# 3-CONNECTED PLANAR GRAPHS ARE 2-DISTINGUISHABLE WITH FEW EXCEPTIONS 

By<br>Tomotaka Fukuda, Seiya Negami and Thomas W. Tucker

(Received August 22, 2007)


#### Abstract

A graph is said to be 2-distinguishable if there is a subset $S \subset V(G)$ such that any automorphism $\sigma: G \rightarrow G$ with $\sigma(S)=S$ must be the identity map over $G$. We shall prove that every 3-connected planar graph is 2-distinguishable, except $K_{4}, K_{2,2,2}, Q_{3}, W_{4}, W_{5}, C_{3}+\bar{K}_{2}$ and $C_{5}+\bar{K}_{2}$.


## Introduction

Let $G$ be a simple graph with $n$ vertices. An assignment $f: V(G) \rightarrow$ $\{1,2, \ldots, r\}$ is called an $r$-distinguishing labeling if no automorphism $\sigma: G \rightarrow G$, except the identity map $\mathrm{id}_{G}$, preserves the labels of vertices assigned by $f$. That is, for an $r$-distinguishing labeling $f$, the condition that $f(\sigma(v))=f(v)$ for all $v \in V(G)$ implies that $\sigma(v)=v$ for all $v \in V(G)$. A graph $G$ is said to be $r$-distinguishable if $G$ has an $r$-distinguishing labeling.

Since a usual vertex labeling of $G$ with labels $1, \ldots, n$ can be regarded as an $n$-distinguishing labeling, there exists actually such a number $r$ that $G$ is $r$-distinguishable, as one not exceeding $n=|V(G)|$. Thus, we can consider the minimum of those numbers and call it the distinguishing number of $G$. This is denoted by $D(G)$. For example, $D\left(C_{3}\right)=D\left(C_{4}\right)=D\left(C_{5}\right)=3$ and $D\left(C_{n}\right)=2$ for $n \geq 6$, where $C_{n}$ stands for a cycle of length $n$.

There have been several papers $[1,2,5]$ on this topic, and they suggest that most of graphs in suitable classes seem to be 2-distinguishable as well as the above example of cycles, often called "Key Ring Problem". (Of course, there is a series of graphs whose distinguishing numbers increase arbitrarily, say $D\left(K_{n}\right)=n$.) It should be noticed that a graph $G$ is 2-distinguishable if and only if there is a subset $S \subset V(G)$ such that $\sigma(S)=S$ for an automorphism $\sigma$ implies that $\sigma=\mathrm{id}_{G}$.

To show a similar phenomenon, we would like to study the distinguishing

[^0]numbers of graphs with an aspect of topological graph theory. That is, we shall discuss those graphs that are embedded on surfaces. In particular, we shall focus on "planar graphs", which can be embedded on the plane or on the sphere and prove the following theorem in this paper:

THEOREM 1. Every 3-connected planar graph is 2-distinguishable, except $K_{4}$, $K_{2,2,2}, Q_{3}, W_{4}, W_{5}, C_{3}+\bar{K}_{2}$ and $C_{5}+\bar{K}_{2}$.

The exceptions $K_{4}, K_{2,2,2}, Q_{3}$ and $W_{n}$ with $n=4,5$ are the complete graph over four vertices, the complete tripartite graph with partite sets of size 2,2 and 2, the 3 -cube and the wheels with rims of length 4 and 5 and they can be embedded on the sphere as the tetrahedron, the octahedron, the cube, and the pyramids with rectangular and pentagonal bases. The graph $C_{n}+\bar{K}_{2}$ consists of the cycle $C_{n}$ of length $n$ and two extra vertices each of which is adjacent to all vertices on $C_{n}$ and can be embedded on the sphere so that $C_{n}$ lies along the equator and the two extra vertices are placed at the North and South Poles. This is often called the double wheel with rim of length $n$. It is not difficult to see that $D\left(K_{4}\right)=4$ and $D(G)=3$ for the other exceptions.

More generally, we may discuss the distinguishing number of graphs $G$ embedded on surfaces in two ways. The first way is to restrict the automorphisms within those as maps. That is, we consider only those automorphisms of $G$ that send the boundary walks of faces to those, to evaluate its distinguishing number $D(G)$. For example, choose three vertices $u, v$ and $w$ so that $u v w$ forms a corner of a face of $G$ and $\operatorname{deg} v=3$, and define $f(u)=1, f(v)=2, f(w)=3$ and $f(x)=4$ for the other vertices in $G$. Then $f$ will be a distinguishing labeling of $G$, which implies that $D(G) \leq 4$.

