c0 > c1 > c2 > c3 depending on element separation. The values

were found to be c = [1.00 + 0.00j,0.633 + 0.395j, 0.351 + 0.219j, 0.063 + 0.195j]. The

simplified mutual coupling matrix is shown in Fig. 4.2.

Figure 4.2: A simplified mutual coupling matrix plot for nested sparse circular array.

Figure 4.3(a) shows the spectra for MUSIC algorithm while Fig. 4.3(b) shows spectra

for `1-based optimization approach in an underdetermined DOA estimation case. We

observe all DOAs are resolved correctly and peaks are sharp. Even in the presence of

mutual coupling, NSCA can detect more sources than sensors. `1–based method has a

very high spectrum range. In terms of detection performance, as observed in Fig. 4.3, `1–

based method offers better results even when we take into consideration mutual coupling

effects.

In the next example, we consider the accuracy for underdetermined DOA estimation

in presence of mutual coupling. The RMSE performance comparison when MUSIC and

`1-based methods are utilized is examined in Fig. 4.4. Figure 4.4(a) shows the RMSE as a

function of SNR for an underdetermined DOA estimation case in which `1–based method
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(a)

(b)

Figure 4.3: Underdetermined DOA estimation spectra in the presence of Mutual coupling
(a) MUSIC, (b) `1-based method.

outperforms MUSIC. In Fig. 4.4(b), we present the underdetermined DOA estimation

accuracy by employing the RMSE performance comparison as a function of number of
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snapshots. As the case in Fig. 4.4(a), `1–based method has superior performance as

well.

(a)

(b)

Figure 4.4: Underdetermined DOA estimation RMSE performance in the presence of
Mutual coupling versus (a) SNR, (b) number of snapshots.
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4.5.3 MCM from Electromagnetic Software

From the formulation in section 4.3, we examine a 6–element nested sparse circular array

as an example and obtain its impedance matrix Z from an electromagnetic simulation

software FEKO which uses a method of moments to find Z. The impedance matrix Z is

inversely proportional to the mutual coupling matrix C i.e C = Z−1. Hence, if we find

the impedance values (i.e elements/entries of the impedance matrix Z), an impedance

matrix can be reconstructed from these values. By calculating the inverse of impedance

matrix, we obtain mutual coupling matrix. In this example M = 6 and L = 4, therefore

the impedance matrix will be;

Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z11 z12 z13 z14 z15 z16

z21 z22 z23 z24 z25 z26

z31 z32 z33 z34 z35 z36

z41 z42 z43 z44 z45 z46

z51 z52 z53 z54 z55 z56

z61 z62 z63 z64 z65 z66

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.17)

From these 36 values, instead of finding all the 36 coupling coefficients (for asymmetric

case), the proposed method find only 4 coupling coefficients which tremendously reduces

time and effort to calculate the mutual coupling matrix. In the electromagnetic simula-

tion software, the array is modeled using monopole antennas on a ground. We obtained

good Sii–parameter values at the frequency of interest 2.45 GHz which are below −10

dB whilst Sij–parameter values are below −15 dB (i, j = 1,2, ...,6; i ≠ j) which is good

for practical applications. The S-parameter values are shown in Fig. 4.5

The self and mutual impedance values evaluated are given in (4.18) where zij rep-

resents the mutual impedance between the i–th element and the j–th element while zii

represents self impedance. The impedance vector to be extracted z therefore consist of

the values z11, z12, z13, and z14. These values are then used to construct the proposed

banded-like circulant mutual coupling matrix for the nested sparse circular array.
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Figure 4.5: S-parameter values for nested sparse circular array.

Z =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

34.987 + 3.073i −11.371 + 1.263i 5.195 − 4.063i −4.919 + 0.749i 1.076 + 5.496i 5.325 − 3.741i
−11.371 + 1.263i 35.044 + 2.652i −11.56 + 1.227i 5.189 − 4.062i 0.983 + 5.219i −5.253 + 0.610i
5.195 − 4.063i −11.559 + 1.228i 35.044 + 2.633i −11.363 + 1.271i −5.250 + 0.615i 0.984 + 5.221i
−4.919 + 0.750i 5.189 − 4.062i −11.363 + 1.271i 34.959 + 2.960i 5.317 − 3.746i 1.076 + 5.490i
1.076 + 5.496i 0.984 + 5.220i −5.250 + 0.615i 5.317 − 3.745i 35.045 + 3.482i 5.254 − 3.545i
5.325 − 3.741i −5.253 + 0.610i 0.984 + 5.221i 1.076 + 5.490i 5.254 − 3.545i 35.057 + 3.460i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.18)

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.304 − 0.034i 0.083 − 0.003i 0.004 + 0.031i 0.049 + 0.010i −0.031 − 0.053i −0.012 + 0.032i
0.083 − 0.003i 0.330 − 0.043i 0.088 − 0.027i 0.004 + 0.031i −0.021 − 0.062i 0.043 − 0.014i
0.004 + 0.031i 0.088 − 0.027i 0.330 − 0.043i 0.083 − 0.002i 0.043 − 0.014i −0.021 − 0.062i
0.049 + 0.010i 0.004 + 0.031i 0.083 − 0.002i 0.304 − 0.033i −0.012 + 0.032i −0.031 − 0.054i
−0.031 − 0.053i −0.021 − 0.062i 0.043 − 0.014i −0.012 + 0.032i 0.272 − 0.031i −0.027 + 0.026i
−0.012 + 0.032i 0.043 − 0.014i −0.021 − 0.062i −0.031 − 0.054i −0.027 + 0.026i 0.272 − 0.031i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×10−1

(4.19)

4.5.4 Mutual Coupling Matrix - EM Software Simulation

In the performance assessment of the system in terms of underdetermined DOA estima-

tion with mutual coupling compensation, we consider two cases. The first case, Case 1 is

when the mutual coupling matrix is derived from the impedance matrix Z in (4.18) with

all 36 values. In the second case, Case 2 the proposed banded–like circulant mutual cou-
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Figure 4.6: Mutual coupling matrix plot with all values.

Figure 4.7: Mutual coupling matrix plot with proposed simple banded–like circulant
mutual coupling matrix.

pling matrix with 4 values extracted from the impedance matrix Z in (4.18) is utilized.

The impedance vector is found to be z = [34.987+ 3.073i −11.371+ 1.263i 5.195− 4.063i

−4.919+0.749i] which is extracted from z11, z12, z13, and z14. Thus, the mutual coupling

matrix for a 6–element nested sparse circular array will have the form as shown in (4.7).

Figure 4.6 shows the plot of mutual coupling matrix case 1 with all values whilst Fig. 4.7

shows a plot with the proposed banded-like circulant mutual coupling matrix scenario.
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4.5.5 Underdetermined DOA Estimation Spectrum

4.5.5.1 Uncalibrated Mutual Coupling

The first example in this subsection, an underdetermined DOA estimation spectra with-

out mutual coupling compensation (or uncalibrated mutual coupling) is considered. In

Fig. 4.8(a), MUSIC algorithm’s performance is assessed whilst in Fig. 4.8(b), we exam-

ine the performance of `1–based optimization method. In both methods as illustrated in

Fig. 4.8, we observe that the methods are not able to accurately estimate the directions

of the impinging signals. Despite the fact `1–based optimization method obtains higher

dynamic range, only three DOAs of the eight are accurately estimated. Hence, there is

a necessity for mutual coupling compensation such that the performance of the DOA

estimation algorithms in the presence of mutual coupling can be improved. In the suc-

ceeding examples, two scenarios (case 1 and case 2) for mutual coupling compensation

is considered.

4.5.5.2 Calibrated Mutual Coupling

Figure 4.9(a) exhibits the spectra plot of the subspace based approach MUSIC for un-

derdetermined DOA estimation in the presence of mutual coupling using case 1. The

problem addressed in this example is related to DOA estimation with mutual coupling

compensation whereby all 36 coupling values are considered as shown in Fig. 4.6. In this

scenario, we observe that we are able to resolve all DOAs and some peaks are sharp but

the dynamic range is low. In Fig. 4.9(b) we observe the spectra of `1–based optimization

of sparse signal recovery for underdetermined DOA estimation in the presence of mutual

coupling using case 1 as well. In the case of utilizing the `1–based optimization, all DOAs

are resolved and some of the DOAs are accurately estimated. The peaks in `1–based

optimization method are very sharp and a very high dynamic range is achieved. Both

methods in Fig. 4.9 expose some errors in DOA estimation.

In Fig. 4.10, we asses the performance by utilizing Case 2 (in which the mutual
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Figure 4.8: Spectra for underdetermined DOA estimation for nested sparse circular
array - for uncalibrated mutual coupling with snapshots = 1000, and SNR = 0 dB for
(a) MUSIC and (b) `1–based optimization.Red denotes true DOAs.
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Figure 4.9: Spectra for underdetermined DOA estimation for nested sparse circular
array - Case 1 with snapshots = 1000, and SNR = 0 dB for (a) MUSIC and (b) `1–based
optimization.
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coupling matrix is given by the proposed banded–like circulant mutual coupling matrix

– Fig. 4.7). In Fig. 4.10(a), a plot of subspace based method MUSIC is presented

whilst Fig. 4.10(b) presents a plot of `1–based optimization method. As compared to

Fig. 4.9, better performance is observed in terms of DOA estimation accuracy. This

is mainly recognized by comparing the dynamic range of Fig. 4.10(a) and Fig. 4.9(a),

in which MUSIC algorithm for Case 2 obtains higher dynamic range. In the situation

where `1–based optimization method is used and MCM of Case 2 (Fig. 4.10(b)), a better

performance is observed since Fig. 4.9(b) has errors at 145○ and 162○. For Fig. 4.10(b),

we observe no estimation error at 145○ and a very small estimation error at 162○. By

comparing Case 1 and Case 2, we conclude that from spectra plots Fig. 4.9 and Fig. 4.10,

Case 2 obtains better DOA estimation in an underdetermined scenario.

4.5.6 RMSE Performance Comparison for Underdetermined

DOA Estimation with Mutual Coupling

In this subsection, we examine the performance of nested sparse circular array in relation

to the RMSE of the angle estimates. We therefore evaluate this RMSE as a function

of SNR and number of snapshots for underdetermined DOA estimation in the presence

of mutual coupling. The cramer–rao lower bound (CRLB) [112], [137] is used as the

benchmark in this case. We consider eight signals impinging on the array when the

number of physical elements M = 6. In this case, we consider an SNR of 20 dB with 100

monte carlo simulations. The RMSE is defined as

RMSE =

¿
Á
ÁÀ 1

Tr

Tr

∑
tr=1

{
1

D

D

∑
d=1

(φ̂d − φd)2} (4.20)

where Tr is number of trials, φ̂d represents estimated DOAs and φd represents true DOAs.

The CRLB [138] is given by;
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Figure 4.10: Spectra for underdetermined DOA estimation for nested sparse circular
array - Case 2 with snapshots = 1000, and SNR = 0 dB for (a) MUSIC and (b) `1-based
optimization.
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CRLB = FIM−1 = NTr{R−1
xx

∂Rxx

∂[α]p
R−1
xx

∂Rxx

∂[α]l
}

= N [vec(
∂Rxx

∂[α]p
)]

H

(R−Txx ⊗R−1
xx)vec(

∂Rxx

∂[α]l
)

=
1

N
(ΛHΠ�ΓΛ)−1 (4.21)

where Π�Γ = I − Γ(ΓHΓ)−1ΓH , FIM is the Fisher information matrix, Tr is the trace, α

is the unknown parameter vector. A through derivation of the CRLB for nested sparse

circular arrays is found in [138].

