THE CONVERGENCE RATE ESTIMATES OF MANN ITERATIVE SEQUENCES INVOLVING ϕ-STRONG PSEUDOCONTRACTIONS IN BANACH SPACES

By
Hiroko Manaka and Wataru Takahashi

(Received July 11, 2007; Revised April 10, 2008)

Abstract

Let C be a bounded closed and convex subset of an arbitrary Banach space, whose diameter is $M>0$, and let $T: C \rightarrow C$ be a Lipschitz continuous and ϕ-strong pseudocontraction with a unique fixed point p. In this paper, for any $\beta \in(0,1)$ we determine a non-negative integer sequence $\{n(K)\}$, and with respect to $\{n(K)\}$ we show to construct Mann iterative sequence $\left\{x_{n}\right\}$ which has the following rate estimate: For any K,

$$
\left\|x_{n}-p\right\| \leq M \beta^{K} \text { for all } n \geq n(K)
$$

We also give estimates of $n(K)$ from above.

1. Introduction

Let X be an arbitrary Banach space and let $T: X \rightarrow X$ be a nonlinear mapping such that the set $F(T)$ of fixed points of T is nonempty. Let J denote the normalized duality mapping from X into $2^{X^{*}}$ given by

$$
J(x)=\left\{f \in X^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}
$$

where X^{*} denotes the dual space of $X,\langle\cdot, \cdot\rangle$ denotes the duality pairing and $\|\cdot\|$ denotes the norm on X and X^{*} while there are no confusion.

A mapping $T: D(T) \rightarrow R(T)$ with domain $D(T)$ and range $R(T)$ in X is called a strong pseudocontraction if there exists $c>1$ such that for all $x, y \in$ $D(T)$, there is $j(x-y) \in J(x-y)$ satisfying

$$
\langle T x-T y, j(x-y)\rangle \leq \frac{1}{c}\|x-y\|^{2}
$$

It is well-known that if $T: X \rightarrow X$ is a continuous and strong pseudocontraction, then T has a unique fixed point p (see [8]). There are many results of strong

[^0]convergence theorems to p; see, for instance, $[1,5,6,7,9]$. For the T, let us consider the following Mann iterative sequence with a coefficient sequence $\left\{t_{n}\right\} \subset[0,1]:$
\[

\left\{$$
\begin{array}{l}
x_{0} \in X, \tag{1.1}\\
\quad x_{n+1}=t_{n} T x_{n}+\left(1-t_{n}\right) x_{n} \quad \text { for all } n \in N \cup\{0\},
\end{array}
$$\right.
\]

where N is the set of positive integers. In particular, when $D(T)=C$ is a nonempty closed convex and bounded subset of X and $T: C \rightarrow C$ is additionally Lipschitz continuous with a Lipschitz constant L, Liu [6] gave a convergence rate estimate of the $\left\{x_{n}\right\}$ as follows:

$$
\begin{equation*}
\left\|x_{n+1}-p\right\| \leq \rho^{n}\left\|x_{0}-p\right\| \quad \text { for all } n \in N \cup\{0\} \tag{1.2}
\end{equation*}
$$

where

$$
t_{n}=\frac{k}{2\left(3+3 L+L^{2}\right)}, \quad k=1-\frac{1}{c} \quad \text { and } \quad \rho=1-\frac{k^{2}}{4\left(3+3 L+L^{2}\right)}
$$

Sastry and Babu [9] also showed, without condition of boundedness of C, that the $\left\{x_{n}\right\}$ has the same convergence rate estimate as (1.2) for the following constant ρ :

$$
\rho=1-\frac{k^{2}}{4(L+1)(L+2-k)+2 k} .
$$

In this paper, we give convergence rate estimate of $\left\{x_{n}\right\}$ involving the following mapping T. Let $\alpha:[0, \infty) \rightarrow[0, \infty)$ be a function for which $\alpha(0)=0$ and the $\liminf _{r \rightarrow r_{0}} \alpha(r)>0$ for every $r_{0}>0$. For a function α, a mapping $T: D(T) \rightarrow R(T)$ is called an α-strong pseudocontraction with α if for all $x, y \in D(T)$ there exists $j(x-y) \in J(x-y)$ such that

$$
\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2}-\alpha(\|x-y\|)\|x-y\| .
$$

Kirk and Morales [3, 4] showed that a continuous and α-strong pseudocontraction T on a closed convex subset $C=D(T)=R(T)$ has a unique fixed point p. The mapping T according to a strictly increasing function ϕ instead of α is called a ϕ-strong pseudocontraction. The case of ϕ-strong pseudocontractions has been studied extensively, and it is well-known that the class of strong pseudocontractions is a proper subset of the class of ϕ-strong pseudocontractions (see $[1,3,5,7,11]$). We give convergence rate estimates of Mann iterative sequence involving a Lipschitz continuous and ϕ-strong pseudocontraction T on an arbitrary Banach space. Precisely, for this mapping T and any $\beta \in(0,1)$ we
determine a non-negative integer sequence $\{n(K)\}_{K \in N \cup\{0\}}$ and a coefficient sequence $\left\{t_{n}\right\}$ in a suitable way and we construct Mann iterative sequence with the $\left\{t_{n}\right\}$ as (1.1) which satisfies the following rate estimate: For any non-negative integer K,

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leq M \beta^{K} \text { for all } n \geq n(K) \tag{1.3}
\end{equation*}
$$

where $M>0$ is a diameter of a bounded subset C. We also give estimate of $n(K)$ from above.

