STRUCTURAL CHEMISTRY

Received 12 January 2018
Accepted 1 March 2018

Edited by A. R. Kennedy, University of Strathclyde, Scotland

Keywords: conformational polymorph; hydroquinone; dibenzylamino; crystal structure.

CCDC references: 1826861; 1826860

Supporting information: this article has supporting information at journals.iucr.org/c

(c) 2018 International Union of Crystallography

# Two polymorphs of 2,5-dichloro-3,6-bis(dibenzyl-amino)-p-hydroquinone with flexible dibenzylamino groups 

In-Sub Shin, ${ }^{\text {a }}$ Yuta Shimada, ${ }^{\text {a }}$ Emi Horiguchi-Babamoto ${ }^{\text {b }}$ and Shinya Matsumoto ${ }^{\text {a* }}$

${ }^{a}$ Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Yokohama 240-8501, Japan, and ${ }^{\mathbf{b}}$ Department of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan. *Correspondence e-mail: matsumoto-shinya-py@ynu.ac.jp

We obtained two conformational polymorphs of 2,5-dichloro-3,6-bis(dibenzyl-amino)-p-hydroquinone, $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$. Both polymorphs have an inversion centre at the centre of the hydroquinone ring $\left(Z^{\prime}=\frac{1}{2}\right)$, and there are no significant differences between their bond lengths and angles. The most significant structural difference in the molecular conformations was found in the rotation of the phenyl rings of the two crystallographically independent benzyl groups. The crystal structures of the polymorphs were distinguishable with respect to the arrangement of the hydroquinone rings and the packing motif of the phenyl rings that form part of the benzyl groups. The phenyl groups of one polymorph are arranged in a face-to-edge motif between adjacent molecules, with intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, whereas the phenyl rings in the other polymorph form a lamellar stacking pattern with no significant intermolecular interactions. We suggest that this partial conformational difference in the molecular structures leads to the significant structural differences observed in their molecular arrangements.

## 1. Introduction

Polymorphism has attracted significant interest from both academic and industrial researchers in fields such as pharmaceuticals, foods and pigments, because the differences in the packing arrangements and molecular conformations of polymorphs result in different physicochemical properties in the crystalline state (Bernstein, 1987, 2002). Therefore, the understanding and prediction of the occurrence of polymorphs has been intensively studied, particularly focusing on molecular structure (Chrobak et al., 2014; Sridhar et al., 2015; Ibragimov et al., 2016). Several structural parameters, such as hydrogen bonding and molecular flexibility, have been suggested as significant factors for polymorphism in molecular crystals (Yu et al., 2000). In addition to these factors, there exist polymorphophores, consisting of a certain molecular skeleton which often adopts polymorphic forms (Lutker et al., 2008; Zipp et al., 2013). Our group has been involved in the systematic investigation of diaminodicyanopyrazine dyes (Matsuoka, 2000) with dibenzylamino groups as bulky and flexible substituents. We have previously reported differentcoloured polymorphs exhibited by some pyrazine dyes, whose colour differences were attributed to conformational changes within the molecular crystals (Matsumoto et al., 2006). We also found that weak halogen-related intermolecular interactions play an important role in the conformational polymorphism of a series of pyrazine dyes (Akune et al., 2015, 2017). In this article, we report a new example of conformational poly-

Table 1
Experimental details.

|  | Polymorph (1a) | Polymorph (1b) |
| :---: | :---: | :---: |
| Crystal data |  |  |
| Chemical formula | $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ | $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ |
| $M_{\text {r }}$ | 569.53 | 569.53 |
| Crystal system, space group | Monoclinic, $P 2_{1} / n$ | Orthorhombic, Pbca |
| Temperature (K) | 296 | 296 |
| $a, b, c(\AA)$ | 9.67404 (18), 10.9707 (2), 13.5552 (3) | 13.2054 (2), 12.4456 (2), 16.8489 (3) |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | 90, 94.7380 (7), 90 | 90, 90, 90 |
| $V\left(\AA^{3}\right)$ | 1433.72 (5) | 2769.09 (9) |
| Z | 2 | 4 |
| Radiation type | $\mathrm{Cu} K \alpha$ | $\mathrm{Cu} K \alpha$ |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 2.30 | 2.39 |
| Crystal size (mm) | $0.40 \times 0.33 \times 0.23$ | $0.40 \times 0.30 \times 0.29$ |
| Data collection |  |  |
| Diffractometer | Rigaku R-AXIS RAPID | Rigaku R-AXIS RAPID |
| Absorption correction | Multi-scan (ABSCOR; Rigaku, 1995) | Multi-scan (ABSCOR; Rigaku, 1995) |
| $T_{\text {min }}, T_{\text {max }}$ | 0.492, 0.589 | 0.413, 0.507 |
| No. of measured, independent and observed [ $F^{2}>2 \sigma\left(F^{2}\right)$ ] reflections | 12895, 2527, 2101 | 23298, 2442, 1976 |
| $R_{\text {int }}$ | 0.070 | 0.039 |
| $(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$ | 0.595 | 0.595 |
| Refinement |  |  |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 0.042, 0.125, 1.10 | 0.039, 0.115, 1.08 |
| No. of reflections | 2527 | 2442 |
| No. of parameters | 181 | 181 |
| H -atom treatment | H -atom parameters constrained | H-atom parameters constrained |
| $\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ | 0.20, -0.32 | 0.24, -0.20 |

Computer programs: RAPID-AUTO (Rigaku, 2000), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2008) and CrystalStructure (Rigaku, 2017).
morphism of an aromatic compound having dibenzylamino groups, namely 2,5-dichloro-3,6-bis(dibenzylamino)-p-hydroquinone, (1) (see Scheme 1). We have confirmed that the dibenzylamino group plays an important role as a flexible substituent in the occurrence of polymorphism when it is attached to an aromatic moiety (Akune et al., 2015).

(1)

Scheme 1

## 2. Experimental

### 2.1. Synthesis and crystallization

Compound (1) (Fig. 1) was synthesized following the procedure reported by Shin et al. (2017), and its chemical structure was confirmed by conventional analytical techniques. The crystallization of (1) was carried out by the liquidliquid diffusion method in a thin glass tube, using a combi-
nation of chloroform (good solvent) and methanol/ethanol (poor solvent). The crystallization samples were placed in an incubator at 288 K . Two different-coloured crystals, i.e. (1a) (pale-yellow blocks) and (1b) (pale-pink blocks), were obtained in the same or different tubes. Most crystals were obtained in the (1a) form.

