STUDY ON IGUSA'S PROBLEM FOR THE \mathfrak{p}-ADIC STATIONARY PHASE FORMULA

By
Hiroshi Hosokawa

(Received February 4, 2005; Revised June 18, 2008)

Abstract

Let $Z(t)$ be Igusa local zeta function of a linear combination $\alpha f(x)+$ $\beta g(y)$ of two strongly nondegenerate forms $f(x)$ and $g(y)$ with \mathfrak{p}-adic integers coefficients α and β. We show that the successive applications of the \mathfrak{p}-adic stationary phase formula to $Z(t)$ teminate by periodically, hence the explicit formula of $Z(t)$ is obtained.

Introduction

We have some examples of ecplicit formulae of Igusa Local zeta functions and some methods of compyting them ([2], [3], [4], [7]). In [5], Chap.10, § 10.2, J. Igusa states the \mathfrak{p}-adic stationary phase formula for Igusa local zeta functions and, applying this formula successibly, he gives the explicit formulae of Igusa local zeta functions of two polynomials $x_{1}^{2}+x_{2}^{3}$ and $x_{1}^{2}+x_{2}^{3}+x_{3}^{5}$. Moreover J. Igusa points out that, in these examples, it is crusial that the successive applications of the \mathfrak{p}-adic stationary phase formula terminate by periodically and states the problem; Does this fact hold in general case? This is Igusa's problem for the \mathfrak{p}-adic stationary formula in the title.

We shall state the subjects of this paper. We denote by K a \mathfrak{p}-adic number field and O_{K} its subring of ht mathfrakp-adic integers. We fix a prime element π_{K} of K once and for all. Thus we observe that $\pi_{K} O_{K}$ is the unique maximal ideal of O_{K} and the residue field $O_{K} / \pi_{K} O_{K}$ is finite. We put $\mathbb{F}_{q}=O_{K} / \pi_{K} O_{K}$. For a polynomial $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ in n-letters x_{1}, \ldots, x_{n} with its coefficients in O_{K}, we put $\bar{f}(x)=f(x) \bmod \pi_{K}$. We denotes by $\bar{S}_{\bar{f}}$ the set of \mathbb{F}_{q}-rarional singular points of the hypersurface defined by $\bar{f}(x)=0$. We say that $f(x)$ is strongly nondegenrate if $\bar{S}_{\bar{f}}$ consists of only the origin of ${ }_{m} a t h b b F_{1}^{n}$, and if $f(x)$ is also homogeneous we call it strongly nondegenerate form. Now let $f(x)$ and $g(y)$ by two strongly nondegenerate forms (with some assumptions) and $\alpha f(x)+\beta g(y)$ a linear combination of $f(x)$ a nd $g(y)$ with \mathfrak{p}-adic integers coefficients α and β, then we shall consider the subjects; Which is the answer to Igusa's problem for

[^0]the \mathfrak{p}-adic stationary phase formula in th case of $\alpha f(x)+\beta g(y)$, yes or no?, and if the answer is yes, then, give the explicit formula of Igusa local zeta function of $\alpha f(x)+\beta g(y)$. We find the answer to the former subject is yes, and the latter subject is also solvable, these are the main results of this paper.

Contents.

$\S 1 \mathfrak{p}$-adic stationary phase formula
$\S 2$ Recurent formulae
§3 Some sequences
§4 Case I
§5 Case II

In $\S 1$ we shall recall the \mathfrak{p}-adic stationary phase formula and give some examples of its applications. In $\S 2$ we shall give some recurrent formulae related to the \mathfrak{p}-adic stationary phase formula and we shall show that our subjects can be reduced to some simple cases - Case I and Case II - by these formulae. In $\S 3$ we shall give some sequences related to the successive applications of the \mathfrak{p}-adic stationary phase formula. Using these sequences we shall give our main results in § 4 and $\S 5$.

1. \mathfrak{p}-adic stationary phase formula

In this section, we shall recall the \mathfrak{p}-adic stationary phase formula (§ 1.1) and, applying this formula, we shall geve the explicit formulae of Igusa local zeta functions of some polynomials (§1.2).

$1.1 \mathfrak{p}$-adic stationary phase formula

Let $K, O_{K}, \pi_{K}, \ldots$ be as in the introduction. We denote by O_{K}^{\times}the multiplicative group of all unit in O_{K}. We can uniquely express every element α in the multiplicative group K^{\times}of K as $\alpha=\pi_{K}^{\operatorname{ord}_{K}(\alpha)} \operatorname{ac}_{K}(\alpha)$ is a rational integer and $\operatorname{ac}_{K}(\alpha)$ is in O_{K}^{\times}. We call $\operatorname{ord}_{K}(\alpha)$ the order of α and $\operatorname{ac}_{K}(\alpha)$ the argument component of α. We denote the \mathfrak{p}-adic absolute value $|\alpha|_{K}$ of α in K by $|\alpha|_{K}=q^{-\operatorname{ord}_{K}(\alpha)}\left(\alpha \in K^{\times}\right)$and $|0|_{K}=0$.

For a positive integer n, we put K^{n} the n-dimensional vector space over K with the canonical basis. We observe that K^{n} is a locally compact additive group. We denote by $|d x|_{K}$ the Haar measure on K^{n} such that the measure of an open compact subset O_{K}^{n} is 1 . For a polynomial $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ in n letters x_{1}, \ldots, x_{n} with its coefficients in K, we define a \mathfrak{p}-adic integral associated
to $f(x)$ as follows

$$
Z(s)=\int_{x \in O_{K}^{n}}|f(x)|_{K}^{s}|d x|_{K} \quad(s \in \mathbb{C}, \operatorname{Re}(s)>0)
$$

We immediately observe that the integral in the right hand side is absolutely convergent for $\operatorname{Re}(s)>0$. Moreover we find that it has an analytic continuation to a rational function of $T=q^{-s}$ on the whole complex plane \mathbb{C} (see [5], Chap.8, $\S 8.2$, Theorem 8.2.1 or [6], II Theorem 1). We call this rational function Igusa local zeta function of $f(x)$ after J.P. Serre. In this paper, we denote it by $Z(T)$ instead by $Z(s)$.

We shall recall the \mathfrak{p}-adic stationary phase formula for Igusa local zeta function $Z(T)$ of a polynomial $f(x)$. After multiplying a suitable power of π_{K} to $f(x)$, we may assume that the coefficients of $f(x)$ are in O_{K} but not all in $\pi_{K} O_{K}$. Hence we observe that $\bar{f}(x)=f(x) \bmod \pi_{K}$ is a nonzero polynomial with its coefficients in \mathbb{F}_{q}. As in the introduction, we denote by $\bar{S}_{\bar{f}}$ the set of \mathbb{F}_{q}-rational singular points of the hypersurface defined by $\bar{f}(x)=0$, namely,

$$
\bar{S}_{\bar{f}}=\left\{x \in \mathbb{F}_{q}^{n}: \bar{f}(x)=0\left(\operatorname{grad}_{x} \bar{f}\right)(x)=(0,0, \ldots, 0)\right\}
$$

in which we put

$$
\left(\operatorname{grad}_{x} \bar{f}\right)(x)=\left(\frac{\partial \bar{f}}{\partial x_{1}}(x), \frac{\partial \bar{f}}{\partial x_{2}}(x), \cdots, \frac{\partial \bar{f}}{\partial x_{n}}(x)\right)
$$

and by $\sharp \bar{S}_{\bar{f}}$ the cardinarity of $\bar{S}_{\bar{f}}$. Moreover we denote by $S_{\bar{f}}$ the preimage of $\bar{S}_{\bar{f}}$ under the canonical homomorphism $O_{K}^{n} \longrightarrow\left(O_{K} / \pi_{K} O_{K}\right)^{n}=\left(\mathbb{F}_{q}\right)^{n}: x \rightarrow$ $\bar{x}=x \bmod \pi_{K}$ and by $N_{\bar{f}}$ the number of zeros of $\bar{f}(x)$ in \mathbb{F}_{q}^{n}. Then we have

$$
Z(T)=\left(1-q^{-n} N_{\bar{f}}\right)+q^{-n}\left(N_{\bar{f}}-\sharp \bar{S}_{\bar{f}}\right) \frac{\left(1-q^{-1}\right) T}{1-q^{-1} T}+\int_{x \in S_{\bar{f}}}|f(x)|_{K}^{s}|d x|_{K}
$$

This is the \mathfrak{p}-adic stationary phase formula for $Z(T)$ of $f(x)$ (see [5], Chap.10, $\S 10.2$, Theorem 10.2.1).

