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Abstract. A graph is said to be 2-distinguishable if there is a subset S ⊂ V (G)
such that any automorphism σ : G→ G with σ(S) = S must be the identity map
over G. We shall prove that every 3-connected planar graph is 2-distinguishable,
except K4, K2,2,2, Q3, W4, W5, C3 +K2 and C5 +K2.

Introduction

Let G be a simple graph with n vertices. An assignment f : V (G) →
{1, 2, . . . , r} is called an r-distinguishing labeling if no automorphism σ : G→ G,

except the identity map idG, preserves the labels of vertices assigned by f . That

is, for an r-distinguishing labeling f , the condition that f(σ(v)) = f(v) for all

v ∈ V (G) implies that σ(v) = v for all v ∈ V (G). A graph G is said to be

r-distinguishable if G has an r-distinguishing labeling.

Since a usual vertex labeling of G with labels 1, . . . , n can be regarded as

an n-distinguishing labeling, there exists actually such a number r that G is

r-distinguishable, as one not exceeding n = |V (G)|. Thus, we can consider the
minimum of those numbers and call it the distinguishing number of G. This is

denoted by D(G). For example, D(C3) = D(C4) = D(C5) = 3 and D(Cn) = 2

for n ≥ 6, where Cn stands for a cycle of length n.
There have been several papers [1, 2, 5] on this topic, and they suggest that

most of graphs in suitable classes seem to be 2-distinguishable as well as the above

example of cycles, often called “Key Ring Problem”. (Of course, there is a series

of graphs whose distinguishing numbers increase arbitrarily, say D(Kn) = n.)

It should be noticed that a graph G is 2-distinguishable if and only if there is

a subset S ⊂ V (G) such that σ(S) = S for an automorphism σ implies that

σ = idG.

To show a similar phenomenon, we would like to study the distinguishing
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numbers of graphs with an aspect of topological graph theory. That is, we shall

discuss those graphs that are embedded on surfaces. In particular, we shall focus

on “planar graphs”, which can be embedded on the plane or on the sphere and

prove the following theorem in this paper:

THEOREM 1. Every 3-connected planar graph is 2-distinguishable, except K4,

K2,2,2, Q3, W4, W5, C3 +K2 and C5 +K2.

The exceptions K4, K2,2,2, Q3 and Wn with n = 4, 5 are the complete graph

over four vertices, the complete tripartite graph with partite sets of size 2, 2

and 2, the 3-cube and the wheels with rims of length 4 and 5 and they can be

embedded on the sphere as the tetrahedron, the octahedron, the cube, and the

pyramids with rectangular and pentagonal bases. The graph Cn +K2 consists

of the cycle Cn of length n and two extra vertices each of which is adjacent to

all vertices on Cn and can be embedded on the sphere so that Cn lies along the

equator and the two extra vertices are placed at the North and South Poles.

This is often called the double wheel with rim of length n. It is not difficult to

see that D(K4) = 4 and D(G) = 3 for the other exceptions.

More generally, we may discuss the distinguishing number of graphs G em-

bedded on surfaces in two ways. The first way is to restrict the automorphisms

within those as maps. That is, we consider only those automorphisms of G that

send the boundary walks of faces to those, to evaluate its distinguishing number

D(G). For example, choose three vertices u, v and w so that uvw forms a corner

of a face of G and deg v = 3, and define f(u) = 1, f(v) = 2, f(w) = 3 and

f(x) = 4 for the other vertices in G. Then f will be a distinguishing labeling of

G, which implies that D(G) ≤ 4.
In the second way, we discuss the distinguishing number of graphs just as

abstract graphs, taking account of properties of their embeddings on surfaces.

There is no upper bound for D(G) in this case. For example, let G be a graph

embeddable on a closed surface F 2 and add an independent set of n extra vertices

to G so that all n vertices are adjacent to a common vertex. The resulting graph

G0 also is embeddable on F 2 and D(G0) ≥ n since the extra n vertices have

all distinct labels in any distinguishing labeling of G0. Thus, we need some

restriction on the properties of graphs G or their embeddings to establish a

theorem showing an upper bound for D(G) with few exceptions.

Recently, Tucker [6] has discussed in this way, and proved that D(G) ≤ 2 for
most of graphs on surfaces as maps, classifying those graphs on surfaces with

D(G) = 3. Our main theorem, Theorem 1, is formally included in a part of his

big result since any automorphism of a 3-connected planar graph extends to a

map-automorphism on the sphere by Whitney’s result [7]. However, our proof is

completely different from Tucker’s and will suggest those arguments for graphs
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on surfaces in the second way rather than the first.

