THE CONVERGENCE RATE ESTIMATES OF MANN ITERATIVE SEQUENCES INVOLVING φ-STRONG PSEUDOCONTRACTIONS IN BANACH SPACES

By

HIROKO MANAKA AND WATARU TAKAHASHI

(Received July 11, 2007; Revised April 10, 2008)

Abstract. Let *C* be a bounded closed and convex subset of an arbitrary Banach space, whose diameter is M > 0, and let $T : C \to C$ be a Lipschitz continuous and ϕ -strong pseudocontraction with a unique fixed point *p*. In this paper, for any $\beta \in (0, 1)$ we determine a non-negative integer sequence $\{n(K)\}$, and with respect to $\{n(K)\}$ we show to construct Mann iterative sequence $\{x_n\}$ which has the following rate estimate: For any K,

$$||x_n - p|| \leq M\beta^K$$
 for all $n \geq n(K)$.

We also give estimates of n(K) from above.

1. Introduction

Let X be an arbitrary Banach space and let $T : X \to X$ be a nonlinear mapping such that the set F(T) of fixed points of T is nonempty. Let J denote the normalized duality mapping from X into 2^{X^*} given by

$$J(x) = \{ f \in X^* : \langle x, f \rangle = ||x||^2 = ||f||^2 \},\$$

where X^* denotes the dual space of X, $\langle \cdot, \cdot \rangle$ denotes the duality pairing and $\|\cdot\|$ denotes the norm on X and X^* while there are no confusion.

A mapping $T: D(T) \to R(T)$ with domain D(T) and range R(T) in X is called a strong pseudocontraction if there exists c > 1 such that for all $x, y \in D(T)$, there is $j(x-y) \in J(x-y)$ satisfying

$$\langle Tx - Ty, j(x - y) \rangle \leq \frac{1}{c} \left\| x - y \right\|^2.$$

It is well-known that if $T: X \to X$ is a continuous and strong pseudocontraction, then T has a unique fixed point p (see [8]). There are many results of strong

²⁰⁰⁰ Mathematics Subject Classification: 47H17

Key words and phrases: Banach space, Lipschitzian mapping, strong pseudocontraction, fixed point, convergence rate estimate

convergence theorems to p; see, for instance, [1, 5, 6, 7, 9]. For the T, let us consider the following Mann iterative sequence with a coefficient sequence $\{t_n\} \subset [0, 1]$:

(1.1)
$$\begin{cases} x_0 \in X, \\ x_{n+1} = t_n T x_n + (1 - t_n) x_n & \text{for all } n \in N \cup \{0\}, \end{cases}$$

where N is the set of positive integers. In particular, when D(T) = C is a nonempty closed convex and bounded subset of X and $T: C \to C$ is additionally Lipschitz continuous with a Lipschitz constant L, Liu [6] gave a convergence rate estimate of the $\{x_n\}$ as follows:

(1.2)
$$||x_{n+1} - p|| \le \rho^n ||x_0 - p||$$
 for all $n \in N \cup \{0\}$,

where

$$t_n = \frac{k}{2(3+3L+L^2)}, \quad k = 1 - \frac{1}{c} \quad \text{and} \quad \rho = 1 - \frac{k^2}{4(3+3L+L^2)}.$$

Sastry and Babu [9] also showed, without condition of boundedness of C, that the $\{x_n\}$ has the same convergence rate estimate as (1, 2) for the following constant ρ :

$$\rho = 1 - \frac{k^2}{4(L+1)(L+2-k) + 2k}.$$

In this paper, we give convergence rate estimate of $\{x_n\}$ involving the following mapping T. Let $\alpha : [0, \infty) \to [0, \infty)$ be a function for which $\alpha(0) = 0$ and the $\liminf_{r \to r_0} \alpha(r) > 0$ for every $r_0 > 0$. For a function α , a mapping $T : D(T) \to R(T)$ is called an α -strong pseudocontraction with α if for all $x, y \in D(T)$ there exists $j(x - y) \in J(x - y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2 - \alpha(||x - y||) ||x - y||$$