1.2 Examples

As the first example, we start from Igusa local zeta functions of the polynomials $f_{0}(x)=x_{1}^{2}+x_{2}^{3}, f_{1}(x)=x_{1}^{2}+\pi_{K} x_{2}^{3}, f_{2}(x)=\pi_{K} x_{1}^{2}+x_{2}^{3}$ and $f_{3}(x)=x_{1}^{2}+\pi_{1}^{2} x_{2}^{3}$. We denote by $Z_{(i)}(T)$ Igusa local zeta functions for $f_{i}(x)(i=0,1,2,3)$. In this example, we assume that 2 and 3 are in O_{K}^{\times}. Since the hypersurface defined by $\overline{f_{0}}$ parametrized by $x_{1}=u^{3}, x_{2}=-u^{2}$ and

$$
\left(\operatorname{grad}_{x} \overline{f_{0}}\right)(x)=\left(\frac{\partial \overline{f_{0}}}{\partial x_{1}}(x), \frac{\partial \overline{f_{0}}}{\partial x_{2}}(x)\right)=\left(2 x_{1}, 3 x_{2}^{3}\right)
$$

we have $N_{\overline{f_{0}}}=q, \bar{S}_{\overline{f_{0}}}=\{(0,0)\}$ and $S_{\overline{f_{0}}}=\pi_{K} O_{K} \times \pi_{K} O_{K}$. Similarly, we have $N_{\overline{f_{1}}}=q, \bar{S}_{\overline{f_{1}}}=\left\{(0, y): y \in \mathbb{F}_{q}\right\}$ and $S_{\overline{f_{1}}}=\pi_{K} O_{K} \times O_{K} ; N_{\overline{f_{2}}}=q$, $\bar{S}_{\overline{f_{2}}}=\left\{(x, 0): x \in \mathbb{F}_{q}\right\}$ and $S_{\overline{f_{2}}}=O_{K} \times \pi_{K} O_{K} ; N_{\overline{f_{3}}}=q, \bar{S}_{\overline{f_{3}}}=\left\{(0, y): y \in \mathbb{F}_{q}\right\}$ and $S_{\overline{f_{1}}}=\pi_{K} O_{K} \times O_{K}$. Hence, applying the \mathfrak{p}-adic stationary phase formula successively, we obtain the following foumulae

$$
\begin{aligned}
& Z_{(0)}(T)=\left(1-q^{-1}\right)+\frac{\left(1-q^{-1}\right)^{2} q^{-1} T}{1-q^{-1} T}+q^{-2} T^{2} Z_{(1)}(T), \\
& Z_{(i)}(T)=\left(1-q^{-1}\right)+q^{-1} T Z_{(i+1)}(T) \quad(i=1,2) \\
& Z_{(3)}(T)=\left(1-q^{-1}\right)+q^{-1} T^{2} Z_{(0)}(T)
\end{aligned}
$$

Therefore we can compute all $Z_{(i)}(T)(i=0,1,2,3)$;

$$
\begin{aligned}
& Z_{(0)}(T)=\frac{\left(1-q^{-1}\right)\left(1-q^{-2} T(1-T)-q^{-5} T^{5}\right)}{\left(1-q^{-1} T\right)\left(1-q^{-5} T^{6}\right)}, \\
& Z_{(1)}(T)=\frac{\left(1-q^{-1}\right)\left(1-q^{-3} T^{3}(1-T)-q^{-5} T^{5}\right)}{\left(1-q^{-1} T\right)\left(1-q^{-5} T^{6}\right)}, \\
& Z_{(2)}(T)=\frac{\left(1-q^{-1}\right)\left(1-q^{-2} T^{2}(1-T)\left(1+T^{2}\right)-q^{-5} T^{6}\right)}{\left(1-q^{-1} T\right)\left(1-q^{-5} T^{6}\right)}, \\
& Z_{(3)}(T)=\frac{\left(1-q^{-1}\right)\left(1-q^{-1} T(1-T)\left(1+T^{2}\right)-q^{-5} T^{6}\right)}{\left(1-q^{-1} T\right)\left(1-q^{-5} T^{6}\right)}
\end{aligned}
$$

Next we consider Igusa local zeta functions of strongly nondegenerate forms. Let $f(x)$ be a strongly nondegenerate and d its homogeneous degree, then we have that $\bar{S}_{\bar{f}}$ consists of only the origin of $\mathbb{F}_{q}, S_{\bar{f}}=\pi_{K} O_{K}$ and $f\left(\pi_{K} x\right)=\pi_{K}^{d} f(x)$. Hence, by the \mathfrak{p}-stationary phase formula, we have

$$
Z=\left(1-q^{-n} N_{\bar{f}}\right)+q^{-n}\left(N_{\bar{f}}-1\right) \frac{\left(1-q^{-1}\right) T}{1-q^{-1} T}+q^{-n} T^{d} Z(T)
$$

Therefore we have

$$
Z(t)=\frac{\left(1-q^{-1}\right)\left(1-q^{-n}\right) T+\left(1-q^{-n} N_{\bar{f}}\right)(1-T)}{\left(1-q^{-1} T\right)\left(1-q^{-n} T^{d}\right)} .
$$

This formula is given by J. Igusa (see [5], Chap.10, § 10.2, Proposition 10.2.1). On the other hand, J.R. Goldman gives the explicit formula of the Póincare series
for strongly nondegenerate forms by using Hensel's lemma (see [1], § 3, Theorem (B)). By the relation between Igusa local zeta functions and Póincare series (see [5], Chap.8, § 8.2, Theorem 8.2.2), we can immediately derive the above formula from Goldman's fomula.

Notation. For a strongly nondegenerate form $f(x)$, we denote by $D_{\bar{f}}(T)$ the polynomial in the denominator of $Z(T)$ of $f(T)$;

$$
D_{\bar{f}}(T)=\left(1-q^{-1}\right)\left(1-q^{-n}\right) T+\left(1-q^{-n} N_{\bar{f}}\right)(1-T)
$$

because it repeatedlly appears our results.

2. Recurrent formulae

In this section, we shall give some recurrent formulae of the Igusa local zeta function of $\alpha f+\beta g$ ($\S 2.1$) and we shall show that our subjects can be reduced to some simple cases by these formulae ($\S 2.2$).

2.1 Recurrent formula

Let $\alpha f(x)+\beta g(y)$ be as in the introduction. We denote by d_{f}, d_{g} the homogeneous degree of $f(x), g(y)$, respectively and assume that

$$
\begin{equation*}
d_{f}, d_{g} \in O_{K}^{\times} \tag{1}
\end{equation*}
$$

We put $d=\operatorname{ord}_{K}(\alpha), e=\operatorname{ord}_{K}(\beta)$ and denote by $Z_{(d, e)}(T)$ Igusa local zeta function of $\alpha f(x)+\beta g(y)$. We shall give some recurrent formulae of $Z_{(d, e)}(T)$ in the following Lemma.