1. Maximal planar case

A simple graph is called a maximal planar graph if it is planar and if adding

any new edge results in a nonplanar graph. Such a graph can be embedded

on the plane or the sphere so that each face is triangular and each face can be

distinguished with a triple {u, v, w} ⊂ V (G) forming its three corners if it has
at least four vertices. Then it is often called a triangulation on the sphere with

a fixed embedding.

By Whitney’s result [7], any 3-connected planar graph G has a unique dual,

which implies that G is uniquely embeddable on the sphere and that any auto-

morphism of G extends to an auto-homeomorphism over the sphere where G is

embedded, as is pointed out in [3]. Such a graph is said to be faithfully embedded

on the sphere. Every maximal planar graph can be faithfully embedded on the

sphere since it is 3-connected.

Let G be a maximal planar graph with at least four vertices embedded on

the sphere S2 and σ : G → G an automorphism of G which extends to an

auto-homeomorphism h : S2 → S2. Take a face A with boundary cycle uvw.

Then σ(u)σ(v)σ(w) bounds another face of G and the face is h(A). Let B be

a face of G sharing the edge uv. Then h(B) must be the face meeting h(A)

along the edge σ(uv). Similarly, we can recongize the image of each face via h,

extending a sequence of adjacent faces over the sphere. Therefore, we may say

that σ(u)σ(v)σ(w) determines the whole of σ and h. In particular, if σ(u) = u,

σ(v) = v and σ(w) = w, then σ and h must be the identity maps over G and

the sphere. This fact enables us to prove the following theorem easily:

THEOREM 2. Every maximal planar graph with at least four vertices is

2-distinguishable, except K4, K2,2,2, C3 +K2, and C5 +K2.

Proof. Let G be a maximal planar graph and embed it on the sphere so that

any automorphism of G extends an auto-homeomorphism of the sphere, which

is possible by Whitney’s result as mentioned in the previous. It is clear that

any automorphism of G which fixes the boundary cycle of a face must be the

identity map under this situation. We shall find a subset S ⊂ V (G) so that any
automorphism σ : G → G with σ(S) = S must be the identity map, analyzing

the following two cases separately.

Case 1. There is a vertex v of degree d ≥ 6.
Let u0, u1, . . . , ud−1 be its neighbors with subscripts taken modulo d, which

form the link u0u1 · · ·ud−1 around v. Put S±i = {v, ui, ui±1, ui±3} for i =
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0, 1, . . . , d − 1 and let H±
i be the subgraph in G with vertex set S±i and with

edges {vui, vui±1, vui±3, uiui±1}. Then H±
i forms a triangle vuiui±1 plus one

edge joining a vertex ui±3 of degree 1. These subgraphs H±
i might not be

an induced subgraph in G, that is, they might have a chord, either uiui±3 or
ui±1ui±3, outside the wheel neighborhood of v in general. However, we can find
an induced one among them, as follows.

Suppose that H+
0 is not induced in G. Then either u0u3 or u1u3 exists. In

the first case, the cycle vu0u3 separates {u1, u2} and u4, and hence u4 is adjacent
to none of u1 and u2 by the planarity. Thus, H

+
1 is induced. So we may assume

that u0u3 does not exist but that H
+
0 has a chord u1u3. In this case, H

−
3 has

no chord since vu1u3 separates u0 and u2 and hence it is induced.

Without loss of generality, we assume that H = H+
0 is induced in G and put

S = S+0 . Let σ : G→ G be any automorphism of G with σ(S) = S. Then σ must

induce an automorphism of H. It is clear that σ(v) = v, σ({u0, u1}) = {u0, u1}
and σ(u3) = u3 since degH v = 3, degH u0 = degH u1 = 2 and degH u3 = 1. If σ

switched u0 and u1, then it would induce a reflexion over the wheel neighborhood

of v with axis passing through the middle point of u0u1, v and u3. This implies

that d = 5, which is contrary to our assumption in Case 1. Thus, σ fixes all

vertices in S and fixes the face vu0u1. This implies that σ extends to the identity

map over the sphere.

Case 2. Every vertex has degree at most 5.