However, we could also prepare significant amounts of (1b) by crystallization of the quinone form of (1), which was also carried out by liquid-liquid diffusion, using a combination of chloroform and $n$-hexane as the good and poor solvents, respectively. The quinone form of (1) was transformed into the hydroquinone form by ambient light during crystallization (Shin et al., 2017). Thus, in contrast to the direct crystallization of ( $\mathbf{1}$ ), a considerable quantity of ( $\mathbf{1 b}$ ) was obtained by this method.

### 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in


Figure 1
Photographs of (a) polymorph (1a) and (b) polymorph (1b).
geometrically idealized positions for both polymorphs, and were refined using the riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H atoms, $\mathrm{C}-\mathrm{H}=0.97 \AA$ for $\mathrm{CH}_{2}$ groups and $\mathrm{O}-\mathrm{H}=$ $0.82 \AA$ for hydroxy H atoms. The H atoms were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ of the parent atom.

### 2.3. Thermal and powder X-ray diffraction (PXRD) measurements

Differential scanning calorimetry (DSC) analyses of polymorphs (1a) and (1b) were carried out using a Rigaku Thermo Plus2 DSC8230 instrument. Each polymorph ( 2 mg ) was placed in a sealed aluminum pan with a crimped pan closure, and was analyzed against another pan containing the same amount of $\mathrm{Al}_{2} \mathrm{O}_{3}$ as the samples, which acted as the reference. The heating rate was $10 \mathrm{~K} \mathrm{~min}^{-1}$. Before and after the DSC measurements, each powder sample was characterized by PXRD performed with the same equipment used for the single-crystal X-ray diffraction analysis.

## 3. Results and discussion

Photographs of the two polymorphs are shown in Fig. 1. The space group of $(\mathbf{1} \boldsymbol{a})$ is $P 2_{1} / n$, with two molecules per unit cell ( $Z^{\prime}=\frac{1}{2}$ ). Polymorph (1b) was found to belong to the Pbca space group with $Z=4$ and $Z^{\prime}=0.5$. The molecular structures of $(\mathbf{1} \boldsymbol{a})$ and $(\mathbf{1} \boldsymbol{b})$, with the atom-numbering schemes, are shown in Fig. 2. The molecules of both polymorphs were found to have an inversion centre at the centre of the hydroquinone ring. The hydroquinone rings of both polymorphs have a planar geometry and there was no significant difference between their respective bond lengths. Another similarity is that both feature intramolecular hydrogen bonds, forming five-membered rings, between the hydroxy substituents and the N atoms of the amine groups (see supporting information). Their molecular conformations also initially looked very

Table 2
Selected bond lengths ( $\AA$ ) for polymorphs ( $\mathbf{1 a}$ ) and ( $\mathbf{1 b}$ ).

| Parameter | $(\mathbf{1 a})$ | $(\mathbf{1 b})$ |
| :--- | :--- | :--- |
| O1-C2 | $1.365(2)$ | $1.367(2)$ |
| C2-C3 | $1.395(3)$ | $1.389(3)$ |
| C1-C3 | $1.391(3)$ | $1.402(2)$ |
| C1-C2 | $1.389(3)$ | $1.393(2)$ |
| C3-N1 | $1.443(2)$ | $1.440(2)$ |
| C1-Cl1 | $1.7309(19)$ | $1.7280(19)$ |

similar, but we found that differences in the geometry of the phenyl groups might be related to the occurrence of the polymorphs of (1).

Table 2 lists selected bond lengths for (1a) and (1b). The $\mathrm{C} 2-\mathrm{O} 1$ bond lengths are comparable to the typical $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{OH}$ bond lengths of 1.241 and $1.366 \AA$, and clearly indicate that the molecules in both polymorphs exist in the hydroquinone form. The C3-N1 bond lengths show that the substituted amino groups are only weakly conjugated with the central aromatic ring, in contrast to the benzoquinone form of (1) (Shimada et al., 2015), where the length of the same $\mathrm{C}-\mathrm{N}$ bond was 1.365 (4) A. These bond lengths, and the absence of a clear bond alternation in the central ring, are additional evidence for the low extent of conjugation between the amino group and the aromatic ring. We also performed FT-IR measurements of (1) and its benzoquinone form. In the IR spectrum of (1), we observed a peak corresponding to the hydroxy group, whereas the peak corresponding to the carbonyl group was not observed in the benzoquinone form of (1). These results clearly indicate that (1) exists in the hydroquinone form.

The conformational differences between the two polymorphs depicted in Fig. 3 can also be characterized with the aid of the important angles and dihedral angles listed in Table 3. The angles around the amino groups of both polymorphs are almost the same, and their conformational differences were found to originate from the geometrical


Figure 2
The molecular structures of (a) polymorph (1a) and (b) polymorph (1b), with the atom numbering. Displacement ellipsoids are drawn at the $50 \%$ probability level. [Symmetry code: (i) $-x+1,-y+1,-z+1$.]

(a)


Figure 3
The molecular structures of (a) polymorph (1a) and (b) polymorph (1b), showing the calculated least-squares planes for the hydroquinone ring (HQ) and the two phenyl rings ( Ph 1 and Ph 2 ).
relationship of the two phenyl rings ( Ph 1 is atoms $\mathrm{C} 5-\mathrm{C} 10$ and Ph 2 is $\mathrm{C} 12-\mathrm{C} 17$ ) of the respective aminobenzyl groups.


Figure 4
The molecular packing structure of polymorph (1a), viewed along the $b$ axis, showing the hydroquinone rings in gray and the face-to-edge packing of the two neighbouring phenyl rings in pink. The dashed lines represent intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the H atoms of Ph 1 and Ph 2 in adjacent molecules.