LEMMA 1. (1) We put $d_{1}=\min \left(d_{f}, d_{g}\right)$, then we have

$$
Z_{(0,0)}(T)=\frac{D \overline{\alpha f+\beta g}(T)}{1-q^{-1} T}+q^{-(n+m)} T^{d_{1}} Z_{\left(d_{f}-d_{1}, d_{g}-d_{1}\right)}(T)
$$

(2) For a positive integer e, we have

$$
Z_{(0, e)}(T)= \begin{cases}\frac{D_{\bar{f}}(T)}{1-q^{-1} T}+q^{-n} T^{e} Z_{\left(d_{f}-e, 0\right)}(T) & \left(0<e<d_{f}\right) \\ \frac{D_{\bar{f}}(T)}{1-q^{-1} T}+q^{-n} T^{d_{f}} Z_{\left(d_{f}-e, 0\right)}(T) & \left(e \geqq d_{f}\right)\end{cases}
$$

(3) For a positive integer d, we have

$$
Z_{(d, 0)}(T)= \begin{cases}\frac{D_{\bar{g}}(T)}{1-q^{-1} T}+q^{-m} T^{d} Z_{\left(0, d_{g}-d\right)}(T) & \left(0<d<d_{g}\right) \\ \frac{D_{\bar{g}}(T)}{1-q^{-1} T}+q^{-m} T^{d_{g}} Z_{\left(d-d_{g}, 0\right)}(T) & \left(d \geqq d_{g}\right)\end{cases}
$$

Proof. (1) At first we shall show that $\alpha f+\beta g$ is strongly nondegenerate. Let $\bar{C}_{\bar{f}}$ be the set of \mathbb{F}_{q}-rational singular points of $\bar{f}(x)$;

$$
\bar{C}_{\bar{f}}=\left\{x \in \mathbb{F}_{q}^{n}:\left(\operatorname{grad}_{x} \bar{f}\right)(x)=(0,0, \ldots, 0)\right\} .
$$

Since $\bar{f}(x)$ is a homogeneous polynomial of degree d_{f}, for any point x in $\bar{C}_{\bar{f}}$, we have

$$
d_{f} \bar{f}(x)=x_{1} \frac{\partial \bar{f}}{\partial x_{1}}(x)+x_{2} \frac{\partial \bar{f}}{\partial x_{2}}(x)+\cdots+x_{n} \frac{\partial \bar{f}}{\partial x_{n}}(x)=0 .
$$

and, by the assumption $\left(A_{1}\right), \bar{f}(x)=0$. Hence we observe that $\bar{C}_{\bar{f}}$ coincides with $\bar{S}_{\bar{f}}$. Similarly we observe that the set $\bar{C}_{\bar{g}}$ of \mathbb{F}_{q}-rational singular points of $\bar{g}(x)$ coincides with $\bar{S}_{\bar{g}}$. Since f and g are strongly nondegenerate, we have

$$
\bar{C}_{\bar{f}}=\{(0,0, \ldots, 0)\}, \quad \bar{C}_{\bar{g}}=\{(0,0, \ldots, 0)\} .
$$

On the other hand, we have

$$
\left(\operatorname{grad}_{(x, y)} \overline{\alpha f+\beta g}\right)(x, y)=\left(\left(\operatorname{grad}_{x} \bar{f}\right)(x),\left(\operatorname{grad}_{y} \bar{g}\right)(y)\right),
$$

since, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$, we have

$$
\frac{\partial \overline{\alpha f+\beta g}}{\partial x_{i}}(x, y)=\frac{\partial \bar{f}}{\partial x_{i}}(x), \quad \frac{\partial \overline{\alpha f+\beta g}}{\partial y_{j}}(x, y)=\frac{\partial \bar{f}}{\partial y_{j}}(y) .
$$

Therefore we have

$$
\bar{S} \frac{}{\alpha f+\beta g}=\left\{(x, y) \in \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{m}: \overline{\alpha f(x)+\beta g(y)}=0\right\} \cap\left(\bar{S}_{\bar{f}} \times \bar{S}_{\bar{g}}\right)
$$

hence it consists of only the origin of $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{m}$ and $S_{\overline{\alpha f+\beta g}}=\pi_{K} O_{K}^{n} \times \pi_{K} O_{K}^{m}$. We apply the \mathfrak{p}-stationary phase formula to $Z_{(0,0)}(T)$, then we have

$$
\begin{aligned}
Z_{\alpha f+\beta g}(T)= & \left(1-q^{-(n+m)} N_{\overline{\alpha f+\beta g}}\right)+q^{-(n+m)}\left(N_{\overline{\alpha f+\beta g}}-1\right) \frac{\left(1-q^{-1}\right) T}{1-q^{-1} T} \\
& +\int_{(x, y) \in O_{K}^{n} \times O_{K}^{m}}\left|\alpha f\left(\pi_{K} x\right)+\beta g\left(\pi_{K} y\right)\right|_{K}^{s}|d x d y|_{K} \\
= & \frac{D_{\overline{\alpha f+\beta g}}(T)}{1-q^{-1} T}+q^{-n+m} T^{d_{1}} Z_{\left(d_{f}-d_{1}, d_{g}-d_{1}\right)}(T) .
\end{aligned}
$$

For the cases (2) and (3), the substantial idea has already appeared in the first example in $\S 2.1$. Here we shall show the case (2). Since $d=\operatorname{ord}_{K}(\alpha)=$ 0 and $e=\operatorname{ord}_{K}(\beta)>0$, we have $\overline{\alpha f+\beta g}=\bar{\alpha} \bar{f}$ and hence $N_{\overline{\alpha f+\beta g}}=N_{\bar{f}}$, $\bar{S}_{\overline{\alpha f+\beta g}}=\bar{S}_{\bar{f}} \times \mathbb{F}_{q}^{m}$ and $S_{\overline{\alpha f+\beta g}}=\pi_{K} O_{K}^{n} \times O_{K}^{m}$. We apply the \mathfrak{p}-stationary phase formula to $Z_{(0, e)}(T)$, then we have

$$
\begin{aligned}
Z_{(0, e)}(T)= & \left(1-q^{-(n+m)} q^{m} N_{\bar{f}}\right)+q^{-(n+m)}\left(q^{m} N_{\bar{f}}-q^{m}\right) \frac{\left(1-q^{-1}\right) T}{1-q^{-1} T} \\
& +\int_{(x, y) \in O_{K}^{n} \times O_{K}^{m}}\left|\alpha f\left(\pi_{K} x\right)+\beta g(y)\right|_{K}^{s}|d x d y|_{K} \\
= & \frac{D_{\bar{f}}(T)}{1-q^{-1} T}+q^{-n} \int_{(x, y) \in O_{K}^{n} \times O_{K}^{m}}\left|\alpha \pi_{K}^{e} f(x)+\beta g(y)\right|_{K}^{s}|d x d y|_{K} .
\end{aligned}
$$

Here the last integral in the above formula is given by

$$
T^{e} Z_{\left(d_{f}-e, 0\right)}(T)\left(0<e<d_{f}\right), \quad T^{d_{f}} Z_{\left(0, e-d_{f}\right)}(T)\left(e \geqq d_{f}\right)
$$

Thus we have our formula.
Q.E.D.

