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We demonstrate universal non-adiabatic non-abelian 
holonomic single quantum gates over a geometric 
electron spin with phase-modulated polarized light and 
93% average fidelity. This allows purely geometric 
rotation about an arbitrary axis by any angle defined by 
light polarization and phase using a degenerate three-
level Λ-type system in a negatively charged nitrogen-
vacancy center in diamond. Since the control light is 
completely resonant to the ancillary excited state, the 
demonstrated holonomic gate is not only fast with low 
power, but also precise without the dynamical phase 
being subject to control error and environmental noise. It 
thus allows pulse shaping for further fidelity.  

OCIS codes: (270.0270) Quantum optics; (270.5565) Quantum 
communications; (270.5585) Quantum information and processing. 
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To realize a quantum computer, both a robust quantum 
gate and a noise-resilient quantum bit (qubit) are required. 
In terms of the quantum gate, in 1999 Zanardi and Rasetti [1] 
first proposed a holonomic quantum computation (HQC) that 
is robust against noise during operation. The Berry phase [2] 
was first used for the adiabatic holonomic quantum gate [3], 
which required slow gate operation. The scheme was then 
generalized by Sjöqvist to a non-adiabatic holonomic 
quantum gate by applying the Aharonov-Anandan phase 
[4,5] to the three-level system. This has been experimentally 
realized in superconducting circuits [6], nuclear magnetic 
resonance [7,8], and the nitrogen-vacancy (NV) center in 
diamond [9,10].  

These demonstrations, however, required two loops to 
implement an arbitrary single non-adiabatic quantum gate, 
resulting in a relatively long gating time that could be affected 
by the environmental spin bath. To solve this problem, a 
quasi-resonant method with a single-loop scheme has been 
proposed [11-14], although it does not allow use of a shaped 
pulse rather than the square pulse required to achieve high 
gate fidelity. In contrast, the resonant method allows pulse 
shaping [15,16], which leads to gates that are robust against 
different kinds of errors [17].  

Along with robust quantum gates, a noise-resilient qubit is 
also needed. The conventional qubit defined in the {|+1⟩, 
|−1⟩} subspace in the three-level system {|0⟩, |+1⟩, |−1⟩}  
 

 

 
Fig. 1. Optical holonomic gate and experimental setup. (a) The 
polarization state of the rotation light in the Poincaré sphere based on 
circular polarizations |±1⟩ . (b) Molecular structure and degenerate 
three-level Λ system of an NV center in diamond, and outline of the 
optical holonomic gate using light pulses with a phase difference ∆𝛾. (c) 
Spin-orbit space based on the |𝐴 ⟩ state and |𝐵⟩ state. (d) The rotation 
of an electron spin state in the Bloch sphere based on the |±1⟩ states. 
(e) The experimental setup consisting of a 532-nm green laser to 
initialize the electron spin states to the |0⟩ state, a 2.87-GHz microwave 
source to excite the spin state of the electron, and a 637-nm red laser to 
prepare, rotate, and read out the electron spin state. 

 
[9,10] introduces an energy gap between the |+1⟩ and |−1⟩ 
states to energetically select the |−1⟩ state, thus preventing a 
fast dynamic quantum gate within this subspace to avoid 
crosstalk between |+1⟩ and |−1⟩. On the other hand, a logical 
qubit defined in a degenerate two-level system in the three-



level system, called a geometric spin qubit [13,18-22], was 
recently demonstrated to be a promising qubit robust against 
environmental noise [22]. The basis states of the degenerate 
logical qubit {|+1⟩, |−1⟩} are selected by light polarization as 
the bright state instead of energy. Although the optical 
holonomic quantum gate of the geometric spin qubit with 
quasi-resonant light has been demonstrated [13], it does not 
allow pulse shaping toward a robust pulse. 

We here demonstrate non-adiabatic holonomic quantum 
gates of a completely degenerate geometric spin qubit with 
just-resonant light to allow purely geometric rotation about 
an arbitrary axis by any angle defined by the light 
polarization and phase using the degenerate three-level Λ-
type system in a negatively charged NV center in diamond. 