4.5.6.1 RMSE against SNR Performance Comparison

We asses the Underdetermined DOA estimation accuracy of the two algorithms; MUSIC

and `1–based optimization in presence of mutual coupling by comparing the RMSE

versus SNR performance. In Fig. 4.11(a), the performance is presented when the mutual

coupling compensation utilizes Case 1 whilst in Fig. 4.11(b) we present the scenario when

Case 2 is used. We observe that Case 2 obtains better RMSE performance. From this

comparison, it follows that Case 2 as shown in Fig. 4.11(b) has better Underdetermined

DOA estimation accuracy using NSCA.

4.5.6.2 RMSE against Snapshots Performance Comparison

In Fig. 4.12(a) we observe RMSE versus number of snapshots when Case 1 is utilized. In

this scenario, as the number of snapshots increases, RMSE performance becomes better.

We note that the RMSE of `1–based optimization method in Fig. 4.12(a) is better as

compared to that of subspace based method MUSIC.

In the succeeding figure, Fig. 4.12(b), the RMSE performance of the proposed banded–

like circulant mutual coupling matrix (Case 2) is considered. For the case of subspace

based method MUSIC, we observe very little improvement in DOA estimation accuracy



93

(a)

(b)

Figure 4.11: RMSE performance versus SNR utilizing MUSIC and `1–based optimization
for underdetermined DOA estimation with M = 6, SNR = 20 dB for (a) Case 1, and
(b) Case 2.



94

for Cases 1 and 2. In terms of `1–based optimization method, we observe better RMSE

performance comparing Fig. 4.12(a) and Fig. 4.12(b). In both Case 1 and Case 2, a

similar observation and conclusion can be made in which the increase in the number of

snapshots leads to better RMSE performance but the `1–based optimization method has

better RMSE than subspace based technique MUSIC.

4.5.7 Performance Evaluation of Sparse Signal Reconstruction

with Mutual Coupling

As already observed in performance analysis and evaluation presented in preceding sub-

sections, `1–based optimization method outperforms MUSIC algorithm. In this subsec-

tion, we carry out RMSE performance considering `1–based optimization as the number

of signals (DOAs) arriving on the nested sparse circular array are increased. Since we

examine an underdetermined DOA estimation scenario, the cases of six to ten signals

impinging on the array are considered. In order to confirm that the method also works

for an overdetermined DOA estimation scenario, a case of five DOAs has been added

to the analysis. Figure 4.13 shows the RMSE performance when the number of DOAs

increase from six to ten signal sources. In this figure, we observe that the proposed

banded–like circulant mutual coupling matrix (case 2) has better RMSE performance

for all signal sources impinging on the array. We also observe in Fig. 4.13 that nested

sparse circular array is capable of overdetermined DOA estimation (5 DOAs impinging

on the array). The performance of both cases (overdetermined and underdetermined) in

the presence of MC shows that case 2 is better. Thus the proposed banded–like circulant

mutual coupling matrix exhibit better performance as we compare the two cases.

In Fig. 4.14, the average run–time as compared to the number of DOAs is investi-

gated. Conventionally, SSR based algorithms possess higher average run-time character-

istics in DOA estimation. In a normal situation, `1–based optimization takes more time

to execute as compared to MUSIC algorithm. In Fig. 4.14, we observe that the proposed

case 2 obtains reduced average run–time as the number of DOAs increases compared to
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Figure 4.12: RMSE performance versus number of snapshots utilizing MUSIC and `1–
based optimization for underdetermined DOA estimation with M = 6, SNR = 20 dB
for (a) Case 1, and (b) Case 2.
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Figure 4.13: Comparison of RMSE performance versus number of DOAs for `1-based
optimization using Case 1 and Case 2 with snapshots = 3000.

case 1. From this performance improvement, the proposed banded–like circulant mutual

coupling matrix not only improves the RMSE performance or DOA estimation accuracy

but also reduces the average run–time of the DOA estimation algorithm.

4.6 Summary

In this chapter, first of all, a simple banded–like circulant mutual coupling matrix was

proposed. This MCM improves underdetermined DOA estimation estimation perfor-

mance and accuracy in the presence of mutual coupling. This mutual coupling com-

pensation method functions well with nested sparse circular arrays. Impedance matrix

values were extracted from an electromagnetic simulation software and mutual coupling

matrix values evaluated. Rather than utilizing all 36 coupling values for a 6–element

nested sparse circular array, using only 4 values obtains better performance with the pro-

posed method in this paper. The proposed technique achieves improved DOA estimation
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Figure 4.14: Average run–time versus DOAs comparison for `1–based optimization using
Case 1 and Case 2.

performance, better RMSE as well as lower average run–time. RMSE performance as

related to number of snapshots was also investigated. As the number of snapshots in-

creases, the RMSE performance becomes better. Hence, nested sparse circular array

is capable of performing DOA estimation for more sources than sensors in the pres-

ence of mutual coupling without degrading the estimation performance using a simple

banded–like circulant mutual coupling matrix compensation method.



Chapter 5
Underdetermined Wideband DOA

Estimation

5.1 Introduction

In Chapter 3 and Chapter 4, we considered underdetermined DOA estimation problem

for narrowband signals. In most of sparse signal recovery (SSR) based methods, the tech-

niques applied involve only narrowband signals and the literature for wideband signals

is less sufficient. Despite the fact that wideband DOA estimation utilizing sparse signal

recovery based techniques is not new, earlier works hardly address the underdetermined

DOA estimation case [93].

In this chapter, we investigate a wideband model for the signal received by an an-

tenna array, as opposed to the narrowband model that has so far been the topic under

consideration. A wideband signal is defined as any signal whose energy is distributed

over a bandwidth that is large in comparison to the signal’s center frequency [139]. As

an example, ultrawideband (UWB) noise radars use wideband signals offering low prob-

ability of detection (LPD), at the same time achieving good target detection and high

resolution [140]. We therefore extend the algorithms studied in the foregoing chapters

to problems related to wideband array processing.
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In the wideband DOA estimation problem, when the incoming signals are wideband,

the most attractive approach is to decompose the wideband signal into narrowband con-

stituents and wideband DOA estimation problem in this case is mainly concerned with

determining a way to use the multiple correlation matrices at different frequencies to get

accurate DOA estimates [45]. One of the methods that is applied is the incoherent signal

subspace method (ISSM) [141]. ISSM is one of the simplest wideband technique that

estimates the source DOAs separately at each narrowband frequency. It then constructs

the final estimate of the DOAs by taking an average [45]. This approach works well at

high SNR levels. However, the performance suffer severely at lower SNR levels because

even a single outlier from one narrowband component can potentially lead to inaccurate

estimates through the averaging process [45]. Another disadvantage of this method is

that it is incapable of handling coherent sources.

To overcome the drawbacks of this method, a sparse signal recovery techniques pro-

posed in Chapter 3 is extended to wideband signals. In this chapter, we address the

wideband underdetermined DOA estimation problem by incorporating the frequency–

domain approach [84], [142] and dividing the wideband received signal data into narrow-

band signals [143]. With the increase in DOFs as shown in Chapter 3, we re–formulate

the underdetermined DOA estimation to wideband signals and a similar technique as in

[141] is used to decompose the wideband signal into different narrowband components.

Then, we use the proposed NSCA at different frequency bins and apply the proposed

`1–based optimization technique to perform underdetermined DOA estimation.

5.2 Ideal Case for Wideband DOA Estimation

5.2.1 Problem Formulation

For wideband signal sources, suppose that D far–field wideband signals impinge onto an

M -element array from the directions of Φd = (φ1), (φ2), ..., (φD) corrupted by additive

white gaussian noise [142], [144], [145]. At time t, the received signal at the m-th array
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element is given by

xm(t) =
D

∑
d=1

sd(t − τmd) + nm(t) (5.1)

where xm(t) is the waveform of the dth source, τmd is the propagation delay of the

mth element of the array with respect to the reference element, nm(t) is the additive

white gaussian noise [122]. The observation time T is divided into L sub–segments

such that each sub–segment has an observation time Td, therefore T = LTd. When

we transform Td of l–th segment into frequency domain, we have J non–overlapping

narrowband components. The frequency domain received data at frequency fj is given

by

Xl(fj) =A(φ, fj)Sl(fj) +Nl(fj) (5.2)

where l = 1,2, ..., L and j = 1,2, ..., J , where Xl(fj), Sl(fj), and Nl(fj) are derived from

the Discrete Fourier Transform (DFT) of the received data, signals and noise respectively.

From this array model, the wideband array model is given by

A(φ, fj) = [a(φ1, fj),a(φ2, fj), ...,a(φD, fj)] (5.3)

where a(φd, fj) is the kth steering vector at frequency bin fj. From the frequency domain

received data Xl(fj), the wideband covariance matrix is given by

R(fj) =
1

L

L

∑
l=1

Xl(fj)X
H
l (fj)

=A(φ, fj)Rs(fj)A
H
(φ, fj) (5.4)

+ σ2
n(fj)I

where Rs is the wideband signal covariance matrix given by the diagonal of signal powers

and I is an identity matrix. By using the Khatri–Rao product from Section 3.2.3, we

vectorized the wideband covariance matrix in (5.4) such that

y = vec(R(fj))
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= vec(A(φ, fj)Rs(fj)A
H
(φ, fj)) + vec(σ2

n(fj)I) (5.5)

From this output signal, we can apply the DOA estimation at each frequency bin using

DOA estimation algorithms.

5.2.2 MUSIC and `1–based Technique in Wideband DOA Es-

timation

5.2.2.1 Extended MUSIC Algorithm

In the frequency–domain approach, an essential step is to merge the subspaces at various

frequencies to obtain a DOA spectrum fusion. In order to compute DOA spectrum, the

following formula is used;

P (φ) =
1

∑
J
j=1 ∥U

H
n (fj)F

1
2 b(φ, fj)∥

2 (5.6)

where Un(f) denotes the noise subspace with f being fixed, b(φ, f) is an extended

steering vector.

5.2.2.2 Extended `1–based Technique

From (5.5), let the estimation error of ŷ be ∆y. This implies that

ŷi = yi +∆yi (5.7)

where, yi = B(φ, fi)pi + vec(σ2
nI) from the formulation in 5.2.1 and Section 3.2.3.

In order to extend our approach to wideband sparse signal recovery or `1–penalization,

we need to appropriately choose the optimization criteria which is

min ∥pj∥1 subject to ∥yj −Bpj∥
2

2
≤ β2 (5.8)
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The sparsity of the signal behaves only in the spatial domain instead of the frequency

domain. Thus, we can employ the `1–norm minimization formulation for sparse signal

recovery. In this case, the wideband DOA estimation can be reduced to

min
p̂
∥p̂j∥1 subject to ∥W−

1
2 [ŷj −B(φ, fj)p̂j]∥

2

2
≤ β2 (5.9)

In the next subsection, we consider numerical simulation for wideband DOA esti-

mation. Subspace based MUSIC algorithm and sparse signal recovery based approach

`1–based optimization is used in these simulation examples. From the formulation, we

are able to perform underdetermined DOA estimation for wideband signals.