In the second way, we discuss the distinguishing number of graphs just as abstract graphs, taking account of properties of their embeddings on surfaces. There is no upper bound for $D(G)$ in this case. For example, let $G$ be a graph embeddable on a closed surface $F^{2}$ and add an independent set of $n$ extra vertices to $G$ so that all $n$ vertices are adjacent to a common vertex. The resulting graph $G^{\prime}$ also is embeddable on $F^{2}$ and $D\left(G^{\prime}\right) \geq n$ since the extra $n$ vertices have all distinct labels in any distinguishing labeling of $G^{\prime}$. Thus, we need some restriction on the properties of graphs $G$ or their embeddings to establish a theorem showing an upper bound for $D(G)$ with few exceptions.

Recently, Tucker [6] has discussed in this way, and proved that $D(G) \leq 2$ for most of graphs on surfaces as maps, classifying those graphs on surfaces with $D(G)=3$. Our main theorem, Theorem 1 , is formally included in a part of his big result since any automorphism of a 3-connected planar graph extends to a map-automorphism on the sphere by Whitney's result [7]. However, our proof is completely different from Tucker's and will suggest those arguments for graphs
on surfaces in the second way rather than the first.

## 1. Maximal planar case

A simple graph is called a maximal planar graph if it is planar and if adding any new edge results in a nonplanar graph. Such a graph can be embedded on the plane or the sphere so that each face is triangular and each face can be distinguished with a triple $\{u, v, w\} \subset V(G)$ forming its three corners if it has at least four vertices. Then it is often called a triangulation on the sphere with a fixed embedding.

By Whitney's result [7], any 3-connected planar graph $G$ has a unique dual, which implies that $G$ is uniquely embeddable on the sphere and that any automorphism of $G$ extends to an auto-homeomorphism over the sphere where $G$ is embedded, as is pointed out in [3]. Such a graph is said to be faithfully embedded on the sphere. Every maximal planar graph can be faithfully embedded on the sphere since it is 3 -connected.

Let $G$ be a maximal planar graph with at least four vertices embedded on the sphere $S^{2}$ and $\sigma: G \rightarrow G$ an automorphism of $G$ which extends to an auto-homeomorphism $h: S^{2} \rightarrow S^{2}$. Take a face $A$ with boundary cycle uvw. Then $\sigma(u) \sigma(v) \sigma(w)$ bounds another face of $G$ and the face is $h(A)$. Let $B$ be a face of $G$ sharing the edge $u v$. Then $h(B)$ must be the face meeting $h(A)$ along the edge $\sigma(u v)$. Similarly, we can recongize the image of each face via $h$, extending a sequence of adjacent faces over the sphere. Therefore, we may say that $\sigma(u) \sigma(v) \sigma(w)$ determines the whole of $\sigma$ and $h$. In particular, if $\sigma(u)=u$, $\sigma(v)=v$ and $\sigma(w)=w$, then $\sigma$ and $h$ must be the identity maps over $G$ and the sphere. This fact enables us to prove the following theorem easily:

ThEOREM 2. Every maximal planar graph with at least four vertices is 2-distinguishable, except $K_{4}, K_{2,2,2}, C_{3}+\overline{K_{2}}$, and $C_{5}+\overline{K_{2}}$.

Proof. Let $G$ be a maximal planar graph and embed it on the sphere so that any automorphism of $G$ extends an auto-homeomorphism of the sphere, which is possible by Whitney's result as mentioned in the previous. It is clear that any automorphism of $G$ which fixes the boundary cycle of a face must be the identity map under this situation. We shall find a subset $S \subset V(G)$ so that any automorphism $\sigma: G \rightarrow G$ with $\sigma(S)=S$ must be the identity map, analyzing the following two cases separately.

CASE 1. There is a vertex $v$ of degree $d \geq 6$.
Let $u_{0}, u_{1}, \ldots, u_{d-1}$ be its neighbors with subscripts taken modulo $d$, which form the link $u_{0} u_{1} \cdots u_{d-1}$ around $v$. Put $S_{i}^{ \pm}=\left\{v, u_{i}, u_{i \pm 1}, u_{i \pm 3}\right\}$ for $i=$
$0,1, \ldots, d-1$ and let $H_{i}^{ \pm}$be the subgraph in $G$ with vertex set $S_{i}^{ \pm}$and with edges $\left\{v u_{i}, v u_{i \pm 1}, v u_{i \pm 3}, u_{i} u_{i \pm 1}\right\}$. Then $H_{i}^{ \pm}$forms a triangle $v u_{i} u_{i \pm 1}$ plus one edge joining a vertex $u_{i \pm 3}$ of degree 1 . These subgraphs $H_{i}^{ \pm}$might not be an induced subgraph in $G$, that is, they might have a chord, either $u_{i} u_{i \pm 3}$ or $u_{i \pm 1} u_{i \pm 3}$, outside the wheel neighborhood of $v$ in general. However, we can find an induced one among them, as follows.