Kirk and Morales [3, 4] showed that a continuous and α -strong pseudocontraction T on a closed convex subset C = D(T) = R(T) has a unique fixed point p. The mapping T according to a strictly increasing function ϕ instead of α is called a ϕ -strong pseudocontraction. The case of ϕ -strong pseudocontractions has been studied extensively, and it is well-known that the class of strong pseudocontractions is a proper subset of the class of ϕ -strong pseudocontractions (see [1, 3, 5, 7, 11]). We give convergence rate estimates of Mann iterative sequence involving a Lipschitz continuous and ϕ -strong pseudocontraction T on an arbitrary Banach space. Precisely, for this mapping T and any $\beta \in (0, 1)$ we determine a non-negative integer sequence $\{n(K)\}_{K \in N \cup \{0\}}$ and a coefficient sequence $\{t_n\}$ in a suitable way and we construct Mann iterative sequence with the $\{t_n\}$ as (1.1) which satisfies the following rate estimate: For any non-negative integer K,

(1.3)
$$||x_n - p|| \le M\beta^K \text{ for all } n \ge n(K),$$

where M > 0 is a diameter of a bounded subset C. We also give estimate of n(K) from above.

2. Lemmas

In this section, we shall prove two lemmas which are crucial in the proofs of main results. Let $N_0 = N \cup \{0\}$ and let Φ be the set of all strictly increasing functions $f : [0, \infty) \to [0, \infty)$ with f(0) = 0. We can prove the first lemma by using Kato's lemma (see [2]).

LEMMA 1. Let C be a subset of a Banach space X and let $T : C \to C$ be a ϕ -strong pseudocontraction with $\phi \in \Phi$. Then for any $x, y \in C$ with $x \neq y$, the following inequality holds:

$$||x - y + t\{(I - T - \gamma_{xy}I)x - (I - T - \gamma_{xy}I)y\}|| \ge ||x - y||$$
 for all $t > 0$,

where $\gamma_{xy} = \frac{\phi(\|x-y\|)}{\|x-y\|}$ and I is an identity mapping.

Proof. From the definition of a ϕ -strong pseudocontraction T, we have that for any $x, y \in C$ with $x \neq y$,

$$\begin{aligned} \langle Tx - Ty, j(x - y) \rangle &\leq \|x - y\|^2 - \phi(\|x - y\|) \|x - y\| \\ &= (1 - \frac{\phi(\|x - y\|)}{\|x - y\|}) \|x - y\|^2 \\ &= (1 - \frac{\phi(\|x - y\|)}{\|x - y\|}) \langle x - y, j(x - y) \rangle \end{aligned}$$

So, we have

$$\langle (I - T - \gamma_{xy}I)x - (I - T - \gamma_{xy}I)y, j(x - y) \rangle \geq 0.$$

From Kato's lemma [2] this inequality is equivalent to

$$\|x - y + t\{(I - T - \gamma_{xy}I)x - (I - T - \gamma_{xy}I)y\}\| \ge \|x - y\| \text{ for all } t > 0.$$

Let C be a bounded closed and convex subset of a Banach space X and let M be $\delta(C) > 0$, the diameter of C. Consider $\phi \in \Phi$ such that the function ψ defined by

$$\psi(t) = \begin{cases} \frac{\phi(t)}{t} & \text{if } t \in (0, M], \\ 0 & \text{if } t = 0 \end{cases}$$

is increasing, $\lim_{t\to 0+} \psi(t) = 0$ and $0 \le \psi(t) \le 1$ for all $t \in [0, M]$. Such a ϕ is said to be a *P*-function with ψ on [0, M].

For example,

$$\phi(t) = \left(\frac{t}{M}\right)^2$$
 for all $t \in [0, M],$

and

$$\phi(t) = rac{t}{1 + \log M - \log t}$$
 for all $t \in (0, M]$, and $\phi(0) = 0$

are P-functions on [0, M]. By virtue of Lemma 1, we obtain the following important lemma.

