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CHAPTER 1

INTRODUCTION

In this dissertation, unless otherwise stated, all manifolds and mappings belong to class
C* and all manifolds are without boundary. In Chapter 1, by N (resp., P), we denote a
manifold of dimension n (resp., p). Let C*°(N, P) be the set of C°° mappings of N into P,
and the topology on C*°(N, P) is the Whitney C*° topology (for the definition of Whitney
C* topology, see for example [6]). For given mappings f,g € C*°(N, P), we say that f
is A-equivalent to ¢ if there exist diffeomorphisms ® : N — N and ¥ : P — P such that
f=%ogo®d ' A mapping f is said to be stable if the A-equivalence class of f is open in
C>(N,P).

The following problem was posed by René¢ F. Thom (|26]).
Problem 1.0.1 (Structural stability problem). Are the stable mappings of N into P dense
in C°(N,P)?

The celebrated series by John N. Mather [15, 16, 17, 18, 19, 20] are essential for the stability
of C*° mappings. In [20], Mather stated the following answer to Structural stability problem.
Theorem 1.0.1 ([20]). Let N be a compact manifold of dimension n. Let P be a manifold

of dimension p. Then, stable mappings in C°°(N, P) are dense if and only if the pair (n,p)
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satisfies one of the following conditions.
(1) n<$p+% and p—n >4
2)n<Sp+2and3>p-—n=>0
(3) p<8andp—n=-1
(4) p<6andp—n=-2
5) p<Tandp—n<-3

A dimension pair (n,p) is called a nice dimension if (n,p) satisfies one of the conditions

(1)-(5) in Theorem 1.0.1.

After the celebrated series |15, 16, 17, 18, 19, 20|, Mather also showed striking results in
[21]. Let £(R™ R) be the set consisting of all linear mappings of R™ into R’. We have the
natural identification £(R™,RY) = (R™)~.

Theorem 1.0.2 (|21]). Let N be a compact manifold of dimension n. Let f be an embedding
of N into R™. If (n,{) is in the nice dimensions and m > {, then there exists a subset
¥ C L(R™,RY) with Lebesque measure 0 such that for any © € LR™ RY) =%, mof : N — R*

15 stable.

In Structural stability problem, the domain in which we can perturb a given mapping
of N into R’ is the space C*°(N,R’). On the other hand, in Theorem 1.0.2, for a given
embedding f : N — R™ and a linear mapping 7 € £L(R™,R?), the domain in which we can
perturb a mapping o f : N — R is not C°(N,R?) but L(R™, RY). Namely, in the theorem,
it is necessary to consider perturbations under a constraint condition. In this dissertation,

as in Theorem 1.0.2, generic mappings under given constraint conditions are investigated.

In Chapter 2, compositions of generic linearly perturbed mappings and immersions,
injections or embeddings are investigated. Let f : N — U (resp., F' : U — R’) be an
immersion, an injection or an embedding (resp., a mapping), where U is an open subset of
R™. Then, for a given linear mapping = € L(R™,R?), the domain in which we can perturb
a mapping (F 4+ 7)o f: N — R’ is not C°(N,RY) but £(R™,R?). Namely, it is necessary

to consider perturbations under a constraint condition.



Chapter 1. Introduction 3

In Chapter 3 (resp., Chapter 4), we introduce the notion of a distance-squared mapping
(resp., a Lorentzian distance-squared mapping), wherein each component is a distance-
squared function (resp., a Lorentzian distance-squared function). In the space consisting of
all distance-squared mappings of R™ into R (resp., all Lorentzian distance-squared map-
pings of R into R¢ ), a characterization of generic distance-squared mappings (resp., generic
Lorentzian distance-squared mappings) are given. Here, note that the domain in which we

can perturb these quadratic mappings is (R™)’.

In Chapter 5, we introduce the notion of a generalized distance-squared mapping. The no-
tion is an extension of the notions of a distance-squared mapping and a Lorentzian distance-
squared mapping. By applying some assertions in Chapter 2 to generalized distance-squared

mappings, some properties of generic generalized distance-squared mappings are obtained.



CHAPTER 2

SOME ASSERTIONS ON GENERIC LINEAR

PERTURBATIONS

2.1 Composing generic linearly perturbed mappings and im-

mersions/injections

2.1.1 Introduction

In Section 2.1, let £, m and n stand for positive integers. Let 7 : R™ — R’ U and

F :U — R’ be a linear mapping, an open set of R™ and a mapping, respectively.

Set
F,=F+m.

Note that the mapping 7 in F; = F' + 7 is restricted to the open set U.

Let £(R™ RY) be the set consisting of all linear mappings of R™ into Rf. Notice that

we get the natural identification L(R™, RY) = (R™)*. An n-dimensional manifold is denoted
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by N. For a given mapping f : N — U, a property of mappings Fro f: N — R’ will be
said to be true for a generic mapping if there exists a subset ¥ C £(R™,R?) with Lebesgue
measure 0 such that for any 7 € L(R™ RY) — %, the mapping Fy o f : N — R’ has the
property. In the case of F' = 0, by John Mather, for a given embedding f : N — R™, a
generic mapping 7o f : N — R’ (m > /) is investigated in [21]. The main theorem in [21]
yields a lot of applications. On the other hand, in Section 2.1, for a given immersion or a
given injection f : N — U, a generic mapping Fy o f : N — R’ is investigated, where £ is

an arbitrary positive integer which may possibly satisfy m < /.

The main purpose in Section 2.1 is to show two main theorems (Theorems 2.1.1 and 2.1.2
in Section 2.1.2) and to give some their applications. The first main theorem (Theorem 2.1.1)
is as follows. Let f : N — U (resp., F : U — R’) be an immersion (resp., a mapping). Then,
generally, the composition F o f does not necessarily yield a mapping transverse to a given
subfiber-bundle of the jet bundle J* (N, R?). Nevertheless, Theorem 2.1.1 states that for any
Al-invariant fiber, a generic mapping Fy o f yields a mapping transverse to the subfiber-
bundle of J'(N,R?) with the given fiber. The second main theorem (Theorem 2.1.2) is a
specialized transversality theorem on crossings of a generic mapping Frof, where f : N - U

is a given injection and F : U — R’ is a given mapping.

For a given immersion (resp., injection) f : N — U, we obtain the following (1)-(4)

resp., (5)) as applications of Theorem 2.1.1 (resp., Theorem 2.1.2).
(resp., ( pp D,
(1) If (n,¢) = (n,1), then a generic function F o f: N — R is a Morse function.

(2) If (n,f) = (n,2n — 1) and n > 2, then any singular point of a generic mapping

Frof:N — R?>!is a singular point of Whitney umbrella.
(3) If £ > 2n, then a generic mapping Fy o f : N — R’ is an immersion.

(4) A generic mapping Fy o f : N — R’ has corank at most & singular points (for the defi-
nition of corank at most k singular points, see Section 2.1.5), where k is the maximum

integer satisfying (n —v 4+ k)({ — v+ k) <n (v=min{n, £}).
(5) If £ > 2n, then a generic mapping Fy o f : N — R’ is injective.

Furthermore, by combining the assertions (3) and (5), for a given embedding f : N — U,
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we obtain the following assertion (6).

(6) If £ > 2n and N is compact, then a generic mapping Fyo f : N — R’ is an embedding.

In Section 2.1.2, some fundamental definitions are reviewed, and the two main theorems
(Theorems 2.1.1 and 2.1.2) are stated. Section 2.1.3 (resp., Section 2.1.4) is devoted to the
proof of Theorem 2.1.1 (resp., Theorem 2.1.2). In Section 2.1.5, the assertions (1)-(6) above

are shown.

2.1.2 Preliminaries and the main results in Section 2.1

Firstly, we recall the definition of transversality. Let N and P be manifolds.

Definition 2.1.1. Let W be a submanifold of P. Let g : N — P be a mapping.

1. A mapping g : N — P is said to be transverse to W at q if g(q) ¢ W or in the case of
9(q) € W, the following holds:

dgq(TqN) + Tg(q)W = Tg(q)P.

2. A mapping g : N — P is said to be transverse to W if for any ¢ € N, the mapping g

is transverse to W at gq.

A mapping g : N — P is said to be A-equivalent to a mapping h : N — P if there exist

two diffeomorphisms ® : N — N and ¥ : P — P satisfying g = Vo ho &L,

Let J"(N, P) be the space of r-jets of mappings of N into P. For a given mapping
g : N — P, the mapping j"¢g : N — J"(N, P) is defined by ¢ — j"g(q) (for details on the

space J"(N, P) or the mapping j"¢g : N — J"(N, P), see for instance, [6]).

For Theorem 2.1.1, it is sufficient to consider the case of r = 1 and P = R’. By
{(Ux, ©x)}ren, we denote a coordinate neighborhood system of N. Let IT : J'(N,RY)—
N xR’ be the natural projection defined by T1(jg(q)) = (¢, 9(q)). Let @y : I~ (Uy x RY) —

o (Uy) x RY x J'(n, £) be the homeomorphism as follows:

@5 (7'9(a)) = (eala), 9(@), 5 (1, 0 g o 03" 0 EA)(0))
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where J(n, £) = {j'g(0) | g : (R™,0) — (R*,0)} and &y : R™ — R™ (resp., 1 : R™ — R™) is
the translation given by ©,(0) = ¢x(q) (resp., ¥x(g(q)) = 0). Then, we see that {(TI"1 (U, x
R?), @)} aea is a coordinate neighborhood system of J!(N, RY). We say that s subset X of
JY(n,?) is Al-invariant if for any j'¢g(0) € X, and for any two germs of diffeomorphisms
H : (R,0) — (R%0) and & : (R™,0) — (R™,0), we get j'(H o goh™1)(0) € X. For an

Al-invariant submanifold X of J!(n, ¢), set

X(NV,RY) = | ;! <¢AUA xR’fo)
AEA

Then, the set X (N,R?) is a subfiber-bundle of J'(N,R?) with the fiber X satisfying

codim X(N,RY) = dim J*(N,R") — dim X(N,R)
= dim J'(n,¢) — dim X

= codim X.

Then, the first main theorem in Section 2.1 is the following.
Theorem 2.1.1 ([7]). Let f : N — U be an immersion, where N is a manifold of dimension
n and U is an open subset in R™. Let F : U — RY be a mapping. If X is an A'-invariant
submanifold of J'(n,£), then there exists a subset ¥ C L(R™,RY) with Lebesgue measure 0
such that for any m € LR™ RY) — %, the mapping j (Fro f) : N — JY(N,RY) is transverse

to X (N,RY).

For the statement of the second main theorem (Theorem 2.1.2), we will prepare some
definitions. Set N = {(q1,q2,...,¢5) € N°* | ¢; # ¢; (1 # j)}. Note that N is an open
submanifold of N®. For a given mapping g : N — P, let g(s) : N©) — P$ be the mapping
defined by

a1 a2, as) = (9(q1), 9(a2), - - - 9(as)).

Set Ay = {(y,...,y) € P® |y € P}. Tt is not hard to see that A; is a submanifold of P?
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satisfying
codim Ay = dim P® —dim A; = (s — 1)dim P.

Definition 2.1.2. Let g : N — P be a mapping. Then, we say that g is a mapping with
normal crossings if for any positive integer s (s > 2), the mapping g®) : N6 — ps g

transverse to Ag.

For a given injection f: N — R™, set

Sf = rnax{s

Since the mapping f is an injection, we have 2 < sy. Since f(q1), f(g2),-- -, f(gs,) are points

V(Q1aQ2, . ,qs) € N(s)’dlm ZRJC(QI)JC(% = S — 1} .
=2

of R™, we get sy < m + 1. Hence, it follows that
2<sp<m+1

Moreover, in the following, for a set X, we denote the number of its elements (or its cardi-
nality) by |X|. Then, the second main theorem in Section 2.1 is the following.

Theorem 2.1.2 ([7]). Let f: N — U be an injection, where N is a manifold of dimension
n and U is an open subset in R™. Let F : U — R’ be a mapping. Then, there exists a subset
¥ C L(R™,RY) with Lebesque measure 0 such that for any m € L(R™,RY) — X, and for any
s (2 < s < sf), the mapping (Fr o B NG (RYS is transverse to A,. Furthermore,
if the mapping Fr satisfies that |[F7'(y)| < s¢ for any y € RY, then Frof : N — Rl is a

mapping with normal crossings.

The following lemma is important for the proofs of Theorems 2.1.1 and 2.1.2.
Lemma 2.1.1 ([1], [21]). Let N, P, Z be manifolds, and let W be a submanifold of P.
LetT' : N x Z — P be a mapping. If the mapping U is transverse to the submanifold W,
then there exists o subset ¥ C Z with Lebesgue measure 0 such that for any p € Z — X, the
mapping I'p : N — P is transverse to the submanifold W, where T'p,(q) =T'(¢,p).
Remark 2.1.1. 1. There is an advantage that the domain of the mapping F' is not R™

but an open subset U. Suppose that U = R. Let F': R — R be the function given by
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x > |z|. Since F' is not differentiable at = 0, we cannot apply Theorems 2.1.1 and

2.1.2 to the function F : R — R.

On the other hand, if U = R — {0}, then the two main theorems can be applied to

Fly.