Suppose that $H_{0}^{+}$is not induced in $G$. Then either $u_{0} u_{3}$ or $u_{1} u_{3}$ exists. In the first case, the cycle $v u_{0} u_{3}$ separates $\left\{u_{1}, u_{2}\right\}$ and $u_{4}$, and hence $u_{4}$ is adjacent to none of $u_{1}$ and $u_{2}$ by the planarity. Thus, $H_{1}^{+}$is induced. So we may assume that $u_{0} u_{3}$ does not exist but that $H_{0}^{+}$has a chord $u_{1} u_{3}$. In this case, $H_{3}^{-}$has no chord since $v u_{1} u_{3}$ separates $u_{0}$ and $u_{2}$ and hence it is induced.

Without loss of generality, we assume that $H=H_{0}^{+}$is induced in $G$ and put $S=S_{0}^{+}$. Let $\sigma: G \rightarrow G$ be any automorphism of $G$ with $\sigma(S)=S$. Then $\sigma$ must induce an automorphism of $H$. It is clear that $\sigma(v)=v, \sigma\left(\left\{u_{0}, u_{1}\right\}\right)=\left\{u_{0}, u_{1}\right\}$ and $\sigma\left(u_{3}\right)=u_{3}$ since $\operatorname{deg}_{H} v=3, \operatorname{deg}_{H} u_{0}=\operatorname{deg}_{H} u_{1}=2$ and $\operatorname{deg}_{H} u_{3}=1$. If $\sigma$ switched $u_{0}$ and $u_{1}$, then it would induce a reflexion over the wheel neighborhood of $v$ with axis passing through the middle point of $u_{0} u_{1}, v$ and $u_{3}$. This implies that $d=5$, which is contrary to our assumption in Case 1. Thus, $\sigma$ fixes all vertices in $S$ and fixes the face $v u_{0} u_{1}$. This implies that $\sigma$ extends to the identity map over the sphere.

Case 2. Every vertex has degree at most 5.
First suppose that there is a vertex of degree 5. It is easy to see that $G$ is isomorphic to the icosahedron if $G$ is 5 -regular and that the icosahedron is 2-distinguishable. So we may assume that there is a vertex $v$ of degree 5 which is adjacent to a vertex $u_{0}$ of degree 3 or 4 . Let $C=u_{0} u_{1} u_{2} u_{3} u_{4}$ be the link of $v$. Either if $\operatorname{deg} u_{1} \neq \operatorname{deg} u_{4}$ or if $\operatorname{deg} u_{2} \neq \operatorname{deg} u_{3}$, then we can take $S=\left\{v, u_{0}\right\}$ since any automorphism $\sigma: G \rightarrow G$ with $\sigma(S)=S$ fixes $v$ and $C$.

Thus, we may assume that there is an automorphism $\sigma^{\prime}: G \rightarrow G$ which flips $C$, fixing $v$ and $u_{0}$ and that $\operatorname{deg} u_{1}=\operatorname{deg} u_{4}$ and $\operatorname{deg} u_{2}=\operatorname{deg} u_{3}$. If $\operatorname{deg} u_{i} \neq 5$ for some $i \neq 0$ in addition, then we may assume that $\operatorname{deg} u_{i+1}=\operatorname{deg} u_{i-1}$ and $\operatorname{deg} u_{i+2}=\operatorname{deg} u_{i-2}$, too by the same argument as in the previous paragraph. These two assumptions imply that all $u_{0}, u_{1}, u_{2}, u_{3}, u_{4}$ have the same degree and its value should be 4 since two vertices of degree 3 are not adjacent to each other in any triangulation except $K_{4}$. It is easy to see that $G$ is isomorphic to $C_{5}+\bar{K}_{2}$ in this case. This is one of the exceptions.

If $\operatorname{deg} u_{i}=5$ for all $i \neq 0$, then we can take $S=\left\{v, u_{0}, u_{2}\right\}$. If there were an edge $u_{0} u_{2}$, then there would be an edge $\sigma^{\prime}\left(u_{0} u_{2}\right)=u_{0} u_{3}$, which implies that $\operatorname{deg} u_{0}=5$, contrary to our assumption. Thus, $u_{0}$ is not adjacent to $u_{2}$ while $u_{0}$ is adjacent to $v$. Since no automorphism can swap $v$ and $u_{2}$, we have $\sigma(v)=v$
for any automorphism $\sigma: G \rightarrow G$ with $\sigma(S)=S$. This implies that $\sigma$ fixes $C$ and extends to the identity map.