5.2.3 Numerical Simulations for Wideband DOA Estimation

From the above formulation, we show the performance of the NSCA for a wideband

underdetermined DOA estimation. We consider lower frequency to be 2 GHz and higher

frequency 3 GHz with 6 frequency bins. We observe how MUSIC based method and the

`1–based optimization approach estimate DOAs for the array with 6 elements for 8 DOAs

impinging on the array from directions φ = [15○,36○,70○,90○,112○,130○,145○,162○].

5.2.3.1 Wideband DOA Estimation Spectrum and RMSE

In this subsection, the wideband DOA estimation of the two algorithms is compared.

Firstly, we compare whether all the DOAs are resolved and dynamic range by plotting

the DOA spectrum. Then, we compare the accuracy of the wideband underdetermined

DOA estimation by plotting the RMSE against SNR. Figure. 5.1(a) shows spectrum of

MUSIC based technique whilst Fig. 5.1(b) shows spectrum of `1–based technique. In

Fig. 5.1(b) all DOAs are resolved with sharp peaks and noise level is less that -100 dB

and dynamic range is very high whilst for Fig. 5.1(a), the spectrum is not sharp although

all the DOAs are resolved with very low dynamic range. MUSIC method therefore is

not good candidate for underdetermined wideband DOA estimation for low SNR levels.
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(a)

(b)
Figure 5.1: Underdetermined Wideband DOA estimation using NSCA. M = 7, D = 8,
snapshots = 2000, and SNR = 0 dB for for (a) MUSIC based technique and (b) `1-based
optimization.
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In Fig. 5.2, the performance of MUSIC and `1–based technique is compared to CRLB

for underdetermined DOA estimation. The RMSE performance for MUSIC is not as

good as that of `1–based technique which is very close to CRLB. This is attributed to

low peak level in which there is less difference between noise and spectrum peaks as

observed in Fig. 5.1(a). Thus, the proposed NSCA is capable of performing wideband

undetermined DOA estimation in the case when we use `1–based technique.

Figure 5.2: RMSE of underdetermined Wideband DOA estimation using NSCA. M =
7, D = 8 and Snapshots = 10000.

5.2.3.2 Wideband DOA Estimation Aliasing Free Test

In order to achieve high resolution in DOA estimation, array spacing may introduces

ambiguity in identifying the source directions due to the aliasing components. We inves-

tigate the effect of spatial aliasing on the direction of arrival spectrum due to wideband

sources. We have to note that the extent of aliasing is frequency dependent. In Fig. 5.3,

we plot the frequency–bearing images at an SNR of 0 dB for frequency of 2–4 GHz band.
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We observe that spatial aliasing appears when MUSIC algorithm is applied as shown in

Fig. 5.3(a) but no aliasing is observed in the `1–based technique Fig. 5.3(b).
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Figure 5.3: Frequency–bearing images for underdetermined Wideband DOA estimation
using NSCA.

5.3 Mutual Coupling Effects in Underdetermined

Wideband DOA Estimation

Over the last few years, compressive sensing [56], has continued to enjoy popularity and

is a rapidly expanding field in modern signal processing [60]. The key idea in this field

is based on the fact that majority of real–life signals can be approximated by sparse

vectors. Therefore, if we exploit the sparse signal structure, signal acquisition cost can

be reduced, and accurate signal reconstruction can be accomplished in a computation-

ally efficient way [60]. The emerging field of sparse representations therefore, has given

restored interest to the DOA estimation problem [136]. A recursive weighted minimum–

norm algorithm called FOCUSS was proposed in [146] to achieve sparsity for the problem
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of DOA estimation. The idea of enforcing sparsity to a general framework using `1–SVD

method which has applications in a wide variety of practical DOA estimation problems

was extended in [95]. In this chapter, we reformulate the underdetermined DOA es-

timation problem for wideband signals in the sparse signal reconstruction framework.

We further develop the `1–based optimization to underdetermined DOA estimation such

that we can utilize the increase in degrees of freedom from the Khatri–Rao approach

in the presence of mutual coupling. We consider (5.5) as a sparse signal representation

problem which is given by

y = (Ã
∗

⊙ Ã)p + σ2
m1Tm (5.10)

In order to extend `1 penalization to (5.10), an optimization criteria is required to be

determined appropriately that is

min ∥p∥1 subject to ∥y − Ã
∗

⊙ Ãp∥
2

2
≤ β2 (5.11)

where β is a parameter specifying how much noise we wish to allow. Consequently, an

unconstrained form of this objective function is

min ∥y − Ã
∗

⊙ Ãp∥
2

2
+ λ ∥p∥1 (5.12)

The `2 term in (5.12) forces the residual to be small and λ controls the tradeoff between

the sparsity of the spectrum and residual norm [109].

In a practical setting, y in (5.10) can be estimated from N snapshots such that

∆y = ŷ − y. The estimate error is asymptotically normal distribution (AsN ), thus

∆y = vec(∆Rxx) ∼ AsN (0M2,1,
1

N
RT
xx ⊗Rxx) (5.13)

which leads to

W−
1
2 ∆y ∼ AsN (0M2,1, IM2) (5.14)
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where the weighting matrix W−
1
2 =
√
NR

−
T
2

xx ⊗R
−

1
2

xx with W = 1
NRT

xx⊗Rxx. Let p̂ be the

estimate of p. From (5.14) we can deduce that

W−
1
2 [ŷ − Ã

∗

⊙ Ãp̂] ∼ AsN (0M2,1, IM2) (5.15)

which then results in

W−
1
2 ∥ŷ − Ã

∗

⊙ Ãp̂∥
2

2
∼ Asχ2(M2) (5.16)

where Asχ2(M2) denotes the asymptotic chi-square distribution with M2 degrees of

freedom. Therefore, DOA estimation can be reduced to

min
p̂
∥p̂∥1 subject to ∥W−

1
2 [ŷ − Ã

∗

⊙ Ãp̂]∥
2

2
≤ β2 (5.17)

where β =
√
χ2(M2). The problem (5.17) is therefore a second–order cone program

problem.

5.3.1 Numerical Results

From the formulation in previous sections, we evaluate the performance of the nested

sparse circular array for underdetermined DOA estimation of wideband signals in the

presence of mutual coupling. We consider the wideband signals to be gaussian processes

with zero mean with center frequency f0 = 2.5 GHz and the bandwidth BW = 200 MHz,

lower frequency to be 2 GHz and higher frequency 3 GHz with 5 frequency bins. We ex-

amine the performance of the sparse signal reconstruction method `1-based optimization

approach in DOA estimation. We consider an array with 6 elements, 1000 snapshots

and an SNR of 0 dB. 7 wideband signal sources impinging on the array from directions

φ = [20○,35○,65○,80○,110○,130○,148○]. The radius of the sparse circular array is r = λ/2.
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5.3.1.1 Spectra of Underdetermined Wideband DOA Estimation with Mu-

tual Coupling

The underdetermined DOA estimation performance in the presence of mutual coupling

is considered. Figure 5.4 shows spectra of wideband DOA estimation in the presence of

mutual coupling in the case when `1–based technique is used. In this figure, we observe

that we are capable of resolving all DOAs correctly and the peaks are sharp. The noise

level is about -100 dB and dynamic range is very high.

Figure 5.4: Spectra for underdetermined wideband DOA estimation using NSCA in
presence of mutual coupling with D = 7, M = 6, snapshots = 1000, and SNR = 0 dB
for `1–based optimization.

In Fig. 5.5, we present the spectra plot for 10 DOAs arriving on the array from the

directions φ = [15○,30○,46○,54○,70○,90○,110○,130○,145○,162○]. In this figure as well, all

DOAs are resolved correctly as can be observed from the comparison between the blue

graph (estimated DOAs) and red lines (true DOAs). Thus, we verify the wideband DOA

estimation in the presence of mutual coupling using `1–based technique as well in this

example. We observe that all DOAs are resolved correctly and we obtain very high
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dynamic spectrum. Even when the number of sources increases, the proposed approach

obtains good DOA estimation performance with mutual coupling compensation using

the proposed method.

Figure 5.5: Spectra for underdetermined wideband DOA estimation using nested sparse
circular array in presence of mutual coupling with D = 10, M = 6, snapshots = 1000,
and SNR = 0 dB for `1–based optimization.

5.3.1.2 Average Run–time

In the next example, we consider the average run time as compared to the number of

frequency bins. This comparison is shown in Fig. 5.6. In this figure, we observe that as

the number of frequency bins increases, there is a tremendous increase in the average

run–time. From roughly 5 seconds with 2 frequency bins, to about 12 seconds for 6

frequency bins. In both 100 and 1000 snapshots cases, there is very little difference in

the average run–time. Thus, an increase in the number of snapshots has a limited effect

in the average run–time as compared to an increase in the number of frequency bins.
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Figure 5.6: Average run time versus number of frequency bins for underdetermined
wideband DOA estimation in presence of mutual coupling with D = 7, M = 6, SNR =
0 dB for `1–based optimization.

5.3.1.3 SNR Dependency for DOA Estimation

In this subsection’s examples, we examine the RMSE performance of `1–based optimiza-

tion technique. Firstly, we compare the RMSE accuracy when we consider two cases of

mutual coupling matrix as illustrated in Chapter 5. Figure 5.7 show the two cases of

the mutual coupling matrix. In terms of Case 1, all 36 coupling values are used. For

Case 2, the proposed simple banded–like circulant mutual coupling matrix in Chapter 5

with 4 coupling values is used.

In Fig. 5.8, the underdetermined DOA estimation accuracy for the two cases is pre-

sented. In this figure, we observe that Case 2 achieves a better RMSE accuracy as

compared to case 1. For wideband signals similar to narrowband signal sources, Case 2

obtains better DOA estimation accuracy and performance.

Secondly, We compare the RMSE of underdetermined DOA estimation as a function

of SNR in uncalibrated case as well as the proposed mutual coupling compensation case



111

Figure 5.7: Mutual coupling matrix plot (left) Case 1, and (right) Case 2.

Figure 5.8: RMSE versus SNR comparison for Case 1 and Case 2 MCM with M = 6, D
= 7, snapshots = 1000.

(Case 2) to the Cramer Rao lower bound (CRLB). In this simulation experiment, the

number of trials is 50. In Fig. 5.9, we observe the RMSE of `1–based optimization as a

function of SNR for an underdetermined DOA estimation case in the presence of mutual

coupling. Seven wideband signal sources are impinging on the NSCA. The case in which

the mutual coupling is uncalibrated obtains poor RMSE performance as compared to
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the proposed simple mutual coupling compensation. The proposed case’s performance

is close to the CRLB. In Fig. 5.9, we verify that the performance of the proposed simple

mutual compensation for nested sparse circular arrays improves as the SNR is increasing

for underdetermined DOA estimation.

Figure 5.9: RMSE performance versus SNR in an uncalibrated case and simple mutual
coupling compensation case with M = 6, D = 7, snapshots = 100.