Table 3
Parameters $\left(^{\circ}\right.$ ) for important angles and the dihedral angles in (1a) and (1b).
$\mathrm{HQ}, \mathrm{Ph} 1$ and Ph 2 are the planes of the central $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 3^{\mathrm{i}}$ ring, the $\mathrm{C} 5-$ C 10 phenyl ring and the $\mathrm{C} 12-\mathrm{C} 17$ phenyl ring, respectively [symmetry code: (i) $-x+1,-y+1,-z+1]$.

| Parameter | $(\mathbf{1 a})$ | $(\mathbf{1 b})$ |
| :--- | :--- | :--- |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 11$ | $116.86(15)$ | $116.14(13)$ |
| C3-N1-C4 | $112.92(14)$ | $112.56(14)$ |
| N1-C4-C5 | $111.72(16)$ | $114.33(15)$ |
| N1-C11-C12 | $113.74(16)$ | $112.48(16)$ |
| HQ-Ph1 | $11.9(2)$ | $43.6(2)$ |
| HQ-Ph2 | $74.0(2)$ | $65.4(2)$ |
| Ph1-Ph2 | $62.12(13)$ | $25.63(10)$ |

The dihedral angles between the central hydroquinone ring and the Ph 1 and Ph 2 rings in (1a) are 11.9 (2) and $74.0(2)^{\circ}$, respectively. In contrast, the corresponding dihedral angles in (1b) are 43.6 (2) and 65.4 (2) ${ }^{\circ}$. There is also a large difference in the spatial location of Ph 1 with respect to the hydroquinone ring. The molecular structures of the two polymorphs suggested that the flexibility of the dibenzylamino groups contributes to the conformational variety of (1), similar to previous reports (Akune et al., 2015, 2017). The dibenzylamino groups also affected the molecular packing structures of both polymorphs.

Fig. 4 illustrates the molecular packing structure of (1a). The arrangement of the hydroquinone ring between adjacent molecules is a herringbone packing motif without $\pi-\pi$ interactions, the dihedral angle of which is around $30^{\circ}$. The Ph1 ring of ( $\mathbf{1 a}$ ) is arranged in a face-to-edge motif between the Ph 2 ring of adjacent molecules, with intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $(2.876 \AA)$. On the other hand, the molecular packing structure of $(\mathbf{1 b})$ is significantly different from that of (1a) (Fig. 5). The hydroquinone rings are arranged in a zigzag


Figure 5
The molecular packing structure of polymorph (1b), viewed along the $b$ axis. The hydroquinone rings, the lamellar stacking pattern of the Ph 2 rings and the almost-parallel arrangement of the Ph1 rings to the $b c$ plane are shown in gray, blue and red, respectively.
pattern along the $a$ axis and the dihedral angle between them is approximately $90^{\circ}$. The phenyl rings were found to form a lamellar stacking pattern almost parallel to the $b c$ plane, with the dihedral angles between the $b c$ plane and the Ph 1 and Ph 2 rings being 1.38 (7) and $24.46(8)^{\circ}$, respectively. No $\pi-\pi$ interactions or significant $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions were identified in this packing motif. We consider the slight change in the rotation of the phenyl ring in the benzyl group between the two polymorphs as contributing to the considerable structural difference in their packing motifs. This result clearly indicates that the dibenzylamino group is a parameter for the occurrence of conformational polymorphism.

DSC measurements were also carried out for the polymorphs in order to check their thermal stability. We found that both polymorphs exhibited only a single sharp peak corresponding to their melting points at 445 K for (1a) and 444 K for (1b) (see the supporting information for the DSC plots; Fig. S1). The cooled powdered samples of both polymorphs following DSC measurements were characterized to be the (1a) form based on their PXRD patterns (see the supporting information for the PXRD patterns; Figs. S2-S4).

## 4. Conclusion

Two conformational polymorphs of 2,5-dichloro-3,6-bis(di-benzylamino)- $p$-hydroquinone were obtained and their crystal structures were analyzed. A large difference in the conformation of one of the phenyl rings of the benzyl groups of the amino moiety was suggested to have contributed to the occurrence of this conformational polymorphism. These findings illustrate a new example of the presence of a dibenzylamino group attached to an aromatic moiety with the occurrence of conformational polymorphism.

## References

Akune, Y., Gontani, H., Hirosawa, R., Koseki, A. \& Matsumoto, S. (2015). CrystEngComm, 17, 5789-5800.

Akune, Y., Hirosawa, R., Koseki, A. \& Matsumoto, S. (2017). Z. Kristallogr. Cryst. Mater. 232, 395-405.
Bernstein, J. (1987). In Organic Solid State Chemistry, edited by G. R. Desiraju. Amsterdam: Elsevier.
Bernstein, J. (2002). In Polymorphism in Molecular Crystals. Oxford: Clarendon Press.
Chrobak, E., Michalik, E., Kusz, J., Nowak, M. \& Boryczka, S. (2014). Acta Cryst. C70, 847-851.
Ibragimov, A., Ashurov, J., Ibragimov, B., Wang, A., Mouhib, H. \& Englert, U. (2016). Acta Cryst. C72, 566-571.
Lutker, K. M., Tolstyka, Z. P. \& Matzger, A. J. (2008). Cryst. Growth Des. 8, 136-139.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Matsumoto, S., Uchida, Y. \& Yanagita, M. (2006). Chem. Lett. 35, 654-655.
Matsuoka, M. (2000). In Colorants for Non-Textile Applications, edited by H. S. Freeman \& A. T. Peters. Amsterdam, New York: Elsevier.
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku (2017). CrystalStructure. Version 4.2. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shimada, Y., Horiguchi-Babamoto, E. \& Matsumoto, S. (2015). Dyes Pigm. 121, 336-341.
Shin, I.-S., Shimada, Y., Ishihara, S., Horiguchi-Babamoto, E. \& Matsumoto, S. (2017). Dyes Pigm. 144, 110-118.
Sridhar, B., Nanubolu, J. B. \& Ravikumar, K. (2015). Acta Cryst. C71, 128-135.
Yu, L., Reutzel-Edens, S. M. \& Mitchell, C. A. (2000). Org. Process Res. Dev. 4, 396-402.
Zipp, C. F., Dirr, H. W., Fernandes, M. A., Marques, H. M. \& Michael, J. P. (2013). Cryst. Growth Des. 13, 3463-3474.

## supporting information

Acta Cryst. (2018). C74, 437-441 [https://doi.org/10.1107/S2053229618003595]
Two polymorphs of 2,5-dichloro-3,6-bis(dibenzylamino)-p-hydroquinone with flexible dibenzylamino groups

In-Sub Shin, Yuta Shimada, Emi Horiguchi-Babamoto and Shinya Matsumoto

## Computing details

For both structures, data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: RAPID-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: CrystalStructure (Rigaku, 2017) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2017).