The remaining case is when every vertex has degree 3 or 4 . In this case, $G$ is isomorphic to $C_{i}+\bar{K}_{2}(i=3,4)$ or $K_{4}$. They are listed as three of the exceptions; $C_{4}+\bar{K}_{2}$ is isomorphic to $K_{2,2,2}$.

## 2. General case

It should be noticed that each face of a 3-connected planar graph is bounded by a cycle in any embedding on the shpere. The same arguments as given before Theorem 2 works for 3 -connected planar graphs, too. That is, any automorphism of a 3-connected planar graph extends to an auto-homeomorphism over the sphere where the graph is embedded. Now we shall prove Theorem 1, dividing the cases with respect to the face size that a given 3 -connected planar graph admits. We shall find a subset $S \subset V(G)$, in each case, so that any automorphism $\sigma: G \rightarrow G$ with $\sigma(S)=S$ must be the identity map over $G$ :

Proof of Theorem 1. Let $G$ be a 3-connected planar graph embedded on the sphere. We shall discuss the distinguishability of $G$, depending on its maximum face size.

Case 1. There is a face $A$ of $G$ bounded by a cycle of length at least 6.
Let $C=u_{0} u_{1} \cdots u_{d-1}$ be the cycle bounding $A$ with $d \geq 6$. Put $S=$ $\left\{u_{0}, u_{2}, u_{3}\right\}$ and suppose that an authomorphism $\sigma: G \rightarrow G$ fixes $S$ as a set, that is, $\sigma(S)=S$.

Since $\sigma$ extends to an auto-homeomorphism $h: S^{2} \rightarrow S^{2}$ over the sphere, $\sigma(C)$ bounds a face $h(A)$. If $h(A)=A$, then it is clear that $\sigma$ fixes all vertices along $C=h(C)$ and hence it must be the identity map over the whole of $G$. On the other hand, if $h(A) \neq A$, then their boundary cycles $\sigma(C)$ and $C$ meet each other at $S$. In this case, a subset of $S$ forms a 2 -cut of $G$, which is contrary to $G$ being 3 -connected. Thus, this is not the case.

Case 2. There is a pentagonal face $A$ of $G$.
Let $C=u_{0} u_{1} u_{2} u_{3} u_{4}$ be its boundary cycle and put $S=\left\{u_{0}, u_{2}, u_{3}\right\}$ as well as in the previous case. However, this $S$ does not work well since we can consider the reflexion over the sphere which fixes $u_{0}$ and swaps $u_{2}$ and $u_{3}$. We would like to find a subset $S^{\prime} \subset V(G)$ such that any automorphism $\sigma: G \rightarrow G$ with $\sigma\left(S^{\prime}\right)=S^{\prime}$ must be the identity map. Let $B$ be the face of $G$ sharing the edge $u_{3} u_{4}$ with $A$ and $C_{B}=u_{4} u_{3} w_{1} w_{2} \cdots$ its boundary cycle. Put $S^{\prime}=S \cup\left\{w_{1}\right\}$ and let $\sigma$ be any automorphism of $G$ with $\sigma\left(S^{\prime}\right)=S^{\prime}$. Then $\sigma$ extends to an
auto-homeomorphism $h: S^{2} \rightarrow S^{2}$ over the sphere.
First assume that $h(A) \neq A$. Then $|\sigma(S) \cap S| \geq 2$ since $\sigma\left(S^{\prime}\right)=S^{\prime}$ and $S^{\prime}-S=\left\{w_{1}\right\}$. If $\sigma(S) \cap S$ contains a pair of non-adjacent vertices, then the pair would form a 2 -cut of $G$, contrary to $G$ being 3 -connected. Otherwise, we have $\sigma(S) \cap S=\left\{u_{2}, u_{3}\right\}$ and $\sigma(S)=\left\{u_{2}, u_{3}, w_{1}\right\}$. These three vertices forms a path $u_{2} u_{3} w_{1}$ of length 2. However, at most one of two pairs $\left\{u_{2}, u_{3}\right\}$ and $\left\{u_{3}, w_{1}\right\}$ can be joined by an edge lying on $\sigma(C)$ and the remaining non-adjacent pair would form a 2 -cut of $G$, contrary to our assumption again.