5.4 Summary

In this chapter, the problem of underdetermined wideband DOA estimation has been

considered. In the approach used, wideband signals were decomposed the into narrow-

band components multiple correlation matrices were found at different frequencies to get

accurate DOA estimates. To overcome some drawbacks of this method, a sparse signal

recovery techniques proposed in chapter 3 was extended to wideband signals. Further-

more, a new mutual coupling compensation method for wideband signals using nested

sparse circular arrays. A simple mutual coupling matrix proposed in chapter was used
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for underdetermined direction of arrival estimation. By using the banded-like circulant

mutual coupling matrix in the wideband underdetermined DOA estimation problem, the

nested sparse circular array is capable of estimating more sources than sensors in the

presence of mutual coupling. From simulation experiments, we verified that the pro-

posed approach achieves better RMSE performance as well as excellent DOA estimation

accuracy. This method is cost–effective and easy to implement whilst achieving better

DOA estimation performance.



Chapter 6
Hemispherical Near Field

Measurements for Far Field Estimation

6.1 Introduction

In a wireless communication system, wave transmission over free space is accomplished

by an antenna system [33]. For different communication systems, the specifications for

an antenna system is different. Because of these specifications, antennas of different

types, size and shapes are required for example satellite communication, personal com-

munication (such as smart phone), IoT sensors, etc. Although many theoretical models

are available to describe the performance of these antenna systems, experimental mea-

surements are required to validate these models [33]. In this case, antenna measurements

are performed to validate an antenna if it meets specifications. Far field radiation pat-

tern is one of the most important parameters to characterize an antenna’s performance.

In most cases, it is impractical or impossible to measure an antenna’s far field using a

conventional far field range. This may be as a result of the distance to the radiating far

field being too long, or practically not possible to move the antenna from its operating

environment to an antenna range [37]. Thus, it is often necessary to ascertain the far

field patterns from measurements made in the radiating near field region of the antenna.
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The problem of antenna radiation pattern reconstruction or restoration from near

field measurements by means of a near–field far–field (NF–FF) transformation has ex-

tensively been investigated [38], [40], [42], [78], [81], [147]. The near field far field method

is utilized to a wide range of antenna systems such as cellular phone antennas, vehicle

mounted antennas, large phased arrays and many others. In most cases, near field data

is collected on a plane surface, cylindrical surface, or spherical surface [36], [147], [148].

Of these techniques, the planar technique is perhaps the most fully developed [149]. The

near field far field methods have proved to be efficient and attractive alternatives to con-

ventional far field and compact range measurements. Another important aspect of the

near field far field methods is that they can be performed in a controlled environment,

such as an anechoic chamber, which eliminates the effect of the environment (changing

weather conditions, and electromagnetic (EM) interference) that cannot be eliminated

in the case of outdoor far field measurements [150].

Spherical near field (SNF) measurement techniques allows the complete character-

ization of antenna designs. By sampling data on a spherical surface surrounding the

antenna–under–test (AUT), the antenna performance is assessed under its real operat-

ing conditions [151]. However, near field ranges suffer from the disadvantage that a full

sphere needs to be acquired so as to apply a near field far field transformation, making

often the measurement time unaffordable [152]. In order to perform this transforma-

tion, the spherical wave expansion needs to be evaluated in an asymptotic way [38],

[147], [152], using the whole sphere data. This method is time consuming and also prone

to errors for very large antenna systems such as antennas mounted on a vehicle.

In spherical near field measurement technique, the earliest works were based on wave

mode expansion [38], [147], [153], [154], [155]. In this technique, measured near field

information is used to determine wave mode coefficients of the AUT [38]. From these

wave mode coefficients, one can be able to calculate the antenna radiation pattern at any

distance. On the contrary, when using these techniques, spatial sampling rate should

satisfy Nyquist criterion. Therefore, when the number of sampling points are reduced
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from that criterion, the transformation procedure is deteriorated.

Source reconstruction method (SRM) is another near field far field transformation

technique [42], [156], [157]. In this method, equivalence principle is applied in which

the equivalent currents at an antenna aperture are reconstructed from known near field

information. From the reconstructed equivalent currents at an antenna aperture, far field

radiation pattern of the AUT can be calculated at any distance. Source reconstruction

method (SRM) is an inverse radiation problem based on electric field integral equation.

It is a technique that was developed for antenna diagnostics and as well as to carry out

near field to far field transformation. In SRM, one establishes an equivalent current

distribution that radiates the same fields as the actual currents induced in the AUT by

applying electromagnetic equivalence principle [156]. Knowledge of equivalent currents

allows the determination radiating elements, as well as prediction of AUT’s radiated

fields outside the equivalent currents domain [157]. In this method, equivalent currents

at the AUT aperture are discretized based on the known basis functions and then these

currents are determined with the inverse method of moments (MoM) techniques [81].

In most antenna far field measurements and analysis, the effect of the earth is not

included. In real use case scenarios, the antenna’s performance is affected by the earth.

Thus, the effect of the earth on the far field pattern of the antenna is of particular

importance [158], [159]. According to [158], when the radiation patterns of several

different antennas mounted on finite size metallic ground planes were measured in the

presence of the earth, it was found out that the radiation pattern was affected by the

earth at low elevation angles. In [82], a procedure to extend the methods of moments

(MOM) by linear approximation of conductor surface to include the case in which an

antenna is located over a lossy half–space.

The far field of the antenna can be calculated if the real source distribution of the

antenna is known. As a method of estimating the current distribution on the conductor

surface, there is an inverse problem estimation [78], [82] using the near field. However, in

this method, increase in the number of measurement points according to the number of
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current elements and decrease in estimation accuracy due to regularization can become

a problem.

In this chapter, hemispherical near field measurement technique is utilized which

reduces the amount of time it takes to perform near field measurements and complexity.

The surface current distribution reconstruction problem falls into the ill–posed condi-

tion due to lack of near field information at lower elevation part. We therefore propose

an `2–norm least squares solution which utilizes the Moore–Penrose pseudoinverse. By

using this technique, an accurate equivalent current distribution is obtained. In order to

include the effect of real ground, mirror image source is used by applying reflection coef-

ficient method (RCM) to the equivalent electric current in order to reconstruct far field

on real ground. Validation of the method is confirmed in simulation and measurement

results.

6.2 Conventional Far Field Measurement Methods

In antenna measurements, the radiation pattern can be obtained by measurements and

the radiation of the source regardless of its actual complexity can be characterized ef-

ficiently. In conventional far field measurements, open site antenna measurements and

anechoic chamber measurements are the most common. In the open site method, far field

measurement is carried out outdoors with sufficient space. The object to be measured

is placed on a rotating table and measured as a receiving antenna. For electronically

large antennas, the size and wavelength of the AUT is large, thus, the required distance

increases and it becomes difficult to secure measurement space. The existence of ground

reflected waves is inevitable in outdoor measurements. Therefore, it is necessary to

introduce a configuration such as a high–level measurement field, a ground level mea-

surement field, and a slant range [160] to reduce this influence. Furthermore, variations

due to weather changes also affect outdoor far field measurements.

Anechoic chamber is a facility that simulates the free space of radio waves indoors by
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attaching a radio wave absorber to the wall surface of a radio wave shielded room and

suppressing reflection of radio waves. As compared to open site method, anechoic cham-

ber is advantageous because it is not affected by weather and surrounding scatterers,

measurement environment is stable, reproducibility is good, and foreign noises can be

avoided. However, there are limitations on the target size and measurement frequency,

as well as high costs. In addition, since the measurement is performed on the metal

surface, it is impossible to evaluate the far field assuming the earth.

6.3 Near Field Antenna Measurements

6.3.1 Hemispherical Near Field Method

The near field measurement is a method of measuring an antenna’s radiation in the near

field region of the measurement object and determining the far field by numerical pro-

cessing. In general, near field measurement often refers to the near-field far field method

which determines the far field characteristics by performing calculation processing on

the amplitude / phase data measured in the near field. This method provides a solution

to weather and space problems related to open site and anechoic chamber. Although

this is the case, it is not easy to measure because the device used for measurement is

expensive, takes long time and it is numerically complex.

Spherical near field measurement techniques allows the complete characterization of

antenna designs. It is the most accurate and complex techniques as compared to other

near field measurement techniques. It is used for omnidirectional and low gain antennas.

In order to utilize the advantages of spherical near field measurements as well as overcome

some of its drawbacks, hemispherical near field measurement technique is utilized in this

chapter. It reduces the amount of time it takes to perform near field measurements and

complexity. The hemispherical near field measurement set up is shown in Fig. 6.1.
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Figure 6.1: Measurement equipment and set up for hemispherical near field scan.

6.3.2 Wire Grid Model

In electromagnetic field analysis, it is necessary to discretize the analysis target. One

of the discretization methods in moment method, is dividing a linear conductor along a

line and replacing a planar conductor with a grid network (wire grid). This allows all

linear and planar conductors to be considered as a collection of linear elements. The

current flowing is therefore regarded as a linear current. Such approximation is called

thin line approximation and is widely used for analysis of linear antenna. In our analysis,

in order to derive wave source information on real surface, we consider approximating

the conductor surface with a linear conductor element. The current distribution on the

linear conductor is represented by [J ], which is dicretized current. Figure 6.2 below

shows the equivalent wire grid model for the AUT.
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Figure 6.2: AUT and equivalent wire grid model of AUT. (a) Planar Model, and (b)
wire grid model.

6.3.3 Moore–Penrose Inverse Method

We derive wave source information on real surface from hemispherical near field mea-

surements performed in an anechoic chamber. From Maxwell equation, the electric field

E at observation point r ’ by current distribution J on conductor surface in region v at

the position r is expressed by the following integral equation:

E(r ′) = −
jη

k ∫v
{k2J (r) +∇∇ ⋅ J (r)}G(r ,r ′)dv (6.1)

where G(r ,r ′) = e
−jk∣r−r ′∣

4π∣r−r ′∣ and ∇ = ( ∂∂x ,
∂
∂y ,

∂
∂z), η is the intrinsic impedance 120π, and

k is wave number. Derivation of the actual wave source information is performed using

near field information measured in anechoic chamber. Therefore, we assume an antenna

on earth (realistic ground), and calculate the current distribution from measured near

field. The real ground is assumed to be a lossy half–space. In order to obtain the

transformation matrix for the hemispherical technique, the radial component of the

measured near field is neglected. Thus, θ and φ components of the electric (magnetic)
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field distribution are given by;
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In deriving the wave source information on the real surface, we consider approximat-

ing the conductor surface with a linear conductor element. The current distribution on

the linear conductor is represented by [J ], from which the following relation is established

through discretization of the moment method [78], [82], [161] and (6.1).
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(6.3)

where [E] represents the measured electric field distribution, [A] represent the coeffi-

cients of the radiation from each element and is determined by the approximate model

shape obtained from wire grid model. In this paper, the approximate model used is a

wire grid model of the DUT. By solving this matrix equation for the current vector,

it is possible to acquire the surface current on the DUT. In conventional methods, the

matrix equation (6.3) is solved by using generalized inverse matrix as,

[J] = ([A]H[A])−1[A]H[E] (6.4)

where [A]H is the Hermitian conjugate matrix of [A]. The, current distributions on the

DUT are reconstructed using measured hemispherical electric field. The surface current

distribution reconstructed at this step falls into the ill–posed condition due to the lack

of near–field information at the lower elevation part. Thus, accurate surface current

distribution can not be obtained.