2. There is a case of sy = 3 as follows. If n+1 <m, N = S" and f: 5" — R™ is the
inclusion f(x) = (z,0,...,0), then it is easily seen that sy = 3. Indeed, suppose that
there exists a point (q1,q2,q3) € (S™)® satisfying dim 25’22 Rm = 1. Then,
since the number of the intersections of f(S™) and a straight line of R™ is at most
two, this contradicts the assumption. Hence, we have sy > 3. From S' x {0} C f(S™),

we get sy < 4, where 0 = (0,...,0). Thus, it follows that s; = 3.
———
(m—2)-tuple

2.1.3 Proof of Theorem 2.1.1

Let (cij)1<i<ei1<j<m be a representing matrix of a linear mapping 7 : R™ — R*. Set

F, = F. Then, we get

Fa(x) = (Fl (w) + Z Q1;T;, FQ(.%’) + Z Q25 Ty - ,Fg(x) + Z ozgjx]), (2.1.1)
=1 =1

j=1
where F' = (Fl,FQ, ce ,Fg)7 o = (0411,0412, e s Oy e o0, Op1, Op2,y - .,Oé@m) S (Rm)é and x =
(z1,29,...,2m). For a given immersion f : N — U, the mapping F, o f : N — R’ is given
by

m m m
Fa Of = <F1 Of—I—ZOéljfj,FQ Of—l— ZOéijj,...,FgOf—l— ZO&@‘fj), (212)

j=1 j=1 j=1
where f = (fi, f2,---, fm). Since we have the natural identification £(R™,Rf) = (R™)’,
for the proof, it is sufficient to prove that there exists a subset ¥ C (R™)* with Lebesgue
measure 0 such that for any a € (R™)’ — X, the mapping j{(F, o f) : N — JYN,R) is

transverse to X (N, RY).



Chapter 2. Some assertions on generic linear perturbations 10

Now, let I' : N x (R™)* — J'(N,R?) be the mapping given by

I'(q,a) = j' (Fao f)(q).

If T is transverse to X (IV, RY), then from Lemma 2.1.1, there exists a subset ¥ C (R™)¢ with
Lebesgue measure 0 such that for any o € (R™)¢ — ¥, the mapping I'y : N — JY(N,RY)
(Tq = jY(F, 0 f)) is transverse to X (N,R?). Thus, in order to finish the proof of Theo-

rem 2.1.1, it is sufficient to prove that if I'(, @) € X (N,R?), then the following holds:
T G5 (Tga (N x (R™") + Trga X (N, RY) = Trga J (N, R"). (2.1.3)

As in Section 2.1.2, let {(Ux, oa)}ren (resp., {(IT71(Uy x RY), ®y)}rea) be a coordinate
neighborhood system of N (resp., J'(N,R)). Then, there exists a coordinate neighborhood
(Uz x (R™)*, 5 x id) containing the point (¢,@) of N x (R™)*, where id : (R™)* — (R™)
is the identity mapping, and the mapping 5 x id : Uz X (R™)¢ — 5 (Uz) x (R™)f (C R™ x
(R™)*) is given by (¢5 xid) (q,) = (¢5(q),id(c)). There exists a coordinate neighborhood
(I (U5, x RY), ®5) containing the element I'(g, &) of J*(N, RY). Lett = (t1,ta,...,t,) € R?
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be a local coordinate on ¢5(Us) containing ¢5(g). Then, I' is locally given by

(50T o (5 xid)™

(t:(Fao Foeh)(®),

Y,

(@505"(Fao f)o w5 )t

)

)

OFurofops)  OFuiofors)  O(Faiofogs))
8t1 (t)’ 8t2 (t)v M) 8tn (t)7

a(FaQOfOSOil) 3(Fa20fog0~) a( a720f030~)
e D

O(Fayofops') —O(Fapofopl) O(Fayofop:!)
), T, (ﬂ)

3Fgof " af
ot Z e, o

where Fo, = (Fo1,Fo2,- .-,

8Fg o f
) Oto

F, ) and f: (]71,]?2,

)+ S G

“ey

7fm) =
gpil) =fo gpil. The Jacobian matrix of I" at the point (g, @) is the following:

8Fgof

Z "Jat] )

(f10@§17f20g0~1, "7fmo
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E, 0 0
* *
i
(Jf7) 0
Il Ga) = ;
* “J ;j)
0
J f7)

(t,)=(px(2),@)

where J f7 is the Jacobian matrix of the mapping f at the point ¢ and £, is the n x n unit
matrix. Notice that {(.J ;) is the transpose of J f7 and that there are £ copies of {(J f5) in the
above description of JT'(z ). Since the manifold X (N, R’) is a subfiber-bundle of J*(N,R)
with the fiber X, it is clearly seen that in order to show (2.1.3), it suffices to show that the

matrix M given below has rank n + £ + nf:

En+€ * *

=

!
@]
<
<

Jf3)

(t,0)=(¢5(2),®)

where E, 1, is the (n + £) X (n + ¢) unit matrix. Notice that there are £ copies of 1(J f3) in
the above description of Mj. Note that for any ¢ (1 < i < m/), the (n + £ 4 i)-th column
vector of M coincides with the (n +1)-th column vector of JI'(g ). Since f is an immersion

(n <'m), it follows that the rank of M; is equal to n + ¢+ nf. Therefore, we get (2.1.3). O
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2.1.4 Proof of Theorem 2.1.2

By the same method as in the proof of Theorem 2.1.1, set F, = F, where F|, is given
by (2.1.1) in Section 2.1.3. For a given injection f : N — U, the mapping Fyo f: N —
R’ is given by the same expression as (2.1.2). Since we have the natural identification
LR™ RY) = (R™), in order to prove that there exists a subset ¥ C L(R™,RY) with
Lebesgue measure 0 such that for any 7 € L(R™,R®) — %, and for any s (2 < s < sy), the
mapping (Fy o f)®) : N} - (RY)® is transverse to A, it is sufficient to prove that there
exists a subset ¥ C (R™)’ with Lebesgue measure 0 such that for any o € (R™)! — ¥, and

for any s (2 < s < s;), the mapping (F, o f)(*) : N&) — (R?)® is transverse to As.

Now, let s be a positive integer satisfying 2 < s < sy. Let T': N® x (R™)¢ — (RY)® be

the mapping given by

(a1, 92,5 4s,0) = (Fa o f)(qr), (Fa o f)(g2), -5 (Fa o f)(gs)) -

If for any positive integer s (2 < s < sy), I' is transverse to A, then from Lemma 2.1.1,
we have that for any positive integer s (2 < s < s¢), there exists a subset ¥, C (Rm)Z with
Lebesgue measure 0 such that for any o € (R™)¢ — X, the mapping 'y : N — (RY)*
(T = (Fao £)®)) is transverse to Ag. Then, set ¥ = [J.2, ;. We see that X has Lebesgue
measure 0 in (R™)¢. Hence, it follows that for any o € (R™)* %, and for any s (2 < s < s¢),

the mapping Iy : N®) — (RY)* (I'y = (F, o f)®)) is transverse to Ag.

Thus, for the proof of this theorem, it is sufficient to prove that for any positive integer

5 (2<s<sy),ifI'(g,a) € As (= (q1,G2,---,Gs)), then the following holds:

T G5 (Tga (NP x R™) + Trga) As = Trga) (R’ (2.1.4)

4,0)
Let {(Ux, ©x)}rea be a coordinate neighborhood system of N. Then, there exists a coordi-
nate neighborhood (le x Uz, x -+ x Uz % (R™), Px, X PR, XX e, X id) containing
the point (g, &) of N() x (R™)*, where id(R™)’ :— (R™)’ is the identity mapping, and the
mapping 5 X @5, X+ X5 xid: Uy x Uz x---x Uz x (R™)¢ — (R™)® x (R™)* is defined

by (¢35, X @5, X - x5 xid)(q1, g2, - - - gs, @) = (95, (@1), ¢5, (@) - - - 5, (¢5), id(e)). Let
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t; = (ti1,ti2, ..., tin) be a local coordinate around gox((}}) (1 <i<s). Then, I' is locally

given by the following:

To ((pxl % (‘DX2 X oo X (st X’Ld) _1(t1,t2,...,ts,a)

= ((Fuo fopi)t), (Fao fowi(ta), ., (Fao fowi)(ts)

= | Fiof(t) + D anifi(tn), Fao f(t) + Y asi fi(h), ..., Foo f() + D ag fi(h),

j=1 j=1 j=1
~ m ~
Fi o f(t) +Zaljfj ta), Fy o f(t2) +Zazjfj t2), ,FfOf(t2)+ZOéejfj(t2),
J=1 7j=1 7j=1
Fy o f(t Zaufj ), Fyo f(ts Zoejf] L Fyo flts Z%Jz ,

where f(t:) = (fu(t:), Ja(ts), . fn(t)) = (fr0 @05 (1), fo 0 93 (85, S 0 951 () (1 <

i <s). Set t = (t1,t2,...,1s) and z = (o5, X @5, X -+ X 05 )(@1, G2, - - -, ds)-

The Jacobian matrix of I" at the point (g, @) is the following:
* B(tl)

Il Ga

q,@) )

(t,a)=(z,a)
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where

{ Tows

and b(t;) = (f1(t:), f2(t:), ..., fm(t:)). By the construction of Tr(gaAs, for the proof of

(2.1.4), it is sufficient to prove that the rank of the following matrix Mj is equal to /s:

My

Ey

Ey

E,

B(t1)

B(tz)

B(ts)

There exists an £s X £s regular matrix () satisfying

Q1M =

E,

B(t1)

B(ts) — B(t1)
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There exists an (£ +mf) x (£ + m{) regular matrix Q2 satisfying

Q1 M2Q>

PRI

E,

B(ts) — B(t1)

0 B(ts) - B(tl)
==
f(t) f(t2) 0
==
0 f(t)f(t2)
0
==
f(t1) f(t2)
==
Fiie,) 0
==
0 Fiie,)
0
==
f(t)f(ts)

where f(t1)f(t:) = (fu(ti) = fi(tr), fa(ts) = fa(t1), - fn(ts) = frn(t1)) (2 < i < 5) and ¢ = 2.

From s — 1 < sy — 1 and the definition of s, we get

e

dimZRﬂtl)ﬂti) =s—1,

1=2

where t = z. Hence, by the construction of the matrix Q1 MsQ2 and s—1 < m, it follows that

the rank of Q1 M2@Q)s is equal to £s. Therefore, the rank of Ms must be equal to £s. Thus, we
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get (2.1.4). Hence, there exists a subset ¥ C £L(R™,R?) with Lebesgue measure 0 such that
for any 7 € L(R™,R")—X, and for any s (2 < s < s;), the mapping (Frof)(®) : N&) — (R

is transverse to Ag.

Furthermore, suppose that the mapping F} satisfies that |[F-1(y)| < s; for any y € R”.
Since f: N — R™ is an injection, we have that |(Fy o f)(y)| < sy for any y € R®. Thus,
it follows that for any positive integer s with s > sy 4 1, we get (Fy o HENGYN A, =
Namely, for any positive integer s with s > sy + 1, the mapping (Fy o f)(®) is transverse to

A,. Therefore, it follows that Fy o f : N — R’ is a mapping with normal crossings. a

2.1.5 Applications of Theorem 2.1.1

Set
{] g(0) € J'(n, £) | corank Jg(0) = k};

where corank Jg(0) = min{n, ¢} — rank Jg(0) and k = 1,2,...,min{n,¢}. Then, for any k

(k=1,2,...,min{n, £}), the set ¥* is an A'-invariant submanifold of J'(n, ¢). Set

FVLRY) = | @y (cp)\U)\ foxz’f)
AEA

where ®) and ) are as defined in Section 2.1.2. Then, *(N,R’) is a subfiber-bundle of
JY(N,RY) with the fiber ¥ satisfying

codim ¥¥(N,RY) = dim JY(N,R?) — dim X*(N,R")

= (n—v+k)(l—-v+k),

where v = min{n, ¢}. (For details on X* and ¥¥(N,R?), see for instance [6], pp. 60-61).

As some applications of Theorem 2.1.1, we get the following Proposition 2.1.1, Corollaries
2.1.1, 2.1.2, 2.1.3 and 2.1.4.
Proposition 2.1.1. Let f: N — U be an immersion, where N is a manifold of dimension

n and U is an open subset in R™. Let F : U — R’ be a mapping. Then, there ezists a
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subset ¥ C L(R™ RY) with Lebesgue measure 0 such that for any © € L(R™,RY) — X, the
mapping j1(Fr o f) : N — JY(N,RY) is transverse to ©F(N,RY) for any positive integer k
satisfying 1 < k < wv. Especially, in the case of £ > 2, we get ko + 1 < v and it follows that
G (Fy o f) satisfies that j*(Fy o f)(N) N ZF(N,RY) = 0 for any positive integer k satisfying
ko +1 < k < v, where ko is the mazimum integer satisfying (n — v + ko)(l —v + ko) <n

(v =min{n, (}).

Proof. From Theorem 2.1.1, for an arbitrary positive integer k satisfying 1 < k < v,
there exists a subset ¥, C L(R™ RY) with Lebesgue measure 0 such that for any 7 €
L(R™ RY) — 3, the mapping j1(Fy o f) : N — JY(N,RY) is transverse to 2¥(N,RY). Set
Y =Ui, . Then, it is clearly seen that & has Lebesgue measure 0 in £(R™, RY). Thus,
we have that there exists a subset ¥ C L£(R™,Rf) with Lebesgue measure 0 such that for
any m € L(R™,RY) — %, the mapping j'(Fyo f) : N — J'(N,R) is transverse to ©*(N, RY)
for any positive integer k satisfying 1 < k < v.

Now, we will consider the case of £ > 2. Firstly, we will prove that kg + 1 < v in the

case. Suppose that v < kg. Then, from (n — v + ko)({ — v + ko) < n, we get nl < n. This
contradicts the assumption ¢ > 2.

Secondly, we will prove that in the case of £ > 2, the mapping j'(Fyo f) : N — J'(N,RY)
satisfies that j'(F; o f)(N) (N ZF(N,RY) = () for any positive integer k satisfying ko + 1 <
k < v. Suppose that there exist a positive integer k (kg + 1 < k < v) and a point ¢ € N
satisfying j'(Fy o f)(q) € F(N,Rf). Since j'(Fro f) : N — J'(N,R") is transverse to
YF(N,RY) at g, the following holds:

d(j' (Fr 0 )a(TeN) + T (o)) =" (N RY) = T (05T (N RY).
Therefore, it follows that

dim d(j'(Fx o f))q(TgN)
> dim Tj(rop g (N, R) = dim Tja (o)) = (N, RY)

= codim ’le(Fﬂof)(q)Ek(N, RZ)
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Hence, we have n > (n — v + k)({ — v + k). Since ko is the maximum integer satisfying
n>(n—v+ko)(l —v+ky), we get k < kg. This contradicts the assumption kg +1 < k. O
Remark 2.1.2. 1. In Proposition 2.1.1, by (n — v + ko)(¢ — v + ko) < n, it is not hard

to see that kg > 0.