2. Lemmas

In this section, we shall prove two lemmas which are crucial in the proofs of main results. Let $N_{0}=N \cup\{0\}$ and let Φ be the set of all strictly increasing functions $f:[0, \infty) \rightarrow[0, \infty)$ with $f(0)=0$. We can prove the first lemma by using Kato's lemma (see [2]).

Lemma 1. Let C be a subset of a Banach space X and let $T: C \rightarrow C$ be a ϕ-strong pseudocontraction with $\phi \in \Phi$. Then for any $x, y \in C$ with $x \neq y$, the following inequality holds:

$$
\left\|x-y+t\left\{\left(I-T-\gamma_{x y} I\right) x-\left(I-T-\gamma_{x y} I\right) y\right\}\right\| \geq\|x-y\| \quad \text { for all } \quad t>0
$$

where $\gamma_{x y}=\frac{\phi(\|x-y\|)}{\|x-y\|}$ and I is an identity mapping.
Proof. From the definition of a ϕ-strong pseudocontraction T, we have that for any $x, y \in C$ with $x \neq y$,

$$
\begin{aligned}
\langle T x-T y, j(x-y)\rangle & \leq\|x-y\|^{2}-\phi(\|x-y\|)\|x-y\| \\
& =\left(1-\frac{\phi(\|x-y\|)}{\|x-y\|}\right)\|x-y\|^{2} \\
& =\left(1-\frac{\phi(\|x-y\|)}{\|x-y\|}\right)\langle x-y, j(x-y)\rangle .
\end{aligned}
$$

So, we have

$$
\left\langle\left(I-T-\gamma_{x y} I\right) x-\left(I-T-\gamma_{x y} I\right) y, j(x-y)\right\rangle \geq 0
$$

From Kato's lemma [2] this inequality is equivalent to

$$
\left\|x-y+t\left\{\left(I-T-\gamma_{x y} I\right) x-\left(I-T-\gamma_{x y} I\right) y\right\}\right\| \geq\|x-y\| \quad \text { for all } \quad t>0
$$

Let C be a bounded closed and convex subset of a Banach space X and let M be $\delta(C)>0$, the diameter of C. Consider $\phi \in \Phi$ such that the function ψ defined by

$$
\psi(t)= \begin{cases}\frac{\phi(t)}{t} & \text { if } \quad t \in(0, M] \\ 0 & \text { if } \quad t=0\end{cases}
$$

is increasing, $\lim _{t \rightarrow 0+} \psi(t)=0$ and $0 \leq \psi(t) \leq 1$ for all $t \in[0, M]$. Such a ϕ is said to be a P-function with ψ on $[0, M]$.

For example,

$$
\phi(t)=\left(\frac{t}{M}\right)^{2} \quad \text { for all } \quad t \in[0, M]
$$

and

$$
\phi(t)=\frac{t}{1+\log M-\log t} \text { for all } t \in(0, M], \text { and } \phi(0)=0
$$

are P-functions on $[0, M]$. By virtue of Lemma 1, we obtain the following important lemma.

LEMMA 2. Let C be a bounded closed and convex subset of a Banach space X. Suppose $M=\delta(C)>0$, and let ϕ be a P-function with ψ on $[0, M]$. Let $T: C \rightarrow C$ be ϕ-strongly pseudocontractive and Lipschitz continuous with a Lipschitz constant L. Then, for any coefficient sequence $\left\{t_{n}\right\} \subset(0,1)$, Mann iterative sequence $\left\{x_{n}\right\}$ defined by (1.1) has the following estimate: For a unique fixed point p,

$$
\left\|x_{n+1}-p\right\| \leq\left(1-\gamma_{n} t_{n}+\tilde{L} t_{n}^{2}\right)\left\|x_{n}-p\right\| \quad \text { for any } \quad n \in N_{0}
$$

where $\gamma_{n}=\psi\left(\left\|x_{n+1}-p\right\|\right)$ and $\tilde{L}=3+3 L+L^{2}$.
Proof. It is enough to consider the case of $x_{n+1} \neq p$. Let γ be any real number.
From $x_{n+1}=t_{n} T x_{n}+\left(1-t_{n}\right) x_{n}$, as in [6] we get