We propose a method in which [J] is calculated using the Moore–Penrose pseudoin-
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verse [162] to ensure that solution exist for the linear system created. The Moore–Penrose

pseudoinverse is a matrix that acts as a partial replacement for the matrix inverse in

cases where it does not exist [162]. It chooses the minimum norm solution (find solu-

tion with smallest norm) to a system of linear equations with multiple solutions. The

pseudoinverse provides a least squares solution to a system of linear equations. For

an underdetermined scenario, applying the Moore–Penrose pseudoinverse yields the so-

lution with the smallest `2–norm among all vectors [J] satisfying [E] = [A][J] such

that;

min
[J]
∥[J]∥2 subject to [E] = [A][J] (6.5)

where, the Moore–Penrose pseudoinverse provides the minimum `2–norm representation

[A]+[E] of [E], where [A]+ is the pseudoinverse. The pseudoinverse thus, solves the

problem as

∥[A][J] − [E]∥2 ≥ ∥[A][q] − [E]∥2 (6.6)

where [q] = [A]+[E] which holds if and only if [J] = [A]+[E] + [I −A+A]w, where I is

identity matrix and w is an arbitrary vector.

6.4 Antenna Far Field Estimation on Earth using

Reflection Coefficient Method (RCM)

Far field is usually defined by the far electric field (Eθ,Eφ). It is obtained by setting

the observation point at infinity point (R =∞) in the near electric field equation. The

method of moments for a scattered conductor in a semi–infinite space where z = 0 is a

complete conductor ground plane as shown in Fig. 6.3. When there is a wave source

on the ground plane, a mirror image source can be considered at symmetrical positions

on the z = 0 plane from the boundary condition for the perfect conductor plate (mirror

image method).

When a plane wave is incident from the medium I at the boundary surface where the
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medium I (ε1, µ1, σ1) and the medium II (ε2, µ2, σ2), and the tangential component of the

magnetic field are continuous, the reflected wave and the transmitted wave are obtained

from boundary conditions [161], [163]. In the semi–infinite space where the upper half

is the free space and the lower half is the earth (dielectric) as shown in Fig. 6.3, the

reflection coefficient method is used [164], [165]. In terms of the earth, the permittivity ,

permeability, and conductivity are assumed to be εsε0, µ0, and σ. The complex relative

permittivity of the earth is therefore given by;

εr = εs − j
σ

ωε0
(6.7)

Therefore, the plane wave reflection coefficient RTM and RTE for the ground is given by;

RTM =
εr cos θ −

√
εr − sin2θ

εr cos θ +
√
εr − sin2θ

(6.8)

RTE =
cos θ −

√
εr − sin2θ

cos θ +
√
εr − sin2θ

(6.9)

Here, RTM and RTE represent reflection coefficients of the TM wave and the TE wave

with respect to the earth. In the reflection coefficient method, the spherical wave is

regarded as a TM wave, and the reflection term by the earth is approximated by mul-

tiplying the green function of the mirror image source by RTM . By introducing these

reflection coefficients, image current below the earth can be assumed as shown in Fig. 6.3.

We therefore perform radiation integration from these currents and derive the far-field.

Thus, the far field is therefore estimated by:

Eθ(θ, φ) =
jZ0ke−jkr

4πr
Fθ(θ, φ) (6.10)

Eφ(θ, φ) =
jZ0ke−jkr

4πr
Fφ(θ, φ) (6.11)
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Figure 6.3: Mirror image source for AUT above lossy half–space (earth).

Fθ(θ, φ) =
N

∑
n=1

J n {(ln ⋅ θ̂) e
jkrn⋅r̂ −RTM (l

′′

n ⋅ θ̂) e
jkr′′n⋅r̂′′} (6.12)

Fφ(θ, φ) =
N

∑
n=1

J n {(ln ⋅ φ̂) e
jkrn⋅r̂ +RTE (l

′′

n ⋅ φ̂) e
jkr′′n⋅r̂′′} (6.13)

where J n is discretized complex current on DUT and ln is the length of line current

element from wire grid model of the DUT. Far field on earth is calculated from equivalent

current on a closed surface and equivalent image current under earth.

6.5 Results and Discussion

6.5.1 Synthesized/Simulation Results

The measurement of the near field is performed by scanning the estimation target hemi-

spherically with a scan radius of R ≥ 3/2λ in an anechoic chamber as shown in Fig. 6.4.

The far field Fθ is estimated by scanning the hemispherical shape with the interval

∆θ = ∆φ = 2○ for an elevation of (0○ ≤ θ ≤ 90○), and azimuth (0○ ≤ φ ≤ 360○) to measure

the electric near field. The simulated near field in the analysis is obtained by using the
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current distribution derived from wire grid model in EEM–MOM software [166]. The

estimation target, is a monopole antenna as shown in Fig. 2.1. The relative permittivity

of the ground is εs = 4 , and conductivity σ = 0.001 S/m for dry earth.

R
θ

f

z

y
x

Figure 6.4: Near field measurement of estimation target.

In order to set the near field measurement radius R, we synthesized near field mea-

surements at different distances (i.e changing the radius R of the hemisphere) and cal-

culate the residual error. Figure 6.5 shows the residual error for two cases (conventional

and proposed). The residual error (ε) is calculated by;

Residual Error(ε) =
∥J(ref.) − J(est.)∥2
∥J(ref.)∥2

× 100% (6.14)

where [J ](ref.) is the reference current distribution, and [J ](est.) is the estimated

current distribution using the proposed method. In this figure, we observe that as

the radius R is equal or greater than 3/2λ, the residual error for both cases remains

constant. Thus, performing hemispherical near field measurements at R = 3/2λ will give

better results.

Figure 6.6 shows a comparison of the near electric field distribution on the monopole

antenna for different values of R. We observe that both the real part and the imaginary
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Figure 6.5: Derived results for measurement radius R.

part are roughly in good agreement. However, as the elevation angle (θ) is changed,

there is a small difference in the near electric field distribution which is larger at θ = ±45○

with the value 0.0178 V/m in the real part and θ = ±25○ in imaginary part but with a

lower value. This may be due to fluctuation of input impedance because of applying an

approximate ground plane.
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Figure 6.6: Comparison of near electric field distribution on yz plane at different hemi-
spherical radius (a) R = 3λ black color and (b) R = 4λ black color.
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In the next example shown in Fig. 6.7, we compare we compare near electric field

distribution at R = 3λ by using (a) reference current distribution and (b) calculated

current distribution. The near electric field distribution is in good agreement which

confirms the validity of the numerical processing.

z [
m

]

(a)

E-field [V/m]

z [
m

]

E-field [V/m]

(b)

Figure 6.7: Near electric field distribution (a) reference and (b) numerical.
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Next, we compare the amplitude of surface current distribution reconstructed using

the proposed method. This distribution is compared to reference distribution as well as

conventional surface current distribution. In Fig. 6.8, we observe an accurate current

distribution reconstructed using the proposed method. This is confirmed by comparing

it to the reference surface distribution in the same figure. In the case of conventional

method, we observe a huge disparity between the reconstructed surface current with the

reference. This disparity in conventional reconstruction method may lead to poor far

field estimation accuracy. On the other hand, using the proposed method, the amplitude

of surface currents on the radiating elements is reconstructed exactly as the amplitude

of reference which ensures accurate far field estimation.
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Figure 6.8: Reconstructed current distribution for AUT.

In order to verify the performance of the technique described in this chapter, we

estimate the far field of the AUT (shown in Fig. 2.1) using simulated near field in this

example and then measurement results in the next section. The estimated far field

utilizes the RCM to include the effect of real ground (earth). We thus use the current
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distribution on the AUT surface. In Fig. 6.9 and Fig. 6.10, we show the result of the

estimated far field on earth. In order to compare the performance of different methods,

reference values for far field for an antenna above earth are derived from FEKO [167].

The reference results obtained in FEKO are solved using the Sommerfeld integrals.

Thus, in Fig. 6.9(a), the estimated far field using conventional technique is compared

to reference far field. In this figure, we observe poor performance of the conventional

technique. This is attributed to poor current distribution reconstruction as observed in

Fig. 6.8.

In Fig. 6.9(b), we compare far field estimation using reference far field and the far

field reconstructed using the proposed technique. In this case, it is verified that a very

good agreement between reference and estimated far field is achieved. A very good

reconstructed current distribution contributes to the estimation performance. Thus, the

proposed hemispherical near field method for far field estimation of an antenna above

earth can accurately estimate the far field. In Fig. 6.10, we have a similar observation

for both cases (a) conventional and (b) proposed. Therefore, the same explanation as

above for Fig. 6.9 holds for the case when the AUT is very close to earth in Fig. 6.10.
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Figure 6.9: Estimated far field above real ground (2m) for AUT (zx/yz plane) (a).
conventional and (b). proposed method.
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Figure 6.10: Estimated far field above real ground (very close) for AUT (zx/yz plane)
(a). conventional and (b). proposed method.

6.5.2 Measurement Results

In this subsection, we consider the confirmation of the validity of the proposed technique

by reconstructing the current distribution and then calculating/estimating the far field

using measured near field information. From antenna measurement equipment point,

it is not possible to perform a direct far field measurements including the effect of real

ground. We thus, measure the near field hemispherically in an anechoic chamber and

then use the proposed technique to estimate far field above real ground.

6.5.2.1 Measurement Set–up

In terms of the measurements, Fig. 6.11 shows the measurement set–up. For the AUT, a

monopole antenna is used as an AUT. A frequency of 2.5 GHz is used as a measurement

frequency. A non–resonant probe is used for near field measurements. In our case, a

standard dipole for 5 GHz frequency band is used as a non–resonant probe. The hemi-

spherical measurement radius of the system is 36 cm. This translates to a hemispherical

radius of R = 3λ.
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Figure 6.11: Near Field measurement set up in anechoic chamber.

6.5.2.2 Estimated Far Field from Measured Near Field

In Fig. 6.12, the estimated far field from hemispherically measured near field information

is presented. In this figure, we observe that for conventional method, the estimated far

field does not have a good agreement as compared to reference far field as shown in

Fig. 6.12(a). On the other hand, in Fig. 6.12(b), the estimated far field using the

proposed method have a very good agreement with reference. Therefore, we confirm

the validity of the proposed technique for far field estimation using hemispherical near

field measurements. From these results, in the case of using very large systems, and /

or antennas with low gain, it is possible to estimate the far field using hemispherically

measured near field information. This method is fast and include practical use scenario

since the effect of real ground (earth) is included in the estimated far field.
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Figure 6.12: Estimated far field above real ground for AUT (zx/yz plane) using measured
near field (a). conventional and (b). proposed method.

6.6 Summary

In antenna measurements, near field measurements provide fast and accurate method for

the measurement of electronically large antennas whose far field measurements cannot

fit in conventional anechoic chamber. In most cases, near field is measured using planar

scan, cylindrical scan and spherical scan. From measured near field, far field is estimated

using different numerical processing. In this chapter, we developed a novel technique

in which far field of an AUT is estimated from near field information that is measured

hemispherically. From the measured hemispherical near field information, an equivalent

electric current source is determined over the hemispherical surface encompassing the

AUT. Reflection coefficient method is applied to reconstructed surface current distri-

bution to estimate far field above real ground. To verify the accuracy of the proposed

method, numerical simulations as well as measurement experiments were conducted for

a monopole antenna which acted as AUT. From the results, the validity of the proposed

technique was verified in which accurate estimation of far field for an AUT above real

ground was achieved from hemispherical near field measurements.