The operating principle of the scheme is as follows. The 
state of polarized light is represented as a state vector in the 
Poincaré sphere, spanned by the right circular polarization 
|+1⟩  and the left circular polarization |−1⟩  (Fig. 1a). In 
contrast, the spin-1 electronic system in the NV center in 
diamond (Fig. 1b) provides us with the geometric spin bases, 
which are the degenerate |±1〉 states at the orbital ground 
state under a zero magnetic field. The orbital excited state 
|𝐴 ⟩ = (|+1⟩ |−1⟩ + |−1⟩ |+1⟩)/√2 , which generates and 
measures the entanglement of the photon polarization and 
the electron spin [20,23], offers the holonomy space [24-26] 
of the time-dependent Hamiltonian 

𝐻   
=  

( )
exp(𝑖𝛾) [cos |𝐴 ⟩⟨−1|   

                                + exp(𝑖𝜙) sin |𝐴 ⟩⟨+1| ] + H. c.           (1) 

, where 𝛺(𝑡) is the Rabi frequency, 𝛾 is the absolute phase of 
a rotation light, and 𝜃  and 𝜙  are given by the polarization 
state of the rotation light |𝜓⟩ = exp (𝑖𝛾) cos(𝜃/2) |+1⟩ +

exp (𝑖𝜙) sin(𝜃/2) |−1⟩ . Under the Hamiltonian, the bright 
state |𝐵⟩ = sin(𝜃/2)|+1⟩ + exp (𝑖𝜙)cos(𝜃/2)|−1⟩ evolves in 
the spin-orbit space spanned by  |𝐴 ⟩ and |𝐵⟩  (Fig. 1c), while 
the dark state |𝐷⟩ = cos(𝜃/2)|+1⟩ − exp (𝑖𝜙)sin(𝜃/2)|−1⟩ is 
decoupled from the |𝐵⟩  state. The interaction Hamiltonian 
after the basis transformation is 

              𝐻  =  
( )

[exp (𝑖𝛾)|𝐴 ⟩⟨𝐵| + exp (−𝑖𝛾)|𝐵⟩⟨𝐴 |].   (2) 

The unitary operator is as follows: 

𝑈 (𝛾) =  exp (−𝑖
1

2
𝛺(𝑡′) 𝑑𝑡′𝒏(𝛾) ∙ 𝛔( ,  )) 

+ |𝐷⟩⟨𝐷|.                                                            (3) 

,where 𝒏(𝛾) = (cosγ, sinγ, 0) is a unit vector indicating the 

rotation axis, and  𝛔( ,  ) = σ
( ,  )

, σ
( ,  )

, σ
( ,  )

 are the 
Pauli operators in the spin-orbit space based on |𝐵⟩ and |𝐴 ⟩. 
To realize universal single-qubit gates, we divide the  |𝐵⟩ 
state evolution time T into two segments (Fig. 1c). At the first 
segment (0 ≤  𝑡 ≤  𝑇/2), we choose the absolute phase 𝛾 
and pulse area ∫ 𝛺(𝑡′)

/
𝑑𝑡 =  𝜋 of the rotation light.   At the 

second segment ( 𝑇/2 ≤  𝑡 ≤  𝑇 ), we choose the absolute 
phase 𝛾′  and pulse area ∫ 𝛺(𝑡′′)

/
𝑑𝑡′′ =  𝜋 .  The 

corresponding evolution operator after a round trip in the 
spin–orbit space to show the optical holonomic gates 𝑈 (∆𝛾) 
becomes 

              𝑈 (∆𝛾) = 𝑈 (𝛾 )𝑈 (𝛾) 
                             = −exp(i∆𝛾)|𝐴 ⟩⟨𝐴 | 
                                  −exp(−i∆𝛾)|𝐵⟩⟨𝐵|+|𝐷⟩⟨𝐷|,                      (4) 

where ∆𝛾 = 𝛾′ − 𝛾 is the relative phase of the rotation pulses. This 
means that the |𝐵⟩ state acquires a geometric phase or holonomy 
∆𝛾 traced out by the |𝐵⟩ state evolution (Fig. 1d).  Let us consider 
the X gate as an example. First, an electron spin state is prepared in 
|+1⟩ in the Z basis, which is rewritten as the superposition state 
(|+⟩ + |−⟩)/√2  in the X basis. Then, we irradiate the prepared 
state with vertically polarized light |+⟩  to drive only the |+⟩ state. 
The |+⟩ state acquires the geometric phase ∆𝛾, which corresponds 
to one-half of the solid angle enclosed by the orbital trajectory in the 
spin–orbit space. As a result, the final state becomes 
[−exp (−𝑖∆𝛾)|+⟩ + |−⟩]/√2. 

We used a native NV center in a high-purity type-IIa 
chemical-vapor-deposition-grown bulk diamond with a 
〈001〉 crystal orientation (electronic grade from Element Six) 
without ion implantation dose or annealing. A negatively 
charged NV center located ∼5 μm below the surface was 
found using a confocal laser microscope. A 25-μm copper 
wire mechanically attached to the surface of the diamond was 
used to apply a microwave. An external magnetic field was 
applied to carefully compensate for the geomagnetic field, 
using a permanent magnet to monitor the optically detected 
magnetic resonance (ODMR) spectrum. The Rabi oscillation 
between |0⟩ ↔ |±1⟩ transition using microwave and Ramsey 
interference were also used to fine-tune the field. The NV 
center used in the experiment showed hyperfine splittings 
caused by the N nuclear spin at 2.175 MHz. All experiments 
were performed at 6 K to reduce the optical line width. 