LEMMA 2. Let C be a bounded closed and convex subset of a Banach space X. Suppose $M = \delta(C) > 0$, and let ϕ be a P-function with ψ on [0, M]. Let $T : C \to C$ be ϕ -strongly pseudocontractive and Lipschitz continuous with a Lipschitz constant L. Then, for any coefficient sequence $\{t_n\} \subset (0,1)$, Mann iterative sequence $\{x_n\}$ defined by (1.1) has the following estimate: For a unique fixed point p,

$$||x_{n+1} - p|| \le (1 - \gamma_n t_n + \tilde{L} t_n^2) ||x_n - p||$$
 for any $n \in N_0$,

where $\gamma_n = \psi(||x_{n+1} - p||)$ and $\tilde{L} = 3 + 3L + L^2$.

Proof. It is enough to consider the case of $x_{n+1} \neq p$. Let γ be any real number. From $x_{n+1} = t_n T x_n + (1 - t_n) x_n$, as in [6] we get

$$\begin{split} x_n &= x_{n+1} - t_n T x_n + t_n x_n \\ &= (1+t_n) x_{n+1} + t_n (I - T - \gamma I) x_{n+1} - t_n (2-\gamma) x_{n+1} \\ &+ t_n (T x_{n+1} - T x_n) + t_n x_n \\ &= (1+t_n) x_{n+1} + t_n (I - T - \gamma I) x_{n+1} - t_n (2-\gamma) (t_n T x_n + (1-t_n) x_n) \\ &+ t_n (T x_{n+1} - T x_n) + t_n x_n \\ &= (1+t_n) x_{n+1} + t_n (I - T - \gamma I) x_{n+1} - t_n^2 (2-\gamma) (T x_n - x_n) \\ &- t_n (1-\gamma) x_n + t_n (T x_{n+1} - T x_n). \end{split}$$

For p, we also have

$$p = p - t_n T p + t_n p$$

= $(1 + t_n)p + t_n (I - T - \gamma I)p - t_n (1 - \gamma)p.$

Thus we have

$$(2.1)$$

$$x_n - p = (1 + t_n)(x_{n+1} - p) + t_n\{(I - T - \gamma I)x_{n+1} - (I - T - \gamma I)p\}$$

$$- t_n(1 - \gamma)(x_n - p) + t_n(Tx_{n+1} - Tx_n) - t_n^2(2 - \gamma)(Tx_n - x_n)$$

$$= (1 + t_n)\{x_{n+1} - p + \frac{t_n}{1 + t_n}((I - T - \gamma I)x_{n+1} - (I - T - \gamma I)p)\}$$

$$- t_n(1 - \gamma)(x_n - p) + t_n(Tx_{n+1} - Tx_n) - t_n^2(2 - \gamma)(Tx_n - x_n)$$

and hence

$$\|x_n - p\| \ge (1 + t_n) \left\| x_{n+1} - p + \frac{t_n}{1 + t_n} \{ (I - T - \gamma I) x_{n+1} - (I - T - \gamma I) p \} \right\| - t_n \| (1 - \gamma) (x_n - p) \| - t_n \| T x_{n+1} - T x_n \| - t_n^2 \| (2 - \gamma) (x_n - T x_n) \|.$$

Here, since we have from Lemma 1 for γ_n

$$\left\| x_{n+1} - p + \frac{t_n}{1+t_n} \{ (I - T - \gamma_n I) x_{n+1} - (I - T - \gamma_n I) p \} \right\| \ge \|x_{n+1} - p\|,$$

we obtain from (2.1), using γ_n instead of γ ,

$$||x_n - p|| \ge (1 + t_n) ||x_{n+1} - p|| - t_n (1 - \gamma_n) ||x_n - p|| - t_n ||Tx_{n+1} - Tx_n|| - t_n^2 (2 - \gamma_n) ||x_n - Tx_n||$$

and this inequality implies

$$\{1 + t_n(1 - \gamma_n)\} \|x_n - p\| + t_n \|Tx_{n+1} - Tx_n\| + t_n^2(2 - \gamma_n) \|x_n - Tx_n\| \\ \ge (1 + t_n) \|x_{n+1} - p\|.$$

Since T is Lipschitz continuous with a Lipschitz constant L, we have

$$\begin{split} t_n \, \|Tx_{n+1} - Tx_n\| &+ t_n^2 (2 - \gamma_n) \, \|x_n - Tx_n\| \\ &\leq t_n L \, \|\{t_n Tx_n + (1 - t_n) x_n\} - x_n\| \\ &+ t_n^2 (2 - \gamma_n) \, \|x_n - Tx_n\| \\ &= t_n^2 L \, \|Tx_n - x_n\| + t_n^2 (2 - \gamma_n) \, \|Tx_n - x_n\| \\ &= t_n^2 \{L + (2 - \gamma_n)\} \, \|Tx_n - p + p - x_n\| \\ &\leq t_n^2 \{L + (2 - \gamma_n)\} (L + 1) \, \|x_n - p\| \, . \end{split}$$

Thus we obtain from (2.2)

$$\{1 + (1 - \gamma_n)t_n\} \|x_n - p\| + t_n^2 \{L + (2 - \gamma_n)\}(L + 1) \|x_n - p\| \\ \ge (1 + t_n) \|x_{n+1} - p\|.$$

This implies that

$$(2.3) \|x_{n+1} - p\| \le \frac{\{1 + (1 - \gamma_n)t_n\}}{(1 + t_n)} \|x_n - p\| + \frac{t_n^2 \{L + (2 - \gamma_n)\}(L + 1)}{(1 + t_n)} \|x_n - p\|.$$

Moreover, since we have

$$\begin{aligned} \frac{1+(1-\gamma_n)t_n}{1+t_n} &\leq (1+(1-\gamma_n)t_n)(1-t_n+t_n^2) \\ &= 1+(1-\gamma_n)t_n+(-t_n+t_n^2)+(1-\gamma_n)t_n(-t_n+t_n^2) \\ &= 1-\gamma_nt_n+t_n^2-(1-\gamma_n)(1-t_n)t_n^2 \\ &\leq 1-\gamma_nt_n+t_n^2, \end{aligned}$$

we obtain from (2.3)

$$\begin{aligned} \|x_{n+1} - p\| &\leq \frac{1 + (1 - \gamma_n)t_n}{1 + t_n} \|x_n - p\| + \frac{t_n^2 \{L + (2 - \gamma_n)\}(L + 1)}{1 + t_n} \|x_n - p\| \\ &\leq (1 - \gamma_n t_n + t_n^2) \|x_n - p\| + t_n^2 \{L + (2 - \gamma_n)\}(L + 1) \|x_n - p\| \\ &= (1 - \gamma_n t_n) \|x_n - p\| \\ &+ t_n^2 \{1 + L(L + 1) + (2 - \gamma_n)(L + 1)\} \|x_n - p\| \\ &\leq \{1 - \gamma_n t_n + t_n^2 (3 + 3L + L^2)\} \|x_n - p\| .\end{aligned}$$

Setting $\tilde{L} = 3 + 3L + L^2$, we obtain that

$$||x_{n+1} - p|| \le (1 - \gamma_n t_n + \tilde{L} t_n^2) ||x_n - p||$$
 for all $n \in N_0$.

3. Main Results

Let C be a bounded closed and convex subset of a Banach space X, and suppose $M = \delta(C) > 0$. Let ϕ be a P-function with ψ on [0, M], and let $T: C \to C$ be ϕ -strongly pseudocontractive and Lipschitz continuous with a Lipschitz constant L. Set $\tilde{L} = (3 + 3L + L^2)$ and define a function $C_T : (0, 1] \rightarrow (0, 1)$ as follows:

$$C_T(\alpha) = 1 - \frac{1}{4\tilde{L}}(\psi(M\alpha))^2$$
 for all $\alpha \in (0,1]$

Then $C_T(\alpha_1) \leq C_T(\alpha_2)$ for $\alpha_1 \geq \alpha_2$ since $\psi(t)$ is increasing. Fix $\beta \in (0, 1)$. For a sufficiently large $K \in N_0$, we have

$$\beta < C_T(\beta^K) = 1 - \frac{1}{4\tilde{L}}(\psi(M\beta^K))^2 < 1$$

For any $K \in N_0$, define m_K depending on β as follows:

(3.1)
$$m_K = \min\{m \in N : (C_T(\beta^K))^m \le \beta\}.$$

Then $m_K \leq m_{K+1}$ and $(C_T(\beta^K))^n \leq \beta$ for $n \geq m_K$. Moreover, define $n_\beta(0) = 0$ and

$$n_{\beta}(K) = n_{\beta}(K-1) + m_K, \quad K \in N.$$

Then we have

(3.2)
$$n_{\beta}(K) = n_{\beta}(0) + \sum_{j=1}^{K} m_j = \sum_{j=1}^{K} m_j, \quad K \in N.$$

Denoting $n_{\beta}(K)$ by n(K) for simplification, we have that $0 = n(0) < n(1) < \cdots < n(K) < \cdots$. For each $n \in N_0$ we can find some $K \in N$ such that $n(K-1) \leq n < n(K)$. So, using such a K, define t_n by

(3.3)
$$t_n = \frac{1}{2\tilde{L}}\psi(M\beta^K).$$

With respect to this coefficient sequence $\{t_n\}$, let us construct Mann iterative sequence $\{x_n\} \subset C$ as (1.1):

$$\begin{cases} x_0 \in C, \\ x_{n+1} = t_n T x_n + (1 - t_n) x_n, \quad n \in N_0. \end{cases}$$

Then, we obtain the following theorem concerning convergence rate.

THEOREM 1. Let C be a bounded closed convex subset of a Banach space X. Let ϕ be a P-function with ψ on [0, M], and let $T : C \to C$ be ϕ -strongly pseudcontractive and Lipschitz continuous with a Lipschitz constant L. For $\beta \in$ (0,1), define $\{n(K)\}_{K \in N_0}$ by (3.2) and suppose the coefficient sequence $\{t_n\}$ is determined by the $\{n(K)\}_{K \in N_0}$ as (3.3). Then Mann iterative sequence $\{x_n\}$ constructed by $\{t_n\}$ as (1.1) has the following convergence rate estimate: For any $K \in N_0$,

$$||x_n - p|| \le M\beta^K$$
 for all $n \ge n(K)$.

Proof. Suppose $\beta \in (0,1)$ is fixed. For this $\beta \in (0,1)$, consider $\{n(K)\}_{K \in N_0}$ and the Mann iterative sequence $\{x_n\}$ with the coefficient sequence $\{t_n\}$ defined by (3.3). We first prove that $||x_{n(K)} - p|| \leq M\beta^K$ for all $K \in N_0$ by induction. Because $M = \delta(C)$, we have $||x_{n(0)} - p|| \leq M = M\beta^0$. Assume that $||x_{n(K-1)} - p|| \leq M\beta^{K-1}$ for some $K \in N$. Then we shall show that $||x_{n(K)} - p|| \leq M\beta^K$. Note first that $n(K) = n(K-1) + m_K$. From Lemma 2 we have

$$\begin{aligned} \|x_{n(K)} - p\| &\leq (1 - \gamma_{n(K)-1} t_{n(K)-1} + \tilde{L} t_{n(K)-1}^2) \|x_{n(K)-1} - p\| \\ &= \{1 - \psi(\|x_{n(K)} - p\|) \frac{1}{2\tilde{L}} \psi(M\beta^K) \\ &+ \frac{1}{4\tilde{L}} (\psi(M\beta^K))^2\} \|x_{n(K)-1} - p\| . \end{aligned}$$

If $||x_{n(K)} - p|| > M\beta^K$, then we have $\psi(||x_{n(K)} - p||) \ge \psi(M\beta^K)$ from the increasing property of ψ . So we have

$$\begin{aligned} \|x_{n(K)} - p\| &\leq \{1 - \psi(\|x_{n(K)} - p\|) \frac{1}{2\tilde{L}} \psi(M\beta^{K}) \\ &+ \frac{1}{4\tilde{L}} (\psi(M\beta^{K}))^{2} \} \|x_{n(K)-1} - p\| \\ &\leq \{1 - \psi(M\beta^{K}) \frac{1}{2\tilde{L}} \psi(M\beta^{K}) + \frac{1}{4\tilde{L}} (\psi(M\beta^{K}))^{2} \} \|x_{n(K)-1} - p\| \\ &= \{1 - \frac{1}{4\tilde{L}} (\psi(M\beta^{K}))^{2} \} \|x_{n(K)-1} - p\| \\ &= C_{T} (\beta^{K}) \|x_{n(K)-1} - p\| . \end{aligned}$$

Thus we obtain

$$||x_{n(K)} - p|| \le \max\{M\beta^K, C_T(\beta^K) ||x_{n(K)-1} - p||\}.$$

Similarly, since $\|x_{n(K)-1} - p\| \leq \max\{M\beta^K, C_T(\beta^K) \|x_{n(K)-2} - p\|\}$, we have $\|x_{n(K)-1} - p\| \leq \max\{M\beta^K, C_T(\beta^K) M\beta^K, (C_T(\beta^K))^2 \|x_{n(K)-2} - p\|\}$

$$||x_{n(K)} - p|| \le \max\{M\beta^{K}, C_{T}(\beta^{K})M\beta^{K}, (C_{T}(\beta^{K}))^{2} ||x_{n(K)-2} - p||\}.$$

Since $0 < C_T(\beta^K) < 1$, we have

(3.4)
$$||x_{n(K)} - p|| \le \max\{M\beta^K, (C_T(\beta^K))^2 ||x_{n(K)-2} - p||\}.$$

From m_K -times repeating such a way and by the inductive assumption, we have

$$\begin{aligned} \left\| x_{n(K)} - p \right\| &\leq \max\{M\beta^{K}, \ (C_{T}(\beta^{K}))^{m_{K}} \left\| x_{n(K-1)} - p \right\| \} \\ &\leq \max\{M\beta^{K}, \beta \left\| x_{n(K-1)} - p \right\| \} \\ &\leq \max\{M\beta^{K}, \beta M\beta^{K-1} \} \\ &= M\beta^{K}. \end{aligned}$$

Hence we obtain by induction

$$\|x_{n(K)} - p\| \le M\beta^K$$
 for all $K \in N_0$

Next, we shall prove that for all $K \in N_0$ and $m \in N$ with $0 < m < m_{K+1}$,

$$\left\|x_{n(K)+m} - p\right\| \le M\beta^K.$$

Similarly as the above, if $||x_{n(K)+m} - p|| > M\beta^{K}$, then we get that

$$\begin{split} \|x_{n(K)+m} - p\| &\leq \{1 - \gamma_{n(K)+m-1}t_{n(K)+m-1} \\ &+ \tilde{L}t_{n(K)+m-1}^2\} \|x_{n(K)+m-1} - p\| \\ &= \{1 - \psi(\|x_{n(K)+m} - p\|)\frac{1}{2\tilde{L}}\psi(M\beta^{K+1}) \\ &+ \frac{1}{4\tilde{L}}(\psi(M\beta^{K+1}))^2\} \|x_{n(K)+m-1} - p\| \\ &\leq \{1 - \psi(M\beta^K)\frac{1}{2\tilde{L}}\psi(M\beta^{K+1}) \\ &+ \frac{1}{4\tilde{L}}(\psi(M\beta^{K+1}))^2\} \|x_{n(K)+m-1} - p\| \\ &\leq \{1 - \psi(M\beta^{K+1})\frac{1}{2\tilde{L}}\psi(M\beta^{K+1}) \\ &+ \frac{1}{4\tilde{L}}(\psi(M\beta^{K+1}))^2\} \|x_{n(K)+m-1} - p\| \\ &= \{1 - \frac{1}{4\tilde{L}}(\psi(M\beta^{K+1}))^2\} \|x_{n(K)+m-1} - p\| \\ &= \{1 - \frac{1}{4\tilde{L}}(\psi(M\beta^{K+1}))^2\} \|x_{n(K)+m-1} - p\| \\ &= C_T(\beta^{K+1}) \|x_{n(K)+m-1} - p\| . \end{split}$$

Thus we obtain

$$||x_{n(K)+m} - p|| \le \max\{M\beta^K, C_T(\beta^{K+1}) ||x_{n(K)+m-1} - p||\}.$$

Repeating similarly, we have

$$\begin{aligned} \left\| x_{n(K)+m} - p \right\| &\leq \max\{M\beta^{K}, (C_{T}(\beta^{K+1}))^{m} \left\| x_{n(K)} - p \right\| \} \\ &\leq \max\{M\beta^{K}, C_{T}(\beta^{K+1})^{m}M\beta^{K} \} \\ &\leq M\beta^{K}. \end{aligned}$$

So, we obtain that for all $K \in N_0$ and $m \in N$ with $0 < m < m_{K+1}$,

$$\left\|x_{n(K)+m} - p\right\| \le M\beta^K$$

As a consequence, noting $||x_{n(K+1)} - p|| \le M\beta^{K+1} \le M\beta^{K}$, we have that for any $K \in N_0$,

$$||x_n - p|| \le M\beta^K$$
 for all $n \ge n(K)$.

		н

Next, for a given β and for a *P*-function ϕ , we shall give estimates of $\{n(K)\}_K$ defined by (3.2). For the sake of simplification, we assume that M = 1.

THEOREM 2. Under the assumption of the previous theorem, the following holds:

$$n(K) \le (1 + \log \beta)K - 8\tilde{L}(\log \beta) \sum_{j=1}^{K} \frac{1}{(\psi(\beta^j))^2}, \quad K \in N$$

Moreover, in the case of $\beta = \frac{1}{2}$, the following hold:

(1) If $\phi(t) = t^2$, i.e., $\psi(t) = t$, then

$$n(K) \le (1 - \log 2)K + \frac{32\tilde{L}}{3}4^K \log 2, \quad K \in N_1$$

(2) if $\phi(0) = 0$ and $\phi(t) = \frac{t}{1 - \log t}$, $t \in (0, 1]$, i.e., $\psi(0) = 0$ and

$$\psi(t)=\frac{1}{1-\log t},\quad t\in(0,1],$$

then for any $K \in N$,

$$\begin{split} n(K) &\leq \{1 + (8\tilde{L} - 1)(\log 2)\}K + 8\tilde{L}(\log 2)^2 K(K + 1) \\ &+ \frac{4}{3}\tilde{L}(\log 2)^3 K(K + 1)(2K + 1). \end{split}$$

Proof. Let $\{m_j\}_{j\in N}$ be the sequence defined by (3.1). For any $x \in (0,\infty)$, define

$$[x] = \max\{ n \in N_0 : n \le x \}.$$

Then, we have, for any $j \in N$,

$$m_j = \min\{ m \in N : m \ge \frac{\log \beta}{\log C_T(\beta^j)} \}$$
$$\le \left[\frac{\log \beta}{\log C_T(\beta^j)} \right] + 1.$$

The Taylor expansion of $\log(1+s)$ gives the following equation:

$$\frac{(-1)}{\log C_T(\beta^j)} = \frac{(-1)}{\log(1 - \frac{1}{4\tilde{L}}(\psi(\beta^j))^2)} \\ = \frac{1}{\sum_{r=1}^{\infty} \frac{1}{r} (\frac{1}{4\tilde{L}}(\psi(\beta^j))^2)^r}$$

Since $(\frac{1}{r}) \ge (\frac{1}{2})^r$ for all $r \in N$, we have that

$$\frac{(-1)}{\log C_T(\beta^j)} \le \frac{1}{\sum_{r=1}^{\infty} (\frac{1}{8\tilde{L}} (\psi(\beta^j))^2)^r} \\ = \frac{1 - (8\tilde{L})^{-1} (\psi(\beta^j))^2}{(8\tilde{L})^{-1} (\psi(\beta^j))^2} \\ = \frac{8\tilde{L}}{(\psi(\beta^j))^2} - 1.$$