First suppose that there is a vertex of degree 5. It is easy to see that G

is isomorphic to the icosahedron if G is 5-regular and that the icosahedron is

2-distinguishable. So we may assume that there is a vertex v of degree 5 which

is adjacent to a vertex u0 of degree 3 or 4. Let C = u0u1u2u3u4 be the link of

v. Either if deg u1 6= deg u4 or if deg u2 6= deg u3, then we can take S = {v, u0}
since any automorphism σ : G→ G with σ(S) = S fixes v and C.

Thus, we may assume that there is an automorphism σ0 : G→ G which flips

C, fixing v and u0 and that deg u1 = deg u4 and deg u2 = deg u3. If deg ui 6= 5
for some i 6= 0 in addition, then we may assume that deg ui+1 = deg ui−1 and
deg ui+2 = deg ui−2, too by the same argument as in the previous paragraph.
These two assumptions imply that all u0, u1, u2, u3, u4 have the same degree and

its value should be 4 since two vertices of degree 3 are not adjacent to each other

in any triangulation except K4. It is easy to see that G is isomorphic to C5+K2

in this case. This is one of the exceptions.

If deg ui = 5 for all i 6= 0, then we can take S = {v, u0, u2}. If there were
an edge u0u2, then there would be an edge σ

0(u0u2) = u0u3, which implies that
deg u0 = 5, contrary to our assumption. Thus, u0 is not adjacent to u2 while u0
is adjacent to v. Since no automorphism can swap v and u2, we have σ(v) = v
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for any automorphism σ : G → G with σ(S) = S. This implies that σ fixes C

and extends to the identity map.

The remaining case is when every vertex has degree 3 or 4. In this case,

G is isomorphic to Ci + K2 (i = 3, 4) or K4. They are listed as three of the

exceptions; C4 +K2 is isomorphic to K2,2,2.

2. General case

It should be noticed that each face of a 3-connected planar graph is bounded

by a cycle in any embedding on the shpere. The same arguments as given before

Theorem 2 works for 3-connected planar graphs, too. That is, any automor-

phism of a 3-connected planar graph extends to an auto-homeomorphism over

the sphere where the graph is embedded. Now we shall prove Theorem 1, di-

viding the cases with respect to the face size that a given 3-connected planar

graph admits. We shall find a subset S ⊂ V (G), in each case, so that any

automorphism σ : G→ G with σ(S) = S must be the identity map over G:

Proof of Theorem 1. Let G be a 3-connected planar graph embedded on the

sphere. We shall discuss the distinguishability of G, depending on its maximum

face size.

Case 1. There is a face A of G bounded by a cycle of length at least 6.

Let C = u0u1 · · ·ud−1 be the cycle bounding A with d ≥ 6. Put S =

{u0, u2, u3} and suppose that an authomorphism σ : G → G fixes S as a set,

that is, σ(S) = S.

Since σ extends to an auto-homeomorphism h : S2 → S2 over the sphere,

σ(C) bounds a face h(A). If h(A) = A, then it is clear that σ fixes all vertices

along C = h(C) and hence it must be the identity map over the whole of G. On

the other hand, if h(A) 6= A, then their boundary cycles σ(C) and C meet each
other at S. In this case, a subset of S forms a 2-cut of G, which is contrary to

G being 3-connected. Thus, this is not the case.

Case 2. There is a pentagonal face A of G.

Let C = u0u1u2u3u4 be its boundary cycle and put S = {u0, u2, u3} as well as
in the previous case. However, this S does not work well since we can consider

the reflexion over the sphere which fixes u0 and swaps u2 and u3. We would

like to find a subset S0 ⊂ V (G) such that any automorphism σ : G → G with

σ(S0) = S0 must be the identity map. Let B be the face of G sharing the edge

u3u4 with A and CB = u4u3w1w2 · · · its boundary cycle. Put S0 = S ∪ {w1}
and let σ be any automorphism of G with σ(S0) = S0. Then σ extends to an
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auto-homeomorphism h : S2 → S2 over the sphere.

First assume that h(A) 6= A. Then |σ(S) ∩ S| ≥ 2 since σ(S0) = S0 and
S0−S = {w1}. If σ(S)∩S contains a pair of non-adjacent vertices, then the pair
would form a 2-cut of G, contrary to G being 3-connected. Otherwise, we have

σ(S) ∩ S = {u2, u3} and σ(S) = {u2, u3, w1}. These three vertices forms a path
u2u3w1 of length 2. However, at most one of two pairs {u2, u3} and {u3, w1} can
be joined by an edge lying on σ(C) and the remaining non-adjacent pair would

form a 2-cut of G, contrary to our assumption again.