2. In Proposition 2.1.1, in the case of £ = 1, we get kg + 1 > v. Indeed, in the case, by

v =1, we have (n — 1 + kg)ko < n. Thus, it follows that ko = 1.

A mapping g : N — R is called a Morse function if all of the singularities of g are
nondegenerate (for details on Morse functions, see for instance, [6], p.63). In the case of
(n,?) = (n,1), we get the following.

Corollary 2.1.1. Let f: N — U be an immersion, where N is a manifold of dimension n
and U is an open subset in R™. Let F': U — R be a mapping. Then, there exists o subset
¥ C L(R™, RY) with Lebesgue measure 0 such that for any m € L(R™,R) — X, the mapping

Frof: N —Risa Morse function.

Proof. From Proposition 2.1.1, there exists a subset ¥ C L(R™ R) with Lebesgue mea-
sure 0 such that for any 7 € L(R™ R) — ¥, the mapping j!(F; o f) : N — J}(N,R)
is transverse to L'(N,R). Therefore, if ¢ € N is a singular point of Fy o f, then ¢ is

nondegenerate. O

For a given mapping g : N — R?"~! (n > 2), a singular point ¢ € N is called a singular
point of Whitney umbrella if there exist two germs of diffeomorphisms H : (R*"~1, g(q)) —
(R?2"=1.0) and h : (N, q) — (R",0) satisfying

—1 2
Hogoh™  (z1,22,...,%n) = (2], 2122, ..., T1Tpn, T2, ..., Tn),

where (x1,29,...,2y,) is a local coordinate around h(q) = 0 € R™. In the case of (n,f) =
(n,2n —1) (n > 2), we get the following.

Corollary 2.1.2. Let f: N — U be an immersion, where N is a manifold of dimension n
(n>2) and U is an open subset in R™. Let F : U — R*"~! be a mapping. Then, there exists
a subset ¥ C L(R™, R?"~1) with Lebesgue measure 0 such that for any © € L(R™ R*~—1) -3,

any singular point of the mapping Fr o f : N — R?"~! is a singular point of Whitney
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umbrella.

Proof. From, for instance, [6], p. 179, we see that a point ¢ € N is a singular point of
Whitney umbrella of the mapping Fy o f if 71(Fy o f)(¢q) € BY(N,R**~1) and j'(Fy o f)
is transverse to X1 (N,R?*~1) at ¢q. Set £ = 2n — 1 and v = n in Proposition 2.1.1. Then,
it is clearly seen that we get k9 = 1 in Proposition 2.1.1. Therefore, there exists a subset
¥ C L(R™,R?"~1) with Lebesgue measure 0 such that for any 7 € L(R™ R?*"~1) — %,
the mapping Fr o f : N — R?"~! is transverse to X*(NV,R?"~1) for any positive integer
k satisfying 1 < k < n, and the mapping satisfies that j!(Fy o f)(N) N ZF(N,R*~1) = ()
for any positive integer k satisfying 2 < k < n. Hence, if ¢ € N is a singular point of the
mapping F o f, then we have that j'(Fyo f)(¢q) € X1 (N,R*~1) and j'(Fy o f) is transverse

to (N, R?1) at q. O

In the case of £ > 2n, the immersion property of a given mapping f : N — U is preserved
by composing generic linearly perturbed mappings as follows:
Corollary 2.1.3. Let f: N — U be an immersion, where N is a manifold of dimension n
and U is an open subset in R™. Let F : U — R be a mapping (¢ > 2n). Then, there exists
a subset ¥ C L(R™,RY) with Lebesque measure 0 such that for any m € LIR™,RY) — X, the

mapping Fr o f : N = RY is an immersion.

Proof. It is not hard to see that Fr o f : N — R’ is an immersion if and only if
JU(Fro £Y(N)NUp—; ZF(N,RY) = ). Set v =n and £ > 2n in Proposition 2.1.1. Then, it
is not hard to see that ky < 0. From Remark 2.1.2, we have kg = 0. Thus, there exists a
subset ¥ C L(R™,RY) with Lebesgue measure 0 such that for any 7 € L(R™,RY) — X, the
mapping j1(Fy o f) : N — JY(N,R?) satisfies that j'(Fy o f)(N) [ ZF(N,R) = 0 for any

positive integer k£ (1 < k < n). O

A mapping g : N — R’ has corank at most k singular points if

sup {corank dg, | ¢ € N} <k,

where corank dg, = min{n, ¢} — rank dg,. From Proposition 2.1.1, we get the following.
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Corollary 2.1.4. Let f : N — U be an immersion, where N is a manifold of dimension
n and U is an open subset in R™. Let F : U — R* be a mapping. Let ko be the mazimum
integer satisfying (n — v + ko)({ — v+ ko) <n (v =min{n,l}). Then, there exists a subset
¥ C L(R™,RY) with Lebesgue measure 0 such that for any 7 € LIR™,RY) — X, the mapping

Frof: N — R has corank at most ko singular points.

2.1.6 Applications of Theorem 2.1.2

Proposition 2.1.2. Let f: N — U be an injection, where N s a manifold of dimension
n and U is an open subset in R™. Let F': U — R’ be a mapping. If (s — 1) > nsy,
then there exists a subset ¥ C L(R™,RY) with Lebesque measure 0 such that for any © €
LR™ RY) — 3, the mapping Fro f : N — R’ is a mapping with normal crossings satisfying
(Fro )CA(NED) N Ay, = 0.

Proof. From Theorem 2.1.2, there exists a subset ¥ C £(R™, RY) with Lebesgue measure
0 such that for any 7 € L(R™,RY) — %, and for any s (2 < s < s), the mapping (Fy o f)) :
NG) — (RY)* is transverse to A,. Therefore, for the proof, it is sufficient to prove that for

any m € L(R™, RY) -3, the mapping (Fy o f)*) satisfies that (Fy o f)®)(NGEI)N Ag, = 0.

Suppose that there exists 7 € L(R™,RY) — X such that there exists ¢ € N©f) satisfying

(Fro f)(sf)(q) € As,;. Since (Fro f)(sf) is transverse to Ag,, we get the following:

d((Fr o f)(sf))q(TqN(sf)) +T

(Frof) D (2

55 = Lpopyen ()

Rf)sjf )
Thus, it follows that

dim d((Fy o f)1),(T,N®1))

. [AY:T IR T
> dim T oep R —dim T o Bsy
= codim T(Fﬁof)(sf)(q)ASf'

Hence, we have nsy > (sy — 1)¢. This contradicts the assumption (s; — 1)¢ > nsy. O
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In the case of £ > 2n, the injection property of a given mapping f : N — U is preserved
by composing generic linearly perturbed mappings as follows:
Corollary 2.1.5. Let f : N — U be an injection, where N is a manifold of dimension n
and U is an open subset in R™. Let F : U — R’ be a mapping. If £ > 2n, then there exists
a subset ¥ C L(R™, RY) with Lebesgue measure 0 such that for any = € L(R™,RY) — X, the

mapping Fr o f : N = RY is an injection.

Proof. Since sy > 2 and ¢ > 2n, it is easily seen that (n, /) satisfies the assumption
(sf —1)¢ > nsy in Proposition 2.1.2. Indeed, from ¢ > 2n, we get (s; — 1)¢ > 2n(sy — 1).
From sy > 2, it follows that 2n(sy — 1) > nsy.

Thus, from Proposition 2.1.2, there exists a subset ¥ C £(R™, RY) with Lebesgue measure
0 such that for any 7 € L(R™,RY) — ¥, the mapping (Fr o ) : N&) - (R)? is transverse
to Ag. For the proof, it is sufficient to prove that the mapping (F; o f)(2) satisfies that

(Fro fYP(N®)N A2 =0.

Suppose that there exists ¢ € N® satisfying (Fy o £)@(q) € As. Then, we get the

following:
d((Fr o /))g(TuN@) + T oy (B2 = T oy () (RO
Thus, it follows that

dim d((Fy o f)(Q))q(TqN(2))
= dim Tip o py2)(q) (R")? — dim TiFrone (@ A2

= codim T(Fﬂof)@)(q)AQ'
Therefore, we have 2n > £. This contradicts the assumption £ > 2n. O

By combining Corollaries 2.1.3 and 2.1.5, we get the following.
Corollary 2.1.6. Let f : N — U be an injective immersion, where N is a manifold of
dimension n and U is an open subset in R™. Let F : U — R’ be a mapping. If £ > 2n,

then there exists a subset ¥ C L(R™,RY) with Lebesque measure 0 such that for any © €
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LR™ RY) — %, the mapping Fro f: N — R’ is an injective immersion.

In Corollary 2.1.6, suppose that Fo f : N — R’ is proper. Then, an injective immersion
Fr o f is necessarily an embedding (see [6], p. 11). Thus, we have the following.
Corollary 2.1.7. Let f : N — U be an embedding, where N is a compact manifold of
dimension n and U is an open subset in R™. Let F : U — R¢ be a mapping. If £ > 2n,
then there exists a subset ¥ C L(R™,RY) with Lebesgue measure 0 such that for any © €

LR™ RY) — %, the mapping Fro f: N — R is an embedding.

2.2 Composing generic linearly perturbed mappings and em-

beddings

2.2.1 Introduction

In Section 2.2, ¢, m, n stand for positive integers. By N, we denote an n-dimensional

manifold. Let 7 : R™ — R’ be a linear mapping.

In [21], for a given embedding f : N — R™, a composition 7o f : N — R’ (m > ¢)
is investigated, and the following assertions (M1)-(M5) are obtained for a generic mapping.
All of (M1)-(M5) follow from the main result (Theorem 2.2.1 in Section 2.2.2) shown by

Mather.
(M1) If (n,¢) = (n,1), then a generic function 7o f : N — R is a Morse function.

(M2) If (n,£) = (2,2), then a generic mapping 7o f : N — R? is an excellent map in the

sense defined by Whitney in [27].

(M3) If (n,¢) = (2,3), then the only singularities of the image of a generic mapping wo f :

N — R3 are normal crossings and pinch points.

(M4) A generic mapping mo f : N — R’ is transverse with respect to the Thom-Boardman

varieties (for the definition of Thom-Boardman varieties, refer to [2], [3], [22], [25]).

(M5) If (n,¢) is in the nice range of dimensions (for the definition of nice range of dimensions,

refer to [20]), then a generic mapping o f : N — R’ is locally infinitesimally stable
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(for the definition of local infinitesimal stability, see Section 2.2.2). Moreover, if N
is compact, then a generic mapping 7o f : N — R’ is stable (for the definition of

stability, see Section 2.2.2).

Let £(R™, RY) be the set consisting of linear mappings of R™ into R’. For a given embedding
f: N = R™, a property of mappings 7o f : N — R’ will be said to be true for a generic
mapping if there exists a subset ¥ C L(R™, RY) with Lebesgue measure 0 such that for any

7€ LR™RY) — %, mo f: N — R’ has the property.

The main purpose in Section 2.2 is to show Theorem 2.2.2 in Section 2.2.2, which is an

improvement of Theorem 2.2.1 in Section 2.2.2, proved by Mather ([21]).

Let U C R™ be an open set and F : U — R’ be a mapping. For any m € L(R™,RY), set

F; as follows:

F,=F+m.

For a given embedding f : N — U, by Theorem 2.2.1, the assertions (I1)-(I5) hold. All of

(I1)-(I5) are the properties obtained by a generic linear perturbation.
(I1) If (n,£) = (n,1), then a generic function Fr o f : N — R is a Morse function.
(12) If (n,£) = (2,2), then a generic mapping Fy o f : N — R? is an excellent map.

(I3) If (n,¢) = (2,3), then the only singularities of the image of a generic mapping Fr o f :

N — R3 are normal crossings and pinch points.

(I4) A generic mapping Fyro f : N — R’ is transverse with respect to the Thom-Boardman

varieties.

(I5) If (n,¢) is in the nice range of dimensions, then a generic mapping Fyo f : N — R’
is locally infinitesimally stable. Moreover, if N is compact, then a generic mapping

Frof: N — R is stable.

For a given embedding f : N — U and a given mapping F : U — R’ a property of
mappings Fr o f : N — R’ will be said to be true for a generic mapping if there exists a

subset ¥ C L(R™,RY) with Lebesgue measure 0 such that for any 7 € L(R™,RY) — X, the
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mapping Fy o f : N — R’ has the property. The assertion (M5) (resp., (I5)) above implies
assertions (M1), (M2), and (M3) (resp., (I1), (I12) and (I3)). We get both assertions (M4)
and (M5) (resp., (I4) and (I5)) from Theorem 2.2.1 (resp., Theorem 2.2.2) of Section 2.2.2.
Furthermore, in the special case of F' = 0, U = R™ and m > ¢, (I1)-(I5) are the same as
(M1)-(M5), respectively. Notice that in the case of m < ¢, a generic mapping 7o f : N — R’
is an embedding. Note also that in the same case, a generic mapping Fy o f : N — R is

not necessarily an embedding.

2.2.2 Preliminaries and the statement of the main result in Section 2.2

Let N and P be manifolds. Let ;J"(N,P) be the space consisting of the following

elements

(jrg(ql)vjrg(QQ)a s 7jrg(qs)) € JT(Na P)S

satisfying (q1,¢2,...,qs) € N®). Since N is an open submanifold of N*, it is clearly seen
that the space ¢J"(N, P) is also an open submanifold of J"(N, P)*. For a given mapping

g: N — P, the mapping "¢ : N®®) — ,J"(N, P) is given by

(q1,G25- -5 qs) = (5"9(q1), 5" 9(q2); - - -, 5" 9(gs))-

Let W be a submanifold of ;J"(N, P). A mapping g : N — P will be said to be transverse

with respect to W if ;j"g : N(®) — (J"(N, P) is transverse to W.