Therefore, we can assume that $h(A)=A$ and $\sigma(C)=C$. Then we have $\sigma\left(u_{0}\right)=u_{0}$ and $\sigma\left(\left\{u_{2}, u_{3}\right\}\right)=\left\{u_{2}, u_{3}\right\}$. If $\sigma$ does not swap $u_{2}$ and $u_{3}$, then $h$ fixes $A$ pointwise and $\sigma$ must be the identity map. Otherwise, $h$ can be assumed to be the reflextion $\rho: S^{2} \rightarrow S^{2}$ over the sphere whose fixed point set forms a simple closed curve $\ell$ passing through $u_{0}$ and the middle point of $u_{2} u_{3}$. In this case, $h(B)$ must be the face meeting $A$ along $u_{1} u_{2}$. and with boundary cycle $u_{1} u_{2} \sigma\left(w_{1}\right) \sigma\left(w_{2}\right) \cdots$. Since $w_{1}$ belongs to $S^{\prime}$, we have $\sigma\left(w_{1}\right)=w_{1}$ and hence $B$ and $h(B)$ meet each other at $w_{1}=\sigma\left(w_{1}\right)$.

Let $B_{i}$ be the face of $G$ meeting $u_{i+1} u_{i+2}$ for $i \equiv 0,1,2,3,4(\bmod 5)$. By similar arguments, we can conclude that if we cannot find the desired subset $S^{\prime} \subset V(G)$, then $B_{i}$ and $B_{i+2}$ meet at a vertex for all $i$. The assumption of $G$ being 3 -connected forces all $B_{i}$ to be triangular and to meet at a common vertex, which corresponds to $w_{1}=\sigma\left(w_{1}\right)$ in the previous paragraph. That is, $G$ must be a wheel with rim of length 5 . This is one of the exceptions.

Case 3. There is a quadrilateral face $A$ of $G$ and there is no face with boundary of length more than 4.

We shall show that if $G$ is not 2-distinguishable, then all of vertices lying on the boundary cycle of any quadrilateral face have degree 3 . After showing it, it is easy to see that $G$ is isomorphic to one of $Q_{3}, W_{4}$ and $C_{3} \times K_{2}$. The first two are exceptions for the theorem while the last one, the triangular prism, is not and $D\left(C_{3} \times K_{2}\right)=2$.

Let $C=u_{0} u_{1} u_{2} u_{3}$ be the boundary cycle of $A$. If there is an edge joining $u_{0}$ and $u_{2}$, then it runs outside $A$ and we can find a simple closed which separates $u_{1}$ and $u_{3}$. This implies that $\left\{u_{0}, u_{2}\right\}$ forms a 2 -cut of $G$, contrary to $G$ being 3 -connected. Therefore, $u_{0}$ and $u_{2}$ are not adjacent and also $u_{1}$ and $u_{3}$ are not adjacent similarly.

First suppose that $u_{0} u_{1}$ is incident to a triangular face $u_{0} u_{1} w$. Put $S=$ $\left\{u_{0}, u_{1}, u_{3}, w\right\}$ and let $H$ be the subgraph induced by $S$. Let $\sigma: G \rightarrow G$ be any automorphism of $G$ with $\sigma(S)=S$ which is not the identity map and $h: S^{2} \rightarrow S^{2}$ its extention. If $w$ and $u_{3}$ are not adjacent, then the subgraph $H$ induced by $S$ consists of a triangle $u_{0} u_{1} w$ and one edge joining $u_{0}$ and $u_{3}$. This implies that
$\sigma\left(u_{0}\right)=u_{0}$ and $\sigma\left(u_{3}\right)=u_{3}$. If $\sigma$ fixes $u_{1}$ and $w$, then $h$ fixes $u_{0} u_{1} w$ and hence it must be the identitiy map. This is however contrary to our assumption on $\sigma$. Thus, $\sigma$ swaps $u_{1}$ and $w$, and $h$ is a reflexion whose axis runs through $u_{0} u_{3}$ and the middle point of $u_{1} w$. In this case, $w u_{0} u_{3}$ forms a corner of $h(A)$. This implies that $u_{0}$ has degree 3 as we expect.

Suppose that $w$ and $u_{3}$ are adjacent. Then $H$ consists of two triangles $w u_{0} u_{1}$ and $w u_{0} u_{3}$ which meet along $w u_{0}$. If $\sigma$ swaps these triangles, then $w u_{0} u_{3}$ also bounds a face and $u_{0}$ must have degree 3 . Otherwise, $\sigma$ fixes each of $u_{1}$ and $u_{3}$, swaps $u_{0}$ and $w$ since $\sigma$ is not the identity map. In this case, $h(A)$ and $A$ would meet each other only at $\left\{u_{1}, u_{3}\right\}$, which forms a 2 -cut, contrary to $G$ being 3 -connected. Thus, only the former case happens and hence $u_{0}$ has degree 3 .

Suppose that at least one of four faces adjacent to $A$ is triangular, say $u_{0} u_{1} w$. Then we have $\operatorname{deg} w=3$ as shown in the previous. If $u_{0} u_{3}$ is incident to a quadrilateral face $u_{0} u_{3} x w$ in addition, then we can show that $G$ would be 2 distinguishable, taking $S=\left\{u_{0}, u_{3}, w\right\}$. Thus, there must be a triangular face $u_{0} u_{3} w$. Repeating this argument, we can conclude that all faces incident to $A$ are triangular and that $G$ is isomorphic to $W_{4}$. Therefore, we may assume that all faces sharing edges with $A$ are quadrilateral.