Thus, we obtain

$$n(K) = \sum_{j=1}^{K} m_j \le \sum_{j=1}^{K} \left\{ \left[\frac{\log \beta}{\log C_T(\beta^j)} \right] + 1 \right\}$$
$$\le \sum_{j=1}^{K} \left\{ (-\log \beta) (\frac{8\tilde{L}}{(\psi(\beta^j))^2} - 1) + 1 \right\}$$
$$= K(1 + \log \beta) - 8\tilde{L}(\log \beta) \sum_{j=1}^{K} \frac{1}{(\psi(\beta^j))^2}.$$

(1) From $\beta = \frac{1}{2}$ and $\psi(t) = t$, we have

$$n(K) \le K(1 - \log 2) + 8\tilde{L}(\log 2) \sum_{j=1}^{K} 4^{j}$$
$$= K(1 - \log 2) + \frac{32}{3}\tilde{L}(\log 2)4^{K}.$$

(2) From $\beta = \frac{1}{2}$, $\psi(0) = 0$ and $\psi(t) = \frac{1}{\log \frac{e}{t}}$, $t \in (0, 1]$, i.e., $\psi(0) = 0$ and

$$\frac{1}{\psi(t)} = \log(\frac{e}{t}), \ t \in (0, 1],$$

we have

$$\begin{split} n(K) &\leq K(1 - \log 2) + 8\tilde{L}(\log 2) \sum_{j=1}^{K} (\log \frac{e}{2^{-j}})^2 \\ &\leq K(1 - \log 2) + 8\tilde{L}(\log 2) \sum_{j=1}^{K} (1 + j \log 2)^2 \\ &\leq K(1 - \log 2) \\ &\quad + 8\tilde{L}(\log 2) \{K + (\log 2)K(K + 1) + \frac{(\log 2)^2}{6}K(K + 1)(2K + 1)\}. \end{split}$$

These results seem to show that the convergence rate of the iterative sequence $\{x_n\}$ with $\phi(t) = \frac{t}{1 - \log t}$ is better than that with $\phi(t) = t^2$.

Acknowledgement. The authors thank the referee for very useful comments.

References

- C.E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings, Proc. Amer. Math. Soc., 99 (1987), 283–288.
- T. Kato, Nonlinear semigroup and evolution equations, J. Math. Soc. Japan, 19 (1967), 508–511.
- [3] W.A. Kirk and C.H. Morales, Fixed point theorems for local strong pseudo-contractions, Nonlinear Anal., 4 (1980), 363–368.
- [4] W.A. Kirk and C.H. Morales, Nonexpansive mappings: boundary/inwardness conditions and local theory. Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, 2001, pp. 299–321.
- [5] L. Liu, Fixed points of local strictly pseudocontractive mappings using Mann and Ishikawa iteration with errors, *Indian J. Pure Appl. Math.*, 26 (1995), 649–659.
- [6] L. Liu, Approximation of fixed points of a strictly pseudocontractive mapping, Proc. Amer. Math. Soc., 125 (1997), 1363–1366.
- [7] M.O. Osilike, Iterative solution of nonlinear equations of the φ-strongly accretive type, J. Math. Anal. Appl., 200 (1996), 259–271.
- [8] S. Reich, Iterative methods for accretive sets, in Nonlinear Equations in Abstract Spaces, Academic Press, New York, 1978, pp. 317–326.
- [9] K.P.R. Sastry and G.V.R. Babu, Approximation of fixed points of strictly pseudocontractive mappings on arbitrary closed, convex sets in a Banach space, *Proc. Amer. Math.* Soc., **128** (2000), 2907–2909.
- [10] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [11] H. Manaka Tamura, A note on Stević's iteration method, J. Math. Anal. Appl., 314 (2006), 382–389.

H. Manaka
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Oh-okayama, Meguro-ku, Tokyo, 152-8552,
Japan
E-mail address: hirokom@lime.ocn.ne.jp
W. Takahashi
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Oh-okayama, Meguro-ku, Tokyo, 152-8552,
Japan
E-mail address: wataru@is.titech.ac.jp