2,5-Bis(dibenzylamino)-3,6-dichlorobenzene-1,4-diol (20130730_colorless_block)

## Crystal data

$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=569.53$
Monoclinic, $P 2_{1} / n$
$a=9.67404$ (18) $\AA$
$b=10.9707$ (2) $\AA$
$c=13.5552(3) \AA$
$\beta=94.7380(7)^{\circ}$
$V=1433.72(5) \AA^{3}$
$Z=2$

## Data collection

Rigaku R-AXIS RAPID
diffractometer
Detector resolution: 10.000 pixels $\mathrm{mm}^{-1}$
$\omega$ scans
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
$T_{\text {min }}=0.492, T_{\text {max }}=0.589$
12895 measured reflections
$F(000)=596.00$
$D_{\mathrm{x}}=1.319 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54187 \AA$
Cell parameters from 10981 reflections
$\theta=3.3-68.2^{\circ}$
$\mu=2.30 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.40 \times 0.33 \times 0.23 \mathrm{~mm}$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.125$
$S=1.10$
2527 reflections
181 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

2527 independent reflections
2101 reflections with $F^{2}>2.0 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=66.5^{\circ}, \theta_{\text {min }}=5.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 12$
$l=-16 \rightarrow 16$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0573 P)^{2}+0.3915 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e} \AA^{-3}$

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on $\mathrm{F}^{2}$. R-factor (gt) are based on F . The threshold expression of $\mathrm{F}^{2}>2.0 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating Rfactor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Cl 1 | 0.23763 (5) | 0.60878 (5) | 0.58672 (5) | 0.0671 (2) |
| O1 | 0.50864 (15) | 0.25956 (12) | 0.44492 (11) | 0.0578 (4) |
| H1 | 0.4330 | 0.2280 | 0.4510 | 0.069* |
| N1 | 0.27948 (15) | 0.33329 (14) | 0.52062 (11) | 0.0471 (4) |
| C1 | 0.38157 (19) | 0.54615 (17) | 0.53814 (14) | 0.0472 (5) |
| C2 | 0.50464 (19) | 0.37915 (16) | 0.47231 (14) | 0.0456 (4) |
| C3 | 0.38501 (18) | 0.42424 (17) | 0.51024 (14) | 0.0443 (4) |
| C4 | 0.2697 (2) | 0.2951 (2) | 0.62473 (15) | 0.0563 (5) |
| H4A | 0.2169 | 0.3553 | 0.6582 | 0.068* |
| H4B | 0.3621 | 0.2916 | 0.6584 | 0.068* |
| C5 | 0.2012 (2) | 0.17238 (19) | 0.63111 (14) | 0.0511 (5) |
| C6 | 0.2621 (3) | 0.0708 (2) | 0.5945 (2) | 0.0787 (8) |
| H6 | 0.3439 | 0.0794 | 0.5636 | 0.094* |
| C7 | 0.2052 (4) | -0.0436 (3) | 0.6023 (2) | 0.0935 (9) |
| H7 | 0.2487 | -0.1109 | 0.5769 | 0.112* |
| C8 | 0.0857 (3) | -0.0581 (3) | 0.6468 (2) | 0.0825 (8) |
| H8 | 0.0466 | -0.1351 | 0.6515 | 0.099* |
| C9 | 0.0231 (3) | 0.0415 (3) | 0.6847 (2) | 0.0894 (9) |
| H9 | -0.0586 | 0.0320 | 0.7155 | 0.107* |
| C10 | 0.0815 (3) | 0.1569 (2) | 0.6773 (2) | 0.0747 (7) |
| H10 | 0.0389 | 0.2239 | 0.7038 | 0.090* |
| C11 | 0.14278 (19) | 0.3557 (2) | 0.46778 (15) | 0.0534 (5) |
| H11A | 0.1028 | 0.4281 | 0.4950 | 0.064* |
| H11B | 0.0823 | 0.2876 | 0.4794 | 0.064* |
| C12 | 0.14744 (19) | 0.37228 (19) | 0.35847 (15) | 0.0513 (5) |
| C13 | 0.1040 (3) | 0.4804 (2) | 0.31389 (18) | 0.0696 (6) |
| H13 | 0.0771 | 0.5446 | 0.3528 | 0.084* |
| C14 | 0.1000 (3) | 0.4945 (3) | 0.2136 (2) | 0.0937 (9) |
| H14 | 0.0698 | 0.5678 | 0.1848 | 0.112* |
| C15 | 0.1400 (3) | 0.4016 (4) | 0.1557 (2) | 0.0994 (11) |
| H15 | 0.1376 | 0.4119 | 0.0875 | 0.119* |
| C16 | 0.1842 (3) | 0.2922 (3) | 0.1976 (2) | 0.0884 (9) |
| H16 | 0.2115 | 0.2288 | 0.1580 | 0.106* |
| C17 | 0.1872 (2) | 0.2781 (2) | 0.29918 (18) | 0.0653 (6) |
| H17 | 0.2164 | 0.2045 | 0.3279 | 0.078* |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C11 | $0.0469(3)$ | $0.0551(4)$ | $0.1018(5)$ | $0.0003(2)$ | $0.0209(3)$ | $-0.0140(3)$ |
| O1 | $0.0512(8)$ | $0.0380(7)$ | $0.0852(10)$ | $-0.0062(6)$ | $0.0105(7)$ | $-0.0088(7)$ |
| N1 | $0.0411(8)$ | $0.0449(9)$ | $0.0552(9)$ | $-0.0097(7)$ | $0.0031(7)$ | $0.0023(7)$ |
| C1 | $0.0386(9)$ | $0.0423(11)$ | $0.0608(11)$ | $0.0005(8)$ | $0.0050(8)$ | $-0.0005(8)$ |
| C2 | $0.0429(10)$ | $0.0369(10)$ | $0.0566(11)$ | $-0.0014(7)$ | $0.0023(8)$ | $-0.0035(8)$ |
| C3 | $0.0383(9)$ | $0.0405(10)$ | $0.0539(10)$ | $-0.0044(7)$ | $0.0020(8)$ | $0.0012(8)$ |
| C4 | $0.0623(13)$ | $0.0525(12)$ | $0.0539(11)$ | $-0.0106(10)$ | $0.0034(9)$ | $0.0018(9)$ |
| C5 | $0.0507(11)$ | $0.0511(12)$ | $0.0513(11)$ | $-0.0068(9)$ | $0.0040(8)$ | $0.0062(9)$ |
| C6 | $0.0799(17)$ | $0.0577(15)$ | $0.104(2)$ | $-0.0041(12)$ | $0.0393(15)$ | $0.0087(13)$ |
| C7 | $0.121(2)$ | $0.0533(16)$ | $0.112(2)$ | $-0.0106(15)$ | $0.0447(19)$ | $0.0034(14)$ |
| C8 | $0.0879(19)$ | $0.0638(17)$ | $0.0942(19)$ | $-0.0256(15)$ | $-0.0020(15)$ | $0.0164(14)$ |
| C9 | $0.0590(15)$ | $0.094(2)$ | $0.117(2)$ | $-0.0174(14)$ | $0.0193(14)$ | $0.0338(18)$ |
| C10 | $0.0664(15)$ | $0.0677(16)$ | $0.0934(18)$ | $0.0009(12)$ | $0.0275(13)$ | $0.0113(13)$ |
| C11 | $0.0388(10)$ | $0.0586(12)$ | $0.0628(12)$ | $-0.0069(9)$ | $0.0028(9)$ | $0.0030(9)$ |
| C12 | $0.0378(10)$ | $0.0537(12)$ | $0.0616(12)$ | $-0.0105(8)$ | $-0.0010(8)$ | $0.0042(9)$ |
| C13 | $0.0696(15)$ | $0.0632(15)$ | $0.0751(15)$ | $-0.0053(12)$ | $0.0002(12)$ | $0.0099(12)$ |
| C14 | $0.097(2)$ | $0.095(2)$ | $0.087(2)$ | $-0.0101(18)$ | $-0.0032(16)$ | $0.0305(18)$ |
| C15 | $0.086(2)$ | $0.147(3)$ | $0.0642(17)$ | $-0.020(2)$ | $0.0021(15)$ | $0.0167(19)$ |
| C16 | $0.0723(17)$ | $0.118(3)$ | $0.0746(17)$ | $-0.0085(17)$ | $0.0060(13)$ | $-0.0263(17)$ |
| C17 | $0.0573(13)$ | $0.0657(15)$ | $0.0722(15)$ | $-0.0038(11)$ | $0.0006(11)$ | $-0.0074(12)$ |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| $\mathrm{C} 11-\mathrm{C} 1$ | $1.7309(19)$ | $\mathrm{C} 8-\mathrm{C} 9$ | $1.369(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{C} 2$ | $1.365(2)$ | $\mathrm{C} 8-\mathrm{H} 8$ | 0.9300 |
| $\mathrm{O} 1-\mathrm{H} 1$ | 0.8200 | $\mathrm{C} 9-\mathrm{C} 10$ | $1.393(4)$ |
| $\mathrm{N} 1-\mathrm{C} 3$ | $1.443(2)$ | $\mathrm{C} 9-\mathrm{H} 9$ | 0.9300 |
| $\mathrm{~N} 1-\mathrm{C} 11$ | $1.472(2)$ | $\mathrm{C} 10-\mathrm{H} 10$ | 0.9300 |
| $\mathrm{~N} 1-\mathrm{C} 4$ | $1.482(2)$ | $\mathrm{C} 11-\mathrm{C} 12$ | $1.497(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2 \mathrm{i}$ | $1.389(3)$ | $\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$ | 0.9700 |
| $\mathrm{C} 1-\mathrm{C} 3$ | $1.391(3)$ | $\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$ | 0.9700 |
| $\mathrm{C} 2-\mathrm{C} 1 \mathrm{i}^{\mathrm{i}}$ | $1.389(3)$ | $\mathrm{C} 12-\mathrm{C} 13$ | $1.381(3)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.395(3)$ | $\mathrm{C} 12-\mathrm{C} 17$ | $1.383(3)$ |
| $\mathrm{C} 4-\mathrm{C} 5$ | $1.507(3)$ | $\mathrm{C} 13-\mathrm{C} 14$ | $1.365(4)$ |
| $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 0.9700 | $\mathrm{C} 13-\mathrm{H} 13$ | 0.9300 |
| $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 0.9700 | $\mathrm{C} 14-\mathrm{C} 15$ | $1.363(5)$ |
| $\mathrm{C} 5-\mathrm{C} 10$ | $1.372(3)$ | $\mathrm{C} 15-\mathrm{C} 16$ | 0.9300 |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.372(3)$ | $\mathrm{C} 15-\mathrm{H} 15$ | $1.380(5)$ |
| $\mathrm{C} 6-\mathrm{C} 7$ | $1.378(4)$ | $\mathrm{C} 16-\mathrm{C} 17$ | 0.9300 |
| $\mathrm{C} 6-\mathrm{H} 6$ | 0.9300 | $\mathrm{C} 16-\mathrm{H} 16$ | $1.384(4)$ |
| $\mathrm{C} 7-\mathrm{C} 8$ | $1.356(4)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ | 0.9300 |
| $\mathrm{C} 7-\mathrm{H} 7$ | 0.9300 | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$ | 0.9300 |
| C2-O1-H17 |  |  |  |