$$
\begin{aligned}
& x_{n}= x_{n+1}-t_{n} T x_{n}+t_{n} x_{n} \\
&=\left(1+t_{n}\right) x_{n+1}+t_{n}(I-T-\gamma I) x_{n+1}-t_{n}(2-\gamma) x_{n+1} \\
& \quad \quad \quad \quad t_{n}\left(T x_{n+1}-T x_{n}\right)+t_{n} x_{n} \\
&=\left(1+t_{n}\right) x_{n+1}+t_{n}(I-T-\gamma I) x_{n+1}-t_{n}(2-\gamma)\left(t_{n} T x_{n}+\left(1-t_{n}\right) x_{n}\right) \\
& \quad \quad \quad \quad t_{n}\left(T x_{n+1}-T x_{n}\right)+t_{n} x_{n} \\
&=\left(1+t_{n}\right) x_{n+1}+t_{n}(I-T-\gamma I) x_{n+1}-t_{n}^{2}(2-\gamma)\left(T x_{n}-x_{n}\right) \\
& \quad \quad \quad \quad t_{n}(1-\gamma) x_{n}+t_{n}\left(T x_{n+1}-T x_{n}\right) .
\end{aligned}
$$

For p, we also have

$$
\begin{aligned}
p & =p-t_{n} T p+t_{n} p \\
& =\left(1+t_{n}\right) p+t_{n}(I-T-\gamma I) p-t_{n}(1-\gamma) p
\end{aligned}
$$

Thus we have

$$
\begin{align*}
x_{n}-p= & \left(1+t_{n}\right)\left(x_{n+1}-p\right)+t_{n}\left\{(I-T-\gamma I) x_{n+1}-(I-T-\gamma I) p\right\} \tag{2.1}\\
& -t_{n}(1-\gamma)\left(x_{n}-p\right)+t_{n}\left(T x_{n+1}-T x_{n}\right)-t_{n}^{2}(2-\gamma)\left(T x_{n}-x_{n}\right) \\
= & \left(1+t_{n}\right)\left\{x_{n+1}-p+\frac{t_{n}}{1+t_{n}}\left((I-T-\gamma I) x_{n+1}-(I-T-\gamma I) p\right)\right\} \\
& -t_{n}(1-\gamma)\left(x_{n}-p\right)+t_{n}\left(T x_{n+1}-T x_{n}\right)-t_{n}^{2}(2-\gamma)\left(T x_{n}-x_{n}\right)
\end{align*}
$$

and hence

$$
\begin{aligned}
\left\|x_{n}-p\right\| & \geq\left(1+t_{n}\right)\left\|x_{n+1}-p+\frac{t_{n}}{1+t_{n}}\left\{(I-T-\gamma I) x_{n+1}-(I-T-\gamma I) p\right\}\right\| \\
& -t_{n}\left\|(1-\gamma)\left(x_{n}-p\right)\right\|-t_{n}\left\|T x_{n+1}-T x_{n}\right\|-t_{n}^{2}\left\|(2-\gamma)\left(x_{n}-T x_{n}\right)\right\|
\end{aligned}
$$

Here, since we have from Lemma 1 for γ_{n}

$$
\left\|x_{n+1}-p+\frac{t_{n}}{1+t_{n}}\left\{\left(I-T-\gamma_{n} I\right) x_{n+1}-\left(I-T-\gamma_{n} I\right) p\right\}\right\| \geq\left\|x_{n+1}-p\right\|
$$

we obtain from (2.1), using γ_{n} instead of γ,

$$
\begin{aligned}
\left\|x_{n}-p\right\| & \geq\left(1+t_{n}\right)\left\|x_{n+1}-p\right\|-t_{n}\left(1-\gamma_{n}\right)\left\|x_{n}-p\right\|-t_{n}\left\|T x_{n+1}-T x_{n}\right\| \\
& -t_{n}^{2}\left(2-\gamma_{n}\right)\left\|x_{n}-T x_{n}\right\|
\end{aligned}
$$

and this inequality implies

$$
\begin{align*}
& \left\{1+t_{n}\left(1-\gamma_{n}\right)\right\}\left\|x_{n}-p\right\|+t_{n}\left\|T x_{n+1}-T x_{n}\right\|+t_{n}^{2}\left(2-\gamma_{n}\right)\left\|x_{n}-T x_{n}\right\| \tag{2.2}\\
& \quad \geq\left(1+t_{n}\right)\left\|x_{n+1}-p\right\|
\end{align*}
$$