We can partition P* as follows. Given an arbitrary partition IT of {1,2,...,s}, let P!
be the set of s-tuples (yi,¥2,...,ys) € P° such that y; = y; if and only if ¢ and j are in the

same member of the partition II.

By Diff N, we denote the group of diffeomorphisms of N. Then, we get the nat-
ural action of Diff N x Diff P on 4J"(N,P) such that for a mapping g : N — P,
the equality (h, H) - sj"g(q) = sj"(H o g o h=1)(¢') holds, where ¢ = (q1,q2,...,qs) and
¢ = (h(q1),h(q2),...,h(gs)). We say that a subset W of ;J"(N, P) is invariant if it is

invariant under this action.

We recall the following identification (2.2.1) from [21]. For ¢ = (q1,q2,...,qs) € N,
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let g : U — P be a mapping defined in a neighborhood U of {qi1,q2,...,q9s} in N, and let
z2=3j"9(q), ¢ = (9(q1),9(q2),---,9(gs)). Let sJ"(N,P)q and sJ" (N, P), 4 be the fibers of
sJ"(N, P) over q and over (g, ¢’) respectively. Let J"(N), denote the R-algebra of r-jets at

q of functions on N. Namely,
S (N)g = sJ (N, R)qg.

Set g*T'P = Uzey Ty(g) P, where T'P is the tangent bundle of P. By J"(g*T'P)g, we denote
the J"(N)g,-module of r-jets at ¢ of sections of the bundle ¢*T'P. Let m, denote the ideal

in J"(N), consisting of jets of functions which vanish at g. Namely, we have

my = {sjrh(Q) € SJT(Na R)q | h(Ql) = h(Q2) == h(QS) = 0}

Let mgJ"(¢*T'P), denote the set consisting of finite sums of products of an element of m,

and an element of J"(¢*TP),. Namely, we get

mgJ (g TP)q = J" (g TP)g N {sj"&(q) € sJ" (N, TP)q | £(q1) = &(q2) = --- = &(gs) = 0}

Then, it is not hard to see that we get the following canonical identification of R-vector

spaces:

T(sJ" (N, P)yy). = mgJ" (g"TP),. (2.2.1)

Let W be a submanifold of ,J”(N, P). Choose ¢ = (¢1,¢2,...,qs) € N® and g : N — P.
For simplicity, we set z = 5j"g(¢) and ¢ = (9(q1),9(g2),---,9(gs)). Suppose that the
choice is made so that z € W. Set W, = 7 '(q,q), where 7 : W — NG x P ig given
by 7(s579(@) = (@ (9(01),9(@),---,9(d))) and § = (G1,G2,---,ds) € N©®). Suppose that
Wy,¢ is a submanifold of ;J"(N, P). Then, under the identification (2.2.1), T(Wy 4 ). can
be identified with a vector subspace of myJ"(g*T'P),. We denote this vector subspace by
E(g,q,W).

Definition 2.2.1. We say that a submanifold W of ¢J"(N, P) is modular if conditions («)

and (B) below are satisfied.
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() The set W is an invariant submanifold of sJ” (N, P), and lies over P! for some partition

ITof {1,2,...,s}.

() For any ¢ € N®) and any mapping g : N — P satisfying ;5" g(q) € W, the subspace
E(g,q,W) is a J"(N)4-submodule.

Now, suppose that P = R’. The main theorem in [21] is the following.
Theorem 2.2.1 ([21]). Let f : N — R™ be an embedding, where N is a manifold of
dimension n. If W is a modular submanifold of sJ" (N, Ré) and m > {, then there exists a
subset ¥ C L(R™ RY) with Lebesgue measure 0 such that for any 7 € L(R™,RY) — %, the

mapping wo f: N — RE is transverse with respect to W.

The main theorem in Section 2.2 is the following. For the proof of Theorem 2.2.2, see
Section 2.2.3.

Theorem 2.2.2 ([8]). Let f : N — U be an embedding, where N is a manifold of dimension
n and U is an open set in R™. Let F : U — R be a mapping. If W is a modular submanifold
of sJ"(N,RY), then there exists a subset ¥ C L(R™,RY) with Lebesque measure 0 such that

for any m € E(Rm,Re) — X, the mapping Fro f : N — R’ is transverse with respect to W.

Let g : (N,S) — (P,y) be a multi-germ, where S is a finite subset of N and y is a point
of P. We say that & : (N,S) — (T'P,£(9)) is a vector field along g if £ satisfies ITo & = g,

where II : TP — P is the canonical projection.

Let 6(g)s be the set of vector fields along g. Set §(N)s = 0(idn)s and §(P), = 6(idp)y,
where idy : (N,S) — (N, S) and idp : (P,y) — (P,y) are the identify map-germs. Then,
tg : 0(N)s — 6(g)s is defined by tg(§) = T'go &, where Tg : TN — TP is the derivative
mapping of g. The mapping wg : 0(P), — 0(g)s is defined by wg(n) = no g. Then, we say
that g : N — P is locally infinitesimally stable if for every y € P and every finite subset

S c g~ (y), it follows that

tg(0(N)s) +wg(0(P)y) = 0(g)s-

By the same method as the proof of Theorem 3 of [21], we get the following as a corollary

of Theorem 2.2.2.
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Corollary 2.2.1. Let f: N — R™ be an embedding, where N s a manifold of dimension

n and U is an open subspace of R™. Let F : U — R’ be a mapping. If (n,£) is in the nice

dimensions, then there exists a subset ¥ C L(R™,RY) with Lebesque measure O such that for

any © € LIR™, RY) — X, the composition Fy o f : N — RY is locally infinitesimally stable.

Remark 2.2.1. 1. In the case that ' = 0, U = R, and m > ¢, Theorem 2.2.2 is
Theorem 2.2.1.

2. If Frof: N — R is proper in Corollary 2.2.1, then the local infinitesimal stability of
F; o f implies the stability of it (see [19]). Namely, we have the following.
Corollary 2.2.2. Let f: N — R™ be an embedding, where N is o compact manifold
of dimension n and U is an open subspace of R™. Let F : U — RY be a mapping. If
(n, £) is in the nice dimensions, then there exists a subset ¥ C L(R™,R?) with Lebesgue
measure 0 such that for any ™ € L(R™,RY) — X, the composition Fy o f : N — R is

stable.

3. There is an advantage that the domain of F' is an open set. Suppose that U = R. Let
F : R — R be the mapping given by x — |z|. Since F' is not differentiable at z = 0,

we can not apply Theorem 2.2.2 to the mapping F': R — R.

On the other hand, if U = R — {0}, then Theorem 2.2.2 can be applied to F|y.

2.2.3 Proof of Theorem 2.2.2

St i) >

F,, = F;. Then, we get
m m
Fo(z) = (Fl(x) + Zaljxj, ooy Fy(x) 4+ Zafjxj>v
j=1 Jj=1

where & = (@11, ..., Q1m, -+ s Qs+ oy Qo) € (R™E F = (Fy,..., F)) and o = (x1,..., 7).

For a given embedding f : N — U, a mapping F, o f : N — R’ is as follows:

m m
Foof= (FlOf+Zaljfja---aFéof+Za€jfj)a
=1 =1
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where f = (f1,..., fm). Since we have the natural identification £(R™, R?) = (R™)¢, for the
proof, it is sufficient to prove that there exists a subset ¥ C (R™)’ with Lebesgue measure 0
such that for any o € (R™)¢ — ¥, the mapping ;" (Fyo f) : N©®) — (J"(N,R") is transverse

to the given modular submanifold W.

Let Hy : R® — Rf be the linear isomorphism given by

Hy(X1,..., X0) = (X1,..., X)A,

where A = (\ij)1<i<e,1<j<e is an £ x £ regular matrix. Then, we get

£ m L m
HhoFyof = (Z(Fk Of+Z(¥kjfj))\kl,...,Z<Fk of+zakjfj))\k£>
k=1 J=1 k=1 =1
I m £ £ m £
k=1 j=1 ‘=1 k=1 j=1 ‘=1

Set GL(¢) = {B | B : £ x ¢ matrix, detB # 0}. Let ¢ : GL({) x (R™)* — GL(¢) x (R™)*
be the mapping defined by

(p(All, Alg, ceey Au,an,alg, . .,Clzm)

¢ ¢ ¢
= ()\117)\127---,/\% E Ak10k1, E Ak2Qk1, - - E AkeQk,

=1 =1 p
¢ ¢ ¢ ¢ ¢ ¢
E Ak10k2, g Ak20tk2, . . ., g AkeQk2, - .y E Ak1Qkm, g Ak20km, - - -, E /\kzakm)
=1 =1 =1 p =1 =1

For the proof, it is important to show that ¢ is a C'° diffeomorphism. In order to prove
that ¢ is a C°° diffeomorphism, for any point (A’,a/) € GL({) x (R™)¢ of the target
space of ¢, we will find (A, @) satisfying (A, ) = (A, /), where A = (A1, M2, ..., A\wg),
AN = (N, Moy A), @ = (a1, 012, ..., ), and o = (o), )y, ..., al ,). Thus, it is
sufficient to find (A, ) satisfying

Nij = M (1<i<1<j5<0),

)4
D A, = o (1<i<L1<j<m).
k=1
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Hence, for any j (1 < j < m), we have

1 14 l
/ / !/ / / /
E )\klak] = O[jl, E )\kQak] = O[j2, ey E Akeakj = Oéje
k=1 k=1 k=1

Therefore, for any j (1 < j < m), we get the following:

/ / /
11 7 A a1y @5
!/ / /
1w T Aw Qyj Ay
Since the matrix
/ .. /
11 o
!/ !/
1w )\Zﬁ
is regular, for any j (1 < j < m), ayj,...,0q can be expressed by rational functions of
115 - s Apgs @15+ -+, 0. Hence, there exists the inverse mapping o~ ! and we see that ¢!

is of class C*°. Thus, ¢ is a C*° diffeomorphism.

Now, let f: U — R™ be the mapping given by

flxe, .. yxm) = (Fi(x1, .o s Zm)s oo Fo(T1, ooy T )y Ty oy T

We see that fis an embedding. Since f: N — U is an embedding, fo f:N — R g

also an embedding:

fof=(Fiof,...,Fuof fi, ., fm)-

For the proof, the following lemma is important. The following lemma is the special case of

Theorem 2.2.1.
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Lemma 2.2.1 (|21]). Let fo f: N = R™ be an embedding, where N is a manifold
of dimension n. If W is a modular submanifold of ;J"(N,RY), then there exists a subset
Y C LR™HRY) with Lebesque measure 0 such that for any 11 € LR™H RY) — %, the

mapping 55" (ILo fo f) : N — [J"(N,RY) is transverse to W.

From Lemma 2.2.1, there exists a subset ¥ C L£(R™* R) with Lebesgue measure 0
such that for any II € L(R™ Rf) — %, the mapping ¢j"(ILo (f o f)) : N&) — J"(N,RY)

is transverse to W.

By the natural identification £(R™1¢, RY) = R0 we can identify the target space
GL(0) x (R™)¢ of p with an open submanifold of £L(R™ Rf). Since (GL(¢) x (R™)) N
is a subset of GL(¢) x (R™)¢ with Lebesgue measure 0 and ¢! is class C™, we have that
o L (GL(E) x (R™)*) NY) is a subset of GL(¢) x (R™)¢ with Lebesgue measure 0. For any

(A, @) € GL(£) x (R™)¢, let pq) R™* — R be the linear mapping given by (A, ) as

follows:
a0 (X1, Ximte)
A1 aE A1e
Aot aE A
= (X1,..., Xmse) ¢ ¢
Z Ak1Qp1 - Z AkeQug1
k=1 k=1
¢ ¢
D Mathm > AetQkm
k=1 k=1
Then, we get
IMpa) 0 fof
L m L ¥4 m 14
= (Z (Fk o f) Akl + Z (Z )\k106kj)fj, ceey Z (Fk o f) Ake + (Z /\keoékj>fj)
k=1 Jj=1 k=1 k=1 j=1 “k=1

HpoFy o f.
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Thus, for any (A, a) € GL(£) x (R™)* — o~ ((GL(£) x (R™)*)NX), we have that 5" (I 4)©
fo f) (= sj"(Hp o Fy 0 f)) is transverse to W. Since Hy is a diffeomorphism, we see that

sJ"(Fy o f) is transverse to W.

Let 3 be a subset consisting of o € (R™)? such that 4j"(F, o f) is not transverse to W.
For the proof, it is sufficient to prove that 3 has Lebesgue measure 0 in (R™)¢. Suppose that
5> does not have Lebesgue measure 0 in (R™)*. Then, GL({) x 5> does not have Lebesgue
measure 0 in GL(¢) x (R™)!. For any (A, a) € GL({) x 3, since 5j"(F o f) is not transverse
to the submanifold W and H, is a diffeomorphism, the mapping sj"(Hp o Fy, o f) is not
transverse to WW. This contradicts to the assertion that ¢~ ((GL(¢) x (R™)%) N ¥) has
Lebesgue measure 0 in GL(¢) x (R™)’. O



CHAPTER 3

(FENERIC DISTANCE-SQUARED MAPPINGS

3.1 Introduction

In Chapter 3, £ and n stand for positive integers. Let p be a given point in R™. The

mapping dp, : R” — R defined by

is called a distance-squared function, where x = (z1,...,2,) and p = (p1,...,Pn)-
Definition 3.1.1. Let pi,...,p; be £ given points in R™. Set p = (p1,...,p¢) € (R™)¢. The

mapping D, : R" — R’ defined by

is called a distance-squared mapping.
Note that D, always has a singular point if £ < n.

We have the following motivation for investigating distance-squared mappings. Height

33
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functions and distance-squared functions have been investigated in detail so far. Moreover,
they are a useful tool in the applications of singularity theory to differential geometry (see
[4]). The mappings in which each component is a height function are nothing but projections.
Projections as well as height functions or distance-squared functions have been investigated.
For instance, in |21], the stability of projections on a given submanifold is investigated. On
the other hand, the mapping in which each component is a distance-squared function is a
distance-squared mapping. Hence, it is natural to investigate distance-squared mappings as

well as projections.