2.2 Reduction of subjects

At first we may add the following assumptions.
$\left(A_{2}\right)$

$$
d_{f} \leqq d_{g}
$$

and at least one of α and β is in O_{K}^{\times}, namely

$$
\begin{equation*}
\min (d, e)=0 \tag{3}
\end{equation*}
$$

For nonnegatime integer e, we denote $Z_{(0, e)}$ by $Z_{e}(T)$. Then we shall show that our $Z(T)$ can be described with $D_{\bar{f}}(T) /\left(1-q^{-1} T\right), D_{\bar{g}}(T) /\left(1-q^{-1} T\right)$ and $Z_{e}(T)\left(e=0,1, \ldots, d_{f}-1\right)$, hence our subjects can be reduced to the case of $Z_{e}(T)\left(e=0,1, \ldots, d_{f}-1\right)$.
(1) $d=0, e \geqq d_{f}$. By successibly applying the \mathfrak{p}-adic stationary phase fourmula to $Z(T)$, we have, from Lemma 1., (2),

$$
\begin{aligned}
Z(T) & =Z_{e}(T) \\
& =\frac{D_{\bar{f}}(T)}{1-q^{-1} T} \cdot \frac{1-q^{-\left\lceil e / d_{f}\right\rceil n} T^{\left\lceil e / d_{f}\right\rceil d_{f}}}{1-q^{n} T^{d_{f}}} \\
& +q^{-\left\lceil e / d_{f}\right\rceil n} T^{\left\lceil e / d_{f}\right\rceil d_{f}} \int_{(x, y) \in O_{K}^{n} \times O_{K}^{m}}\left|\alpha f(x)+\pi^{-\left\lceil e / d_{f}\right\rceil d_{f}} \beta g(y)\right|_{K}^{s}|d x d y|_{K} .
\end{aligned}
$$

Here we have

$$
\pi_{K}^{-\left\lceil e / d_{f}\right\rceil d_{f}} \beta=\pi_{K}^{e-\left\lceil e / d_{f}\right\rceil d_{f}} \operatorname{ac}_{K}(\beta) \quad 0 \leqq e-\left\lceil\frac{e}{d_{f}}\right\rceil d_{f}<d_{f}
$$

(2) $d \geqq 1, e=0$. By the same way of the case (1), we have

$$
\begin{aligned}
Z(T) & =Z_{(d, 0)}(T) \\
& =\frac{D_{\bar{g}}(T)}{1-q^{-1} T} \cdot \frac{1-q^{-\left\lceil d / d_{g}\right\rceil m} T^{\left\lceil d / d_{g}\right\rceil d_{g}}}{1-q^{m} T^{d_{g}}} \\
& +q^{-\left\lceil d / d_{g}\right\rceil m} T^{\left\lceil d / d_{g}\right\rceil d_{g}} \int_{(x, y) \in O_{K}^{n} \times O_{K}^{m}}\left|\pi_{K}^{-\left\lceil d / d_{g}\right\rceil d_{g}} \alpha f(x)+\beta g(y)\right|_{K}^{s}|d x d y|_{K} .
\end{aligned}
$$

Here we have

$$
\pi_{K}^{-\left\lceil d / d_{g}\right\rceil d_{g}} \beta=\pi_{K}^{d-\left\lceil d / d_{g}\right\rceil d_{g}} \operatorname{ac}_{K}(\alpha) \quad 0 \leqq d-\left\lceil\frac{d}{d_{g}}\right\rceil d_{g}<d_{g}
$$

We put $r_{1}=d-\left[d / d_{g}\right] d_{g}$. Our statement holds in the case of $r_{1}=0$. Hence we may consider the case of $0<r_{1}<d_{g}$. Here we apply the \mathfrak{p}-adic stationary phase formula once more to the last integral of the above formula, then we have, from Lemma 1., (3),

$$
\begin{aligned}
& \int_{(x, y) \in O_{K}^{n} \times O_{K}^{m}}\left|\pi_{K}^{-\left[d / d_{g}\right] d_{g}} \alpha f(x)+\beta g(y)\right|_{K}^{s}|d x d y|_{K} \\
& \quad=\frac{D_{\bar{g}}(T)}{1-q^{-1} T}+q^{m} T^{r_{1}} \int_{(x, y) \in O_{K}^{n} \times O_{K}^{m}}\left|\alpha f(x)+\pi_{K}^{d_{g}-r_{1}} \beta g(y)\right|_{K}^{s}|d x d y|_{K} .
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
Z(T)= & \frac{D_{\bar{g}}(T)}{1-q^{-1} T}\left(\frac{1-q^{-\left\lceil d / d_{g}\right\rceil m} T^{\left\lceil d / d_{g}\right\rceil d_{g}}}{1-q^{m} T^{d_{g}}}+q^{-\left\lceil d / d_{g}\right\rceil m} T^{\left\lceil d / d_{g}\right\rceil d_{g}}\right) \\
& +q^{-\left(\left\lceil d / d_{g}\right\rceil+1\right) m} T^{d} \int_{(x, y) \in O_{K}^{n} \times O_{K}^{m}}\left|\alpha f(x)+\pi_{K}^{d_{g}-r_{1}} \beta g(y)\right|_{K}^{s}|d x d y|_{K} .
\end{aligned}
$$

with $\alpha, \beta \in O_{K}^{\times}$and $e=0,1, \ldots, d_{f}-1$ under the assumptions $(A 1),(A 2)$ and (A3). We divide our subjects into two cases - Case I : $d_{f} \mid d_{g}$ and Case II : $d_{f} \nmid d_{g}$. We shall consider Case I in § 4 and Case II in §5.

Notation. We define some notations as follows,

$$
\begin{aligned}
& d_{(f, g)}=\left(d_{f}, d_{g}\right): \text { the greatest common divisors of } d_{f} \text { and } d_{g}, \\
& \ell=\frac{d_{f} d_{g}}{d_{(f, g)}}: \text { the least common multiplier of } d_{f} \text { and } d_{g}, \\
& e_{f}=\frac{d_{f}}{d_{(f, g)}}, \quad e_{g}=\frac{d_{g}}{d_{(f, g)}}, \\
& d_{g / f}=\left[\frac{e_{g}}{e_{f}}\right]: \text { the quotation of the division of } e_{g} \text { by } e_{f}, \\
& r_{g / f}=e_{g}-d_{(f, g)} e_{f}: \text { the remainder of the division of } e_{g} \text { by } e_{f},
\end{aligned}
$$

then we observe that the e_{f} and r are mutually relatively prime and the quotient and the remainder of the division of d_{g} by d_{f} are $d_{g / f}$ and $d_{(f, g)} r_{g / f}$ respectively.

3. Some sequences

In this section we define some sequences which are related to the successive applications the \mathfrak{p}-adic stationary phase formula to $Z_{e}(T)\left(e=0,1, \ldots, d_{f}-1\right)$;

$$
\begin{aligned}
& \left\{\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)\right\}_{k},\left\{\left(\alpha_{k}, \beta_{k}\right)\right\}: \text { sequences in } O_{K} \times O_{K}, \\
& \left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k},\left\{\left(\nu_{k}, \mu_{k}\right)\right\}: \text { sequences in } \mathbb{N} \times \mathbb{N}, \\
& \left\{\rho_{k}\right\}_{k}: \text { sequence in } \mathbb{N} .
\end{aligned}
$$

3.1 Definition

1. (1) $e=0$. We put

$$
\left(\widetilde{\alpha}_{1}, \widetilde{\beta}_{1}\right)=\left(\alpha \pi_{K}^{d_{f}}, \beta \pi_{K}^{d_{g}}\right), \quad\left(\widetilde{\nu}_{1}, \widetilde{\mu}_{1}\right)=\left(d_{f}, d_{g}\right), \quad \rho_{1}=d_{f}
$$

and

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\widetilde{\alpha}_{1} \pi_{K}^{-\rho_{1}}, \widetilde{\beta}_{1} \pi_{K}^{-\rho_{1}}\right)=\left(\alpha, \beta \pi_{K}^{d_{g}-d_{f}}\right), \quad\left(\nu_{1}, \mu_{1}\right)=\left(0, d_{g}-d_{f}\right)
$$