Figure 1e shows the experimental setup. The electro-optic 
modulator (EOM) is the key device of the setup for IQ 
modulation (amplitude and phase) of the rotation light. The 
EOM is composed of two optical waveguides made of LiNbO  
and three electrodes. The phase of the rotation light is 
discretely changed, keeping the amplitude in the middle of 
the pulse at the reach of the |𝐴 ⟩ state by changing the DC 
bias voltages applied to the EOM. 

In order to decide the frequency and pulse length of the 
637-nm red laser, we carried out preliminary experiments. 
The photoluminescence excitation (PLE) spectrum of the 
optical transition of the NV center [27] was obtained first (Fig. 
2a). The splitting between the Ex and Ey transitions indicated 
the crystal strain was 2.9 GHz (absolute value).  

Figure 2b shows the optical |±1⟩ ↔ |𝐴 ⟩  transition used 
for the preparation, rotation and readout of the geometric 
spin. The light emission from the |𝐴 ⟩ state was observed by 
using the red laser and sweeping the frequency. The dark-
state preparation method was used to prepare the arbitrary 
geometric spin states [20]. The electron spin in the bright-
state continues to be serially excited to |𝐴 ⟩, and decays into 
bright and dark states with probabilities of 50% due to 
spontaneous relaxation. As a result, almost all the 
populations are trapped in the dark state. 

The prepared electron spin state was projected into six 
bases by the bright-state projection method [20]. From the 
difference in the photon count of the emission when 
irradiated by mutually orthogonal polarized lights, we 
obtained a projective component with respect to the light 



polarizations (|+⟩  and |−⟩  for the X-axis, |+𝑖⟩  and |−𝑖⟩  
for the Y-axis, |+1⟩  and |−1⟩  for the Z-axis). As shown in 
Fig. 2c, the fidelities of the states prepared for the six bases 
were {|+⟩, |−⟩, |+𝑖⟩, |−𝑖⟩, |+1⟩, |−1⟩} = {96%, 93%, 93%, 94%, 
94%, 97%}. Since direct transition between |+1⟩ and |−1⟩ is 
forbidden because their projected spin angular momentums 
differ by two, it is necessary to operate the geometric spin 
qubit via the ancillary |𝐴 ⟩ state with the polarized light. 

 

 
Fig. 2. Preparation experiments. (a) The photoluminescence 
excitation (PLE) spectrum of the optical transition of the NV 
center. (b) PLE spectrum of the |𝐴 ⟩  state. (c) Quantum state 
tomography prepared with states 
{ |+⟩, |−⟩, |+𝑖⟩, |−𝑖⟩, |+1⟩, |−1⟩ }. (d) Optical Rabi oscillation 
between the |𝐵⟩  and  |𝐴 ⟩ states . Note that the light for the 
preparation and rotation of the electron spin state were |+⟩  
and |−⟩ , respectively. 
 
The prepared state was irradiated with the 11 µW rotation 
light with a sweeping pulse length, leading to the optically 
driven Rabi oscillation in the spin-orbit space based on |𝐵⟩ 
and |𝐴 ⟩ with a period of 6.0 ns (Fig. 2d).  

Figure 3a shows the experimental pulse sequence for the optical 
holonomic gates. We first used a 532-nm green laser to initialize the 
electron spin states to the |0⟩ state [28], followed by the irradiation 
of a microwave to excite the |0⟩ state into the |±1⟩ state [29] and 
ready the light to prepare the arbitrary geometric spin states. We 
then used the rotation pulse of 6.0 ns obtained from the optical Rabi 
oscillation experiment. Note that the polarization of the preparation 
and rotation light are changed by π/2 radians (orthogonal) for the 
X, Y gates and π/4 radians for the Hadamard gate in the Poincaré 
sphere.  By changing the phase of the light by  ∆𝛾 in the middle of 
the pulse, the prepared state acquires the corresponding geometric 
phase π − ∆𝛾 (Fig. 3b). 