A mapping f: R” — RY (2 < ¢ < n) is called the normal form of definite fold mappings

iff(acl,...,xn):(xl,...,xg_1,$%+---+m%).

We say that ¢ points p1,...,p; € R" (1 < ¢ < n+1) are in general position if { =1 or
PiD5 . DD (2 < ¢<n+1) are linearly independent.

Theorem 3.1.1 ([9]). (1) Let £ and n be positive integers satisfying 2 < { < n. Let

Pi,-.-,p¢ € R™ be in general position. Then, D, : R" — RY is A-equivalent to the

normal form of definite fold mappings.

(2) Let £ and n be positive integers satisfying 1 <n < (. Let p1,...,pp+1 € R™ be in gen-

eral position. Then, D), : R" — R’ is A-equivalent to (x1,...,2,) — (z1,...,2,,0,...,0).

3.2 Proof of Theorem 3.1.1

3.2.1 Proof of (1) of Theorem 3.1.1

Let H; : R® — R be the diffeomorphism defined by

Hi(X1,Xs,..., X))
= 1(X1—X2+Zn:(p1'—102‘)2) 1(X1—Xe+zn:(P1‘—Pe')2) X1 ).
9 J J ’ ’2 J J )

j=1 j=1
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Then, we have

(Hy o Dp)(z1,22,...,%p)
= <Z(p2j —p1) @5 = p1j)s- s > (P — pig) (s — pij), Y (w —plj)2>~

J=1 J=1 J=1

Let Hs : R®™ — R"™ be the diffeomorphism defined by

Hy(x1,22,...,2n) = (X1 + p11, %2 + P12, - - -, Tn, + Pin)-

The composition of Hy o D), and H> is given by

(Hio0Dpo Ha)(z1,22, ..., 2n) = <Z(p2j = p1j)%js -, D (Pej — p1j)Ty, Zﬁ)

j=1 j=1 Jj=1
n
= (xlny""axn)szx§ )
j=1
where
P21 —P11 - P — P11
P22 —p12 - Pe2 — P12
A=
P2n —Pin " Pin — Pln
Since ¢ points pi,...,pe are in general position, the rank of A is £ — 1. Therefore, there

exists an (£ — 1) x (¢ — 1) regular matrix B such that the set of column vectors of AB is a

subset of an orthonormal basis of R".

Let Hs : R® — R’ be the diffeomorphism defined by

H3(X1,Xo,..., X)) = ((X1,...,Xp-1)B, Xy).
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Then, we get

n
(Hso HyoDyo Hy)(x1,22,...,2n) = | (21,22, .. ,xn)AB,Zx§
j=1

Set (a1, ...,ay) = AB. Then, there exist vectors ay_1,...,a, such that the set {ai,...,a,}
is an orthonormal basis of R". Set C' = (aj,...,a,). Notice that C' is an n x n orthogonal
matrix.

Let Hy : R®™ — R"™ be the diffeomorphism defined by
Hy(x) = 2'C,

where x = (21,...,,) and !C is the transposed matrix of C. The composition of H3 o H; o

D, o Hy and Hy is as follows:
(Hso Hy o Dyo Hyo Hy)(z) = (2'CAB, (2'C,2'C)) ,

where (z,2) (z = (21,...,2,) € R") stands the inner product defined by (z,z) = .7, 22

i=1"7"

Since C' = (ay,...,ay) is an orthogonal matrix and AB = (aj,...,ay), we have
E¢ 1
'‘CAB =
@)
and

(2'C,2'C) = (x,2),

where Ey_1 is the (¢ — 1) x (£ — 1) unit matrix and O is the (n — ({ — 1)) x (¢ — 1) zero

matrix.
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Therefore, we get

l
(Hso HyoD,oHyo Hy)(xy,...,x0) = <x1,...,$g_1,2$?> .
i=1

Let Hs : R® — R be the diffeomorphism defined by

-1
H5(X1, Xo,...,Xy) = <X1,---,X61,XE—ZX¢2> :
=1

The composition of H3 o Hy o D, o Hy o Hy and Hs is as follows:

n
(H5OH3 OH1 ODPOHQ OH4)($1,...,J}@) = (ml,...,xgl,z.x?> .
i={

3.2.2 Proof of (2) of Theorem 3.1.1

Since n < ¢ and (n + 1) points p1,...,pnp+1 are in general position, there exists an

(0 —1) x (£ — 1) regular matrix B satisfying
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where the matrix A is the same as in the proof of (1). Similarly as the proof of (1) of this

theorem, we have

(H3 OH1 (¢] Dp OHQ)({L‘l,m‘Q, Ce ,xn)

x1
0
T2 ~
B
= ($1,$2,...,1‘n) A
0
0 01
Tn
1 0o 0 1
- (.’1717332,"' ,fEn)
0 1 0 -+ 0 z,
n
= (xl,...,xn,o,...,o,z:):?)

J=1

Let Hy : RY — R’ be the diffeomorphism given by

n
Hy(X1, Xayo o Xo) = | Xuyoony Xy, Koot X = Y X7
j=1

Therefore, we get

(ﬁ4 ©) H3 OHl (©) Dp OHQ)({I}l,mQ, e ,l’n)

= (ZCl,xQ,...,xn,O,...,O).



CHAPTER 4

(GENERIC LORENTZIAN DISTANCE-SQUARED

MAPPINGS

4.1 Introduction

In Chapter 4, by n, we denote a positive integer. For the (n + 1)-dimensional vector

space Rt the following quadratic form is called the Lorentzian inner product:

(z,y) = —xoyo + T1y1 + - + TnYn,

where x = (20,21, ..,%n),¥ = (Y0, Y1, - - - , Yn) are elements of R" 1, The (n+1)-dimensional
vector space R"*1 is called Lorentzian (n+ 1)-space and is denoted by RY™ if the role of the
Euclidean inner product z-y = >, x;y; is replaced by the Lorentzian inner product. For a
vector = of Lorentzian (n + 1)-space R we say that \/(z,z) is the Lorentzian length of x.
We say that a non-zero vector x € RV is space-like, light-like or time-like if its Lorentzian
length is positive, zero or pure imaginary respectively. The likeness of the vector subspace

is defined as follows (see Definition 4.1.1).

39
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mle -lik 1

light-like

space-hke

Figure 4.1: Figure of Definition 4.1.1

Definition 4.1.1 ([23]). Let V be a vector subspace of R1". Then, we say that V is
1. time-like if V' has a time-like vector,
2. space-like if every nonzero vector in V' is space-like, or
3. light-like otherwise.

The light cone of Lorentzian (n + 1)-space RY™, denoted by LC, is the set consisting of

elements € R satisfying (z,z) = 0.

For an arbitrary point p of RV, we say that 612, : RY™ — R is the Lorentzian distance-
squared function if

G (x) = (v —p,z —p).

For instance, in [14], Lorentzian distance-squared functions on surfaces in Lorentzian space
are investigated. They are useful for the study on Lorentzian space from the viewpoint of
Singularity Theory. On the other hand, in Chapter 4, we give a different application of

Singularity Theory to the study on Lorentzian space.
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For (k + 1) points po,...,pr € RM (1 < k), the Lorentzian distance-squared mapping,

denoted by L, : R\ — R**1 is defined as follows:

Ly(z) = (522,0(1:), e ,612% (x)) ,

where p = (po,...,pr). The main purpose of Chapter 4 is to give a characterizations of

Lorentzian distance-squared mappings (see Theorem 4.1.1).

A vector subspace V (po, . .., pr) of RM™ is called a recognition subspace if
k
V(po,. k) = Y _ R pop;.
i=1

For any two positive integers k and n satisfying k& < n, ®, : RL" — RF*L is called the

normal form of definite fold mapping if

n
2 2
q)k(xo,xl,...,xn):<:c1,...,a:k,x0+ E a:l>

i=k+1

For any two positive integers k& and n satisfying k < n, ¥ : Rb® — R g called the

normal form of Lorentzian indefinite fold mapping if

n
2 2
\I/k(xo,xl,...,wn):<$17...,$k,—$0+ E (L’Z>

i=k+1

Let j and k be two positive integers satisfying j < k. Let 7z : RITt — R**1 be the
inclusion:

T(j7k)(X0,X1,...,Xj) = (X(),Xl,. . .,Xj,O,.. . ,0)

Theorem 4.1.1. 1. Let k and n be two positive integers. Let (k+ 1) points po,...,pi €
R™! be the same point (i.e. dimV(po,...,px) = 0). Set p = (po,...,pr). Then,

L, : R — RF*1 s A-equivalent to

(X0, ...y Tp) (—az%—l—Zw%,O,...ﬁ).
=1
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2. Let j, k and n be three positive integers satisfying j < n and j < k. Let po,...,px €
RY™ be (k+1) points such that two recognition subspaces V (po, . .., px) and V (po, . . ., p;)

have the same dimension j. Set p = (po,...,px). Then, the following hold:

(a) The mapping L, : RV — RM s A-equivalent to T(ik) © ®j if and only if the

recognition subspace V(po,...,px) is time-like.

(b) The mapping L, : RY — RFL s A-equivalent to (k) © ¥y if and only if the

recognition subspace V(po,...,px) is space-like.
(¢c) The mapping L, : RM — RFFL s A-equivalent to
n
(0,...,Tn) = | T1,..., 25, zoz1 + Z 22,0,...,0
i=j+1
if and only if the recognition subspace V (po, ... ,px) is light-like.

3. Let k and n be two positive integers satisfying n < k. Let pg,...,pr € RY™ be (k+1)
points satisfying dim V (po,...,px) = dimV(pg,...,pn) = n. Set p = (po,--.,DPk)-

Then, the following hold:

(a) The mapping L, : RV — RFFL 45 A-equivalent to Tine) © Pn if and only if the

recognition subspace V(po,...,pr) s time-like or space-like.

(b) The mapping L, : RM — RFFL s A-equivalent to
(o, xn) — (x1,...,Tpn,x0x1,0...,0)

if and only if the recognition subspace V (po, ..., px) is light-like.

4. Let k and n be two positive integers satisfying n < k. Let po,...,pr € RY™ be
(k + 1) points satisfying dim V (po,...,px) = dimV(po,...,ppt1) = n+ 1. Set p =

(po,---,pk). Then, L, : RV — REFTL js A_equivalent to the inclusion

(zoy ... xn) — (o, ..., 2y, 0,...,0).
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We say that (k+1) points po, . . ., px are in general position if the dimension of V (po, . .., pr)
is k. For (k+1) points qo, . .., qx € RM™ in general position (k < n), it is not hard to see that
the singular set of L, : R — R**1 is the k-dimensional affine subspace spanned by these
points, where ¢ = (qo, - - -, qx). Since 73y is the identity mapping, we get the following.
Corollary 4.1.1. 1. Let k and n be two positive integers satisfying k < mn. Letpg,...,px €

RY™ be (k + 1) points in general position. Set p = (po,...,pr). Then, the following
hold:

(a) The mapping L, : RM — RFTL js A_equivalent to ®y, if and only if the recognition

subspace V(po, . ..,pr) is time-like.

(b) The mapping Ly, : RL™ — RFHL s A-equivalent to Uy, if and only if the recognition

subspace V(po, ..., pr) s space-like.
(¢c) The mapping L, : RV — RFFL is A-equivalent to
n
($0>"'7xn) = (xla-' s Thy TOT1 + Z '1‘12)
i=k+1
if and only if the recognition subspace V (po, ... ,px) is light-like.

2. Let n be a positive integer. Let po,...,pn € RY™ be (n+ 1) points in general position.

Set p = (po,-..,pr). Then, the following hold:

(a) The mapping Ly, . p,) ° R — R s A-equivalent to ®,, if and only if the

recognition subspace V(po,...,pn) is time-like or space-like.

(b) The mapping Ly, . cRb? 5 R s A-equivalent to

-»Pn)
(Toy .oy xn) = (T1, ..oy T, ToT1)

if and only if the recognition subspace V (po,...,pn) is light-like.

In Section 4.2, preliminaries for the proof of Theorem 4.1.1 are given. Section 4.3 is devoted

to the proof of Theorem 4.1.1.
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4.2 Preliminaries

Lemma 4.2.1. The likeness of a vector subspace of RU™ is invariant under Lorentz trans-

formations.
Lemma 4.2.1 clearly holds.
Lemma 4.2.2. Sete; = ( 0,...,0 ,1,0,...,0) € R (1 < i < n+1). Define v; =

——
(i—1)—tuples

aerterr (1<i</l)and v, =emt1 ((+1<m <n). Let V be the {-dimensional vector
subspace of RY™ given by V = Zle Rv;. Let V be the n-dimensional vector subspace of
R given by V= S Rv;. Then, the following hold:

1. The vector subspace V is time-like if and only if V is time-like.
2. The vector subspace V is space-like if and only if V is space-like.

3. The vector subspace Vs light-like if and only if V is light-like.

Proof. By definition, a vector subspace V is either time-like or space-like or light-like. Hence,

for the proof, it is sufficient to show only the “if parts” of 1, 2, and 3.
Suppose that V is time-like. Then, since V' C 17, V is also time-like by Definition 4.1.1.

For any vector Zle rivi €V and > riv; € 17, we get the following:

¢ ¢ ¢ 2y
<Zrivi,2rivi> = — (Z riai> + Zr?, (4.1)
=1 =1 =1

i=1
n n ZK 2 L n
<Z nvz-,zrm> = - (Z mai> +y ity i (42)
=1 =1 =1 =1 1={+1

Suppose that V is space-like. By Definition 4.1.1, any nonzero vector in V is space-like.

Hence, by (4.1) and (4.2), every nonzero vector in V is also space-like.