(2) $e=1, \ldots, d_{f}-1$. We put

$$
\left(\widetilde{\alpha}_{1}, \widetilde{\beta}_{1}\right)=\left(\alpha \pi_{K}^{d_{f}}, \beta \pi_{K}^{d_{g}}\right), \quad\left(\widetilde{\nu}_{1}, \widetilde{\mu}_{1}\right)=\left(d_{f}, e\right), \quad \rho_{1}=e
$$

and

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\widetilde{\alpha}_{1} \pi_{K}^{-\rho_{1}}, \widetilde{\beta}_{1} \pi_{K}^{-\rho_{1}}\right)=\left(\alpha \pi_{K}^{d_{f}-e}, \beta\right), \quad\left(\nu_{1}, \mu_{1}\right)=\left(d_{f}-e, 0\right)
$$

2 . For $k \geqq 1$, if $\left(\alpha_{k}, \beta_{k}\right)$ is defined and satisfies the assumption

$$
\begin{equation*}
\text { At least one of } \alpha_{k} \text { and } \beta_{k} \text { is in } O_{K}^{\times} \text {, } \tag{A}
\end{equation*}
$$

then we define the terms $\left(\widetilde{\alpha}_{k+1}, \widetilde{\beta}_{k+1}\right)$, $\left(\widetilde{\nu}_{k+1}, \widetilde{\mu}_{k+1}\right), \rho_{k+1},\left(\alpha_{k+1}, \beta_{k+1}\right)$ and $\left(\nu_{k+1}, \mu_{k+1}\right)$ as follows
(1) $\alpha_{k}, \beta_{k} \in O_{K}^{\times}$.

$$
\begin{aligned}
& \left(\widetilde{\alpha}_{k+1}, \widetilde{\beta}_{k+1}\right)=\left(\alpha \pi_{K}^{d_{f}}, \beta \pi_{K}^{d_{g}}\right), \\
& \left(\widetilde{\nu}_{k+1}, \widetilde{\mu}_{k+1}\right)=\left(\operatorname{ord}_{K}\left(\widetilde{\alpha}_{k+1}\right), \operatorname{ord}_{K}\left(\widetilde{\beta}_{k+1}\right)\right)=\left(d_{f}, d_{g}\right), \quad \rho_{k+1}=d_{f}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\alpha_{k+1}, \beta_{k+1}\right) & =\left(\widetilde{\alpha}_{1} \pi_{K}^{-\rho_{k+1}}, \widetilde{\beta}_{1} \pi_{K}^{-\rho_{k+1}}\right)=\left(\alpha_{k}, \beta_{k} \pi_{K}^{d_{g}-d_{f}}\right) \\
\left(\nu_{k+1}, \mu_{k+1}\right) & =\left(0, d_{g}-d_{f}\right)
\end{aligned}
$$

(2) $\alpha_{k} \in O_{K}^{\times}, \beta_{k} \in \pi_{K} O_{K}$ or $\alpha_{k} \in \pi_{K} O_{K}, \beta_{k} \in O_{K}^{\times}$.

$$
\begin{aligned}
& \left(\widetilde{\alpha}_{k+1}, \widetilde{\beta}_{k+1}\right)= \begin{cases}\left(\alpha_{k} \pi_{K}^{d_{f}}, \beta_{k}\right) & \left(\alpha_{k} \in O_{K}^{\times}, \beta_{k} \in \pi_{K} O_{K}\right) \\
\left(\alpha_{k}, \beta_{k} \pi_{K}^{d_{g}}\right) & \left(\alpha_{k} \in \pi_{k} O_{K}, \beta_{k} \in O_{K}^{\times}\right)\end{cases} \\
& \left(\widetilde{\nu}_{k+1}, \widetilde{\mu}_{k+1}\right)=\left(\operatorname{ord}_{K}\left(\widetilde{\alpha}_{k+1}\right), \operatorname{ord}\left(\widetilde{\beta}_{k+1}\right)\right), \quad \rho_{k+1}=\min \left(\widetilde{\nu}_{k+1}, \widetilde{\mu}_{k+1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\alpha_{k+1}, \beta_{k+1}\right)=\left(\widetilde{\alpha}_{1} \pi_{K}^{-\rho_{k+1}}, \widetilde{\beta}_{1} \pi_{K}^{-\rho_{k+1}}\right) \\
& \left(\nu_{k+1}, \mu_{k+1}\right)=\left(\operatorname{ord}_{K}\left(\widetilde{\alpha}_{k+1}\right), \operatorname{ord}_{K}\left(\widetilde{\beta}_{k+1}\right)\right)
\end{aligned}
$$

Here we should give some remarks.
(i) In the above definition, we have added the restrictive assumption (A). However, actually $\left(\alpha_{k}, \beta_{k}\right)$ satisfies (A) for any k, this can be proved by the induction on k.
(ii) We observe that $\operatorname{ac}_{K}\left(\alpha_{k}\right)=\operatorname{ac}_{K}(\alpha), \operatorname{ac}_{K}\left(\beta_{k}\right)=\operatorname{ac}_{K}(\beta)$.

3.2 Relations with the \mathfrak{p}-adic stationary phase formula

For comprehension of relations between the sequences $\left\{\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)\right\}_{k},\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}$, $\left\{\rho_{k}\right\}_{k},\left\{\left(\alpha_{k}, \beta_{k}\right)\right\}_{k},\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ and the successive applications fo the \mathfrak{p}-adic stationary phase formula to $Z_{e}(T)$, we shall recall the case of $x_{1}^{2}+x_{2}^{3}$, whici is
considered in the first example of $\S 1.2$. Applying of the \mathfrak{p}-adic stationary phase formula successively, we obtain
$Z_{(0)}(T)=\frac{D \overline{x_{1}^{2}+x_{2}^{3}}(T)}{1-q^{-1} T}+q^{-1} T^{2} Z_{(1)}(T), \quad Z_{(1)}(T)=\frac{D \overline{x_{1}^{2}}(T)}{1-q^{-1} T}+q^{-1} T Z_{(2)}(T)$,
$Z_{(2)}(T)=\frac{D \overline{x_{2}^{3}}(T)}{1-q^{-1} T}+q^{-1} T Z_{(3)}(T), \quad Z_{(3)}(T)=\frac{D \overline{x_{1}^{2}}(T)}{1-q^{-1} T}+q^{-1} T^{2} Z_{(0)}(T)$.
Here we observe that two sequences appear in the right hand side of the above formulae. One is the sequence of $D(T) /\left(1-q^{-1} T\right)$'s ;

$$
\begin{equation*}
\frac{D \overline{x_{1}^{2}+x_{2}^{3}}(T)}{1-q^{-1} T}, \quad \frac{D \overline{x_{1}^{2}}(T)}{1-q^{-1} T}, \quad \frac{D \overline{x_{2}^{3}}(T)}{1-q^{-1} T}, \quad \frac{D \overline{x_{1}^{2}}(T)}{1-q^{-1} T}, \tag{1}
\end{equation*}
$$

and the othe is the sequence of the coefficients of $Z_{(i)}(T)$'s ;

$$
\begin{equation*}
q^{-2} T^{2}, \quad q^{-1} T, \quad q^{-1} T, \quad q^{-1} T^{2} \tag{2}
\end{equation*}
$$

We should notice that $\left(S_{1}\right)$ and $\left(S_{2}\right)$ lead to the explicit formula of $Z_{(0)}$.
On the other hand, we observe that the sequences $\left\{\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)\right\}_{k},\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}$, $\left\{\rho_{k}\right\}_{k},\left\{\left(\alpha_{k}, \beta_{k}\right)\right\}_{k},\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ are given as follows.