Therefore, we can assume that h(A) = A and σ(C) = C. Then we have

σ(u0) = u0 and σ({u2, u3}) = {u2, u3}. If σ does not swap u2 and u3, then h
fixes A pointwise and σ must be the identity map. Otherwise, h can be assumed

to be the reflextion ρ : S2 → S2 over the sphere whose fixed point set forms a

simple closed curve ` passing through u0 and the middle point of u2u3. In this

case, h(B) must be the face meeting A along u1u2. and with boundary cycle

u1u2σ(w1)σ(w2) · · ·. Since w1 belongs to S0, we have σ(w1) = w1 and hence B
and h(B) meet each other at w1 = σ(w1).

Let Bi be the face of G meeting ui+1ui+2 for i ≡ 0, 1, 2, 3, 4 (mod 5). By

similar arguments, we can conclude that if we cannot find the desired subset

S0 ⊂ V (G), then Bi and Bi+2 meet at a vertex for all i. The assumption of G
being 3-connected forces all Bi to be triangular and to meet at a common vertex,

which corresponds to w1 = σ(w1) in the previous paragraph. That is, G must

be a wheel with rim of length 5. This is one of the exceptions.

Case 3. There is a quadrilateral face A of G and there is no face with boundary

of length more than 4.

We shall show that if G is not 2-distinguishable, then all of vertices lying on

the boundary cycle of any quadrilateral face have degree 3. After showing it, it

is easy to see that G is isomorphic to one of Q3, W4 and C3 ×K2. The first two

are exceptions for the theorem while the last one, the triangular prism, is not

and D(C3 ×K2) = 2.

Let C = u0u1u2u3 be the boundary cycle of A. If there is an edge joining u0
and u2, then it runs outside A and we can find a simple closed which separates

u1 and u3. This implies that {u0, u2} forms a 2-cut of G, contrary to G being

3-connected. Therefore, u0 and u2 are not adjacent and also u1 and u3 are not

adjacent similarly.

First suppose that u0u1 is incident to a triangular face u0u1w. Put S =

{u0, u1, u3, w} and let H be the subgraph induced by S. Let σ : G→ G be any

automorphism of G with σ(S) = S which is not the identity map and h : S2 → S2

its extention. If w and u3 are not adjacent, then the subgraph H induced by S

consists of a triangle u0u1w and one edge joining u0 and u3. This implies that
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σ(u0) = u0 and σ(u3) = u3. If σ fixes u1 and w, then h fixes u0u1w and hence

it must be the identitiy map. This is however contrary to our assumption on

σ. Thus, σ swaps u1 and w, and h is a reflexion whose axis runs through u0u3
and the middle point of u1w. In this case, wu0u3 forms a corner of h(A). This

implies that u0 has degree 3 as we expect.

Suppose that w and u3 are adjacent. Then H consists of two triangles wu0u1
and wu0u3 which meet along wu0. If σ swaps these triangles, then wu0u3 also

bounds a face and u0 must have degree 3. Otherwise, σ fixes each of u1 and

u3, swaps u0 and w since σ is not the identity map. In this case, h(A) and A

would meet each other only at {u1, u3}, which forms a 2-cut, contrary to G being
3-connected. Thus, only the former case happens and hence u0 has degree 3.

Suppose that at least one of four faces adjacent to A is triangular, say u0u1w.

Then we have degw = 3 as shown in the previous. If u0u3 is incident to a

quadrilateral face u0u3xw in addition, then we can show that G would be 2-

distinguishable, taking S = {u0, u3, w}. Thus, there must be a triangular face
u0u3w. Repeating this argument, we can conclude that all faces incident to A

are triangular and that G is isomorphic to W4. Therefore, we may assume that

all faces sharing edges with A are quadrilateral.

Let Bi be such a face bounded by a cycle CBi = uiui+1xiyi for i ≡ 0, 1, 2, 3
(mod 4). Look at B0 and put S = {u0, u1, u2, u3, y0}. Let σ : G → G be

any automorphism of G with σ(S) = S which is not the identity map and has

an extention h : S2 → S2. Since σ(S − {y0}) must contain either {u0, u2} or
{u1, u3}, if h(A) 6= A, then h(A)∪A includes a simple closed curve which passes
through one of {u0, u2} and {u1, u3} and separates the other, which is contrary
to G being 3-connected. Thus, we have h(A) = A.