supporting information

| C3-N1-C4 | 112.92 (14) |
| :---: | :---: |
| C11-N1-C4 | 112.65 (15) |
| C2 ${ }^{\text {i }}$ - $1-\mathrm{C} 3$ | 120.17 (17) |
| C2 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{Cl1}$ | 118.29 (15) |
| C3-C1-Cl1 | 121.55 (14) |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1^{\text {i }}$ | 119.93 (17) |
| O1-C2- 3 | 118.95 (17) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 121.12 (17) |
| C1-C3-C2 | 118.71 (17) |
| $\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 1$ | 127.26 (17) |
| C2-C3-N1 | 113.95 (16) |
| N1-C4-C5 | 111.72 (16) |
| N1-C4-H4A | 109.3 |
| C5-C4-H4A | 109.3 |
| N1-C4-H4B | 109.3 |
| C5-C4-H4B | 109.3 |
| H4A-C4-H4B | 107.9 |
| C10-C5-C6 | 117.9 (2) |
| C10-C5-C4 | 122.0 (2) |
| C6-C5-C4 | 120.0 (2) |
| C5-C6-C7 | 121.7 (2) |
| C5-C6-H6 | 119.2 |
| C7-C6-H6 | 119.2 |
| C8-C7-C6 | 120.1 (3) |
| C8-C7-H7 | 119.9 |
| C6-C7-H7 | 119.9 |
| C7-C8-C9 | 119.5 (3) |
| C7-C8-H8 | 120.3 |
| C9-C8-H8 | 120.3 |
| $\mathrm{C} 2{ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$ | 0.3 (3) |
| $\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$ | -179.49 (14) |
| $\mathrm{C} 2{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 1$ | 176.67 (17) |
| $\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 1$ | -3.1 (3) |
| O1-C2-C3-C1 | 179.93 (17) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1$ | -0.3 (3) |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$ | 3.1 (3) |
| $\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$ | -177.14 (17) |
| $\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 1$ | 61.2 (3) |
| C4-N1-C3-C1 | -71.9 (2) |
| $\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$ | -122.31 (19) |
| $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$ | 104.6 (2) |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$ | -158.83 (17) |
| C11-N1-C4-C5 | 66.1 (2) |
| N1-C4-C5-C10 | -120.2 (2) |
| N1-C4-C5-C6 | 63.1 (3) |