k	1	2	3	4	5	\cdots
$\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)$	$\left(\pi_{K}^{2}, \pi_{K}^{3}\right)$	$\left(\pi_{K}^{2}, \pi_{K}\right)$	$\left(\pi_{K}, \pi_{K}^{3}\right)$	$\left(\pi_{K}^{2}, \pi_{K}^{2}\right)$	$\left(\pi_{K}^{2}, \pi_{K}^{3}\right)$	\cdots
$\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)$	$(2,3)$	$(2,1)$	$(1,3)$	$(2,2)$	$(2,3)$	\cdots
ρ_{k}	2	1	1	2	2	\cdots
$\left(\alpha_{k}, \beta_{k}\right)$	$\left(1, \pi_{K}\right)$	$\left(\pi_{K}, 1\right)$	$\left(1, \pi_{K}^{2}\right)$	$(1,1)$	$\left(1, \pi_{K}\right)$	\cdots
$\left(\nu_{k}, \mu_{k}\right)$	$(0,1)$	$(1,0)$	$(0,2)$	$(0,0)$	$(0,1)$	\cdots

Table 1 the sequences $\left\{\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)\right\}_{k},\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}, \ldots$ for $x_{1}^{2}+x_{3}^{3}$

Comparing $\left(S_{1}\right),\left(S_{2}\right)$ and Table 1, we find that the successive applications of the \mathfrak{p}-adic stationary phase formula to $Z_{(0)}(T)$ are completely descrived with the sequences $\left\{\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)\right\}_{k},\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}, \ldots$

We observe that this fact generally holds for $Z_{e}(T)$ in our case, In particular, if the sequences $\left\{\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)\right\}_{k},\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}, \ldots$ are periodical, then the successive applications of the \mathfrak{p}-adic stationary phase formula to $Z_{e}(T)$ terminates by periodecally, and the periods of them concide. These facts are crucial in the proof of the theorems in the coming two sections.

4. Case I

In this section we shall consider Case I : $d_{f} \mid d_{g}$.
THEOREM 1. The successive appications of the \mathfrak{p}-adic stationary phase formula to $Z_{e}(T)$ in Case I teminates by periodically and its period is

$$
d_{g / f}(e=0), \quad d_{g / f}+1\left(0<e<d_{f}\right)
$$

As a consequence of this the explicit formula of $Z_{e}(T)$ is given as follows

$$
\begin{aligned}
& Z_{0}(T)=\frac{D_{\frac{\alpha f+\beta g}{}}(T)+D_{\bar{f}}(T) P_{0}(T)}{\left(1-q^{-1} T\right)\left(1-q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell}\right)}, \\
& Z_{e}(T)=\frac{D_{\bar{f}}(T)\left(1+P_{0}(T)\right)+D_{\bar{g}}(T) q^{-n} T^{e}}{\left(1-q^{-1} T\right)\left(1-q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell}\right)} \quad\left(0<e<d_{f}\right),
\end{aligned}
$$

in which we put

$$
P_{0}(T)=q^{-(n+m)} T^{d_{f}}+q^{-(2 n+m)} T^{2 d_{f}}+\cdots+q^{-\left(\left(d_{g / f}-1\right) n+m\right)} T^{d_{g}-d_{f}}
$$

Proof. At first we remark that, in this case, $d_{(f, g)}=d_{f}, \ell=d_{g}, e_{f}=1$, $e_{g}=d_{g} / d_{f}, d_{g / f}=e_{g}=d_{g} / d_{f}$ and $r_{g / f}=0$.

Case of $e=0$. We successibily apply the \mathfrak{p}-adic stationary phase formula to $Z_{0}(T)$, then, by Lemma 1., (1), (2) in $\S 2.1$, we have

$$
\begin{aligned}
Z_{0}(T)= & \frac{D \overline{\alpha f+\beta g}(T)}{1-q^{-1} T}+q^{-(n+m)} T^{d_{f}} Z_{\left(0, d_{g}-d_{f}\right)}(T) \\
Z_{\left(0, d_{g}-d_{f}\right)}(T)= & \frac{D_{\bar{f}}(T)}{1-q^{-1} T}\left(1+q^{-n} T^{d_{f}}+\cdots+q^{-\left(\left(d_{g / f}-2\right) n+m\right)} T^{\left(d_{g / f}-2\right) d_{f}}\right) \\
& +q^{-\left(\left(d_{g / f}-1\right) n\right)} T^{\left(d_{g / f}-1\right) d_{f}} Z_{0}(T)
\end{aligned}
$$

We can obtain these formulae from the corresponding sequences $\left\{\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)\right\}_{k}$, $\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}, \ldots$ which are given as follows.

Thus we find that the successive applications of the \mathfrak{p}-adic stationary phase formula to $Z_{0}(T)$ terminates periodically and its period is $d_{g / f}$, and we obtain

$$
Z_{0}(T)=\frac{D_{\overline{\alpha f+\beta g}}(T)}{1-q^{-1} T}+\frac{D_{\bar{f}}(T)}{1-q^{-1} T} P(T)+q^{-\left(d_{g / f} n+m\right)} T^{d_{g}} Z_{0}(T)
$$

and hence the formula stated in the theorem.

k	1	2	\cdots	$d_{g / f}$
$\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)$	$\left(\pi_{K}^{d_{f}} \alpha, \pi_{K}^{d_{g}} \beta\right)$	$\left(\pi_{K}^{d_{f}} \alpha, \pi_{K}^{d_{g}-d_{f}} \beta\right)$	\cdots	$\left(\pi_{K}^{d_{f}} \alpha, \pi_{K}^{d_{f}} \beta\right)$
$\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)$	$\left(d_{f}, d_{g}\right)$	$\left(d_{f}, d_{g}-d_{f}\right)$	\cdots	$\left(d_{f}, d_{f}\right)$
ρ_{k}	d_{f}	d_{f}	\cdots	d_{f}
$\left(\alpha_{k}, \beta_{k}\right)$	$\left(\alpha, \pi_{K}^{d_{g}-d_{f}} \beta\right)$	$\left(\alpha, \pi_{K}^{d_{g}-2 d_{f}} \beta\right)$	\cdots	(α, β)
$\left(\nu_{k}, \mu_{k}\right)$	$\left(0, d_{g}-d_{f}\right)$	$\left(0, d_{g}-2 d_{f}\right)$	\cdots	$(0,0)$

Table 2 The sequence $\left\{\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)\right\}_{k},\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}, \ldots$ for $Z_{\alpha f+\beta g}(T)$ in Case I

k	1	2	\cdots	$d_{g / f}$
$\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)$	$\left(d_{f}, d_{g}\right)$	$\left(d_{f}, d_{g}-d_{f}\right)$	\cdots	$\left(d_{f}, d_{f}\right)$
ρ_{k}	d_{f}	d_{f}	\cdots	d_{f}
$\left(\nu_{k}, \mu_{k}\right)$	$\left(0, d_{g}-d_{f}\right)$	$\left(0, d_{g}-2 d_{f}\right)$	\cdots	$(0,0)$

Table $3\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k},\left\{\rho_{k}\right\}_{k},\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ for $Z_{\alpha f+\beta g}(T)$ in Case I
Here we remark that it is enough to consider the sequences $\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k},\left\{\rho_{k}\right\}_{k}$ and $\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ for the explicit formula to Igusa local zeta function. Hence we may consider the following Table 3 instead of the above Table 2.