Figure 4a shows the time evolution from the ideally prepared 
states to the states after the X, Y and Hadamard gate operations. The 
distortion of the Bloch sphere shows the fidelity degradation. The 
fidelities of the optical holonomic quantum gates were evaluated by 
quantum process tomography [30] to be 95%, 94%, and 91% for 
the X, Y, and Hadamard gates, respectively (Fig. 4b). The fidelity 
degradation occurred due to the distortion of the rotation axis 
defined by the polarization of the rotation light. Since the |𝐵⟩ state 

determined by the polarization of the rotation light and the 
prepared state are not orthogonal in the Bloch sphere, fidelity 
degradation occurs. To solve this problem, we can use the 
polarization compensation method, which makes effective 
p o l a r i ze d  l i g ht  w i t h  r e s p e c t  t o  a n  NV  a x i s  [ 1 3 ] . 

 

 
Fig. 3. Optical holonomic quantum gates of an electron spin. 
(a) Pulse sequence for the optical holonomic quantum gates. (b) 
Estimated quantum states before and after the optical holonomic 
gates. The initial states indicated by red dots are rotated about 
the X, Y, and (𝑋 + 𝑍)/√2 axes to the final states, indicated by 
blue dots. 
 

The reason why the radius of the achieved trajectories was 
smaller than expected (Fig. 3b) is thought to be the spontaneous 
emission from the |𝐴 ⟩ state. There are two schemes to solve this 
problem. The first is the quasi-resonant scheme using laser pulses 
detuned from the |𝐴 ⟩ state [13,14] and the second is the just-
resonant scheme. In the quasi-resonant scheme, pulse shape 
flexibility is lost because of the detuning ∆, as shown below. The 
system Hamiltonian in the quasi-resonant scheme is represented 
b y  𝐻(𝑡) = 𝛺(𝑡)/2[exp (𝑖𝛾)|𝐴 ⟩⟨𝐵| + exp (−𝑖𝛾)|𝐵⟩⟨𝐴 |] +
∆|𝐴 ⟩⟨𝐴 |. To maintain the geometrical features of the evolutions 
of the quantum system, it is necessary that the Hamiltonian satisfy 
at different times 𝑡 =  𝑡 , 𝑡  during a pulse the commutation 
relation [𝐻(𝑡 ), 𝐻(𝑡 )] = 0, which requires 𝛺(𝑡 ) = 𝛺(𝑡 ) under 
a non-zero constant ∆ [16]. The pulse satisfying this condition is 
only a square pulse 𝛺(𝑡)  = const. (0 ≤  𝑡 ≤  𝑇). Therefore, the 
single-pulse quasi-resonant scheme does not allow waveform 
shaping to improve the fidelity of the rotation gate, and thus 
requires precise control of both laser power and detuning to satisfy 
the rotation angle defined as 𝜋 1 − ∆/√𝛺 + ∆ . On the other 
hand, the system Hamiltonian in the multi-pulse resonant scheme 
i s  r e p r e s e n t e d  b y  𝐻(𝑡) = 𝛺(𝑡)/2[exp(𝑖𝛾) |𝐴 ⟩⟨𝐵| +
exp (−𝑖𝛾)|𝐵⟩⟨𝐴 |] , where the detuning has vanished. The 
commutation relation is therefore satisfied regardless of any time 
dependence of Ω(t), allowing for waveform shaping, and thus we 
can focus only on the precise control of the phase difference ∆γ 
between the rotation pulses to improve gate fidelity. Moreover, we 



will be able to suppress spontaneous emission from the |𝐴 ⟩ state 
by changing the phase of each L segment of the multiple-pulsed 
r e s o n a n t  l a s e r  l i g h t  d u r i n g  a  s i n g l e  l o o p . 
 

 
Fig. 4. Quantum process tomography. (a) Bloch sphere 
representation of the  quantum process from ideally prepared states to 
the states  after X, Y and Hadamard gate operations. (b) χ matrix 
elements reconstructed by the quantum process tomography to 
represent the X, Y and Hadamard gate operations. 
 
Note that the optical holonomic gates demonstrated here 
belong to L = 2 holonomic gates. Another merit of the scheme 
is that a single loop requires only the phase change and 
frequency maintenance to reduce the number of control 
parameters causing various errors, and is thus suitable for 
gating the degenerate geometric spin qubit that requires a 
single-frequency laser pulse. 

We demonstrated non-adiabatic non-abelian holonomic 
quantum gates over a geometric electron spin with arbitrary 
polarized resonant light to an average fidelity of 93%. Since 
the control light is completely resonant to the energy gap 
between the geometric qubit and the ancillary state, the 
demonstrated holonomic gate is not only fast with low power, 
but also precise without the dynamical phase being 
influenced by the control error and environmental noise, 
paving the way for realization of a universal quantum 
computer, which requires long memory time and a quantum 
repeater for long-distance quantum communication [31]. 
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