| $\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$ | 119.9 |
| :--- | :--- |
| $\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$ | $120.5(3)$ |
| $\mathrm{C} 5-\mathrm{C} 10-\mathrm{H} 10$ | 119.7 |
| $\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$ | 119.7 |
| $\mathrm{~N} 1-\mathrm{C} 11-\mathrm{C} 12$ | $113.74(16)$ |
| $\mathrm{N} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$ | 108.8 |
| $\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$ | 108.8 |
| $\mathrm{~N} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$ | 108.8 |
| $\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$ | 108.8 |
| $\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$ | 107.7 |
| $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17$ | $118.5(2)$ |
| $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$ | $120.3(2)$ |
| $\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 11$ | $121.1(2)$ |
| $\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$ | $121.1(3)$ |
| $\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$ | 119.5 |
| $\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$ | 119.5 |
| $\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$ | $120.2(3)$ |
| $\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$ | 119.9 |
| $\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$ | 119.9 |
| $\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ | $120.4(3)$ |
| $\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$ | 119.8 |
| $\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15$ | 119.8 |
| $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$ | $119.2(3)$ |
| $\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16$ | 120.4 |
| $\mathrm{C} 17-\mathrm{C} 16-\mathrm{H} 16$ | 120.4 |
| $\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$ | $120.7(3)$ |
| $\mathrm{C} 12-\mathrm{C} 17-\mathrm{H} 17$ | 119.7 |
| $\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17$ | 119.7 |


| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ | $0.2(5)$ |
| :--- | :--- |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ | $-0.7(5)$ |
| $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ | $0.2(5)$ |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$ | $-1.1(4)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$ | $-177.9(2)$ |
| $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$ | $0.7(4)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$ | $57.2(2)$ |
| $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$ | $-169.59(17)$ |
| $\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$ | $-118.9(2)$ |
| $\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17$ | $64.9(3)$ |
| $\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ | $0.1(3)$ |
| $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ | $-176.1(2)$ |
| $\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$ | $-0.5(4)$ |
| $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ | $0.4(5)$ |
| $\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$ | $0.0(5)$ |
| $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$ | $0.3(3)$ |

C10-C5-C6-C7
0.7 (4)
C11-C12-C17-C16
176.5 (2)
C4-C5-C6-C7
177.6 (3)
C15-C16-C17-C12
-0.3 (4)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D — \mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 1$ | 0.82 | 2.16 | $2.645(2)$ | 118 |

2,5-Bis(dibenzylamino)-3,6-dichlorobenzene-1,4-diol (20130722_palered_block)

## Crystal data

$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=569.53$
Orthorhombic, Pbca
$a=13.2054$ (2) $\AA$
$b=12.4456$ (2) $\AA$
$c=16.8489(3) \AA$
$V=2769.09(9) \AA^{3}$
$Z=4$
$F(000)=1192.00$

## Data collection

Rigaku R-AXIS RAPID
diffractometer
Detector resolution: 10.000 pixels $\mathrm{mm}^{-1}$
$\omega$ scans
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
$T_{\text {min }}=0.413, T_{\text {max }}=0.507$
23298 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.115$
$S=1.08$
2442 reflections
181 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=1.366 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54187 \AA$
Cell parameters from 17342 reflections
$\theta=3.4-68.2^{\circ}$
$\mu=2.39 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, pale red
$0.40 \times 0.30 \times 0.28 \mathrm{~mm}$