Case of $0<e<d_{f}$. In this case we again successibly apply the \mathfrak{p}-adic stationary phase formula to $Z_{e}(T)$, then the corresponding sequences $\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}$, $\left\{\rho_{k}\right\}_{k}$ and $\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ are as follows.

k	1	2	3	\cdots	$d_{g / f}+1$
$\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)$	$\left(d_{f}, e\right)$	$\left(d_{f}-e, d_{g}\right)$	$\left(d_{f}, d_{g}-d_{f}+e\right)$	\cdots	$\left(d_{f}, d_{f}+e\right)$
ρ_{k}	e	$d_{f}-e$	d_{f}	\cdots	d_{f}
$\left(\nu_{k}, \mu_{k}\right)$	$\left(d_{f}-e, 0\right)$	$\left(0, d_{g}-d_{f}+e\right)$	$\left(0, d_{g}-2 d_{f}+e\right)$	\cdots	$(0, e)$

Table $4\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k},\left\{\rho_{k}\right\}_{k},\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ for $Z_{\alpha f+\pi^{e} \beta g}(T)\left(0<e<d_{f}\right)$ in Case I

Therefore we have

$$
\begin{aligned}
Z_{e}(T)=\frac{D_{\bar{f}}(T)}{1-q^{-1} T}+q^{-n} T^{e}\left\{\frac{D_{\bar{g}}(T)}{1-q^{-1} T}\right. & +q^{-m} T^{d_{f}-e}\left(\frac{D_{\bar{g}}(T)}{1-q^{-1} T}\left(1+P_{0}(T)\right)\right. \\
& \left.\left.+q^{-\left(\left(d_{g / f}-1\right) n+m\right)} T^{\left(d_{g / f}-1\right) d_{f}} Z_{e}(T)\right)\right\} .
\end{aligned}
$$

From this formula we obtain the formula stated in the theorem.
Q.E.D.

5. Case II

In this section we consider Case II : $d_{f} \nmid d_{g}$. At first we give some lemmas (§5.1), and then, using these lemmas, we give our results (§5.2).

5.1 Lemmas

We denote $\mathbb{Z} / e_{f} \mathbb{Z}$ the set of congruence classes modulo e_{f} and we take

$$
\Lambda=\left\{0,1, \ldots, e_{f}-1\right\}
$$

as a complete set of residues modulo e_{f}. For a multiple $\lambda r_{g / f}(\lambda \in \Lambda)$, we take a representative point $\overline{\lambda r_{g / f}}$ of the congruence class $\lambda r_{g / f} \bmod e_{f}$ from Λ and we put

$$
\underline{\lambda r_{g / f}}=r_{g / f}+\overline{\lambda r_{g / f}}
$$

We define two subsets Λ_{0} and Λ_{1} of Λ as follows

$$
\Lambda_{0}=\left\{\lambda \in \Lambda:(\lambda-1) r_{g / f}<h e_{f}<\lambda r_{g / f} \text { for some } h \geqq 1\right\}, \quad \Lambda_{1}=\Lambda-\Lambda_{0} .
$$

Lemma 2.

$$
\overline{\lambda r_{g / f}}= \begin{cases}\frac{(\lambda-1) r_{g / f}}{}-e_{f} & \left(\lambda \in \Lambda_{0}\right) \\ \underline{(\lambda-1) r_{g / f}} & \left(\lambda \in \Lambda_{1}\right) .\end{cases}
$$

Proof. For each λ in Λ_{0}, there exists an integer h such that $(\lambda-1) r_{g / f}<h e_{f}<$ $\lambda r_{g / f}$. Then we observe that the quotient and the remainder of the division of $(\lambda-1) r_{g / f}$ by e_{f} are $h-1$ and $\overline{(\lambda-1) r_{g / f}}$ respectively. Hence we have

$$
(\lambda-1) r_{g / f}=(h-1) e_{f}+\overline{(\lambda-1) r_{g / f}}
$$

and

$$
\begin{aligned}
\underline{(\lambda-1) r_{g / f}} & =r_{g / f}+\overline{(\lambda-1) r_{g / f}} \\
& =r+(\lambda-1) r_{g / f}-(h-1) e_{f}=e_{f}+\left(\lambda r_{g / f}-h e_{f}\right)
\end{aligned}
$$

From the definitions of λ and h, we have $\lambda r_{g / f}-h e_{f}>0$ and

$$
e_{f}-\left(\lambda r_{g / f}-h e_{f}\right)=\left(e_{f}-r_{g / f}\right)+\left(h e_{f}-(\lambda-1) e_{f}\right)>0
$$

Therefore we have

$$
\overline{(\lambda-1) r_{g / f}}=\lambda r_{g / f}-h e_{f} \in \Lambda \quad \text { and } \quad \underline{(\lambda-1) r_{g / f}}=e_{f}+\overline{\lambda r_{g / f}}
$$

For a $\lambda \in \Lambda_{1}$, we denote by h^{\prime} the quotient of the division $(\lambda-1) r_{g / f}$ by e_{f} then we have

$$
(\lambda-1) r=h^{\prime} a+\overline{(\lambda-1) r_{g / f}}
$$

and hence

$$
\underline{(\lambda-1) r_{g / f}}=r_{g / f}+(\lambda-1) r_{g / f}-h^{\prime} e_{f}=\lambda r_{g / f}-h^{\prime} e_{f}
$$

Thus we observe that $(\lambda-1) r_{g / f}$ is congruent to $\lambda r_{g / f}$ modulo e_{f}. Hence we
 assume $\underline{(\lambda-1) r_{g / f}}=\lambda r_{g / f}-h^{\prime} e_{f} \geqq e_{f}$, then we have $\left.\overline{\lambda r_{g / f} \geqq\left(h^{\prime}\right.}+1\right) e_{f}$. Here we put $\overline{h=h^{\prime}+1}$, then we have $h \geqq 1$ and have $(\lambda-1) r_{g / f}<h^{\prime} e_{f}+e_{f}=h e_{f}$. On the other hand, since e_{f} and $r_{g / f}$ are mutually relatively prime, we have $\lambda r_{g / f} \neq h e_{f}$, and hence $h e_{f}<\lambda r_{g / f}$. Thus we have $(\lambda-1) r_{g / f}<h e_{f}<\lambda r_{g / f}$. It is contragradient to the face $\lambda \in \Lambda_{1}$, hence we observe that $\underline{(\lambda-1) r_{g / f}}<e_{f}$. Thus we have $\underline{(\lambda-1) r_{g / f}}=\overline{\lambda r_{g / f}}$.
Q.E.D.

Lemma 3. The cardinarity $\sharp \Lambda_{0}$ of Λ_{0} is $r_{g / f}-1$.
Proof. We consider the interval $I=\left[0, e_{f} r_{g / f}\right]=\left\{x \in \mathbb{R}: 0 \leqq x \leqq e_{f} r_{g / f}\right\}$. We decompose I into subintervals $I_{i}=\left[e_{f}(i-1), e_{f} i\right]\left(i=1,2, \ldots, r_{g / f}\right)$.

We take a non-zero element λ_{0} of Λ, then we observe that $\lambda r_{g / f}$ is contained in one and only one of subintervals $I_{1}\left(i=1,2, \ldots, r_{g / f}\right)$, but it is not the end of the subinterval, since e_{f} and $r_{g / f}$ are mutually relatively prime.

On the other hand, we observe that the distance of two numbers $\lambda r_{g / f}$ and $(\lambda+1) r_{g / f}$ is $r_{g / f}$ and it is less than the length e_{f} of each subinterval I_{i}. Hence we observe that each subinterval I_{i} contains at least one of $\lambda r_{g / f}(\lambda \in \Lambda, \neq 0)$ as its interior point.

We notice the above facts and take the smallest number of the form $\lambda r_{g / f}$ in $I_{i}\left(i=1,2, \ldots, r_{g / f}\right)$, then we find that Λ_{0} consists of these numbers, and hence $\sharp \Lambda_{0}=r_{g / f}-1$.
Q.E.D.

Lemma 4. $\Lambda=\left\{\overline{\lambda r_{g / f}}: \lambda \in \Lambda\right\}$.
Proof. We consider the additive group of $\mathbb{Z} / e_{f} \mathbb{Z}$, which is a cyclic group of order e_{f}. Since e_{f} and $r_{g / f}$ are mutually relatively prime, we have the congruence class $r_{g / f} \bmod e_{f}$ is a generator of this cyclic group ;

$$
\left\{\lambda r_{g / f} \bmod e_{f}: \lambda \in \Lambda\right\}=\mathbb{Z} / e_{f} \mathbb{Z}
$$

Since we have taken $\overline{\lambda r_{g / f}}$ as a representative point of the congruence class $r_{g / f} \bmod e_{f}$, we have $\Lambda=\left\{\overline{\lambda r_{g / f}}: \lambda \in \Lambda\right\}$.
Q.E.D.