Chapter 7
Vehicular Antenna Far Field Estimation

on Earth from Near Field Information

7.1 Introduction

In everyday life, transportation is essential in order to carry out various activities. As a

consequence, vehicles are increasingly equipped with on–board computing devices [168].

In recent years, we have witnessed that the demand for connectivity to/in vehicles has

grown rapidly, both from business and consumers. In order to enhance the safety and

comfort of automobiles in conjunction with the development of information communica-

tion technology, antennas operating in different frequency bands are mounted inside and

outside the vehicle [169], [170]. Some of the examples are broadcast reception, wireless

communication, control, etc as shown in Fig. 7.1. Thus, antennas are used to receive

AM/FM broadcast and television broadcast. On top of that, vehicles can receive real–

time road traffic information about congestion and regulation, using the VICS (Vehicle

Information and Communication System) [171].

For wireless communication applications, GPS (Global Positioning System) is used

for car navigation system, ETC (Electronic Toll Collection System) [172] for Toll roads,

mobile communication using mobile communication infrastructure along the road and
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Wimax. Another new addition is the control systems. In order to realize fully auto-

matic operation, millimeter wave radar is mounted in the vehicle [82]. Thus, antennas

in automobile technology are positioned as an indispensable part of the industry for

improving safety, performance, and comfort [170]. It is therefore important to evaluate

the performance of these in–vehicle antennas.

Mobile communication
800 MHz, 1.5 GHz
2.0 GHz, 2.6 GHz

ETC
5.8 GHz

GPS
1.5 GHz

V2V communication
700 MHz, 5.8 GHz

Millimeter wave radar
60 GHz, 

76 GHz, 79 GHz

Tire pressure sensor
315 MHz

Control system
In-Vehicle Wireless 
Communication System

Audio・VICS
AM:522 ~ 1629 kHz
SW: 2 ~ 26 MHz
FM/VICS:76 ~ 90 MHz

TV（ Analog / digital ）
VHF-L:90 ~ 108 MHz
VHF-H:170 ~ 220 MHz
UHF:470 ~ 770 MHz

Broadcast Reception System

Figure 7.1: Frequency bands of various antennas installed in an automobile.

In antenna field or electromagnetics, directivity is a fundamental antenna parameter.

It measures the degree to which the radiation emitted is concentrated in a single direction

[173]. For in–vehicle antennas, the radiation directivity of the antenna is one of the

characteristics in evaluating the system performance. The directivity of the antenna is

evaluated from the measurement of the far field [82], [169]. In this case, the far field

is measured when the antenna is mounted on the vehicle. For an antenna mounted

on–vehicle, the whole car operates as an antenna due to the current flowing not only

on the surface of antenna but also on the surface of the car body. As compared to

a stand alone antenna, the characteristics of an on–vehicle mounted antenna change

significantly [172], [174], [175]. Thus, it is necessary to perform measurement on the
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whole system including the automobile. However, to measure the far field, a sufficiently

long measurement distance is required [82].

In addition, although it is necessary to consider the existence of the earth at the

time of practical use, it is impossible to evaluate the effect including the influence on

the measurement in an anechoic chamber’s far field measurements. In this chapter, we

therefore consider a simple car model as shown in Fig. 7.2. We calculate the current

distribution on the surface of this model and then estimate the far field from the currents.

Near field information is measured hemispherically and influence of the earth is as well

included in the far field estimation. From the model considered in Fig. 7.2, we apply

the same technique to a real car model which is considered in Section 7.6.

x

z

y

Figure 7.2: Simple Car model.

7.1.1 Wire Grid Model for Car

As described in the previous chapter, a wire grid model is used to discretize the analysis

target. A planar conductor is replaced with a grid network (wire grid). Thus, a planar
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conductor modeled using 3D Electromagnetic software is considered as a collection of

linear elements. In this case, near field behavior of the wire grid model of a conducting

surface is examined.

In our analysis, FEKO [167] is used for the design and analysis of planar car model.

An equivalent wire grid model is designed in EEM-MOM software [166]. In Fig. 7.2, a

simple car modelled by FEKO is shown. An equivalent wire grid model of the model

shown in Fig. 7.2 is shown in Fig. 7.3 below. In these figures, a simple model design of a

planar conductor model and wire grid model are shown together with vehicular mounted

antenna.

x

z

y

s

Figure 7.3: Wire grid model for simple car.
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Figure 7.4: Hemispherical Near Field Measurement.

7.2 Derivation of Real Wave Source Information from

Hemispherical Near Field

Wave source information on real surface is derived from near field measurements. By

considering the Maxwell equation, electric field E at an observation point r ’ by current

distribution J on conductor surface in region v at the position r is expressed by the

following integral equation:

E(r ′) = −
jη

k ∫v
{k2J (r) +∇∇ ⋅ J (r)}G(r ,r ′)dv

G(r ,r ′) =
e−jk∣r−r

′
∣

4π ∣r − r ′∣
(7.1)
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where, η is the intrinsic impedance 120π, and k is wave number. When current distri-

bution is represented by [J ], using MoM [78], [82], [161] and (7.1);

[Z][J] = [V ] (7.2)

[E] = [A][J] (7.3)

The impedance matrix [ZE] on the ground required for derivation is divided into the

term of the real wave source and the term of the mirror image source as shown in Fig. 7.5.

J

Real wave source

JI

Mirror image source

Figure 7.5: Mirror image source for DUT above real ground.

In order to reconstruct the surface current on the DUT. We consider using the mea-

sured electric field distribution so that we can reconstruct surface current. The integral

equation (7.1) is reformed such that from known measurement electric field vector [E ],

coefficient matrix [A] and unknown current vector [J ], the following matrix equation is

acquired similar to (7.3);
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(7.4)

In this case, it is possible to acquire the surface current distribution of the DUT by

solving the matrix equation above.

7.3 Far Field Estimation on Earth

The far field of an antenna is conventionally considered to be the region where the

outgoing wavefront is planar and the antenna radiation pattern has a polar variation

and is independent of the distance from the antenna [176]. Consequently, in order to

generate a local plane wave in the far field, the radial component of the electric field

must be negligible compared to the transverse component. The far field is usually

defined by the far electric field (Eθ,Eφ). In this case, the ratio of the electric and the

magnetic far fields therefore should be equal to the intrinsic impedance of the medium.

These two requirements; (i) that the radial component of the field should be negligible

when compared with the transverse component and (ii) the ratio of the electric and the

magnetic fields equal the intrinsic impedance of the medium – must hold in all angular

directions from the antenna [176]. In order to determine the starting distance for the

far field, we need to examine the simultaneous satisfaction of these two properties for

all θ and φ angular directions, where θ is the angle measured from the z-axis and φ is

the angle measured from the x-axis.

The far electric field is obtained by setting the observation point at the infinite point

(r = ∞) in the near electric field equation. In the far field observation system, the

radiation direction from the wave source at the position rn to the observation point r is

uniquely represented by r̂. Therefore, the phase change due to the wave source position

with respect to the observation point is determined by the inner product of rn and r̂.
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In addition, the electric field component (Eθ,Eφ) generated at the observation point by

the wave source in the l̂n direction is the inner product (l̂n ⋅ θ̂, l̂n ⋅ φ̂). Therefore, the far

field by the linear wave source is estimated by:

Eθ(θ, φ) =
jZ0ke−jkr

4πr
Fθ(θ, φ) (7.5)

Eφ(θ, φ) =
jZ0ke−jkr

4πr
Fφ(θ, φ) (7.6)

Fθ(θ, φ) =
N

∑
n=1

J n {(ln ⋅ θ̂) e
jkrn⋅r̂ −RTM (ln ⋅ θ̂) e

jkrn⋅r̂} (7.7)

Fφ(θ, φ) =
N

∑
n=1

J n {(ln ⋅ φ̂) e
jkrn⋅r̂ +RTE (ln ⋅ φ̂) e

jkrn⋅r̂} (7.8)

7.4 Numerical Results

The measurement of the near field is performed by placing the estimation target in an

anechoic chamber as shown in Fig. 7.6 and the hemispherical near field measured at a

radius R. The far field Fθ is estimated by scanning the hemispherical shape with the

scanning interval ∆θ = ∆φ = 2○ to measure the electric field Eθ. The measured value of

the near field in this analysis is obtained by using the current distribution derived from

EEM-MOM [166]. The estimation target consists of a monopole element incorporated

on top of a simple cylindrical car model. The antenna operates in the UHF/VHF band.

The earth ground with εs = 4, and σ = 0.001 S/m representing a dry ground.

7.4.1 Current Distribution

Surface current distribution of the DUT shown in Fig. 7.6 is discussed in this subsec-

tion. The source reconstruction method is applied to retrieve an equivalent currents

distribution on the antenna array aperture plane [177]. The reconstructed equivalent

currents will be related to the extreme near field and hence, to the nominal excitations

of the antenna. By using the equivalence principle [81], an equivalent electric current
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Probe

DUT

R
z

xy

Figure 7.6: Near field measurement set up of vehicle mounted antenna.

is used to replace the radiating antenna. The assumption that is made is that the near

field is produced by the equivalent electric current and, therefore, via Maxwells equation

from the measured near field data, the current source can be determined [42]. From

the solution of the surface distribution of the AUT, the near field and the far field of

the radiating antenna in all regions in space of the radiating antenna can be determined

directly from the equivalent electric current.

In the figure below, Fig. 7.7, we show the amplitude of the current distribution from

reference data and analytical data. In this figure, amplitude on the radiating elements

is reconstructed and a very good agreement is observed. From this analysis (Fig. 7.7),

we can conclude that the analytical model, i.e. the wire grid model and the numerical

consideration is correct and therefore can be applied to the far field estimation problem.

7.4.2 Near Field Simulation

Firstly, in order to consider the influence on the near field for different measurement

radius positions of the hemisphere. In this example, we compare the electric near field

distribution measured at 0.8m and 1.6m. Fig. 7.8 shows a comparison of the electric
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Figure 7.7: Reconstructed amplitude of current distribution.

field distribution for the case of 0.8m. In Fig. 7.8(a) the reference near field distribution

and in Fig. 7.8(b) the distribution calculated using our method from wire grid model. In

both cases, Fig. 7.8(a) and Fig. 7.8(b), a very good agreement between the near field is

observed. In this case, improving the estimation accuracy of the reconstructed current

distribution on the DUT surface will ensure improved accuracy in the far field that is

estimated from these currents.

In the next example, Fig. 7.9, we have a similar results but at a different radius

of 1.6m. In this figure, similar observations and conclusions are made as the one in

Fig. 7.8 in which both the reference and numerical models have a very good agreement.

By comparing Fig. 7.8 and Fig. 7.9, some fluctuations are observed in terms of the

magnitude of electric near field distribution.