Since T is Lipschitz continuous with a Lipschitz constant L, we have

$$
\begin{aligned}
t_{n}\left\|T x_{n+1}-T x_{n}\right\|+ & t_{n}^{2}\left(2-\gamma_{n}\right)\left\|x_{n}-T x_{n}\right\| \\
\leq & t_{n} L\left\|\left\{t_{n} T x_{n}+\left(1-t_{n}\right) x_{n}\right\}-x_{n}\right\| \\
& \quad+t_{n}^{2}\left(2-\gamma_{n}\right)\left\|x_{n}-T x_{n}\right\| \\
= & t_{n}^{2} L\left\|T x_{n}-x_{n}\right\|+t_{n}^{2}\left(2-\gamma_{n}\right)\left\|T x_{n}-x_{n}\right\| \\
= & t_{n}^{2}\left\{L+\left(2-\gamma_{n}\right)\right\}\left\|T x_{n}-p+p-x_{n}\right\| \\
\leq & t_{n}^{2}\left\{L+\left(2-\gamma_{n}\right)\right\}(L+1)\left\|x_{n}-p\right\| .
\end{aligned}
$$

Thus we obtain from (2.2)

$$
\begin{aligned}
& \left\{1+\left(1-\gamma_{n}\right) t_{n}\right\}\left\|x_{n}-p\right\|+t_{n}^{2}\left\{L+\left(2-\gamma_{n}\right)\right\}(L+1)\left\|x_{n}-p\right\| \\
& \geq\left(1+t_{n}\right)\left\|x_{n+1}-p\right\|
\end{aligned}
$$

This implies that

$$
\begin{align*}
& \left\|x_{n+1}-p\right\| \tag{2.3}\\
& \leq \frac{\left\{1+\left(1-\gamma_{n}\right) t_{n}\right\}}{\left(1+t_{n}\right)}\left\|x_{n}-p\right\|+\frac{t_{n}^{2}\left\{L+\left(2-\gamma_{n}\right)\right\}(L+1)}{\left(1+t_{n}\right)}\left\|x_{n}-p\right\| .
\end{align*}
$$

Moreover, since we have

$$
\begin{aligned}
\frac{1+\left(1-\gamma_{n}\right) t_{n}}{1+t_{n}} & \leq\left(1+\left(1-\gamma_{n}\right) t_{n}\right)\left(1-t_{n}+t_{n}^{2}\right) \\
& =1+\left(1-\gamma_{n}\right) t_{n}+\left(-t_{n}+t_{n}^{2}\right)+\left(1-\gamma_{n}\right) t_{n}\left(-t_{n}+t_{n}^{2}\right) \\
& =1-\gamma_{n} t_{n}+t_{n}^{2}-\left(1-\gamma_{n}\right)\left(1-t_{n}\right) t_{n}^{2} \\
& \leq 1-\gamma_{n} t_{n}+t_{n}^{2}
\end{aligned}
$$

we obtain from (2.3)

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| \leq & \frac{1+\left(1-\gamma_{n}\right) t_{n}}{1+t_{n}}\left\|x_{n}-p\right\|+\frac{t_{n}^{2}\left\{L+\left(2-\gamma_{n}\right)\right\}(L+1)}{1+t_{n}}\left\|x_{n}-p\right\| \\
\leq & \left(1-\gamma_{n} t_{n}+t_{n}^{2}\right)\left\|x_{n}-p\right\|+t_{n}^{2}\left\{L+\left(2-\gamma_{n}\right)\right\}(L+1)\left\|x_{n}-p\right\| \\
= & \left(1-\gamma_{n} t_{n}\right)\left\|x_{n}-p\right\| \\
& \quad+t_{n}^{2}\left\{1+L(L+1)+\left(2-\gamma_{n}\right)(L+1)\right\}\left\|x_{n}-p\right\| \\
\leq & \left\{1-\gamma_{n} t_{n}+t_{n}^{2}\left(3+3 L+L^{2}\right)\right\}\left\|x_{n}-p\right\| .
\end{aligned}
$$

Setting $\tilde{L}=3+3 L+L^{2}$, we obtain that

$$
\left\|x_{n+1}-p\right\| \leq\left(1-\gamma_{n} t_{n}+\tilde{L} t_{n}^{2}\right)\left\|x_{n}-p\right\| \quad \text { for all } \quad n \in N_{0}
$$

3. Main Results

Let C be a bounded closed and convex subset of a Banach space X, and suppose $M=\delta(C)>0$. Let ϕ be a P-function with ψ on $[0, M]$, and let $T: C \rightarrow C$ be ϕ-strongly pseudocontractive and Lipschitz continuous with a

Lipschitz constant L. Set $\tilde{L}=\left(3+3 L+L^{2}\right)$ and define a function $C_{T}:(0,1] \rightarrow$ $(0,1)$ as follows:

$$
C_{T}(\alpha)=1-\frac{1}{4 \tilde{L}}(\psi(M \alpha))^{2} \text { for all } \quad \alpha \in(0,1]
$$