Let $B_{i}$ be such a face bounded by a cycle $C_{B_{i}}=u_{i} u_{i+1} x_{i} y_{i}$ for $i \equiv 0,1,2,3$ $(\bmod 4)$. Look at $B_{0}$ and put $S=\left\{u_{0}, u_{1}, u_{2}, u_{3}, y_{0}\right\}$. Let $\sigma: G \rightarrow G$ be any automorphism of $G$ with $\sigma(S)=S$ which is not the identity map and has an extention $h: S^{2} \rightarrow S^{2}$. Since $\sigma\left(S-\left\{y_{0}\right\}\right)$ must contain either $\left\{u_{0}, u_{2}\right\}$ or $\left\{u_{1}, u_{3}\right\}$, if $h(A) \neq A$, then $h(A) \cup A$ includes a simple closed curve which passes through one of $\left\{u_{0}, u_{2}\right\}$ and $\left\{u_{1}, u_{3}\right\}$ and separates the other, which is contrary to $G$ being 3 -connected. Thus, we have $h(A)=A$.

If $h\left(B_{0}\right)=B_{0}$, then $h$ would fix $A \cup B_{0}$ pointwise and $\sigma$ would be the identity map, a contradiction. Thus, we have $h\left(B_{0}\right) \neq B_{0}$ and $\sigma\left(C_{B_{0}}\right)$ contains $\sigma\left(y_{0}\right)=y_{0}$. If $\sigma\left(C_{B_{0}}\right)$ contained $u_{1}$, then $\left\{u_{1}, y_{0}\right\}$ would form a 2-cut. Thus, $h\left(B_{0}\right)$ is either $B_{2}$ or $B_{3}$. In either case, $\sigma\left(y_{0}\right)$ must be one of $x_{3}, y_{3}, x_{2}$ and $y_{2}$ and it must be equal to $y_{0}$. If $y_{0}=x_{3}$, then $u_{0} y_{0}$ coincides with $u_{0} x_{3}$ to exclude the multiple edges between $u_{0}$ and $x_{3}$ and hence $u_{0}$ has degree 3 in this case as we want.

Look at $B_{3}$ and put $S^{\prime}=\left\{u_{0}, u_{1}, u_{2}, u_{3}, x_{3}\right\}$. By similar arguments with an automorphism $\sigma^{\prime}: G \rightarrow G$ with $\sigma^{\prime}\left(S^{\prime}\right)=S^{\prime}$, we can conclude that one of $y_{0}, x_{0}$, $y_{1}$ and $x_{1}$ must be $x_{3}$. By the planarity, most of these cases are not compatible to the cases in the previous paragraph. The unique compatible case is when $y_{0}=x_{3}$ and $u_{0}$ has degree 3 in this case. Now we have shown that $\operatorname{deg} u_{0}=3$ in all cases.

Case 4. Every face of $G$ is triangular.

That is, $G$ is a maximal planar graph. By Theorem 2, $G$ is 2 -distinguishable unless $G$ is one of the exceptions. Since our graphs are all simple, this is the final case for the proof.

Theorem 1 is best possible with respect to the connectivity. That is, if we omit the assumption of $G$ being 3 -connected in Theorem 1, then there is no upper bound for $D(G)$. For example, the complete bipartite graph $K_{2, n}(n \geq 3)$ is 2-connected planar graph but is not 2-distinguishable and $D\left(K_{2, n}\right)=n$.

An outer planar graph is one that can be embedded on the plane so that the boundary of its unique unbounded face contains all vertices. If an outer planar graph is 2-connected, then the boundary of its unbounded face is its hamilton cycle. It is very easy to prove the following theorem on outer planar graphs and we cannot omit the assumption of being 2-connected. For example, the star $K_{1, n}$ $(n \geq 2)$ is outer planar but is not 2 -connected and $D\left(K_{1, n}\right)=n$.

THEOREM 3. Every 2-connected outer planar graph is 2-distinguishable, except $C_{3}, C_{4}$ and $C_{5}$.

Proof. Let $G$ be a 2-connected outer planar graph embedded on the plane and $C$ a hamilton cycle of $G$, which contains all vertices and bounds the outer face. It is easy to see that there is no other hamilton cycle of $G$ than $C$ and hence $\sigma(C)=C$ for any automorphism $\sigma: G \rightarrow G$. Then $C$ contains a vertex of degree 2. If $G$ is not 2-regular, that is, if it is not a cycle, then there are two consecutive vertices $u$ and $v$ along $C$ such that $\operatorname{deg} u=2$ and $\operatorname{deg} v>2$.