If h(B0) = B0, then h would fix A ∪ B0 pointwise and σ would be the

identity map, a contradiction. Thus, we have h(B0) 6= B0 and σ(CB0
) contains

σ(y0) = y0. If σ(CB0
) contained u1, then {u1, y0} would form a 2-cut. Thus,

h(B0) is either B2 or B3. In either case, σ(y0) must be one of x3, y3, x2 and y2
and it must be equal to y0. If y0 = x3, then u0y0 coincides with u0x3 to exclude

the multiple edges between u0 and x3 and hence u0 has degree 3 in this case as

we want.

Look at B3 and put S
0 = {u0, u1, u2, u3, x3}. By similar arguments with an

automorphism σ0 : G→ G with σ0(S0) = S0, we can conclude that one of y0, x0,
y1 and x1 must be x3. By the planarity, most of these cases are not compatible

to the cases in the previous paragraph. The unique compatible case is when

y0 = x3 and u0 has degree 3 in this case. Now we have shown that deg u0 = 3

in all cases.

Case 4. Every face of G is triangular.
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That is, G is a maximal planar graph. By Theorem 2, G is 2-distinguishable

unless G is one of the exceptions. Since our graphs are all simple, this is the

final case for the proof.

Theorem 1 is best possible with respect to the connectivity. That is, if we

omit the assumption of G being 3-connected in Theorem 1, then there is no

upper bound for D(G). For example, the complete bipartite graph K2,n (n ≥ 3)
is 2-connected planar graph but is not 2-distinguishable and D(K2,n) = n.

An outer planar graph is one that can be embedded on the plane so that the

boundary of its unique unbounded face contains all vertices. If an outer planar

graph is 2-connected, then the boundary of its unbounded face is its hamilton

cycle. It is very easy to prove the following theorem on outer planar graphs and

we cannot omit the assumption of being 2-connected. For example, the star K1,n

(n ≥ 2) is outer planar but is not 2-connected and D(K1,n) = n.

THEOREM 3. Every 2-connected outer planar graph is 2-distinguishable, except

C3, C4 and C5.

Proof. Let G be a 2-connected outer planar graph embedded on the plane and

C a hamilton cycle of G, which contains all vertices and bounds the outer face.

It is easy to see that there is no other hamilton cycle of G than C and hence

σ(C) = C for any automorphism σ : G→ G. Then C contains a vertex of degree

2. If G is not 2-regular, that is, if it is not a cycle, then there are two consecutive

vertices u and v along C such that deg u = 2 and deg v > 2.

Put S = {u, v} and let σ : G→ G be any automorphism of G with σ(S) = S.

Then we have σ(u) = u and σ(v) = v since u and v have different degrees and

hence σ fixes C and must be the identity map.

3. On other surfaces

The point in our previous arguments for 3-connected planar graphs is the fact

that their all automorphisms extend to auto-homeomorphisms over the surface

where the graph is embedded. Also the planarity excludes complicated local

structures and allows us to carry out the same argument around vertices or faces

as for “Key Ring Problem”. Thus, we will be able to establish similar theorems

for those graphs embedded on surfaces such that these can be assumed for them.

A triangulation on a closed surface F 2 is a simple graph G embedded on F 2

so that every face is bounded by a cycle of length 3 and any two faces share at

most one edge. In particular, if every cycle of length 3 in G bounds a face, then

G is said to be clean.
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It is easy to see that the neighbors of every vertex v in a triangulation G

form a cycle surrounding v on F 2. Such a cycle is called the link of v and is

often denoted by lk(v). If G is clean, then the link of every vertex v in G must

be an induced cycle in G, that is, it has no chord. This implies that lk(v) is

the unique cycle consisting of the neighbors of v. This fact excludes complicated

local sturctures in G and guarantees the following:

LEMMA 4. Every automorphism of a clean triangulation on a closed surface

extends to an auto-homeomorphism over the surface.

Proof. Let G be a clean triangulation on a closed surface F 2 and σ : G→ G its

automorphism as an abstract graph. Let uvw be the boundary cycle of any face

A of G. Then σ(u)σ(v)σ(w) is a cycle of length 3 in G. Since G is clean, this

cycle σ(u)σ(v)σ(w) must bound a face A0 and hence σ extends so that it maps
A to A0. Therefore, σ extends to an auto-homeomorphism over F 2.