Suppose that V is light-like. By Definition 4.1.1, V' has a nonzero light-like vector v.
The vector v is also in V. Since V has no time-like vectors, by (4.1) and (4.2), We have

that V has no time-like vectors. O

Lemma 4.2.3. For a given element (aq,...,a,) € R™, let V' be the n-dimensional vector
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subspace of RY™ given by —xo + a121 + - -+ + anzy = 0. Then, the following hold:
1. 5% a? > 1 if and only if V is time-like.
2.5, a? < 1if and only if V is space-like.
8. S af =1 if and only if V is light-like.

i

Proof. Let H be the horizontal hyperplane {(1,z1,...,2,) | z; € R}. Set Vi = HNV.
Suppose that V3 = (. Then, the defining equation of V is —xg = 0. Hence, it follows that

S a?=0and V is space-like.

Next, suppose that V4 # 0. Then, we have Y, a? # 0. Let ¢ be the point (1,0,...,0).
Let Si_l be the light cone hypersurface H N LC. Then, it is clearly seen that the Euclidean
distance between ¢ and any point x € Sﬁfl is 1. For the proof, it is sufficient to prove that
1/A/>0 oc? is the Euclidean distance between ¢ and V;. Since —xo+o12z1+- -+ ant, =0
is a defining equation of V', V} is given by —1 + o121 + -+ - + an®, = 0 in H. Therefore, the

Euclidean distance between ¢ and V; is 1/4/> 1 | a? O

-

4.3 Proof of Theorem 4.1.1

4.3.1 Proof of 1 of Theorem 4.1.1

By composing Ly, the linear isomorphism of the target given by
(X0, X1,..., Xg) — (Xo, X5 — Xo, ..., X — Xo)
and the linear isomorphism of the source given by
(o, @1,y xn) = (To + P00, T1 + P01, - - - s Tn, + Pon)s

the desired mapping is obtained. O
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4.3.2 Proof of 2 of Theorem 4.1.1

It is easily seen that any two among 7(; x) © Pk, 7(;jx) © ¥k and the mapping

n
(0, ... Tn) = (z1,..., 25, x0m1 + Z x2,0,...,0)
i=j+1

are not A-equivalent. Furthermore, by definition, V' (po, ..., px) is either time-like or space-
like or light-like. Therefore, for the proof, it is sufficient to show only the “if parts” of 2 of

Theorem 4.1.1. Set p; = (pio, Pits - - - Pin) (0 <@ < k).

The generic case

Firstly, we will show the “if parts” of 2 of Theorem 4.1.1 in the case that V (po, ..., pr)N

T = {0}, where T is the time axis {(x0,0,...,0) | zo € R}. There are four steps.

STEP 1. The purpose of STEP 1 is to remove the redundant quadratic terms in
k components. In order to do so, we require the affine transformation of the target space

Hy : RFFT 5 RFHL given by

Hy(Xo, X1,..., Xk)

1 n
= <2<X0 — X1 — (poo — p10)* + Y _(poi —pu)z), s
i=1

1 n
§(X0 — X1, — (poo — pko)* + >_ (poi —Pk«z)Q),X()).
i=1

By composing H; and L,, we get

(Hl OLP)(afo,xl, . ,.I'n)

= <— (P10 — Poo) (o — poo) + Z(pu — poi)(Ti — poi), - - -,

STEP 2. The purpose of STEP 2 is to reduce the first k components to linear functions.
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In order to do so, we require the affine transformation of the source space Ho : RM™® — R

given by

Hg(l'o,l'l, cee

We define the (n + 1) x k matrix A; as follows:

(Hl OLp @) Hg)(wo,ﬂil,. ..

= (Z(pu — P0i)Tis - - -

=0

. Tpn) = (—x0 + poo, 1 + po1, - -

n

71571)

<y T +p0n)

72(]%@' — poi)Ti, — T + Z x

=0

n
— ((mo,xl, ey )AL, —m% + fo) )
i=1

Set
P10 — Poo
P11 — Po1
Ay =
Pin — Pon

Pjo — Poo
Pj1 — Po1
DPjn — Pon

P10 — Poo

n )
i=1

Pjo — Poo

From dim V (po,...,pj) = j, it is clearly seen that the rank of (n + 1) x j matrix Ay is

j. Furthermore, from V (po, ...

,pj) NT = {0}, the n x j matrix Az has the same rank j.

Hence, there exists a j X j regular matrix B; such that the set of column vectors of Az B

is a subset of an orthonormal basis of R".

STEP 3. The purpose of this step is to reduce the first 7 components, which are linear

functions, to coordinate functions z1, ..

.,xj, preserving the Lorentzian distance-squared

function —x3 + Y., 27 having the form &(zo, x1, ..., 2;) + Doisit z?. In order to do so,

we construct the linear transformation of the target space Hz : RF*1 — R*+1 below and the

linear transformations of the source space Hy, Hs : RV — R below.
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Let Hs : RFtT — RF+1 be the linear transformation of R¥*! given by
H3(Xo, X1,..., X)) = (X0, X1,...,Xj—1)B1, Xj, ..., X¢).
We define the £ x k matrix By as follows:
Hs(Xo, X1,...,Xk) = ((Xo, X1, ..., Xg—1)Ba, Xi).
By composing H3 and Hy o L, o Hy, we have
(Hs o HyoLyo Hsy) (x0,21,...,2Tn)

n
= <<1‘0, L1y .., xn)AlBQ, —x% + Z 1‘3) ,

i=1

Let a; be the transposed matrix of the i-th column vector of A1By (1 < i < j). From

V(po,.--,pr) = g:l Ra;, there exists a k x k regular matrix Bjs satisfying
A1ByB3 = (A2By1, Onti—j)

where Oy, stands for the £ x m zero matrix. By composing H3 and the linear isomorphism

of the target defined by
(X07X1a .. an:) — ((X()?Xla ce. 7Xk—1)B37Xk)
if necessary, without loss of generality, from the first we may assume that

(H3 OH1 OLpOHQ) (xo,xl,.. . ,.’En)

n
= ((mo,xl, ooy p)A2B1,0,...,0, —x% + Zm?) .
=1

Set (()zo’i,al’i,...,an,i) = a; and 51 = (al,ia“-;an,i) (1 < 7 < j) We can choose
Aj41,...,a, such that the set {a;,...,a,} is an orthonormal basis of R". Note that

(*fay,...,'a,) is an n x n orthogonal matrix. Let Hy : Rb™ — RL™ be the linear isomorphism
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given by
Hy(zo, 21, ..., 20) = (z0, (21,...,25) (A1, .., &) 7).
Note that Hy and H; ' are Lorentz transformations. We get

(H3 OHl ©) Lp OHQ @) H4)<Z‘0,;U1, . .,.%'n)

n
2 2
= ((1071.%0Jrl‘l,...,a07j1}0+$j,0,...,0,£Co+ E $Z>
=1

Set E; = ( 0,...,0 ,1,0,...,0) € R¥1 (1 <4 <k+1). We define the linear isomorphism

(i—1)—tuples
Hs : RF+1 s RE+1 by

k
Hs (Z XiEiJrl) = Z XiEip1 + XgEj1 + XjEgqq.
i=0 ik

Then, we get the following;:

(H5 OH3 OH1 OLPOHQ OH4)($0,[E1,... ,l‘n)

n
2 2
= <oz0711:0—l—xl,...,awxo—i—xj,—xo—l—E %707---70)-
=1

We define the (n 4 1) X (n + 1) matrix C' by
(.1‘0, Q120 + T1,...,Q0,;T0 + Tj,Tjt1,--- ,.rn) = (3}0, T1,... ,$n)0

For any i (1 < i < n), let ¢; denote the (i + 1)-th column vector of C. Since H4_1 is
a Lorentz transformation, from Lemma 4.2.1, the likeness of ZLI Rfc; is the same as
that of V(po,...,p;). Furthermore, from Lemma 4.2.2, the likeness of Zgzl Ric; is the
same as that of > | Rfc;. Hence, the likeness of V(po,...,p;) is the same as that of
> Ric;. Note that the n-dimensional vector subspace >+  Ric; € RM™ is given by
—To + ag171 + -+ + o jx; = 0. Thus, from Lemma 4.2.3, we get the following:

Lemma 4.3.1. 1. 25:1 0‘(2),2' > 1 if and only if V(po,...,pk) is time-like.

2. Zzzl O‘(Q),z' < 14f and only if V(po,...,pk) is space-like.
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3. 22:1 ozaz- =1 if and only if V(po,...,pr) is light-like.

Since C is a regular matrix, its inverse matrix C~! is well-defined. Let Hg : RV — RL?

be the linear isomorphism given by
Hg(z) = 2C™ 1.

By expressing C ! explicitly, the composition of Hs o H3 o Hy o L, o Hy o Hy and Hg is as

follows:

(Hs o H3 0 Hy o L, o Hy o Hy o Hg)(xo, 1, .. ,2n)

J n
= <$17$2;---7xj7_x(2)+Z(_a0,ixo+$i)2+ Z x?voa-'wo)-

i=1 i=j+1

STEP 4. This is the last step. Firstly, the cases 2(a) and 2(b) of Theorem 4.1.1 are
shown. From Lemma 4.3.1, it follows that —1 + Zle 0‘3,@' =% 0 in these cases. Hence, by

completing the square with respect to the variable x(, we get the following;:

J n
—x3 + Z(—Oéo,ifﬁo +x;)° + Z x?
i=1 i=j+1
J J n
= (—1 + Z 0‘(2),z'> :10(2) — 2z Z 0T + Z 7
i=1 i=1 i=1
J ' 2 (Zj Qi T; )
o i 1 0,244
= (—1+ZO¢(2),¢> ( 2 004 ) = —i—ZmQ.
i=1

_1+Zz 10‘02 1"‘21 10‘0@ i—1

Let Hy : RFt1 — RF+1 be the diffeomorphism given by

H:(Xo, X1,...,Xk)

(Lm0t
ZX'L 17Xj+17 -7Xk+].

= X(],Xl,...,Xj_l,Xj +
1+Zz 1 0%, i=1
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By composing H7 and Hs o H3z o Hy o L, o Hyo Hy o Hg, we have

(H7OH5OH30H1OLpOHQOH4OH6)(JT0,33‘1,...,IL‘H)

( j Zj (e X ? °
E: 2 i=1 27 2: 2

= Jfl,...,ﬁj, —].+ aO,i) <$0_2> + JJZ-,O,...,O
i=1 -1+ Z?:l aO,i

i=j+1

Let Hg : RY™ — RY™ be the linear isomorphism given by

Hg(zo,21,...,2n)
Lo 5:1 Q0T
= + T1,...,Tn

V145,03, 1 ad;

From Lemma 4.3.1, if V(po, ..., px) is time-like, the composition of H7 o Hso Hso Hyo L, 0
Hs o Hy o Hg and Hg is as follows:
(H70Hso Hzo HyoLyoHyo Hyo Hgo Hg)(xo, 1, ..,%n)

n

_ 2 2

= T1yeey Tj, TG+ E z;,0,...,0|,
i=j+1

and if V(po,...,pk) is space-like, the composition of them is as follows:

(H7 0 Hso H3oHjoLyoHyoHyo Hgo Hg)(xo,21,...,Tn)

n
2 2
= T1yeny Tjy, —XG + E z;,0,...,0
i=j+1

Next, the case 2(c) of Theorem 4.1.1 is shown. From Lemma 4.3.1, we get the following;:

(H5OH3OH1OLpOH2OH4OH6)(.'L'(],.T1,...,$TL)

j n
2
= (ml,...,xj,—Zxo g o T + E a:l-,O,...,()).
=1 =1
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Let H. : RFtL — R**! he the diffeomorphism given by

Hé(X07X17 s 7Xk?)
j
_ (XO,Xl, X, X = X X, ,Xk> .

i=1

By composing H% and Hs o Hs o Hy o L, 0 Hy o Hy o Hg, we have the following.

(H} 0 Hs 0 H30 Hy o L, 0 Hy o Hy o Hg) (o, 71, ..., %n)

J n
2
= :L‘l,...,:Ej,—Ql’o E QT + E z;,0,...,0
=1 1=j+1

By -1+ Zgzl aai = 0, there must exist an i (1 <1 < j) satisfying og; # 0. By taking a
linear transformation of the source space if necessary, without loss of generality, from the

first we may assume that ag1 # 0. We define the (n+ 1) x (n + 1) regular matrix D by

J
<.%'0, —2 E Oé()ﬂ'l'i,xg, Ce ,:rn> = (xo, Tlye-o- ,xn)D.
=1

Let Hi : RY™ — RL™ be the linear isomorphism given by
Hi(x) = 2D,

where D71 is the inverse matrix of D. By expressing D~! explicitly, the composition of

H! o Hso Hso HyoL,oHyo Hyo Hg and HY is as follows:

(H% o Hs o Hso HyoL,o Hyo Hyo Hg o Hg)(xo, 21, .., %)

J
1 i—2 (0,iT;

n
2
— y Ty s XTj, LT + g z;,0,...,0
200,1 Q,1 e
i=j+1

Let H} : R¥+1 — R*¥+1 be the linear isomorphism given by

J—1
Hy(Xo, X1,..., Xy) = <—2 (ao,lXo + ZOCO,H—IXi) X1 ,Xk> :

i=1
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By composing Hy and H7, o Hs o H3 0o Hy o L, o Hy 0o Hy o Hg o Hg, we get the following.

(HéoHéoH5ngoH1oLpoH20H4oH6oHé)(:Eo,xl,...,mn)

n
2
= T1y. ..y Xj, ToT1 + E z;,0,...,0
i=j+1

The case V(pg,...,pr) NT =T

The strategy of the proof in this case is the same as the one given in Section 4.3.2. By
dim V' (po, ...,p;) = j, it is clearly seen that the rank of (n+1) X j matrix Ay is j, where Ay
is the matrix given in STEP 2 of Section 4.3.2. Furthermore, from V(pg,...,px) NT =T,
there exists a j X j regular matrix By such that the set of column vectors of A3 By is a subset

of an orthonormal basis of R™*! and the matrix AoB, has the following form:

1 0 0

0 B2 - Py
AsBy =

0 671,2 e Bn,j

Let Hs : R+ — RF+1 be the linear transformation of RF+! given by

Hs(Xo, X1,..., Xp) = (X0, X1, -, Xj-1)Ba, X, ..., Xp).