Then $C_{T}\left(\alpha_{1}\right) \leq C_{T}\left(\alpha_{2}\right)$ for $\alpha_{1} \geq \alpha_{2}$ since $\psi(t)$ is increasing. Fix $\beta \in(0,1)$. For a sufficiently large $K \in N_{0}$, we have

$$
\beta<C_{T}\left(\beta^{K}\right)=1-\frac{1}{4 \tilde{L}}\left(\psi\left(M \beta^{K}\right)\right)^{2}<1
$$

For any $K \in N_{0}$, define m_{K} depending on β as follows:

$$
\begin{equation*}
m_{K}=\min \left\{m \in N:\left(C_{T}\left(\beta^{K}\right)\right)^{m} \leq \beta\right\} \tag{3.1}
\end{equation*}
$$

Then $m_{K} \leq m_{K+1}$ and $\left(C_{T}\left(\beta^{K}\right)\right)^{n} \leq \beta$ for $n \geq m_{K}$. Moreover, define $n_{\beta}(0)=0$ and

$$
n_{\beta}(K)=n_{\beta}(K-1)+m_{K}, \quad K \in N
$$

Then we have

$$
\begin{equation*}
n_{\beta}(K)=n_{\beta}(0)+\sum_{j=1}^{K} m_{j}=\sum_{j=1}^{K} m_{j}, \quad K \in N \tag{3.2}
\end{equation*}
$$

Denoting $n_{\beta}(K)$ by $n(K)$ for simplification, we have that $0=n(0)<n(1)<$ $\cdots<n(K)<\cdots$. For each $n \in N_{0}$ we can find some $K \in N$ such that $n(K-1) \leq n<n(K)$. So, using such a K, define t_{n} by

$$
\begin{equation*}
t_{n}=\frac{1}{2 \tilde{L}} \psi\left(M \beta^{K}\right) \tag{3.3}
\end{equation*}
$$

With respect to this coefficient sequence $\left\{t_{n}\right\}$, let us construct Mann iterative sequence $\left\{x_{n}\right\} \subset C$ as (1.1):

$$
\left\{\begin{array}{l}
x_{0} \in C, \\
x_{n+1}=t_{n} T x_{n}+\left(1-t_{n}\right) x_{n}, \quad n \in N_{0} .
\end{array}\right.
$$

Then, we obtain the following theorem concerning convergence rate.
Theorem 1. Let C be a bounded closed convex subset of a Banach space X. Let ϕ be a P-function with ψ on $[0, M]$, and let $T: C \rightarrow C$ be ϕ-strongly pseudcontractive and Lipschitz continuous with a Lipschitz constant L. For $\beta \in$ $(0,1)$, define $\{n(K)\}_{K \in N_{0}}$ by (3.2) and suppose the coefficient sequence $\left\{t_{n}\right\}$ is determined by the $\{n(K)\}_{K \in N_{0}}$ as (3.3). Then Mann iterative sequence $\left\{x_{n}\right\}$ constructed by $\left\{t_{n}\right\}$ as (1.1) has the following convergence rate estimate: For any $K \in N_{0}$,

$$
\left\|x_{n}-p\right\| \leq M \beta^{K} \quad \text { for all } \quad n \geq n(K)
$$

Proof. Suppose $\beta \in(0,1)$ is fixed. For this $\beta \in(0,1)$, consider $\{n(K)\}_{K \in N_{0}}$ and the Mann iterative sequence $\left\{x_{n}\right\}$ with the coefficient sequence $\left\{t_{n}\right\}$ defined by (3.3). We first prove that $\left\|x_{n(K)}-p\right\| \leq M \beta^{K}$ for all $K \in N_{0}$ by induction. Because $M=\delta(C)$, we have $\left\|x_{n(0)}-p\right\| \leq M=M \beta^{0}$. Assume that $\left\|x_{n(K-1)}-p\right\| \leq M \beta^{K-1}$ for some $K \in N$. Then we shall show that $\left\|x_{n(K)}-p\right\| \leq M \beta^{K}$. Note first that $n(K)=n(K-1)+m_{K}$. From Lemma 2 we have

$$
\begin{aligned}
\left\|x_{n(K)}-p\right\| \leq & \left(1-\gamma_{n(K)-1} t_{n(K)-1}+\tilde{L} t_{n(K)-1}^{2}\right)\left\|x_{n(K)-1}-p\right\| \\
= & \left\{1-\psi\left(\left\|x_{n(K)}-p\right\|\right) \frac{1}{2 \tilde{L}} \psi\left(M \beta^{K}\right)\right. \\
& \left.+\frac{1}{4 \tilde{L}}\left(\psi\left(M \beta^{K}\right)\right)^{2}\right\}\left\|x_{n(K)-1}-p\right\| .
\end{aligned}
$$

If $\left\|x_{n(K)}-p\right\|>M \beta^{K}$, then we have $\psi\left(\left\|x_{n(K)}-p\right\|\right) \geq \psi\left(M \beta^{K}\right)$ from the increasing property of ψ. So we have

$$
\begin{aligned}
\left\|x_{n(K)}-p\right\| \leq & \left\{1-\psi\left(\left\|x_{n(K)}-p\right\|\right) \frac{1}{2 \tilde{L}} \psi\left(M \beta^{K}\right)\right. \\
& \left.+\frac{1}{4 \tilde{L}}\left(\psi\left(M \beta^{K}\right)\right)^{2}\right\}\left\|x_{n(K)-1}-p\right\| \\
\leq & \left\{1-\psi\left(M \beta^{K}\right) \frac{1}{2 \tilde{L}} \psi\left(M \beta^{K}\right)+\frac{1}{4 \tilde{L}}\left(\psi\left(M \beta^{K}\right)\right)^{2}\right\}\left\|x_{n(K)-1}-p\right\| \\
= & \left\{1-\frac{1}{4 \tilde{L}}\left(\psi\left(M \beta^{K}\right)\right)^{2}\right\}\left\|x_{n(K)-1}-p\right\| \\
= & C_{T}\left(\beta^{K}\right)\left\|x_{n(K)-1}-p\right\| .
\end{aligned}
$$

Thus we obtain

$$
\left\|x_{n(K)}-p\right\| \leq \max \left\{M \beta^{K}, C_{T}\left(\beta^{K}\right)\left\|x_{n(K)-1}-p\right\|\right\}
$$

Similarly, since $\left\|x_{n(K)-1}-p\right\| \leq \max \left\{M \beta^{K}, C_{T}\left(\beta^{K}\right)\left\|x_{n(K)-2}-p\right\|\right\}$, we have

$$
\left\|x_{n(K)}-p\right\| \leq \max \left\{M \beta^{K}, C_{T}\left(\beta^{K}\right) M \beta^{K},\left(C_{T}\left(\beta^{K}\right)\right)^{2}\left\|x_{n(K)-2}-p\right\|\right\}
$$

Since $0<C_{T}\left(\beta^{K}\right)<1$, we have

$$
\begin{equation*}
\left\|x_{n(K)}-p\right\| \leq \max \left\{M \beta^{K},\left(C_{T}\left(\beta^{K}\right)\right)^{2}\left\|x_{n(K)-2}-p\right\|\right\} \tag{3.4}
\end{equation*}
$$

From m_{K}-times repeating such a way and by the inductive assumption, we have

$$
\begin{aligned}
\left\|x_{n(K)}-p\right\| & \leq \max \left\{M \beta^{K},\left(C_{T}\left(\beta^{K}\right)\right)^{m_{K}}\left\|x_{n(K-1)}-p\right\|\right\} \\
& \leq \max \left\{M \beta^{K}, \beta\left\|x_{n(K-1)}-p\right\|\right\} \\
& \leq \max \left\{M \beta^{K}, \beta M \beta^{K-1}\right\} \\
& =M \beta^{K} .
\end{aligned}
$$

Hence we obtain by induction

$$
\left\|x_{n(K)}-p\right\| \leq M \beta^{K} \quad \text { for all } \quad K \in N_{0}
$$

Next, we shall prove that for all $K \in N_{0}$ and $m \in N$ with $0<m<m_{K+1}$,

$$
\left\|x_{n(K)+m}-p\right\| \leq M \beta^{K}
$$

Similarly as the above, if $\left\|x_{n(K)+m}-p\right\|>M \beta^{K}$, then we get that

$$
\begin{aligned}
\left\|x_{n(K)+m}-p\right\| \leq & \{1- \\
& \gamma_{n(K)+m-1} t_{n(K)+m-1} \\
& \left.+\tilde{L} t_{n(K)+m-1}^{2}\right\}\left\|x_{n(K)+m-1}-p\right\| \\
= & \left\{1-\psi\left(\left\|x_{n(K)+m}-p\right\|\right) \frac{1}{2 \tilde{L}} \psi\left(M \beta^{K+1}\right)\right. \\
& \left.\quad+\frac{1}{4 \tilde{L}}\left(\psi\left(M \beta^{K+1}\right)\right)^{2}\right\}\left\|x_{n(K)+m-1}-p\right\| \\
\leq & \left\{1-\psi\left(M \beta^{K}\right) \frac{1}{2 \tilde{L}} \psi\left(M \beta^{K+1}\right)\right. \\
+ & \left.\frac{1}{4 \tilde{L}}\left(\psi\left(M \beta^{K+1}\right)\right)^{2}\right\}\left\|x_{n(K)+m-1}-p\right\| \\
\leq & \left\{1-\psi\left(M \beta^{K+1}\right) \frac{1}{2 \tilde{L}} \psi\left(M \beta^{K+1}\right)\right. \\
& \left.\quad+\frac{1}{4 \tilde{L}}\left(\psi\left(M \beta^{K+1}\right)\right)^{2}\right\}\left\|x_{n(K)+m-1}-p\right\| \\
= & \left\{1-\frac{1}{4 \tilde{L}}\left(\psi\left(M \beta^{K+1}\right)\right)^{2}\right\}\left\|x_{n(K)+m-1}-p\right\| \\
= & C_{T}\left(\beta^{K+1}\right)\left\|x_{n(K)+m-1}-p\right\| .
\end{aligned}
$$