Put $S=\{u, v\}$ and let $\sigma: G \rightarrow G$ be any automorphism of $G$ with $\sigma(S)=S$. Then we have $\sigma(u)=u$ and $\sigma(v)=v$ since $u$ and $v$ have different degrees and hence $\sigma$ fixes $C$ and must be the identity map.

## 3. On other surfaces

The point in our previous arguments for 3-connected planar graphs is the fact that their all automorphisms extend to auto-homeomorphisms over the surface where the graph is embedded. Also the planarity excludes complicated local structures and allows us to carry out the same argument around vertices or faces as for "Key Ring Problem". Thus, we will be able to establish similar theorems for those graphs embedded on surfaces such that these can be assumed for them.

A triangulation on a closed surface $F^{2}$ is a simple graph $G$ embedded on $F^{2}$ so that every face is bounded by a cycle of length 3 and any two faces share at most one edge. In particular, if every cycle of length 3 in $G$ bounds a face, then $G$ is said to be clean.

It is easy to see that the neighbors of every vertex $v$ in a triangulation $G$ form a cycle surrounding $v$ on $F^{2}$. Such a cycle is called the link of $v$ and is often denoted by $\mathrm{lk}(v)$. If $G$ is clean, then the link of every vertex $v$ in $G$ must be an induced cycle in $G$, that is, it has no chord. This implies that $\operatorname{lk}(v)$ is the unique cycle consisting of the neighbors of $v$. This fact excludes complicated local sturctures in $G$ and guarantees the following:

LEMMA 4. Every automorphism of a clean triangulation on a closed surface extends to an auto-homeomorphism over the surface.

Proof. Let $G$ be a clean triangulation on a closed surface $F^{2}$ and $\sigma: G \rightarrow G$ its automorphism as an abstract graph. Let uvw be the boundary cycle of any face $A$ of $G$. Then $\sigma(u) \sigma(v) \sigma(w)$ is a cycle of length 3 in $G$. Since $G$ is clean, this cycle $\sigma(u) \sigma(v) \sigma(w)$ must bound a face $A^{\prime}$ and hence $\sigma$ extends so that it maps $A$ to $A^{\prime}$. Therefore, $\sigma$ extends to an auto-homeomorphism over $F^{2}$.

THEOREM 5. Every clean triangulation on a closed surface is 2-distinguishable, except $K_{4}, K_{2,2,2}$ and $C_{5}+\bar{K}_{2}$ on the sphere.

Proof. Let $G$ be a clean triangulation on a closed surface $F^{2}$ and let $V_{i}$ denote the number of vertices in $G$ of degree $i$. Then we have the following well-known formula:

$$
3 V_{3}+2 V_{4}+V_{5}=6 \chi\left(F^{2}\right)+\sum_{i \geq 7}(i-6) V_{i}
$$

where $\chi\left(F^{2}\right)$ stands for the Euler characteristic of $F^{2}$.
If there is no vertex of degree at least 6 , then this formula is reduced to:

$$
3 V_{3}+2 V_{4}+V_{5}=6 \chi\left(F^{2}\right)
$$

This implies that $\chi\left(F^{2}\right)$ must be positive and that $F^{2}$ is homeomorphic to either the sphere or the projective plane. We have already discussed the first case as Theorem 2 and have known those triangulations that are not 2-distinguishable and all of them except $C_{3}+\bar{K}_{2}$ are clean. They are the exceptions for the theorem, too. On the other hand, if $F^{2}$ is the projective plane, then we have $V_{3}+V_{4}+V_{5} \leq 6$ and that $G$ must be isomorphic to $K_{6}$ since $K_{6}$ is the smallest triangulation on the projective plane. However, $K_{6}$ is not clean and hence there is no exception for the theorem in this case.

Therefore, we may assume that $G$ has a vertex $v$ of degree at least 6 . Let $\operatorname{lk}(v)=u_{0} u_{1} \cdots u_{d-1}$ be the link around $v$ with $d \geq 6$. Put $S=\left\{v, u_{0}, u_{1}, u_{3}\right\}$. Then the subgraph $H$ induced by $S$ consists of the triangle $v u_{0} u_{1}$ and one edge $v u_{3}$ joining $v$ and the unique vertex $u_{3}$ of degree 1 since $G$ is clean. Thus, for any automorphism $\sigma: G \rightarrow G$ with $\sigma(S)=S$, we have $\sigma(v)=v, \sigma\left(u_{3}\right)=u_{3}$ and
$\sigma\left(\left\{u_{0}, u_{1}\right\}\right)=\left\{u_{0}, u_{1}\right\}$. By Lemma 4, $\sigma$ extends to an auto-homeomorphism over $F^{2}$ and hence $\sigma$ preserves $\operatorname{lk}(v)$. Since $d \geq 6, \sigma$ must be the identity map over $G$ as well as in Case 1 in our proof of Theorem 2. Therefore, $G$ is 2-distinguishable.