7.4.3 Far Field Estimation in Freespace

In order to verify the modeling performance of our wire grid model. We compare the

far field pattern of the simple car models from Fig. 7.2 and Fig. 7.3. The two models

that are being compared were modeled in FEKO for the planar car model whilst an
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Figure 7.8: Near electric field distribution at 0.8m (a) reference and (b) numerical.

equivalent wire grid model for the simple car is modeled in EEM–MOM. To verify the

performance of the two models, we compare the free–space far field of the two models.

In Fig. 7.10, observe the far field pattern for the two models. A very good agreement

between the reference pattern (FEKO model) and the estimated pattern using the wire

grid model is obtained. From the free space far field result, we verify that the two

models are equivalent and we can therefore use the wire grid model for analysis using

our method to estimate the far field pattern from measured hemispherical near field

information. This also ensures that modelling errors are minimized. We thus, use

the wire grid model in our numerical analysis in the next subsection and compare the

reference results to the numerical one.
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Figure 7.9: Near electric field distribution at 1.6m (a) reference and (b) numerical.

7.4.4 Far Field Estimation from Near Field on Earth

7.4.4.1 Simulated Results

Figure 7.11 shows a comparison of the far field between reference and estimated on earth.

In this figure, an accurate estimation of far field including the effect of real ground is

obtained. In Fig. 7.11, the analysis is obtained at 100 MHz. When we increase the

frequency of interest Fig. 7.12, the reconstruction performance slightly deteriorates. This

is due to the mesh size. As we frequency of interest increases, the number of meshes for

the wire grid increases and errors occurs either in the zx–plane or the yz–plane.

7.4.4.2 Measured Results

In this example, measured near field is used to compare the performance of the proposed

method. The term “measured” in this subsection only is used haphazardly since the near
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Figure 7.10: Freespace far field for simple car model (a) Eθ(φ = 0○), (b) Eφ(φ = 0○), and
(c) Eθ(φ = 90○).

field information is obtained from EM software. Although there will some slight differ-

ences as related to data obtained in anechoic chamber measurements, the differences are

assumed not significant. In the reconstructed far field result on earth from hemispherical

near field information as shown in Fig. 7.13, we have a very good reconstruction per-

formance. This results therefore verifies that our method can reconstruct the far field

of a vehicular mounted antenna including the effect of the earth on the performance

of the antenna from hemispherical near field measurements. In Fig. 7.14, we show the

performance at different frequency points. In this case, an improvement between the

simulation and the measurement is observed which can be attributed to errors in mesh

sizes.
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Figure 7.11: Estimated far field on earth from near field measurements (numerical) for
100MHz (a) Eθ(φ = 0○), (b) Eφ(φ = 0○), and (c) Eθ(φ = 90○).

7.5 Windscreen Based Antenna Model

For vehicular antennas, some antennas are embedded in the car’s windscreen. In wind-

screen based antennas, the windscreen glass affects the performance of the antenna. In

some instances, antennas may have defects which may also contribute to difficulties in

directivity measurements [169]. In these cases, it is imperative to use a Black Box model

in order to estimate the directivity of the antenna. Therefore, in this section, we estimate

the far field of an automotive windscreen based antenna on earth using a very simple

car model. The conductor surface is linearly approximated and radiation obtained from

the current distribution evaluated. The near field is measured in a hemispherical scan-

ning manner as is the case in previous sections. In this section, the effectiveness of the

method is examined when using windscreen antennas and the accuracy of estimating
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Figure 7.12: Estimated far field on earth from near field measurements (numerical) for
(I) 300MHz and (II) 500MHz (a) Eθ(φ = 0○), (b) Eφ(φ = 0○), and (c) Eθ(φ = 90○).
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Figure 7.13: Estimated far field on real ground from measured Near field at 100 MHz
(I) 0.8m and (II) 1.6m (a) Eθ(φ = 0○), (b) Eφ(φ = 0○), and (c) Eθ(φ = 90○).
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Figure 7.14: Measured far field on earth from near field measurements at 1.6m for (I)
300MHz and (II) 500MHz (a) Eθ(φ = 0○), (b) Eφ(φ = 0○), and (c) Eθ(φ = 90○).

the far field using an arbitrary antenna model (Black Box model) is also considered.

In the case of using a Black box model, an infinitesimal dipole array is used to

emulate the blackbox antenna model. This can be used to reconstruct the directivity of

a windscreen based antenna which has been broken or one that is faulty. By calculating

the norm error of the current distribution, a proper feeding position is obtained. This

feeding position is then used as the feeding point of the antenna.

In our analysis, the estimation target consists of a monopole element incorporated in

a car’s windscreen. The antenna operates in the VHF band, and the car is placed on earth

ground with ε = 4, and σ = 0.001 S/m. In order to verify that we can use an arbitrary

antenna (Black Box model) to estimate the far field of windscreen based antenna, we use

three car models to compare the far field estimation performance. Firstly, a reference

model (FEKO) is used having a monopole incorporated onto a windscreen. Secondly, a

wire grid model based on EEM–MOM modelling is used with monopole antenna similar

to reference model. Lastly, a Black Box model is used to estimate the far field of a
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windscreen based antenna as shown below in Fig. 7.15.

(a)

(b)
Figure 7.15: Car models used for windscreen analysis (a) reference model (FEKO), and
(b) Black Box Model.

In Fig. 7.16, the near field measurement is shown for a monopole antenna on a cars

windscreen. We observe that for all the three cases, we obtain a very close near field

measurement. For the Black Box model, there is a little deviation which is attributed

to the shape of the model which consists of infinitesimal dipole elements. From this

near field measurement, we estimate the far field obtained as shown in Fig. 7.17. In

both zx -plane and yz–plane, we observe a good agreement in far field estimation from

reference model obtained using FEKO, the model obtained from EEM–MOM and black

box antenna model. Even if we do not know the characteristics of the antenna (due to

defects), we can accurately estimate the far field pattern of the antenna using near field

data obtained from near field measurements.
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(a) (b)

(c) (d)

Figure 7.16: Near field measurement (a) Real part, and (b) imaginary part. black:
reference model, red: Black Box Model vertical feed, blue: Black Box Model horizontal
feed.
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Figure 7.17: far field estimation on earth ground (a) zx Plane, (b) yz Plane. black:
reference model (FEKO), red: EEM-MOM Monopole Model, blue: Black Box Model.
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7.6 Real Car Model

In the initial consideration of vehicular mounted antennas, a simple car model was used

to verify the accuracy of the propose technique. In this section, we consider a real car

model. A prius car model is used as a DUT. In Fig. 7.18, the CAD model for Prius car

is shown. This model is used in FEKO as a simulation model.

Figure 7.18: Prius car simulation model.

In our analysis, we consider approximating the conductor surface with a linear con-

ductor element in deriving wave source information on the real surface. Therefore, the

current distribution on the linear conductor can be represented by a matrix representa-

tion from discretization of the method of moments. In order to consider the wire grid

model, a similar wire grid model as shown in Fig. 7.19 was modeled in EEM–MOM to

compare the validity of the algorithm in estimating the far field on earth.

7.6.1 Surface Current and Near Field Distribution on Real Car

Surface current distribution of the DUT for the real car model is discussed in this sub-

section. As discussed earlier, the source reconstruction method is applied to retrieve an
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Figure 7.19: Equivalent wire grid model for Prius (used as analytical model).

equivalent currents distribution on the antenna array aperture plane. From the surface

current distribution on the DUT, the near field and the far field of the radiating antenna

can be determined. The current distribution on the antenna of the DUT is shown in

Fig. 7.20. The amplitude in Fig. 7.20(a) and phase Fig. 7.20(b) of the current distribu-

tion from (a) reference data and (b) analytical data is observed. In both Fig. 7.20(a)

and Fig. 7.20(b), the result is same which confirms the accuracy of the analytical (or

numerical) consideration.

In the figures below, we compare near electric field distribution at 0.8m in Fig. 7.21

and 1.6m in Fig. 7.22 by using reference current distribution in (a) and calculated

current distribution in (b). In this figure, it is verified that the near electric field have

the same result. In the case when the measurement distance is near to the DUT, the

electric field is strong near to the antenna region. On the other hand, when the distance

is increased, the field strength starts to become uniform around the DUT. This may

reduce the accuracy of the determined currents around the DUT when the measurement

distance is very far away from the DUT.
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(a) (b)
Figure 7.20: Surface current distribution on real car.
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Figure 7.21: Near field distribution for real car at 0.8m (a) reference and (b) calculated.
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Figure 7.22: Near field distribution for real car at 1.6m (a) reference and (b) calculated.

7.6.2 Far Field Estimation in Freespace

In order to verify the modeling performance of our wire grid model. We compare the far

field pattern of the two car models. The first model is planar car model which is modeled

in FEKO. An equivalent wire grid model is modeled in EEM-MOM. We therefore verify

the far field in freespace in order to verify the performance.

In the case of different frequency points as shown in Fig. 7.23, we obtain a very

good agreement in the reference pattern and the estimated pattern using the proposed

method. This therefore entails that using the wire grid model for our method to estimate

the far field pattern from measured hemispherical near field information would produce

agreeable results. Thus, in free space pattern, the results verifies that the two models

are equivalent. We thus, use the wire grid model in our numerical analysis in the next

subsection and compare the reference results to the numerical one.



155

0-10-20 90

60

30
0

330

300

270

240

210
180

150

120

0-10-20 90

60

30
0

330

300

270

240

210
180

150

120

0-10-20 90

60

30
0

330

300

270

240

210
180

150

120

(a)

(b)

0-10-20 90

60

30
0

330

300

270

240

210
180

150

120

0-10-20 90

60

30
0

330

300

270

240

210
180

150

120

0-10-20 90

60

30
0

330

300

270

240

210
180

150

120

Figure 7.23: Freespace far field in for different frequency.

7.6.3 Far Field Estimation from Near Field on Earth

From the acquired hemispherical near field information, we estimate the far field pattern

using RCM to include the effect of real ground. In the reconstructed far field result on

earth from hemispherical near field information as shown in Fig. 7.24 and Fig. 7.25, we

have a very good estimation performance. This therefore confirms the validity of the

method which reconstruct the currents and estimate far field of a vehicular mounted

antenna including the effect of real ground from hemispherically measured near field

information.
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Figure 7.24: Estimated far field on earth from near field measurements for lower fre-
quency points.
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Figure 7.25: Estimated far field on earth from near field measurements for higher fre-
quency points.
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7.6.4 Prius Measurement Model and Set–up

In this subsection, we verify the validity of the proposed method by comparing the

simulated and/or the numerical data with measured near field information in anechoic

chamber. In the reference pattern, it is impossible to measure the far field pattern of a

car including of the earth. We therefore, measure the near field data hemispherically,

then reconstruct the surface current distribution of the car and then calculate the far

field of the vehicle mounted antenna including the effect of the earth.

In Fig. 7.26, the measurement model of the Prius car is shown. In the measurement

model, a 1
5 size of the actual model was used. The car is made from copper material

and resin. In this figure, the measurement set–up is also presented. The radius of

measurement was at R = 0.8m and R = 1.265m. The measurement data was obtained

for θ = 0 – 90○ (elevation) and φ = 0 – 360○ (azimuth). The sampling interval is given by

∆θ =∆φ = 2○. A Satimo horn antenna is used a measurement probe.

Figure 7.26: Prius car measurement model.

In the measurement comparison, the result of estimating the far field from the derived
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actual wave source information is compared from numerically simulated result in FEKO.

From this comparison, we show in the next subsections the far field results obtained.

Azimuth rotation
1º step (0º ~ 360º)

Elevation
1º step
(0º ~ 90º)

Probe
(Standard horn)

Figure 7.27: Prius car measurement model and set up.

7.6.5 Measured Far Field in Freespace

Before verifying or comparing the performance of the proposed method, we firstly, com-

pare the far field of the simulated model in FEKO and manufactured model used for

measurements. In this comparison, we consider far field in free space simulated in FEKO

as well as measured in an anechoic chamber. The frequency of consideration is 1.5 GHz.

Fig. 7.28 shows the simulated far field (black line) as well as measured far field (red line)

in free space. We obtain a roughly comparable far field in free space for the two models.
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Errors can be attributed to short measurement distance for the far field measurement

due to space constraints in anechoic chamber as well as some differences in the FEKO

model and measurement model. One of the important points to note is that FEKO sim-

ulation model was coarse mesh model while the measurement model was manufactured

using a fine CAD mesh model which contained very detailed information about the car

model.
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Figure 7.28: Measured freespace far field for vehicular mounted antenna. (a) Eθ(φ = 0○),
(b) Eθ(φ = 90○), and (c) Eθ(θ = 90○).

7.6.6 Estimated Far Field on Earth from Measured Near Field

In this subsection, we compare the performance of the method by using measured near

field information. From the measured near field data, we calculate surface current dis-

tribution of the estimation target. We then apply reflection coefficient method to the

surface current distribution to estimate the far field on earth for a vehicular mounted

antenna. In Fig. 7.29, we observe the result for different frequency points 100 MHz

and 200 MHz for a measurement radius of 0.8m. Although we obtain small estimation
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errors, we have reconstructed the far field with good accuracy. Therefore, it can be

confirmed that the far field is roughly in agreement (between the numerically simulated

and measured data).
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Figure 7.29: Reconstructed far field on earth from measured near field data for vehicular
mounted antenna at 100 (top) and 200 MHz (bottom). (a) Eθ(φ = 0○), (b) Eφ(φ = 0○),
and (c) Eθ(φ = 90○).

In the following example, we consider near field information measured at a hemi-

spherical of 0.8m as well and a frequency of 500MHz. In Fig. 7.30, we observe a good

estimation in (a) and (b) while (c) has errors between 0 − 30○. This corresponds to

weak near field around the windscreen part of the car. On top of that, the mesh size

of the wire grid model is not consistent and therefore leads to estimation error in high

frequency cases.
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Figure 7.30: Reconstructed far field on earth from measured near field data for vehicular
mounted antenna at 500 MHz. (a) Eθ(φ = 0○), (b) Eφ(φ = 0○), and (c) Eθ(φ = 90○).

7.7 Summary

In this chapter, a method to derive actual wave source information on real surface de-

rived from near field measurements is discussed. The near field information is measured

in a hemispherical manner for a vehicular mounted antenna. The method is based on

the assumption of scanning current distribution based on the moment method, and to

estimate far field on earth (realistic ground) from the mirror image source. We have

examined three different types of models. (I) is a simple car model with an antenna

mounted on top. (II) is an arbitrary antenna model (Black Box model) which is used

to estimate the far field of windscreen based antenna. (III) is a real Car model (com-

plex model). In this model, a monopole antenna is mounted on a Prius car and its far

field estimated from near field measurements including the effect of the earth (realis-

tic ground). It is confirmed that accurate estimation can be made using an arbitrary
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antenna to reconstruct far field of a windscreen based antenna on earth as well as com-

plex DUT model. We have therefore verified the effectiveness of the proposed method

for a vehicular mounted antenna and a windscreen based monopole antenna model to

estimate far field on earth from hemispherical near field measurements.



Chapter 8
Conclusion

Wireless communication technology continues to play an important role in people’s lives.

It continues to influence and/or affect our social and economic lives. In wireless commu-

nications, mathematical models are the backbone of algorithms used in this technology.

In this dissertation, we have developed robust mathematical models that can improve the

performance of wireless systems. This chapter presents an overview of the conclusions

drawn from the analysis and results of the preceding chapters.

In Chapter 3, the problem of direction of arrival estimation in the case where the

number of sources is larger than the number of sensors was considered. Firstly, a circu-

larly configured nested sparse circular array was proposed. The concentric extension of

the NSCA provides the virtual sensors, which are synthesized on a non–uniform concen-

tric circular array. By utilizing the virtual sensors in the concentric extension, NSCA

achieves increased degrees of freedom. Furthermore, we developed mathematical models

to explore the increased degrees of freedom to undertake underdetermined DOA esti-

mation. Thus, two strategies were utilized together with the NSCA; subspace based

technique MUSIC and `1–based optimization method. In both methods, it was verified

that the NSCA is capable of estimating more number of sources in comparison to the

number of physical sensors. In the numerical examples, we investigated the RMSE per-

formance as related to SNR and number of snapshots in which the number of snapshots
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played a crucial role in the underdetermined DOA estimation. We further compared

the performance of different circularly configured arrays in order to find an optimal

circular array configuration. It was discovered that the NSCA is capable of resolving

closed spaced signal and obtains better RMSE performance for underdetermined DOA

estimation. The discussion in this chapter is connected to the discussion in Chapter 4

and Chapter 5.

In Chapter 4, a mutual coupling compensation method for nested sparse circular

array was proposed. This method is based on a simple mutual coupling matrix which

is symmetric banded–like circulant matrix. The banded–like circulant mutual coupling

matrix improves underdetermined DOA estimation accuracy in the presence of mutual

coupling. In an ideal case, the effect of mutual coupling is not considered in the DOA

estimation problem as in Chapter 3. By including the effect of the mutual coupling, the

performance of DOA estimation is seriously degraded. The effects of mutual coupling

can neither be eliminated nor its variability predicted since the electromagnetic envi-

ronment surrounding the antenna is continuously changing. If calibration procedures to

estimate and compensate for the mutual coupling are available, design constraints with

respect to coupling could be relaxed by antenna designers to improve other aspects of

the antenna, without affecting the performance of the algorithms. The mutual coupling

compensation method proposed in this chapter works well with nested sparse circular

arrays. In the case of a 6 element array, the mutual coupling matrix has 36 values. In

the proposed method, only 4 values are used to compensate for the mutual coupling ef-

fects and obtains better performance. The method achieved improved DOA estimation

performance, better RMSE as well as lower average run–time. The discussion in this

chapter is connected to Chapter 5 since the signals considered were narrowband signals.

The discussion in Chapter 5 stems from the discussions in Chapter 3 and Chapter

4. In this chapter, wideband signals were considered. Furthermore, we extended the

DOA estimation algorithm in Chapter 3 from narrowband signal sources to the case of

wideband signals. We further, consider the mutual coupling compensation method in
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Chapter 4 in the case of using wideband signals. We verified that underdetermined DOA

estimation is possible in the case of wideband signals in the discussion from this chapter.

This also applies when mutual coupling is assumed in the array. From simulation ex-

periments, we verified that the proposed approach achieves better RMSE performance

as well as excellent DOA estimation accuracy. This method is cost effective and easy to

implement whilst achieving better DOA estimation performance.

In Chapter 6, a hemispherical near field measurement technique was discussed. Near

field measurements, provide fast and accurate method for the measurements of large

antennas whose far field measurements cannot fit in conventional anechoic chamber. In

this chapter, a method of far field estimation for an antenna above the earth from hemi-

spherical near field measurements was discussed. Furthermore, we proposed a method to

calculate current distribution on the AUT; the Moore–Penrose pseudo–inverse method.

From measured near field information, we determine an equivalent electric current source

over a hemispherical surface encompassing the antenna. By using plane wave reflection

coefficient method, we are capable of reconstructing the far field of an antenna above

earth. The accuracy of the proposed method was verified by using synthetic data as well

as data measured in an anechoic chamber for a monopole antenna model.

In device–mounted antennas, the whole system affect the performance on the an-

tenna. In most cases, performance of the antenna is evaluated without considering

the whole system. In Chapter 7, a vehicular mounted antenna was discussed. The

car body affect the performance of the antenna. In terms of measuring far field of a

vehicle–mounted antenna, a very huge anechoic chamber is required, which is very ex-

pensive. We thus utilized the hemispherical near field measurement technique in Chapter

6. This technique reduces the measurement cost as well as complexity as compared to

full spherical near field measurement. From the hemispherically measured near field

data, we reconstructed the far field by including the effect of the car body as well as

real ground. Far field results from simulation and measurement data is compared in

both freespace case and on real ground (earth). In real use scenario, the earth affects
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performance of the antenna on vehicle and considering effect of real ground in the far

field reconstruction problem helps antenna engineers to evaluate the real performance

of antennas before deployment for specific use cases.

From the results presented in this dissertation, robust mathematical models have

been proposed which improves the performance of wireless communication system. The

performance of DOA estimation algorithms has been proved in the case when we have

more sources as compared to the number of sensors. Furthermore, the effect of mutual

coupling has been considered in which the effect of mutual coupling can be reduced for

both narrowband and wideband signal sources. In antenna measurement application,

mathematical models were proposed in which far field is estimated from hemispherically

measured near field and the effect of real ground on the far field is included.



Appendix A
Cramer–Rao Lower Bound (CRLB) for

NSCA

The Cramer–Rao lower bound (CRLB) sets a lower bound on the variance of unbiased

estimators. It has been extensively studied in the field of array signal processing es-

pecially for direction of arrival (DOA) estimation using uniform or non–uniform linear

arrays. We consider an underdetermined signal model for circularly configured planar

arrays and investigate the conditions under which CRLB exist. In this appendix, we

derive a new closed–form expression for the CRLB.

A.1 Cramer–Rao Lower Bound

The expressions for CRLB comes from the inversion of the Fisher information matrix

(FIM), which contains information about all the unknown parameters. In this appendix,

we are interested in the stochastic CRLB of circularly configured planar array for under-

determined DOA estimation in which D ≥M . Let α = [φT , ρTd , σ]T denote unknown

parameter vector where d = 1,2, ...,D. The (η, `)–th entry of the Fisher information ma-

trix (FIM) I(α) is defined as
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I(α) = N ●Tr{R−1
xx

∂Rxx

∂[α]η
R−1
xx

∂Rxx

∂[α]`
} (A.1)

Tr{} is the trace which can be defined as;

Tr{WXYZ} = vec(XH
)H(WT

⊗Y)vec(Z)

(W⊗X)−1 = (W)−1 ⊗ (X)−1

for non–singular W and X. Therefore (A.1) can be written as
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The derivatives of y with respect to α is given by
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Let Λ and Γ denote:
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The FIM therefore becomes;

I(α) = N
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(A.4)

If the FIM is non–singular, then the CRLB for the DOAs φ = [φ1, φ2, ..., φD]T can be

expressed as the inverse of the Schur complement of the block ΛHΛ of I(α). Therefore
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the CRLB will be given by

CRLB(φ) = I(α)−1 =
1

N
(ΛHΠ�ΓΛ)−1 (A.5)

where Π�Γ = I − Γ(ΓHΓ)−1ΓH . The non–singularity of the FIM is equivalent to non–

singularity of ΛHΛ and ΛHΠ�ΓΛ.
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