We define the (n + 1) x k matrix A4 as follows:

(ﬁg OHl OLPOHQ) ($0,$1,...,a}n)

n
= ((:co,xl, ey ) Ay, fx(z] + fo) .
i=1
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Set b; := (0, B1i41,- .-, Bn,i+1) (1 <i < j—1). Since V(po,...,pr) =e€1 + Zz;ll Rb;, there
exists a k x k regular matrix Bs satisfying A4Bs = (A2B4, Opt14—;). By composing H;

and the linear isomorphism of the target given by
(X07X17 s 7Xk) = ((X())le B 7Xk—1)B57 Xk)
if necessary, without loss of generality, from the first we may assume

(ﬁg OHl OLPOH2> ($0,$1,...,$n)
n
— ((JUQ, LTlyew- ,ﬂfn)(AgB4, On—&—l,k—j)» —l‘% + Z :E?) .
i=1
Set b; = (Bryit1s- -5 Pniv1) (1 < i < j—1). We see that {Bl,...7gj_1} is a subset of
an orthonormal basis of R®, We can choose l~)j, ..., by, such that the set {l~)1, .. ,l~)n} is

an orthonormal basis of R”. Notice that (tgl, e ,tl;n) is an n X n orthogonal matrix. Let

ff4 : R — R be the linear isomorphism given by

~

Hy(wo, a1, .. ) = (x0, (21, .., 20) (b1, ..., by) 7).
By composing ﬁg oHjoLyoHyand ﬁ4, we get the following.

(ﬁg OH1 OLp OHQ Oﬁ4)((1}0,$1,...,1’n>

n
2 2
= (xo,xl,...,:rjl,O,...,O,x0+g :L‘l>
=1

By composing Hs with ﬁg oHioL,oHsyo ﬁ47 we get

(H5ij\[30H1 OLpOHQOfT\Ll)(.TO,wl,...,.’L'n)

n
2 2
= <m0,m1,...,xj1,—x0—|— E xi,O,...,()).

i=1
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In order to remove terms :c%, e ,33]2_1 in the (j 4+ 1)-th component, we construct the diffeo-

morphism of the target space Hs : RF1 — RF1 below:

~

H5(Xo, X1, .., Xk)

j—1
= <X07Xla'--7Xj17Xj+X§_ZXZ‘2,X]'+1,--"XI€+1>-
i=1
By composing ﬁg, and Hs o ﬁg oHioL,oHso0 ﬁ[47 we get the following.

(ﬁ5oH5ofI30H1oLpngoﬁI4)(xg,:c1,...,xn)

n
2
= xo,ml,...,xj_l,g z;,0,...,0
=7

Let ﬁG : R — R be the linear isomorphism given by

~

He(xo,z1,...,2p) = (T1,22, ..., T, L0, Tjt1,-- -, Tp) -
By composing I;[r) o Hso ﬁg oHyoLy,oHyo ﬁ4 and ﬁg, we get the following.

(ﬁ5oH5ofIgoH1oLpngoff4oﬁ6)(x0,x1,...,xn)

n
_ 2 2
= X1y .., x5, 2+ E z;,0,...,0
i=j+1

4.3.3 Proof of 3 of Theorem 4.1.1

The strategy of the proof of 3 of Theorem 4.1.1 is the same as the strategy of the proof
of 2 of Theorem 4.1.1. In the case that V(po,...,pr) is space-like, compose the mapping
H7 o0 HsoHzoHyoLyoHyoHyoHgo Hg and the linear coordinate transformation of the
target

(Xo, X1y, X)) = (Xo, .o, Xjo1, =X, X, -, Xg)-
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4.3.4 Proof of 4 of Theorem 4.1.1

The strategy of the proof of 4 of Theorem 4.1.1 is the same as the strategy of the
proof of 2 of Theorem 4.1.1. In this case, since the rank of the (n + 1) x k matrix A
given in STEP 2 of Section 4.3.2 is n + 1, there exists a k x k regular matrix Bg satisfying

A1Bg = (En+t1, Op g1 i—(n+1))- By composing the target diffeomorphism
(X()aXla o an:) — ((X07X17 cee 7Xk—1)Bﬁan;)
and H; o L, o Hy which appeared in STEP 2 of Section 4.3.2, we get

=1

n
2 2
= (acg,xl,...,:rn,(),...,0,—1’0—1—g xi>,
i=1

n
(x0,T1,...,Tpn) > ((mo,ml, ...,y A1 Bg, —af + Zx?)

which is clearly A-equivalent to

(0,21, .., Zn) — (o, T1,...,2n,0,...,0).



CHAPTER D

(FENERIC GENERALIZED DISTANCE-SQUARED

MAPPINGS

5.1 Introduction

Let Pi = (pilypiZa e apim) (1 S ) S f) (resp., A= (CLZ])1<Z<g 1<j<m) be pomts of R™ (resp .

Il P

an ¢ X m matrix with all entries being non-zero real numbers). Set p = (p1,p2,...,p¢) €

(R™)’. Let G, 4y : R™ — R’ be the mapping defined by

Gp,a)(@ (Zalj plj)27za2j(9~"j_p2j ) Zal’j - pej) )7
j=1

where z = (z1,72,...,7,) € R™. The mapping G, 4) is called a generalized distance-
squared mapping, and the (-tuple of points p = (p1,pa,...,pe) € (R™)! is called the central
point of the generalized distance-squared mapping G, 1). Note that a distance-squared
mapping D, defined in Chapter 3 (resp., a Lorentzian distance-squared mapping L, defined

in Chapter 4) is the mapping G/, 4) such that each entry of A is equal to 1 (resp., a;; = —1

and Q5 = 1 (j 75 1))

57
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In [13], a characterization of generic generalized distance-squared mappings of the plane
into the plane is investigated. If the rank of A with all entries being non-zero real numbers is
equal to two, then a generalized distance-squared mapping having a generic central point is a
stable mapping of which any singular point is a fold point except one cusp point. If the rank
of A with all entries being non-zero real numbers is equal to one, then a generalized distance-

squared mapping having a generic central point is A-equivalent to (1, z2) — (21, 73).

In |11], a characterization of generic generalized distance-squared mappings of R™"! into
R?m+1 is investigated. If the rank of A with all entries being non-zero real numbers is equal
to m 4+ 1, then a generalized distance-squared mapping having a generic central point is

A-equivalent to the normal form of Whitney umbrella
2
(1,2, ..oy Tmt1) = (X, T122, o o, T1Tmg 1, T2y« « y Tt 1)

If the rank of A with all entries being non-zero real numbers is strictly smaller than m + 1,
then a generalized distance-squared mapping having a generic central point is A-equivalent
to the inclusion

(a;l,xQ, .. 7$m+1) — (a;l,a;Q, . 7$m+1707 e ,0).

Hence, by the results in [1 1] (resp., [13]), for a given 2x2 matrix A (resp., (2m+1)x (m+1)
matrix A) with all entries being non-zero real numbers, there exists a subset ¥; C (R?)?
(resp., Yo C (R™T1)2m+l) with Lebesgue measure 0 such that for any p € (R?)? — %
(resp., p € (R™*T1)2m+l _ ¥5) the mapping Gpa) R2 — R? (resp., Gpa) : R™HL
R?m+1) is stable. On the other hand, in Chapter 5, by applying some assertions prepared in
Chapter 2 to generalized distance-squared mappings, in various dimension pairs, properties

of generalized distance-squared mappings having a generic central point are investigated.

5.2 Applications of Theorem 2.1.1 to G, 4): R" — R¢

Proposition 5.2.1 ([7]). Let f : N — R™ be an immersion, where N is a manifold of

dimension n. Let A = (aij)1§i§g71§j§m be an ¢ x m matriz with all entries being non-
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zero real numbers. If X is an Al-invariant submanifold of J'(n,f), then there ezists a
subset ¥ C (R™)" with Lebesque measure 0 such that for any p € (R™)! — X, the mapping
N Gpayo f): N = JYN,RY) is transverse to X (N,R).

Proof. Let H : R — R be a diffeomorphism of the target for deleting constant terms.

Then, we have the following.
m m m m
Ho G(p,A) (33) = Z alng -2 Z aljpljxj, Z agj(IZ? -2 Z aszzjxj,
7=1 7j=1 7=1 7j=1

m m
2
ey E agr; — 2 E agipe; T |
j=1 j=1

where © = (z1,22,...,Zm).

Let ¢ : (R™)¢ — L(R™,RY) be the mapping given by

Y(pi1, P12y - - -, Pem) = —2(a11P11, G12D12, - - -, AemDem) -

Notice that we have the natural identification £(R™,R’) = (R™)’. Since a;; # 0 for any i,

j(1<i<e,1<j<m),itis not hard to see that ¥ is a C*° diffeomorphism.

Set Fi(z) = > i aijz; (1 <i < () and F = (F1,Fy,...,F;). From Theorem 2.1.1,
there exists a subset ¥ C L(R™,RY) with Lebesgue measure 0 such that for any m €
L(R™,RY) — ¥, the mapping j'(Fy o f) : N — JY(N,RY) is transverse to X (N, R’). Since
Pt LR™,RY) — (R™)! is a C* mapping, ¥~ () has Lebesgue measure 0 in (R™)*. For
any p € (R™)* —¢~1(X), we get ¥(p) € L(R™,R) — . Thus, for any p € (R™)! -y~ (%),
the mapping j'(H o Gpayof): N = JYN, RY) is transverse to X (N,Rf). Then, since
H : R — R is a diffeomorphism, iMGpayo f) : N = JYN, RY) is transverse to the

submanifold X (N, R?). O

As applications of Proposition 5.2.1, we have analogies of Proposition 2.1.1, Corollaries
2.1.1, 2.1.2, 2.1.3 and 2.1.4 as follows:
Corollary 5.2.1 ([7]). Let f : N — R™ be an immersion, where N is a manifold of

dimension n. Let A = (a;j)1<i<t,1<j<m be an € x m matriz with all entries being non-zero
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real numbers. Then, there exists a subset ¥ C (R™)¢ with Lebesgue measure 0 such that for
any p € (R™)* — X, the mapping i (Gpayo f): N — JUN, RY) is transverse to X*(N,RY)
for any integer k satisfying 1 < k < v. Especially, in the case of £ > 2, we get ko +1 < v
and it follows that j* (G, 4y o f) satisfies that j* (G, ) © f)(N) NZF(N,RY) = 0 for any
positive integer k satisfying ko + 1 < k < v, where ko is the mazimum integer satisfying

(n—v+ko)(l —v+ko) <n (v=min{n,l}).

Corollary 5.2.2 ([7]). Let f : N — R™ be an immersion, where N is a manifold of
dimension n. Let A = (alj)lgjgm be o 1 X m matriz with all entries being non-zero real
numbers. Then, there exists a subset X C R™ with Lebesgue measure O such that for any

p € R™ =3, the mapping G, ayo f: N — R is a Morse function.

Corollary 5.2.3 ([7]). Let f : N — R™ be an immersion, where N is a manifold of
dimension n (n > 2). Let A = (aij)1<i<an—1,1<j<m be a (2n—1) x m matriz with all entries
being non-zero real numbers. Then, there exists a subset ¥ C (R™)*"~! with Lebesgue
measure 0 such that for any p € (R™)?"~1 -, any singular point of the mapping Gpaof:

N — R?"1 is a singular point of Whitney umbrella.

Corollary 5.2.4 ([7]). Let f : N — R™ be an immersion, where N is a manifold of
dimension n. Let A = (a;j)1<i<r,1<j<m be an € x m matriz with all entries being non-zero
real numbers (£ > 2n). Then, there exists a subset ¥ C (R™)¢ with Lebesgue measure 0 such

that for any p € (R™) — X, the mapping Gpaof:N— RY is an immersion.
Remark 5.2.1. In the case of { = m > 2n, Corollary 5.2.4 is Theorem 1 of [12].

Corollary 5.2.5 (|7]). Let f : N — R™ be an immersion, where N is a manifold of
zero real numbers. Let ko be the mazimum integer satisfying (n — v+ ko)({ — v + ko) <n
(v = min{n,¢}). Then, there exists a subset ¥ C (R™)* with Lebesgue measure O such that
for any p € (R™) — X, the mapping Gpayof: N — R’ has corank at most ky singular

points.
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5.3 Applications of Theorem 2.1.2 to G, 4): R™ — R’

From Theorem 2.1.2, we get the following proposition, which can be proved by the same
argument as in the proof of Proposition 5.2.1, and we omit the proof.
Proposition 5.3.1 ([7]). Let f : N — R™ be an injection, where N is a manifold of
dimension n. Let A = (a;j)1<i<r,1<j<m be an € x m matriz with all entries being non-zero
real numbers. Then, there exists a subset ¥ C (R™)¢ with Lebesque measure 0 such that for
any p € (R™)E — %, and for any s (2 < s < sy), the mapping (G(p,a) © £ NG 5 (RS
is transverse to Ag. Moreover, if the mapping Gy, a) satisfies that ‘G(_])%A) (y)| < sg for any

y € RY, then Gpaof:N— R’ is a mapping with normal crossings.

As applications of Proposition 5.3.1, we have analogies of Proposition 2.1.2, Corollaries
2.1.5, 2.1.6 and 2.1.7.
Corollary 5.3.1. Let f : N — R™ be an injection, where N is a manifold of dimension n.
Let A = (aij)1<i<e1<j<m be an £ x m matriz with all entries being non-zero real numbers.
If (sf — 1)0 > nsy, then there exists a subset ¥ C (R™)¢ with Lebesgue measure 0 such that
for any p € (R™)* — X, the mapping Gpaof: N — R’ is a mapping with normal crossings
satisfying (G, 4y © E (N )y NAs, =0.

Corollary 5.3.2 ([7]). Let f : N — R™ be an injection, where N is a manifold of dimension
n. Let A = (aij)i<i<e1<j<m be an € xm matriz with all entries being non-zero real numbers.
If £ > 2n, then there exists a subset ¥ C (R™)" with Lebesque measure 0 such that for any

p € (R™)! — %, the mapping Gpayof: N— R’ is an injection.
Remark 5.3.1. In the case of = m > 2n + 1, Corollary 5.3.2 is Theorem 2 of [12].

Corollary 5.3.3 (|7]). Let f: N — R™ be an injective immersion, where N is a manifold
of dimension n. Let A = (aij)i1<i<e,1<j<m be an € xm matriz with all entries being non-zero
real numbers. If £ > 2n, then there exists a subset ¥ C (R™)" with Lebesque measure 0 such

that for any p € (R™)¢ — %, the mapping Gpayof:N— R’ is an injective immersion.

Corollary 5.3.4 ([7]). Let f : N — R™ be an embedding, where N is a compact manifold
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St A >

real numbers. If £ > 2n, then there exists a subset © C (R™) with Lebesque measure 0 such

that for any p € (R™)¢ — %, the mapping Gpayof:N— R’ is an embedding.

From Theorem 3.1.1 in Chapter 3 and Theorem 4.1.1 in Chapter 4, as the special
case of the characterization of generic distance squared mappings (resp., generic Lorentzian
distance-squared mappings), we get the following.

Lemma 5.3.1 (|9], [10]). We have the following.
1. For any p € R, the mappings D), : R = R and L, : R = R are A-equivalent to x — z2.

2. Form > 2, there exists a subset Xp (resp., X1) of (R™)™ with Lebesque measure 0 such
that for any p € (R™)™ —Xp (resp., p € (R™)™ — Xr), the mapping D) : R™ — R™

(resp., Ly : R™ — R™) is A-equivalent to (z1,2,...,%m) = (21, T2, ..., Tm—1,T2,).

3. In the case of 1 < m < L, there exists a subset Xp (resp., Xr) of (R™)¢ with Lebesgue
measure 0 such that for any p € (R™) — Xp (resp., p € (R™)¢ — X1), the map-
ping Dy : R™ — RY (resp., L, : R™ — RY) is A-equivalent to (x1,%2,...,Tm)
(1,22, ., Tm,0,...,0).

Proposition 5.3.2 (|7]). Let f : N — R™ be an injection, where N is a manifold of

dimension n. Then, we have the following.

1. Form > 1, there exists a subset Xp (resp., X1) of (R™)™ with Lebesgue measure 0 such
that for any p € (R™)™ —Xp (resp., p € (R™)™ —X), the mapping Dpo f : N — R™

(resp., Lyo f: N = R™) is a mapping with normal crossings.

2. In the case of 1 < m < {, there exists a subset Xp (resp., X1) of (R™)¢ with Lebesgue
measure 0 such that for any p € (R™)" — Xp (resp., p € (R™)! — X1), the mapping
Dyof: N — R (resp., Lo f: N — RY) is injective.

Proof. The proof for distance-squared mappings is the same as that for Lorentzian
distance-squared mappings. Thus, it is sufficient to give the proof for distance-squared

mappings.

Firstly, we will prove the assertion 1. From Lemma 5.3.1, there exists a subset 31 C (R™)™

with Lebesgue measure 0 such that for any p € (R™)™ — X1, the mapping D), : R™ — R™
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satisfies that |D;1(y)| < 2 for any y € R™. On the other hand, from Proposition 5.3.1, there
exists a subset Yo C (R™)™ with Lebesgue measure 0 such that for any p € (R™)™ — %o,
if the mapping D, satisfies that ]D;l(y)] < sy for any y € R™, then the composition
Dyo f: N — R™ is a mapping with normal crossings. Set ¥p = ¥; U ¥9. It is not hard
to see that X p has Lebesgue measure 0 in (R™)™. Then, for any p € (R™)™ — Xp, the

mapping Dy o f: N — R™ is a mapping with normal crossings.

In the case of m < ¢, since from Lemma 5.3.1, there exists a subset ¥p C (R™)¢ with
Lebesgue measure 0 such that for any p € (R™)¢ — ¥p, the mapping D, : R™ — R’ is

A-equivalent to the inclusion, we get the assertion 2. O

By combining Proposition 5.3.2 and Corollary 5.2.4, we get the following.

Corollary 5.3.5 ([7]). Let f : N — R™ be an injective immersion, where N be a manifold of
dimension n (2n < m). Then, there exists a subset Xp (resp., 1) of (R™)™ with Lebesque
measure 0 such that for any p € (R™)™ — Xp (resp., p € (R™)™ — X1), the mapping

Dpof: N —R™ (resp., Lpo f : N = R™) is an immersion with normal crossings.

In Corollary 5.3.5, if m = 2n and the mapping Dyo f : N — R?" (resp., Lyof:N — R?7) is
proper, then the immersion with normal crossings Dyof : N — R?" (vesp., Ly,of : N — R?")
is necessarily stable. Hence, we have the following assertion.

Corollary 5.3.6 ([7]). Let f : N — R?" be an embedding, where N is a compact manifold of
dimension n. Then, there exists a subset Xp (resp., X1) of (R?™)?™ with Lebesgue measure 0
such that for any p € (R*)*"—%p (resp., p € (R*)*"—%), the mapping Dyo f : N — R?"

(resp., Lpo f: N — R?") is stable.

5.4 Applications of Theorem 2.2.1 to G, ) : R" — R’

From Theorem 2.2.2, we get the following proposition, which can be proved by the same
argument as in the proof of Proposition 5.2.1, and we omit the proof.
Proposition 5.4.1 ([8]). Let f : N — R™ be an embedding, where N is a manifold of
dimension n. Let A = (a;j)1<i<e,1<j<m be an £ X m matriz with non-zero entries. If W is

a modular submanifold of J"(N,RY), then there exists a subset ¥ C (R™)¢ with Lebesque
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measure 0 such that for any p = (p1,...,pe) € R™) =%, Gpayof: N— RY is transverse

with respect to the modular submanifold W.

From Proposition 5.4.1 and the same method as that of Mather, we get the following appli-

cation.

Corollary 5.4.1. Let f : N — R™ be an embedding, where N be a manifold of dimension

n. Let A= (aij)i<i<e1<j<m be an £ xm matriz with non-zero entries. If (n,f) is in the nice

dimensions, then there exists a subset & C (R™)" with Lebesque measure 0 such that for any

p=(p1,...,pe) € (R™¥ =3, the composition Gpayof:N— R? is locally infinitesimally
stable.

Remark 5.4.1. 1. Suppose that the mapping G, 40 f: N — R? is proper in Corol-
lary 5.4.1. Then, the local infinitesimal stability of G, 4) o f implies the stability of
it (see [19]). Namely, we have the following.

Corollary 5.4.2. Let f : N = R™ be an embedding, where N be a compact manifold
of dimension n. Let A = (aij)lgigg,lgjgm be an ¢ X m matriz with non-zero entries.
If (n,£) is in the nice dimensions, then there exists a subset ¥ C (R™)* with Lebesgue
measure 0 such that for any p = (p1,...,pe) € (R™)! — X, the composition Gpaof:

N — RY is stable.

2. Suppose that N = R™ and f : R™ — R™ is the identify. Let A = (a;j)1<i<e1<j<m
be an ¢ X m matrix with non-zero entries. From Corollary 5.4.1, it is clearly seen
that if (m,¢) is in the nice dimensions, then there exists a subset ¥ C (R™)¢ with
Lebesgue measure 0 such that for any p = (p1,...,p¢) € (R™)* — X, the mapping

Gpa : R" — R? is locally infinitesimally stable.



CHAPTER 0O

FUTURE RESEARCH

In Chapter 6, some conjectures on which the author is working are introduced.

6.1 An improvement of “Generic projections”

As in Chapter 2, Mather showed Theorem 2.2.1. On the other hand, in [5], an improve-
ment of Theorem 2.2.1 is given as follows:
Theorem 6.1.1 ([5]). Let f : N — R™ be a stable mapping, where N is a manifold of
dimension n. If W is a modular submanifold of ¢J"(N,R®) and m > £, then there exists a
subset ¥ C L(R™, RY) with Lebesque measure 0 such that for any © € L(R™,RY) — %, the

mapping wo f: N — R is transverse with respect to W.

As a further improvement of Theorems 2.2.1 and 6.1.1, the following problem seems to be
significant.

Problem 6.1.1. Let N be a manifold of dimension n and let W be a modular submanifold
of J"(N,RY). What is the condition (x) satisfying that (o) and (B) are equivalent in the

case of m > {0 ¢

65
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() A given mapping f: N — R™ satisfies the condition (x).

(B) There exists a subset ¥ C L(R™,RY) with Lebesgue measure 0 such that for any © €

L(R™ RY) — %, the mapping wo f: N — R is transverse with respect to W.

6.2 A-equivalence classes of generic projections

Theorem 1.0.2 is a striking result about stable mappings. As a future research, we
would like to consider A-equivalence classes of the stable mappings in Theorem 1.0.2. As a
problem on which the author is working, we introduce the following.

Problem 6.2.1. Let N be a compact manifold of dimension n. Let f : N — R™ be an
embedding. If (n, () is in the nice dimensions and m > {, then is the number of A-equivalence

classes of stable mappings mo f : N — R’ (m € L(R™,RY)) finite?

It appears difficult to investigate Problem 6.2.1. Hence, as the first step for considering
Problem 6.2.1, we would like to consider the following conjecture. Namely, we consider the
case that a given manifold N (resp., a given mapping f : N — R™) in Problem 6.2.1 is
replaced by a Nash manifold (resp., a Nash mapping). For the definitions of Nash manifolds
and Nash mappings, see Section 6.3 (for the details, see for example, [24]).

Conjecture 6.2.1. Let N be a compact Nash manifold of dimension n. Let f: N — R™
be a Nash embedding. If (n,f) is in the nice dimensions and m > {, then the number of

A-equivalence classes of stable mappings wo f : N — R (7 € L(R™,RY)) is finite.

For Conjecture 6.2.1, the author expects that it is important to prove Conjectures 6.2.2 and
6.2.3.

Conjecture 6.2.2. Let N be a compact Nash manifold of dimension n. Let f: N — R™
be a Nash embedding. If (n,l) is in the nice dimensions and m > {, then there exists a
semialgebraic set ¥ C L(R™,RY) with Lebesgue measure 0 such that for any © € L(R™, RY) —
Y, the mapping wo f : N — R is stable.

Conjecture 6.2.3. Let f : N — R™ be an embedding, where N is a compact manifold. Let

®: L(R™, RY) — C®(N,R") be the mapping given by ®(r) = wo f. Then, ® is continuous.

If Conjectures 6.2.2 and 6.2.3 are true, we can prove Conjecture 6.2.1 by the following
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argument.

Let ¥ C L(R™,RY) be the set consisting of linear mappings 7 € L£(R™,R?) such that
mo f is not stable. Then, from Conjecture 6.2.2, the set > has Lebesgue measure 0 and is
semialgebraic in £(R™, RY). From Conjecture 6.2.3 and the definition of a stable mapping, it
is clearly seen that £(R™,R?) —X is open. Moreover, since ¥ is semialgebraic in £(R™, R),
the set L(R™,RY)—X is also semialgebraic in £L(R™, RY). Hence, the number of the connected
components of L(R™,RY) — ¥ is finite. Let C be a connected component of L(R™,Rf) — X.
Then, it is easily seen that for any m, 7' € C, m o f is A-equivalent to 7’ o f. Indeed,
the proof is given by the following argument. For 7,7’ € C, we write 7 ~ 7’ if 7o f is
A-equivalent to 7’ o f. Clearly, the relation ~ on C' is an equivalence relation. By [r], we
denote the equivalence class of 7 € C. Since ® : L(R™,R?) — C>(N,R") is continuous and
C c L(R™ RY) — X, it is not hard to see that for any 7 € C, the equivalence class [r] is
open in C. We can express C' = Uyea[ma], where [m)] N [my] =0 for any A\, N € A (A # X).
Since the set C is connected, it is clearly seen that the set A has only one element. Thus,

for any m, 7’ € C, wo f is A-equivalent to 7’ o f.

Therefore, the number of A-equivalence classes of mappings mo f : N — R’ (7 €
L(R™ RY)—X) is equal to or less than the number of the connected components of £L(R™, R?)—
. Since the number of the connected components of £(R™,RY) — ¥ is finite, the number

of A-equivalence classes of mappings mo f : N — R’ (7 € L(R™,Rf) — ¥) is also finite.

6.3 Appendix

In Section 6.3, as a appendix, we prepare the definition of Nash manifolds and Nash

mappings (for the details on Nash manifolds and Nash mappings, see for example, [24]).

We say that X C R” is a semialgebraic subset of R™ if X is a finite union of sets of the

form

{z eR"| fi(z)=---= fi(z) =0,g1(x) > 0,...,g9¢(x) > 0},

where f1,..., fx,91,...,9¢ are polynomial functions on R"™. Let U and V be open semialge-

braic subsets of R” and R™, respectively. We call a mapping f : U — V a Nash mapping if
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the graph of the mapping f is semialgebraic in R x R™. A Nash manifold of dimension m
is a manifold with a finite system of coordinate neighborhoods {; : U; — R™} such that

for each i and j, ¥;(U; N U;) is an open semialgebraic subset of R and the mapping

Pyo (Ui NU;) — (U N Uy)

is a Nash diffeomorphism. Then, we call such coordinate neighborhoods Nash coordinate
neighborhoods. Let N and M be Nash manifolds. We say that f : N — M is a Nash
mapping if for every Nash coordinate neighborhoods v; : U; — R"™ and ¢; : V; — R™ of N

and M, respectively, ¥;(f~1(V;) N U;) is semialgebraic and open in R™, and the mapping

@jofo i (fH (V) NU) — R™

is a Nash mapping.
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