Let $G$ be a graph embedded on a closed surface $F^{2}$, except the sphere. Then $G$ is said to be $r$-representative on $F^{2}$ if any non-contractible simple closed curve on $F^{2}$ meets $G$ in at least $r$ points and the minimum of such a number $r$ is called the representativity of $G$ on $F^{2}$. It has been known that if a 3-connected graph $G$ has sufficiently large representativity on a closed surface $F^{2}$, then $G$ is uniquely and faithfully embeddable on $F^{2}$ (see [4] for example) and hence there is no gap between automorphisms of $G$ as an abstract graph and those as a map on $F^{2}$. Thus the theorem for those graphs will be included in Tucker's result [6].

On the other hand, we cannot establish such a theorem for graphs with low representativity. That is, a closed surface admits infinitely many graphs that are not 2-distinguishable, as follows:

THEOREM 6. There exists no upper bound for the distinguishing number of 2 -connected graphs embedded on any closed surface.

Proof. Let $G$ be any 2-connected graph embedded on a closed surface $F^{2}$. Take one edge $u v$ and replace it with $K_{2, n}(n \geq 3)$ so that the partite set of size 2 in $K_{2, n}$ coincides with $\{u, v\}$. Let $G^{\prime}$ be the resulting graph embedded on $F^{2}$. Then the labels of vertices in the partite set of size $n$ in $K_{2, n}$ are all distinct for any distinguishing labeling of $G^{\prime}$. Therefore, $D\left(G^{\prime}\right) \geq n$.

Theorem 7. There exist infinitely many 4-connected graphs $G$ embedded on the orientable closed surface of genus $g \geq 1$ such that $D(G) \geq 2 g$.

Proof. Prepare the sphere where a 4 -connected graph is embedded. Choose two faces $A$ and $B$ and let $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$ be two disjoint sets of vertices lying on the boundary cycles of $A$ and $B$, respectively. Join $A$ and $B$ with $g$ annuli and put $2 g$ extra vertices $x_{1}, \ldots, x_{2 g}$ on the annuli so that each annulus contains two of them. Add four edges between $x_{i}$ and $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ to the annulus where $x_{i}$ lies for $i=1, \ldots, 2 g$. It is easy to see that the resulting graph $G^{\prime}$ is 4 -connected and that $x_{1}, \ldots, x_{2 g}$ must get different labels in any distinguishing labeling of $G^{\prime}$. Therefore, $D\left(G^{\prime}\right) \geq 2 g$.

A similar argument works for non-orientable closed surfaces and we can show the following:

Corollary 8. Any closed surface $F^{2}$ with $\chi\left(F^{2}\right) \leq-2$ admits infinitely
many 4-connected graphs that are not 2-distinguishable.
Proof. Because we can take at least two annuli to place $x_{1}, x_{2}, x_{3}, \ldots$ as in the proo of Theorem 7.

Acknowledgement. The authors would like to express their thanks for Prof. Joan P. Hutchinson and Michael O. Albertson who join the authors to work together on this topic.

## References

[1] M.O. Albertson and K.L. Collings, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996)
[ 2 ] B. Bogstad, Bill and L.J. Cowen, The distinguishing number of the hypercube, Discrete Math. 283 (2004)
[ 3 ] S. Negami, Uniqueness and faithfulness of embedding of toroidal graphs, Discrete Math. 44 (1983), 161-180.
[4] N. Robertson and R. Vitray, Representativity of surface embeddings, In: Paths, flows, and VLSI layout, B. Korte, L. Lovász, H.J. Prömel, and A. Schrijver, eds., SpringerVerlag, Berlin, Heidelberg, 1990.
[5] A. Russell and R. Sundaram, A note on the asymptotics and computational complexity of graph distinguishability, Electron. J. Combin. 5 (1998)
[6] T.W. Tucker, Distinguishability of maps, preprint 2005.
[7] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150-168.
T. Fukuda and S. Negami

Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan.
E-mail address: d05hc041@ynu.ac.jp,
negami@edhs.ynu.ac.jp
T. W. Tucker

Department of Mathematics, Colgate University, 13 Oak Drive, Hamilton, NY 13346, U.S.A.

E-mail address: Ttucker@mail.colgate.edu


[^0]:    2000 Mathematics Subject Classification:
    Key words and phrases:

