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Abstract. In this paper, we introduce an iterative scheme by the viscosity
approximation method for finding a common element of the set of solutions of an
equilibrium problem and the set of fixed points of a nonexpansive mapping in real
Hilbert space. Then, we prove a strong convergence theorem which is connected
with Combettes and Hirstoaga’s result [2], Wittmann’s result [18] and Suzuki [12].
Using our theorem, we obtain two corollaries and consider the problem of finding
a minimizer of a convex function which is one of applicable example for the

equilibrium problem.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset

of H. Let T be a bifunction from C × C to R, where R is the set of all real

numbers. The equilibrium problem for a bifunction T is to find x ∈ C such that

T (x, y) ≥ 0 for all y ∈ C.(1)

The set of solutions of (1) is denoted by EP (T ). Given a proper lower semi-

continuous convex function g from C to R, let T (x, y) = g(y) − g(x) for all
x, y ∈ C. Then, z ∈ EP (T ) if and only if g(y) ≥ g(x) for all y ∈ C, i.e., z is a
solution of the convex minimization problem which is connected to the convex

feasibility problem. Numerous problems in physics, optimization, and economics

reduce to find a solution of (1). Some methods have been proposed to solve the

equilibrium problem; see, for instance, [1], [3] and [8]. Recently, Combettes and

Hirstoaga [2] introduced an iterative scheme of finding the best approximation

to the initial data when EP (T ) is nonempty and proved a strong convergence

theorem.
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A mapping S is called nonexpansive of C into H if

kSx− Syk ≤ kx− yk for all x, y ∈ C.

We denote by F (S) the set of all fixed points of S. If C ⊂ H is bounded, closed

and convex and S is a nonexpansive mapping of C into itself, then F (S) is

nonempty; for instance, see [15]. There are some methods for approximation of

fixed points of a nonexpansive mapping. Wittmann [18] introduced the following

iterative method for approximation of fixed points of a nonexpansive S of C into

itself: x1 = x ∈ C and

xn+1 = αnx+ (1− αn)Sxn for all n = 1, 2, 3, · · · ,(2)

where αn ∈ [0, 1]. Then by the additional assumption, the sequence {xn} con-
verges strongly to z; see originally Halpern [4]. In 2007, Suzuki [12] proved for

an averaged mapping U , that is, there exists a nonexpansive mapping S of C

into itself and λ ∈ (0, 1) such that U = λI + (1 − λ)S that the sequence {xn}
generated by (2) converges strongly to z ∈ F (T ).

In 2000, as one of another methods for approximation of fixed points,

Moudafi [7] proved the following strong convergence theorem.

THEOREM 1.1 (Moudafi [7]). Let C be a nonempty closed convex subset of a

real Hilbert space H and let S be a nonexpansive mapping of C into itself such

that F (S) is nonempty. Let f be a contraction of C into itself and let {xn} be a
sequence defined as follows: x1 = x ∈ C and

xn+1 =
εn

1 + εn
f(xn) +

1

1 + εn
Sxn for all n ∈N ,

where {εn} ⊂ (0, 1) satisfies

lim
n→∞

εn = 0,
∞X
n=1

εn =∞ and lim
n→∞

¯̄̄̄
1

εn+1
− 1

εn

¯̄̄̄
= 0.

Then the sequence {xn} converges strongly to z ∈ F (S), where z = PF (S)f(z)

and PF (S) is the metric projection of H onto F (S).

Such a method for approximation of fixed points is called the viscosity ap-

proximation method.

On the other hand, using Halpern’s method, Tada and Takahashi [13] in-

troduced the iterative method for finding a common element of the set of the

solutions of (1) and the set of fixed points of a nonexpansive mapping of C into

H and proved the strong convergence theorem. More recently, using the viscosity
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method, Takahashi and Takahashi [14] proved the strong convergence theorem.

In this paper, motivated Suzuki [12], Tada and Takahashi [13] and Takahashi and

Takahashi [14], we introduce an iterative scheme by the viscosity approximation

method for finding a common element of the set of solutions of (1) and the set

of fixed points of a nonexpansive mapping in a real Hilbert space H . Then,

we prove a strong convergence theorem which is connected with Combettes and

Hirstoaga’s result [2], Wittmann’s result [18] and Suzuki [12]. Using our main

theorem, we consider the problem of finding a minimizer of a convex function

from C to R which is one of applicable example for the equilibrium problem.

2. Preliminaries

Throughout this paper, we denote the set of all natural numbers by N and

the set of all real numbers by R. Let H be a real Hilbert space with inner

product h·, ·i and norm k·k, and let C be a nonempty closed convex subset of H.
When {xn} is a sequence in H , we denote strong convergence of {xn} to x ∈ H
by xn → x and weak convergence by xn * x. In a real Hilbert space H , we have

kλx+ (1− λ)yk2 = λ kxk2 + (1− λ) kyk2 − λ(1− λ) kx− yk2

for all x, y ∈ H and λ ∈ [0, 1].
For any x ∈ H, there exists a unique element in C, denoted by PC(x), such

that kx− PC(x)k ≤ kx− yk for all y ∈ C. Such a mapping PC is called the

metric projection of H onto C. PC(x) is characterized as follows:

y = PC(x)⇔ hx− y, y − zi ≥ 0 for all z ∈ C.

It is well-known that PC is nonexpansive; see [15] for more details.

For solving the equilibrium problem, let us assume that a bifunction T sat-

isfies the following conditions:

(A1) T (x, x) = 0 for all x ∈ C;
(A2) T is monotone, i.e., T (x, y) + T (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim sup
t→0

T (tz + (1− t)x, y) ≤ T (x, y);

(A4) T (x, ·) is convex and lower semicontinuous for each x ∈ C.
The properties of T : C ×C → R which satisfies (A1)—(A4) are proved in [1]

and [2].

LEMMA 2.1 (Blum-Oettli [1]). Let C be a nonempty closed convex subset of

H, let T be a bifunction from C × C to R satisfying (A1)—(A4) and let r > 0
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and x ∈ H. Then there exists z ∈ C such that

T (z, y) +
1

r
hy − z, z − xi ≥ 0 for all y ∈ C.

LEMMA 2.2 (Combettes-Hirstoaga [2]). For r > 0, x ∈ H, define a mapping
Tr of H into C as follows:

Tr(x) =

½
z ∈ C : T (z, y) + 1

r
hy − z, z − xi ≥ 0, ∀y ∈ C

¾
.

Then the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e. for any x, y ∈ H,

kTrx− Tryk2 ≤ hTrx− Try, x− yi ;

(3) F (Tr) = EP (T );

(4) EP (T ) is closed and convex.

The following lemma is proved in [11].

LEMMA 2.3 (Suzuki [11]). Let {xn} and {yn} be bounded sequences in H and

let {βn} ⊂ [0, 1] be a sequence with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Suppose that xn+1 = βnyn + (1− βn)xn for all n ∈N and

lim sup
n→∞

(kyn+1 − ynk− kxn+1 − xnk) ≤ 0.

Then limn→∞ kyn − xnk = 0.

The following lemma is well known.

LEMMA 2.4 (Xu [19]). Let {cn} be a sequence of nonnegative real numbers, let
{αn} be a sequence of [0, 1] and let {βn} be a sequence of R. Suppose that

cn+1 ≤ (1− αn)cn + αnβn for all n ∈N ,
∞X
n=1

αn =∞ and lim sup
n→∞

βn ≤ 0.

Then limn→∞ cn = 0.

3. main theorem

In this section, we show the strong convergence theorem by the viscosity

approximation method for finding a common element of the set of solutions of
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the equilibrium problem and the set of fixed points of a nonexpansive in a real

Hilbert space H .

THEOREM 3.1. Let C be a nonempty closed convex subset of H. Let T be a

bifunction from C × C to R satisfying (A1)—(A4) and let S be a nonexpansive

mapping of C into H such that F (S)∩EP (T ) 6= ∅. Let f be a contraction of H
into itself and let {xn} and {un} be sequences generated by x1 = x ∈ H and⎧⎨⎩un ∈ C such that T (un, y) +

1

rn
hy − un, un − xni ≥ 0 for all y ∈ C,

xn+1 = αnf(xn) + (1− αn) (βnSun + (1− βn)xn) for all n ∈N ,

where {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (a,∞) for some a > 0 satisfy

lim
n→∞

αn = 0,
∞X
n=1

αn =∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1

and lim
n→∞

|rn+1 − rn| = 0.

Then {xn} converges strongly to z ∈ F (S)∩EP (T ), where z = PF (S)∩EP (T )f(z).

Proof. We first show that PF (S)∩EP (T )f is a contraction of H into itself. Since f

is a contraction of H into itself, there exists r ∈ [0, 1) such that kf(x)− f(y)k ≤
r kx− yk for all x, y ∈ H. So, we have that°°PF (S)∩EP (T )f(x)− PF (S)∩EP (T )f(y)°° ≤ kf(x)− f(y)k ≤ r kx− yk
for all x, y ∈ H and hence PF (S)∩EP (T )f is a contraction of H into itself. From

Banach’s contraction principle, there exists a unique element z ∈ H such that

z = PF (S)∩EP (T )f(z). Such a z ∈ H is an element of C.

By Lemma 2.1, it follows that {un} and {xn} are well defined. Let v ∈
F (S) ∩ EP (T ) and un = Trnxn, where Trn is as in Lemma 2.2. Then we have
that

kun − vk = kTrnxn − Trnvk ≤ kxn − vk(3)

and that

kSun − vk ≤ kun − vk ≤ kxn − vk(4)

for all n ∈N . Put M = max{kx1 − vk , 1
1−r kf(v)− vk} and

yn =
αnf(xn) + (1− αn)βnSun

αn + (1− αn)βn
(5)
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for each n ∈N . Then we note that

xn+1 = (αn + (1− αn)βn) yn + (1− αn)(1− βn)xn
= (1− (1− αn)(1− βn)) yn + (1− αn)(1− βn)xn

for all n ∈N and that

0 < lim inf
n→∞

(1− αn)(1− βn) ≤ lim sup
n→∞

(1− αn)(1− βn) < 1(6)

because of limn→∞ αn = 0 and the assumption of {βn}. It is obvious that

kx1 − vk ≤M . Suppose that kxn − vk ≤M for some n ∈N . From (3) and (4),

we have

kxn+1 − vk = kαnf(xn) + (1− αn)(βnSun + (1− βn)xn)− vk
≤ αn kf(xn)− vk+ (1− αn)βn kSun − vk
+ (1− αn)(1− βn) kxn − vk
≤ αn(kf(xn)− f(v)k+ kf(v)− vk) + (1− αn)βn kxn − vk
+ (1− αn)(1− βn) kxn − vk
≤ αn(r kxn − vk+ kf(v)− vk) + (1− αn)βn kxn − vk
+ (1− αn)(1− βn) kxn − vk

= (1− αn(1− r)) kxn − vk+ αn(1− r)
1

1− r kf(v)− vk

≤ (1− αn(1− r))M + αn(1− r)M =M.

So, we have that kxn − vk ≤M for any n ∈N and hence {xn} is bounded. We
also have that {un}, {Sun} and {f(xn)} are bounded. Further, we have that

kyn − vk =
°°°°αnf(xn) + (1− αn)βnSunαn + (1− αn)βn

− v
°°°°

≤
°°°°αn(f(xn)− v) + (1− αn)βn(Sun − v)αn + (1− αn)βn

°°°°
≤ αn kf(xn)− vk+ (1− αn)βn kSun − vk

αn + (1− αn)βn
≤ αn kf(xn)− f(v)k+ αn kf(v)− vk+ (1− αn)βn kSun − vk

αn + (1− αn)βn
≤ αnr kxn − vk+ αn kf(v)− vk+ (1− αn)βn kxn − vk

αn + (1− αn)βn
≤ αnrM + αn(1− r)M + (1− αn)βnM

αn + (1− αn)βn
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≤ αnM + (1− αn)βnM
αn + (1− αn)βn

=M

for all n ∈N . Therefore {yn} is also bounded.
Since un = Trnxn and un+1 = Trn+1xn+1, we have

T (un, y) +
1

rn
hy − un, un − xni ≥ 0 for all y ∈ C(7)

and

T (un+1, y) +
1

rn+1
hy − un+1, un+1 − xn+1i ≥ 0 for all y ∈ C.(8)

Putting y = un+1 in (7) and y = un in (8), we have

T (un, un+1) +
1

rn
hun+1 − un, un − xni ≥ 0(9)

and

T (un+1, un) +
1

rn+1
hun − un+1, un+1 − xn+1i ≥ 0(10)

for all n ∈N . Therefore, from (9) and (10), we obtain

T (un, un+1) + T (un+1, un) +

¿
un+1 − un,

un − xn
rn

− un+1 − xn+1
rn+1

À
≥ 0

for all n ∈N . So, from (A2), we have¿
un+1 − un,

un − xn
rn

− un+1 − xn+1
rn+1

À
≥ 0

and hence¿
un+1 − un, un − un+1 + un+1 − xn −

rn
rn+1

(un+1 − xn+1)
À
≥ 0.

This implies that

kun+1 − unk2 ≤
¿
un+1 − un, un+1 − xn −

rn
rn+1

(un+1 − xn+1)
À

=

¿
un+1 − un, xn+1 − xn +

µ
1− rn

rn+1

¶
(un+1 − xn+1)

À
≤ kun+1 − unk

½
kxn+1 − xnk+

¯̄̄̄
1− rn

rn+1

¯̄̄̄
kun+1 − xn+1k

¾
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≤ kun+1 − unk
½
kxn+1 − xnk+

|rn+1 − rn|
a

kun+1 − xn+1k
¾

and hence

kun+1 − unk ≤ kxn+1 − xnk+
|rn+1 − rn|

a
kun+1 − xn+1k

≤ kxn+1 − xnk+
|rn+1 − rn|

a
N,(11)

whereN = sup{kun − xnk : n ∈N}. Next we show that limn→∞ kxn+1 − xnk =
0. Putting K = max{sup kf(xn)k , sup kSunk}, from (5) and (11) we have that

lim sup
n→∞

(kyn+1 − ynk− kxn+1 − xnk)

= lim sup
n→∞

µ°°°°αn+1f(xn+1)+(1−αn+1)βn+1Sun+1αn+1+(1−αn+1)βn+1
−αnf(xn)+(1−αn)βnSun

αn+(1−αn)βn

°°°°
− kxn+1 − xnk

¶
≤ lim sup

n→∞

µ
αn+1

αn+1 + (1− αn+1)βn+1
kf(xn+1)− f(xn))k

+

¯̄̄̄
αn+1

αn+1 + (1− αn+1)βn+1
− αn
αn + (1− αn)βn

¯̄̄̄
kf(xn)k

+
(1− αn+1)βn+1

αn+1 + (1− αn+1)βn+1
kSun+1 − Sunk

+

¯̄̄̄
(1− αn+1)βn+1

αn+1 + (1− αn+1)βn+1
− (1− αn)βn
αn + (1− αn)βn

¯̄̄̄
kSunk

− kxn+1 − xnk
¶

≤ lim sup
n→∞

½
αn+1

αn+1 + (1− αn+1)βn+1
r kxn+1 − xnk

+

¯̄̄̄
αn+1

αn+1 + (1− αn+1)βn+1
− αn
αn + (1− αn)βn

¯̄̄̄
K

+
(1− αn+1)βn+1

αn+1 + (1− αn+1)βn+1

µ
kxn+1 − xnk+

|rn+1 − rn|
a

N

¶
+

¯̄̄̄
(1− αn+1)βn+1

αn+1 + (1− αn+1)βn+1
− (1− αn)βn
αn + (1− αn)βn

¯̄̄̄
K

− kxn+1 − xnk
¾

≤ lim sup
n→∞

½µ
αn+1

αn+1+(1− αn+1)βn+1
+

(1− αn+1)βn+1
αn+1 + (1− αn+1)βn+1

¶
kxn+1 − xnk

+
(1− αn+1)βn+1

αn+1 + (1− αn+1)βn+1
|rn+1 − rn|

a
N
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+

µ¯̄̄̄
αn+1

αn+1 + (1− αn+1)βn+1
− αn
αn + (1− αn)βn

¯̄̄̄
+

¯̄̄̄
(1− αn)βn

αn + (1− αn)βn
− (1− αn+1)βn+1
αn+1 + (1− αn+1)βn+1

¯̄̄̄¶
K

− kxn+1 − xnk
¾

≤ lim sup
n→∞

½
(1− αn+1)βn+1

αn+1 + (1− αn+1)βn+1
|rn+1 − rn|

a
N

+

µ¯̄̄̄
αn+1

αn+1 + (1− αn+1)βn+1
− αn
αn + (1− αn)βn

¯̄̄̄
+

¯̄̄̄
(1− αn)βn

αn + (1− αn)βn
− (1− αn+1)βn+1
αn+1 + (1− αn+1)βn+1

¯̄̄̄¶
K

¾
.

From limn→∞ αn = 0, the assumption of {βn} and limn→∞ |rn+1 − rn| = 0, we
obtain

lim sup
n→∞

(kyn+1 − ynk− kxn+1 − xnk) ≤ 0.

By Lemma 2.3, we get limn→∞ kyn − xnk = 0. Therefore, from (6) we have

lim
n→∞

kxn+1 − xnk = lim
n→∞

(1− (1− αn)(1− βn)) kyn − xnk = 0.(12)

From (11), (12) and limn→∞ |rn+1 − rn| = 0, we have

lim
n→∞

kun+1 − unk = 0.

We also have

kxn+1 − Sunk = kαnf(xn) + (1− αn)(βnSun + (1− βn)xn)− Sunk
≤ αn kf(xn)− Sunk+ (1− αn)(1− βn) kxn − Sunk
≤ αn kf(xn)− Sunk+ (1− αn)(1− βn) kxn − xn+1k
+ (1− αn)(1− βn) kxn+1 − Sunk .

Therefore we have

(1− (1− αn)(1− βn)) kxn+1 − Sunk ≤ αn kf(xn)− Sunk
+ (1− αn)(1− βn) kxn − xn+1k .

From limn→∞ αn = 0, the assumption of {βn} and (12), we have

lim
n→∞

kxn+1 − Sunk = 0.
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Since kxn − Sunk ≤ kxn − xn+1k+ kxn+1 − Sunk, we obtain

lim
n→∞

kxn − Sunk = 0.(13)

From Lemma 2.2, we have

kun − vk2 = kTrnxn − Trnvk2

≤ hTrnxn − Trnv, xn − vi
= hun − v, xn − vi

=
1

2

n
kun − vk2 + kxn − vk2 − kxn − unk2

o
and hence

kun − vk2 ≤ kxn − vk2 − kxn − unk2 .

Using this inequality, we have

kxn+1 − vk2

≤ αn kf(xn)− vk2 + (1− αn)βn kSun − vk2 + (1− αn)(1− βn) kxn − vk2

≤ αn kf(xn)− vk2 + (1− αn)βn kun − vk2 + (1− αn)(1− βn) kxn − vk2

≤ αn kf(xn)− vk2 + (1− αn)βn(kxn − vk2 − kxn − unk2)
+ (1− αn)(1− βn) kxn − vk2

= αn kf(xn)− vk2 + (1− αn) kxn − vk2 − (1− αn)βn kxn − unk2

≤ αn kf(xn)− vk2 + kxn − vk2 − (1− αn)βn kxn − unk2

and hence

(1− αn)βn kxn − unk2 ≤ αn kf(xn)− vk2 + kxn − vk2 − kxn+1 − vk2

= αn kf(xn)− vk2

+ (kxn − vk+ kxn+1 − vk)(kxn − vk− kxn+1 − vk)
≤ αn kf(xn)−vk2+kxn−xn+1k (kxn−vk+kxn+1−vk).

From limn→∞ αn = 0, lim infn→∞ βn > 0 and (12), we have

lim
n→∞

kxn − unk = 0.(14)

Since kSun − unk ≤ kSun − xnk+ kxn − unk, from (13) and (14) we also have

lim
n→∞

kSun − unk = 0.(15)
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Next we show that

lim sup
n→∞

hf(z)− z, xn − zi ≤ 0,(16)

where z = PF (S)∩EP (T )f(z). It is sufficient to show that

lim sup
n→∞

hf(z)− z, un − zi ≤ 0

because xn−un → 0 as n→∞. To show this inequality, we choose a subsequence
{uni} of {un} such that

lim
i→∞

hf(z)− z, uni − zi = lim sup
n→∞

hf(z)− z, un − zi .

Since {uni} is bounded, there exists a subsequence {unij } of {uni} which con-
verges weakly to w ∈ C. Without loss of generality, we can assume that

uni * w ∈ C.
First we show w ∈ EP (T ). By un = Trnxn, we have

T (un, y) +
1

rn
hy − un, un − xni ≥ 0

for all y ∈ C. From (A2), we obtain

1

rn
hy − un, un − xni ≥ T (y, un)

and hence

1

rni
hy − uni , uni − xnii ≥ T (y, uni)

for all y ∈ C. Since the sequence {rn} ∈ (a,∞) for some a > 0, we have

T (y, uni) ≤
¿
y − uni ,

uni − xni
rni

À
≤ 1

rni
ky − unik kuni − xnik

≤ 1

a
ky − unik kuni − xnik .

So, from uni * w and (14) we have T (y, w) ≤ 0 for all y ∈ C. For t ∈ (0, 1] and
y ∈ C, let yt = ty + (1 − t)w. Since y ∈ C and w ∈ C, we obtain yt ∈ C and

hence T (yt, w) ≤ 0. So, we have

0 = T (yt, yt)
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≤ tT (yt, y) + (1− t)T (yt, w)
≤ tT (yt, y)

for all y ∈ C. Dividing by t, we get T (yt, y) ≥ 0 for all y ∈ C. Letting t → 0,

from (A3), we obtain

T (w, y) ≥ 0 for all y ∈ C.

Therefore we obtain w ∈ EP (T ).
We shall show w ∈ F (S). Assume that w /∈ F (S). Then from uni * w and

Opial’s condition [9] (see also [15—17]), we have

lim inf
i→∞

kuni − wk < lim inf
i→∞

kuni − Swk

≤ lim inf
i→∞

{kuni − Sunik+ kSuni − Swk}

≤ lim inf
i→∞

kuni − wk .

This is a contradiction. So, we get w ∈ F (S). Therefore we obtain w ∈ F (S) ∩
EP (T ). Since z = PF (S)∩EP (T )f(z), we have

lim sup
n→∞

hf(z)− z, un − zi = lim
i→∞

hf(z)− z, uni − zi

= hf(z)− z, w − zi ≤ 0.

So, the inequality (16) holds. It follows from (4) that

kβnSun + (1− βn)xn − zk ≤ βn kSun − zk+ (1− βn) kxn − zk
≤ βn kxn − zk+ (1− βn) kxn − zk
= kxn − zk .

Since xn+1 − z = αn(f(xn)− z) + (1− αn)(βnSun + (1− βn)xn − z), we have

(1− αn)2 kxn − zk2 ≥ (1− αn)2 kβnSun + (1− βn)xn − zk2

= k(xn+1 − z)− αn(f(xn)− z)k2

≥ kxn+1 − zk2 − 2αn hf(xn)− z, xn+1 − zi

and hence

kxn+1 − zk2 ≤ (1− αn)2 kxn − zk2 + 2αn hf(xn)− z, xn+1 − zi
= (1− αn)2 kxn − zk2 + 2αn hf(xn)− f(z), xn+1 − zi
+ 2αn hf(z)− z, xn+1 − zi
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≤ (1− αn)2 kxn − zk2 + 2αnr kxn − zk kxn+1 − zk
+ 2αn hf(z)− z, xn+1 − zi
≤ (1− αn)2 kxn − zk2 + αnr(kxn − zk2 + kxn+1 − zk2)
+ 2αn hf(z)− z, xn+1 − zi .

This implies that

kxn+1 − zk2 ≤
(1− αn)2 + αnr

1− αnr
kxn − zk2 +

2αn
1− αnr

hf(z)− z, xn+1 − zi

=
1− 2αn + αnr

1− αnr
kxn − zk2 +

α2n
1− αnr

kxn − zk2

+
2αn

1− αnr
hf(z)− z, xn+1 − zi

≤
µ
1− 2(1− r)αn

1− αnr

¶
kxn − zk2

+
2(1− r)αn
1− αnr

µ
αn

2(1− r)L+
1

1− r hf(z)− z, xn+1 − zi
¶
,

where L = sup{kxn − zk2 : n ∈ N}. Put βn = 2(1−r)αn
1−αnr . Then we have that

limn→∞ βn = 0. From αn ∈ [0, 1] and r ∈ [0, 1), we have

1 ≤ 1− r
1− αnr

and hence

2αn ≤
2(1− r)αn
1− αnr

.

From
P∞

n=1 αn = ∞, we have
P∞

n=1 βn = ∞. As in the proof of Takahashi
and Takahashi [14], we can conclude that the sequence {xn} converges strongly
to z.

As direct consequences of Theorem 3.1, we obtain the following corollaries.

COROLLARY 3.1. Let C be a nonempty closed convex subset of H and let S be

a nonexpansive mapping of C into H such that F (S) 6= ∅. Let f be a contraction
of H into itself and let {xn} be a sequence generated by x1 = x ∈ H and

xn+1 = αnf(xn) + (1− αn)(βnSPCxn + (1− βn)xn) for all n ∈N ,
where {αn}, {βn} ⊂ [0, 1] satisfy

lim
n→∞

αn = 0,
∞X
n=1

αn =∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Then {xn} converges strongly to z ∈ F (S), where z = PF (S)f(z).
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Proof. Put T (x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈N in Theorem 3.1.

Then, we have un = PCxn. So, from Theorem 3.1, the sequence {xn} generated
in Corollary 3.1 converges strongly to z ∈ F (S), where z = PF (S)f(z).

COROLLARY 3.2. Let C be a nonempty closed convex subset of H. Let T be a

bifunction from C × C to R satisfying (A1)—(A4) such that EP (T ) 6= ∅ and let
f be a contraction of H into itself. Let {xn} and {un} be sequences generated
by x1 = x ∈ H and⎧⎨⎩un ∈ C such that T (un, y) +

1

rn
hy − un, un − xni ≥ 0 for all y ∈ C,

xn+1 = αnf(xn) + (1− αn) (βnun + (1− βn)xn) for all n ∈N ,

where {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (a,∞) for some a > 0 satisfy

lim
n→∞

αn = 0,

∞X
n=1

αn =∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1

and lim
n→∞

|rn+1 − rn| = 0.

Then {xn} converges strongly to z ∈ EP (T ), where z = PEP (T )f(z).

Proof. Let S be a identity mapping of C into itself in Theorem 3.1. Then, from

Theorem 3.1 the sequence {xn} generated in Corollary 3.2 converges strongly to
z ∈ EP (T ), where z = PEP (T )f(z).

4. Applications

Let H be a real Hilbert space, let C be a nonempty closed convex subset of

H and let g be a proper lower semicontinuous convex function from C to R. We

define a bifunction T from C × C to R by

T (x, y) = g(y)− g(x)(17)

for all x, y ∈ C. Then z ∈ EP (T ), that is, T (z, y) ≥ 0 for all y ∈ C if and only if

g(y) ≥ g(z) for all y ∈ C.(18)

This means that z ∈ EP (T ) is the minimizer of g. So, the convex minimization
problem is one of applicable examples for the equilibrium problem.

In this section, using our main theorem, we consider to find a solution z of

(18). For each g, we can define the subdifferential of g as follows:

∂g(x) = {z ∈ H : g(y) ≥ g(x) + hz, y − xi for all y ∈ C}(19)
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for all x ∈ C. If g(z) =∞, then we define ∂g(z) = ∅; see [15—17] for more details.
First, we show the following lemma.

LEMMA 4.1. Let C be a nonempty closed convex subset of H. Let g be a

proper lower semicontinuous convex function from C to R with (∂g)−10 6= ∅. If
we define a bifunction T from C × C to R by (17), then EP (T ) = (∂g)−10.

Proof. Since (∂g)−10 6= ∅ , let z ∈ (∂g)−10. Then we have

z ∈ (∂g)−10 6= ∅ ⇔ ∂g(z) = 0

⇔ g(y) ≥ g(z) + hy − z, 0i for all y ∈ C
⇔ g(y)− g(z) ≥ 0 for all y ∈ C
⇔ T (z, y) ≥ 0 for all y ∈ C
⇔ z ∈ EP (T ).

So, we get the conclusion.

Using Theorem 3.1 and Lemma 4.1, we can prove the following theorem.

THEOREM 4.1. Let C be a nonempty closed convex subset of H. Let g be a

proper lower semicontinuous convex function from C to R with (∂g)−10 6= ∅, let
f be a contraction of H into itself and let {xn} and {un} be sequences generated
by x1 = x ∈ H and⎧⎨⎩un ∈ C such that g(y)− g(un) +

1

rn
hy − un, un − xni ≥ 0 for all y ∈ C,

xn+1 = αnf(xn) + (1− αn) (βnun + (1− βn)xn) for all n ∈N ,

where {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (a,∞) for some a > 0 satisfy

lim
n→∞

αn = 0,
∞X
n=1

αn =∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1

and lim
n→∞

|rn+1 − rn| = 0.

Then {xn} converges strongly to z ∈ (∂g)−10, where z = P(∂g)−10f(z).

Proof. Let S be a identity mapping of C into itself in Theorem 3.1 and let T be

a bifunction from C×C to R defined by (17). It is easy to show that T satisfies

(A1)—(A4) because T is upper semicontinuous in its first co-ordinate. Then,

from Theorem 3.1 and Lemma 4.1, the sequence {xn} generated in Theorem 4.1

converges strongly to z ∈ (∂g)−10, where z = P(∂g)−10f(z).
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