Thus we obtain

$$
\left\|x_{n(K)+m}-p\right\| \leq \max \left\{M \beta^{K}, C_{T}\left(\beta^{K+1}\right)\left\|x_{n(K)+m-1}-p\right\|\right\}
$$

Repeating similarly, we have

$$
\begin{aligned}
\left\|x_{n(K)+m}-p\right\| & \leq \max \left\{M \beta^{K},\left(C_{T}\left(\beta^{K+1}\right)\right)^{m}\left\|x_{n(K)}-p\right\|\right\} \\
& \leq \max \left\{M \beta^{K}, C_{T}\left(\beta^{K+1}\right)^{m} M \beta^{K}\right\} \\
& \leq M \beta^{K}
\end{aligned}
$$

So, we obtain that for all $K \in N_{0}$ and $m \in N$ with $0<m<m_{K+1}$,

$$
\left\|x_{n(K)+m}-p\right\| \leq M \beta^{K}
$$

As a consequence, noting $\left\|x_{n(K+1)}-p\right\| \leq M \beta^{K+1} \leq M \beta^{K}$, we have that for any $K \in N_{0}$,

$$
\left\|x_{n}-p\right\| \leq M \beta^{K} \quad \text { for all } \quad n \geq n(K)
$$

Next, for a given β and for a P-function ϕ, we shall give estimates of $\{n(K)\}_{K}$ defined by (3.2). For the sake of simplification, we assume that $M=1$.

ThEOREM 2. Under the assumption of the previous theorem, the following holds:

$$
n(K) \leq(1+\log \beta) K-8 \tilde{L}(\log \beta) \sum_{j=1}^{K} \frac{1}{\left(\psi\left(\beta^{j}\right)\right)^{2}}, \quad K \in N
$$

Moreover, in the case of $\beta=\frac{1}{2}$, the following hold:
(1) If $\phi(t)=t^{2}$, i.e., $\psi(t)=t$, then

$$
n(K) \leq(1-\log 2) K+\frac{32 \tilde{L}}{3} 4^{K} \log 2, \quad K \in N
$$

(2) if $\phi(0)=0$ and $\phi(t)=\frac{t}{1-\log t}, t \in(0,1]$, i.e., $\psi(0)=0$ and

$$
\psi(t)=\frac{1}{1-\log t}, \quad t \in(0,1]
$$

then for any $K \in N$,

$$
\begin{aligned}
n(K) \leq\{1 & +(8 \tilde{L}-1)(\log 2)\} K+8 \tilde{L}(\log 2)^{2} K(K+1) \\
& +\frac{4}{3} \tilde{L}(\log 2)^{3} K(K+1)(2 K+1)
\end{aligned}
$$

Proof. Let $\left\{m_{j}\right\}_{j \in N}$ be the sequence defined by (3.1). For any $x \in(0, \infty)$, define

$$
[x]=\max \left\{n \in N_{0}: n \leq x\right\}
$$

Then, we have, for any $j \in N$,

$$
\begin{aligned}
m_{j} & =\min \left\{m \in N: m \geq \frac{\log \beta}{\log C_{T}\left(\beta^{j}\right)}\right\} \\
& \leq\left[\frac{\log \beta}{\log C_{T}\left(\beta^{j}\right)}\right]+1
\end{aligned}
$$

The Taylor expansion of $\log (1+s)$ gives the following equation:

$$
\begin{aligned}
\frac{(-1)}{\log C_{T}\left(\beta^{j}\right)} & =\frac{(-1)}{\log \left(1-\frac{1}{4 \tilde{L}}\left(\psi\left(\beta^{j}\right)\right)^{2}\right)} \\
& =\frac{1}{\sum_{r=1}^{\infty} \frac{1}{r}\left(\frac{1}{4 \tilde{L}}\left(\psi\left(\beta^{j}\right)\right)^{2}\right)^{r}}
\end{aligned}
$$

Since $\left(\frac{1}{r}\right) \geq\left(\frac{1}{2}\right)^{r}$ for all $r \in N$, we have that

$$
\begin{aligned}
\frac{(-1)}{\log C_{T}\left(\beta^{j}\right)} & \leq \frac{1}{\sum_{r=1}^{\infty}\left(\frac{1}{8 \tilde{L}}\left(\psi\left(\beta^{j}\right)\right)^{2}\right)^{r}} \\
& =\frac{1-(8 \tilde{L})^{-1}\left(\psi\left(\beta^{j}\right)\right)^{2}}{(8)^{-1}\left(\psi\left(\beta^{j}\right)\right)^{2}} \\
& =\frac{8 \tilde{L}}{\left(\psi\left(\beta^{j}\right)\right)^{2}}-1
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
n(K) & =\sum_{j=1}^{K} m_{j} \leq \sum_{j=1}^{K}\left\{\left[\frac{\log \beta}{\log C_{T}\left(\beta^{j}\right)}\right]+1\right\} \\
& \leq \sum_{j=1}^{K}\left\{(-\log \beta)\left(\frac{8 \tilde{L}}{\left(\psi\left(\beta^{j}\right)\right)^{2}}-1\right)+1\right\} \\
& =K(1+\log \beta)-8 \tilde{L}(\log \beta) \sum_{j=1}^{K} \frac{1}{\left(\psi\left(\beta^{j}\right)\right)^{2}}
\end{aligned}
$$

(1) From $\beta=\frac{1}{2}$ and $\psi(t)=t$, we have

$$
\begin{aligned}
n(K) & \leq K(1-\log 2)+8 \tilde{L}(\log 2) \sum_{j=1}^{K} 4^{j} \\
& =K(1-\log 2)+\frac{32}{3} \tilde{L}(\log 2) 4^{K}
\end{aligned}
$$

(2) From $\beta=\frac{1}{2}, \psi(0)=0$ and $\psi(t)=\frac{1}{\log \frac{e}{t}}, t \in(0,1]$, i.e., $\psi(0)=0$ and

$$
\frac{1}{\psi(t)}=\log \left(\frac{e}{t}\right), \quad t \in(0,1]
$$

we have

$$
\begin{aligned}
n(K) \leq & K(1-\log 2)+8 \tilde{L}(\log 2) \sum_{j=1}^{K}\left(\log \frac{e}{2^{-j}}\right)^{2} \\
\leq & K(1-\log 2)+8 \tilde{L}(\log 2) \sum_{j=1}^{K}(1+j \log 2)^{2} \\
\leq & K(1-\log 2) \\
& +8 \tilde{L}(\log 2)\left\{K+(\log 2) K(K+1)+\frac{(\log 2)^{2}}{6} K(K+1)(2 K+1)\right\}
\end{aligned}
$$

These results seem to show that the convergence rate of the iterative sequence $\left\{x_{n}\right\}$ with $\phi(t)=\frac{t}{1-\log t}$ is better than that with $\phi(t)=t^{2}$.

Acknowledgement. The authors thank the referee for very useful comments.

References

[1] C.E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings, Proc. Amer. Math. Soc., 99 (1987), 283-288.
[2] T. Kato, Nonlinear semigroup and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-511.
[3] W.A. Kirk and C.H. Morales, Fixed point theorems for local strong pseudo-contractions, Nonlinear Anal., 4 (1980), 363-368.
[4] W.A. Kirk and C.H. Morales, Nonexpansive mappings: boundary/inwardness conditions and local theory. Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, 2001, pp. 299-321.
[5] L. Liu, Fixed points of local strictly pseudocontractive mappings using Mann and Ishikawa iteration with errors, Indian J. Pure Appl. Math., 26 (1995), 649-659.
[6] L. Liu, Approximation of fixed points of a strictly pseudocontractive mapping, Proc. Amer. Math. Soc., 125 (1997), 1363-1366.
[7] M.O. Osilike, Iterative solution of nonlinear equations of the ϕ-strongly accretive type, J. Math. Anal. Appl., 200 (1996), 259-271.
[8] S. Reich, Iterative methods for accretive sets, in Nonlinear Equations in Abstract Spaces, Academic Press, New York, 1978, pp. 317-326.
[9] K.P.R. Sastry and G.V.R. Babu, Approximation of fixed points of strictly pseudocontractive mappings on arbitrary closed, convex sets in a Banach space, Proc. Amer. Math. Soc., 128 (2000), 2907-2909.
[10] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[11] H. Manaka Tamura, A note on Stević's iteration method, J. Math. Anal. Appl., 314 (2006), 382-389.

H. Manaka

Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology,
Oh-okayama, Meguro-ku, Tokyo, 152-8552,

Japan

E-mail address: hirokom@lime.ocn.ne.jp
W. Takahashi

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, 152-8552, Japan
E-mail address: wataru@is.titech.ac.jp

[^0]: 2000 Mathematics Subject Classification: 47H17
 Key words and phrases: Banach space, Lipschitzian mapping, strong pseudocontraction, fixed point, convergence rate estimate