> 2442 independent reflections
> 1976 reflections with $F^{2}>2.0 \sigma\left(F^{2}\right)$
> $R_{\text {int }}=0.039$
> $\theta_{\max }=66.5^{\circ}, \theta_{\min }=5.3^{\circ}$
> $h=-15 \rightarrow 15$
> $k=-14 \rightarrow 14$
> $l=-20 \rightarrow 20$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0633 P)^{2}+0.3919 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on $F^{2}$. R-factor (gt) are based on $F$. The threshold expression of $\mathrm{F}^{2}>2.0 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating Rfactor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| C11 | $0.66299(4)$ | $0.47433(4)$ | $0.63253(3)$ | $0.0591(2)$ |
| O1 | $0.54700(11)$ | $0.30198(9)$ | $0.56222(9)$ | $0.0591(4)$ |
| H1 | 0.5169 | 0.2548 | 0.5378 | $0.071^{*}$ |
| N1 | $0.59086(11)$ | $0.69385(10)$ | $0.55443(9)$ | $0.0442(4)$ |
| C1 | $0.57303(13)$ | $0.49107(13)$ | $0.55909(11)$ | $0.0436(4)$ |
| C2 | $0.52341(13)$ | $0.40005(13)$ | $0.53069(11)$ | $0.0426(4)$ |
| C3 | $0.54977(13)$ | $0.59272(13)$ | $0.52829(11)$ | $0.0404(4)$ |
| C4 | $0.55436(16)$ | $0.72490(15)$ | $0.63403(12)$ | $0.0534(5)$ |
| H4A | 0.5935 | 0.6863 | 0.6736 | $0.064^{*}$ |
| H4B | 0.4843 | 0.7025 | 0.6394 | $0.064^{*}$ |
| C5 | $0.56120(13)$ | $0.84400(14)$ | $0.65136(11)$ | $0.0463(4)$ |
| C6 | $0.56417(15)$ | $0.87817(16)$ | $0.72920(12)$ | $0.0559(5)$ |
| H6 | 0.5655 | 0.8277 | 0.7699 | $0.067^{*}$ |
| C7 | $0.56520(17)$ | $0.98641(18)$ | $0.74745(14)$ | $0.0663(6)$ |
| H7 | 0.5671 | 1.0082 | 0.8002 | $0.080^{*}$ |
| C8 | $0.56340(16)$ | $1.06209(17)$ | $0.68797(15)$ | $0.0662(6)$ |
| H8 | 0.5633 | 1.1349 | 0.7004 | $0.079^{*}$ |
| C9 | $0.56174(16)$ | $1.02952(15)$ | $0.61040(15)$ | $0.0601(6)$ |
| H9 | 0.5618 | 1.0803 | 0.5699 | $0.072^{*}$ |
| C10 | $0.56001(15)$ | $0.92137(15)$ | $0.59207(13)$ | $0.0543(5)$ |
| H10 | 0.5580 | 0.9001 | 0.5392 | $0.065^{*}$ |
| C11 | $0.70119(14)$ | $0.70866(14)$ | $0.54321(12)$ | $0.0515(5)$ |
| H11A | 0.7369 | 0.6508 | 0.5698 | $0.062^{*}$ |
| H11B | 0.7217 | 0.7757 | 0.5677 | $0.062^{*}$ |
| C12 | $0.73094(14)$ | $0.71014(13)$ | $0.45730(12)$ | $0.0497(5)$ |
| C13 | $0.71914(18)$ | $0.80139(16)$ | $0.41111(15)$ | $0.0698(7)$ |
| H13 | 0.6907 | 0.8626 | 0.4335 | $0.084^{*}$ |
| C14 | $0.7485(2)$ | $0.80329(19)$ | $0.33315(16)$ | $0.0790(7)$ |
| H14 | 0.7399 | 0.8656 | 0.3034 | $0.095^{*}$ |
| C15 | $0.79067(18)$ | $0.71382(19)$ | $0.29857(14)$ | $0.0718(7)$ |
| H15 | 0.8106 | 0.7152 | 0.2457 | $0.086^{*}$ |
| C16 | $0.80286(17)$ | $0.62302(19)$ | $0.34285(15)$ | $0.0689(6)$ |
| H16 | 0.8316 | 0.5622 | 0.3200 | $0.083^{*}$ |
| C17 | $0.77298(16)$ | $0.62081(16)$ | $0.42091(14)$ | $0.0609(6)$ |
| H17 | 0.7812 | 0.5579 | 0.4500 | $0.073^{*}$ |
|  |  |  |  |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C11 | $0.0653(4)$ | $0.0469(3)$ | $0.0651(4)$ | $0.0030(2)$ | $-0.0185(2)$ | $0.0012(2)$ |
| O1 | $0.0731(9)$ | $0.0293(6)$ | $0.0748(10)$ | $0.0011(6)$ | $-0.0143(7)$ | $0.0051(6)$ |
| N1 | $0.0484(9)$ | $0.0320(7)$ | $0.0523(9)$ | $-0.0043(6)$ | $0.0044(7)$ | $-0.0072(6)$ |
| C1 | $0.0475(10)$ | $0.0361(9)$ | $0.0472(11)$ | $0.0015(7)$ | $-0.0018(8)$ | $-0.0018(8)$ |
| C2 | $0.0497(10)$ | $0.0293(8)$ | $0.0488(11)$ | $0.0029(7)$ | $0.0014(8)$ | $0.0015(7)$ |
| C3 | $0.0448(9)$ | $0.0303(8)$ | $0.0461(10)$ | $-0.0006(7)$ | $0.0037(8)$ | $-0.0030(7)$ |


| C4 | $0.0672(13)$ | $0.0384(10)$ | $0.0546(12)$ | $-0.0027(9)$ | $0.0083(9)$ | $-0.0064(8)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C5 | $0.0478(10)$ | $0.0376(10)$ | $0.0534(11)$ | $0.0008(8)$ | $0.0010(8)$ | $-0.0071(8)$ |
| C6 | $0.0621(12)$ | $0.0518(11)$ | $0.0537(12)$ | $-0.0002(9)$ | $0.0009(9)$ | $-0.0068(9)$ |
| C7 | $0.0749(14)$ | $0.0604(13)$ | $0.0637(16)$ | $-0.0002(11)$ | $0.0003(11)$ | $-0.0239(11)$ |
| C8 | $0.0678(14)$ | $0.0420(11)$ | $0.0888(17)$ | $0.0004(10)$ | $-0.0005(12)$ | $-0.0189(12)$ |
| C9 | $0.0671(14)$ | $0.0389(11)$ | $0.0744(16)$ | $0.0021(9)$ | $-0.0025(11)$ | $-0.0023(10)$ |
| C10 | $0.0635(13)$ | $0.0431(11)$ | $0.0564(12)$ | $-0.0002(9)$ | $-0.0032(10)$ | $-0.0061(9)$ |
| C11 | $0.0492(11)$ | $0.0435(10)$ | $0.0619(13)$ | $-0.0062(8)$ | $0.0030(9)$ | $-0.0064(9)$ |
| C12 | $0.0455(11)$ | $0.0384(9)$ | $0.0651(13)$ | $-0.0057(7)$ | $0.0057(9)$ | $-0.0060(9)$ |
| C13 | $0.0837(16)$ | $0.0427(11)$ | $0.0831(17)$ | $0.0026(10)$ | $0.0273(13)$ | $0.0010(10)$ |
| C14 | $0.0929(18)$ | $0.0616(14)$ | $0.0824(17)$ | $-0.0039(12)$ | $0.0206(15)$ | $0.0147(13)$ |
| C15 | $0.0717(15)$ | $0.0784(17)$ | $0.0653(15)$ | $-0.0159(12)$ | $0.0136(12)$ | $-0.0100(13)$ |
| C16 | $0.0688(14)$ | $0.0613(14)$ | $0.0768(17)$ | $-0.0043(11)$ | $0.0125(12)$ | $-0.0224(12)$ |
| C17 | $0.0637(13)$ | $0.0453(11)$ | $0.0738(15)$ | $0.0015(9)$ | $0.0048(11)$ | $-0.0072(10)$ |
|  |  |  |  |  |  |  |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| Cl1-C1 | 1.7280 (19) | C8-C9 | 1.368 (3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 1-\mathrm{C} 2$ | 1.367 (2) | C8-H8 | 0.9300 |
| $\mathrm{O} 1-\mathrm{H} 1$ | 0.8200 | C9-C10 | 1.381 (3) |
| N1-C3 | 1.440 (2) | C9—H9 | 0.9300 |
| N1-C4 | 1.477 (2) | C10-H10 | 0.9300 |
| N1-C11 | 1.481 (2) | C11-C12 | 1.500 (3) |
| C1-C2 | 1.393 (2) | C11-H11A | 0.9700 |
| C1-C3 | 1.402 (2) | C11-H11B | 0.9700 |
| $\mathrm{C} 2-\mathrm{C} 3^{\text {i }}$ | 1.389 (3) | C12-C13 | 1.385 (3) |
| C3-C2 ${ }^{\text {i }}$ | 1.389 (3) | C12-C17 | 1.386 (3) |
| C4-C5 | 1.514 (2) | C13-C14 | 1.370 (3) |
| $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 0.9700 | C13-H13 | 0.9300 |
| C4-H4B | 0.9700 | C14-C15 | 1.374 (3) |
| C5-C6 | 1.379 (3) | C14-H14 | 0.9300 |
| C5-C10 | 1.388 (3) | C15-C16 | 1.364 (3) |
| C6-C7 | 1.382 (3) | C15-H15 | 0.9300 |
| C6-H6 | 0.9300 | C16-C17 | 1.373 (3) |
| C7-C8 | 1.376 (3) | C16-H16 | 0.9300 |
| C7-H7 | 0.9300 | C17-H17 | 0.9300 |
| C2-O1-H1 | 109.5 | C8-C9-C10 | 120.2 (2) |
| C3-N1-C4 | 112.56 (14) | C8-C9-H9 | 119.9 |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 11$ | 116.14 (13) | C10-C9-H9 | 119.9 |
| $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 11$ | 113.86 (15) | C9-C10-C5 | 121.00 (19) |
| C2- $\mathrm{C} 1-\mathrm{C} 3$ | 120.24 (17) | C9-C10-H10 | 119.5 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 1$ | 118.11 (13) | C5-C10-H10 | 119.5 |
| $\mathrm{C} 3-\mathrm{C} 1-\mathrm{Cl} 1$ | 121.65 (13) | N1-C11-C12 | 112.48 (16) |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3^{\text {i }}$ | 119.62 (15) | N1-C11-H11A | 109.1 |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$ | 119.03 (16) | C12-C11-H11A | 109.1 |
| C3--C2-C1 | 121.35 (15) | N1-C11-H11B | 109.1 |
| C2- 2 - $3-\mathrm{C} 1$ | 118.41 (15) | C12-C11-H11B | 109.1 |


| C2 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{N} 1$ | 115.12 (14) |
| :---: | :---: |
| C1-C3-N1 | 126.39 (16) |
| N1-C4-C5 | 114.33 (15) |
| N1-C4-H4A | 108.7 |
| C5-C4-H4A | 108.7 |
| N1-C4-H4B | 108.7 |
| C5-C4-H4B | 108.7 |
| H4A-C4-H4B | 107.6 |
| C6-C5-C10 | 118.10 (18) |
| C6-C5-C4 | 119.15 (17) |
| C10-C5-C4 | 122.69 (17) |
| C5-C6-C7 | 120.8 (2) |
| C5-C6-H6 | 119.6 |
| C7-C6-H6 | 119.6 |
| C8-C7-C6 | 120.3 (2) |
| C8-C7-H7 | 119.8 |
| C6-C7-H7 | 119.8 |
| C9-C8-C7 | 119.6 (2) |
| C9-C8-H8 | 120.2 |
| C7-C8-H8 | 120.2 |
| $\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$ | -179.49 (16) |
| $\mathrm{Cl} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$ | 0.5 (2) |
| $\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3^{\text {i }}$ | 0.0 (3) |
| $\mathrm{Cl} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$ | -179.99 (14) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$ | 0.0 (3) |
| $\mathrm{Cl} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$ | 179.99 (14) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 1$ | 176.65 (16) |
| $\mathrm{Cl} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 1$ | -3.4 (3) |
| $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$ | 106.89 (19) |
| C11-N1-C3-C2 ${ }^{\text {i }}$ | -119.33 (17) |
| $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 1$ | -69.8 (2) |
| C11-N1-C3-C1 | 63.9 (2) |
| C3-N1-C4-C5 | -157.91 (16) |
| C11-N1-C4-C5 | 67.2 (2) |
| N1-C4-C5-C6 | -157.34 (17) |
| N1-C4-C5-C10 | 25.7 (3) |
| C10-C5-C6-C7 | 0.4 (3) |
| C4-C5-C6-C7 | -176.68 (19) |


| H11A-C11-H11B | 107.8 |
| :---: | :---: |
| C13-C12-C17 | 117.0 (2) |
| C13-C12-C11 | 121.51 (17) |
| C17-C12-C11 | 121.47 (17) |
| C14-C13-C12 | 121.4 (2) |
| C14-C13-H13 | 119.3 |
| C12-C13-H13 | 119.3 |
| C13-C14-C15 | 120.5 (2) |
| C13-C14-H14 | 119.8 |
| C15-C14-H14 | 119.8 |
| C16-C15-C14 | 119.2 (2) |
| C16-C15-H15 | 120.4 |
| C14-C15-H15 | 120.4 |
| C15-C16-C17 | 120.4 (2) |
| C15-C16-H16 | 119.8 |
| C17-C16-H16 | 119.8 |
| C16-C17-C12 | 121.5 (2) |
| C16-C17-H17 | 119.2 |
| C12-C17-H17 | 119.2 |
| C5-C6-C7-C8 | -0.1 (3) |
| C6-C7-C8-C9 | -0.7 (3) |
| C7-C8-C9-C10 | 1.2 (3) |
| C8-C9-C10-C5 | -0.8 (3) |
| C6-C5-C10-C9 | 0.0 (3) |
| C4-C5-C10-C9 | 177.01 (19) |
| C3-N1-C11-C12 | 64.7 (2) |
| C4-N1-C11-C12 | -162.09 (15) |
| N1-C11-C12-C13 | 80.0 (2) |
| N1-C11-C12-C17 | -101.1 (2) |
| C17-C12-C13-C14 | -0.5 (3) |
| C11-C12-C13-C14 | 178.5 (2) |
| C12-C13-C14-C15 | 0.1 (4) |
| C13-C14-C15-C16 | 0.0 (4) |
| C14-C15-C16-C17 | 0.3 (4) |
| C15-C16-C17-C12 | -0.8 (3) |
| C13-C12-C17-C16 | 0.8 (3) |
| C11-C12-C17-C16 | -178.1 (2) |

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$ | 0.82 | 2.20 | $2.680(2)$ | 117 |

Symmetry code: (i) $-x+1,-y+1,-z+1$.