THEOREM 5. Every clean triangulation on a closed surface is 2-distinguishable,

except K4, K2,2,2 and C5 +K2 on the sphere.

Proof. Let G be a clean triangulation on a closed surface F 2 and let Vi denote

the number of vertices in G of degree i. Then we have the following well-known

formula:

3V3 + 2V4 + V5 = 6χ(F
2) +

X
i≥7
(i− 6)Vi,

where χ(F 2) stands for the Euler characteristic of F 2.

If there is no vertex of degree at least 6, then this formula is reduced to:

3V3 + 2V4 + V5 = 6χ(F
2)

This implies that χ(F 2) must be positive and that F 2 is homeomorphic to either

the sphere or the projective plane. We have already discussed the first case as

Theorem 2 and have known those triangulations that are not 2-distinguishable

and all of them except C3 + K2 are clean. They are the exceptions for the

theorem, too. On the other hand, if F 2 is the projective plane, then we have

V3 + V4 + V5 ≤ 6 and that G must be isomorphic to K6 since K6 is the smallest

triangulation on the projective plane. However, K6 is not clean and hence there

is no exception for the theorem in this case.

Therefore, we may assume that G has a vertex v of degree at least 6. Let

lk(v) = u0u1 · · ·ud−1 be the link around v with d ≥ 6. Put S = {v, u0, u1, u3}.
Then the subgraph H induced by S consists of the triangle vu0u1 and one edge

vu3 joining v and the unique vertex u3 of degree 1 since G is clean. Thus, for

any automorphism σ : G→ G with σ(S) = S, we have σ(v) = v, σ(u3) = u3 and
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σ({u0, u1}) = {u0, u1}. By Lemma 4, σ extends to an auto-homeomorphism
over F 2 and hence σ preserves lk(v). Since d ≥ 6, σ must be the identity

map over G as well as in Case 1 in our proof of Theorem 2. Therefore, G is

2-distinguishable.

Let G be a graph embedded on a closed surface F 2, except the sphere. Then

G is said to be r-representative on F 2 if any non-contractible simple closed curve

on F 2 meets G in at least r points and the minimum of such a number r is called

the representativity of G on F 2. It has been known that if a 3-connected graph G

has sufficiently large representativity on a closed surface F 2, then G is uniquely

and faithfully embeddable on F 2 (see [4] for example) and hence there is no gap

between automorphisms of G as an abstract graph and those as a map on F 2.

Thus the theorem for those graphs will be included in Tucker’s result [6].

On the other hand, we cannot establish such a theorem for graphs with low

representativity. That is, a closed surface admits infinitely many graphs that are

not 2-distinguishable, as follows:

THEOREM 6. There exists no upper bound for the distinguishing number of

2-connected graphs embedded on any closed surface.

Proof. Let G be any 2-connected graph embedded on a closed surface F 2. Take

one edge uv and replace it with K2,n (n ≥ 3) so that the partite set of size 2
in K2,n coincides with {u, v}. Let G0 be the resulting graph embedded on F 2.
Then the labels of vertices in the partite set of size n in K2,n are all distinct for

any distinguishing labeling of G0. Therefore, D(G0) ≥ n.

THEOREM 7. There exist infinitely many 4-connected graphs G embedded on

the orientable closed surface of genus g ≥ 1 such that D(G) ≥ 2g.

Proof. Prepare the sphere where a 4-connected graph is embedded. Choose two

faces A and B and let {a1, a2} and {b1, b2} be two disjoint sets of vertices lying
on the boundary cycles of A and B, respectively. Join A and B with g annuli and

put 2g extra vertices x1, . . . , x2g on the annuli so that each annulus contains two

of them. Add four edges between xi and {a1, a2, b1, b2} to the annulus where xi
lies for i = 1, . . . , 2g. It is easy to see that the resulting graph G0 is 4-connected
and that x1, . . . , x2g must get different labels in any distinguishing labeling of

G0. Therefore, D(G0) ≥ 2g.

A similar argument works for non-orientable closed surfaces and we can show

the following:

COROLLARY 8. Any closed surface F 2 with χ(F 2) ≤ −2 admits infinitely
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many 4-connected graphs that are not 2-distinguishable.

Proof. Because we can take at least two annuli to place x1, x2, x3, . . . as in the

proo of Theorem 7.
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