5.2 Results in Case II

Here we shall give our results in Case II.
Proposition 1. For each $e=0,1, \ldots, d_{(f, g)}-1$, the sequences $\left\{\left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)\right\}_{k}$, $\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}, \ldots$ are periodical and the period c_{e} of them is given by

$$
c_{e}=e_{f}+e_{g}-\epsilon_{e}
$$

in which we put $\epsilon_{e}=1(e=0), 0\left(e=1, \ldots, d_{(f, g)}-1\right)$.
Proof. From the definitions, we may consider the sequences $\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k},\left\{\rho_{k}\right\}_{k}$ and $\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$. We can represent the tables of those sequences as in Table 5 $(e=0)$ and Table $6\left(e=1, \ldots, d_{(f, g)}-1\right)$ cited in the end of this paper. Here we should give some remarks on Table 5 and Table 6
(i) We decompose the terms of each row into 2 type classes ; the former class has 2 terms, except the first row in the case $e=0$, it has only one term, and the latter class has $d_{g / f}-1$ terms or $d_{g / f}$ terms.
(ii) The number of terms consisting in a second class depends on its number of row. Namely, the number of terms consisting in the second class of the λ-th row is $d_{g / f}$ if $\lambda \in \Lambda_{0}$ or $\lambda=e_{f}$ and $d_{g / f}-1$ if $\lambda \in \Lambda_{1}$ and $\lambda \neq e_{f}$. In Table 5 and 6 , we have assumed that $3, \ldots \in \Lambda_{0}$ and $2,4, \ldots \in \Lambda_{1}$.
(iii) The end term (ν, μ) of the λ-th row is given as follows

$$
(\nu, \mu)= \begin{cases}\left.\left(0, d_{(f, g)} \underline{\left(\lambda r_{g / f}\right.}-e_{f}\right)+e \epsilon_{e}\right) & \left(\lambda \in \Lambda_{0}\right) \\ \left(0, d_{(f, g)} \underline{\left(\lambda r_{g / f}\right.}+e \epsilon_{e}\right) . & \left(\lambda \in \Lambda_{1}\right)\end{cases}
$$

Hence, from Lemma 2, we have $(\nu, \mu)=\left(0, d_{(f, g)}\left(\overline{\lambda+1) r_{g / f}}\right)+e \epsilon_{e}\right)$.
Let c_{e} be the number of the end term of the e_{f}-th row in Table 5 or Table 6, then we observe that the end term $\left(\nu_{c_{e}}, \mu_{c_{e}}\right)$ of the e_{f}-th row in Table 5 or Table 6 is $(0, e)$, hence the first term $\left(\widetilde{\nu}_{c_{e}+1}, \widetilde{\nu}_{c_{e}+1}\right)$ of the next row is $\left(d_{f}, d_{g}\right)(e=0)$ or $\left(d_{f}, 0\right)\left(e=1, \ldots, d_{f}-1\right)$. Therefore we observe that the sequences $\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k}$, $\left\{\rho_{k}\right\}_{k}$ and $\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ are periodical, and the period of them is c_{e}. On the other hand, from Lemma 3 and the above remarks, we have

$$
\begin{aligned}
c_{0} & =1+2\left(e_{f}-1\right)+d_{g / f}\left(\sharp \Lambda_{0}+1\right)+\left(d_{g / f}-1\right)\left(\sharp \Lambda_{1}-1\right) \\
& =e_{f}+d_{g / f}+r_{g / f}-1=e_{f}+e_{g}-1 .
\end{aligned}
$$

Similarly we have the number $c_{e}\left(e=1, \ldots, d_{f}-1\right)$ for Table 6 is

$$
c_{e}=2\left(e_{f}-1\right)+d_{g / f}\left(\sharp \Lambda_{0}+1\right)+\left(d_{g / f}-1\right)\left(\sharp \Lambda_{1}-1\right)=e_{f}+e_{g} .
$$

Thus we complete the proof of our theorem.
Q.E.D.

Corollary. Let $S_{e}=\rho_{1}+\rho_{2}+\cdots+\rho_{c_{e}}$ then we have $S_{e}=\ell$.
Proof. From Table 5 and 6 , we have $S_{e}=d_{f} e_{g}=d_{f} d_{g} / d_{(f, g)}=\ell . \quad$ Q.E.D.
We observe that Proposition 1 guarantees that the successive applications of the \mathfrak{p}-adic stationary phase formula leads the explicit formula of $Z_{e}(T)(e=$ $\left.0,1, \ldots, d_{f}-1\right)$. On the bass of this observation we shall settle teh explicit formula of $Z_{e}(T)$.

At first, we define two polynomials $P(T)$ and $Q(T)$ associated to Table 5. For each $\lambda\left(\lambda=0,1, \ldots, e_{f}\right)$, we put

$$
\delta_{\lambda}=1\left(\lambda i n \Lambda_{0}\right), \quad 0\left(\lambda \in \Lambda_{1}\right) \quad \text { and } \quad \delta_{e_{f}}=1
$$

and

$$
\Delta_{\lambda}=\delta_{0}+\cdots+\delta_{\lambda}, \quad \alpha_{\lambda}=d_{g / f} \lambda+\Delta_{\lambda}
$$

We define

$$
\begin{array}{lr}
p_{\lambda}(T)=q^{-\left(\alpha_{\lambda-1}+\lambda m\right)} T^{\alpha_{\lambda-1} d_{f}} \sum_{k=1}^{d_{g / f}+\delta_{\lambda}} q^{-k n} T^{k d_{f}} & \left(\lambda=1, \ldots, e_{f}\right) \\
q_{\lambda}(T)=q^{-\left(\alpha_{\lambda-1}+\lambda m\right)} T^{\lambda d_{g}} & \left(\lambda=1, \ldots, e_{f}-1\right)
\end{array}
$$

and

$$
P(T)=p_{1}(T)+\cdots+p_{e_{f}}(T), \quad Q(T)=q_{1}(T)+\cdots+q_{e_{f}-1}(T)
$$

For comprehension of the relation between Table 5 and the polynomials $P(T)$ and $Q(T)$, we observe an example ; the case of $d_{f}=3, d_{f}=8$. We have two tables ; one is Table 5 of this case and the other is the table of monomials of the form $q^{-a} T^{-b}$ associated to the formaer table.

1	$\begin{gathered} \hline(3,8) \\ 3 \\ (0,5) \end{gathered}$		$\begin{gathered} (3,5) \\ 3 \\ (0,2) \end{gathered}$	
2	$\begin{gathered} (3,2) \\ 2 \\ (1,0) \end{gathered}$	$\begin{gathered} (1,8) \\ 1 \\ (0,7) \end{gathered}$	$\begin{gathered} (3,7) \\ 3 \\ (0,4) \end{gathered}$	$\begin{gathered} (3,4) \\ 3 \\ (0,1) \end{gathered}$
3	$\begin{gathered} (3,1) \\ 1 \\ (2,0) \end{gathered}$	$\begin{gathered} (2,8) \\ 2 \\ (0,6) \end{gathered}$	$\begin{gathered} (3,6) \\ 3 \\ (0,3) \end{gathered}$	$\begin{gathered} (3,3) \\ 3 \\ (0,0) \end{gathered}$

1	$q^{-n+m} T^{3}$		$q^{-n} T^{3}$	
2	$q^{-n} T^{2}$	$q^{-m} T$	$q^{-n} T^{3}$	$q^{-n} T^{3}$
3	$q^{-n} T$	$q^{-m} T^{2}$	$q^{-n} T^{3}$	$q^{-n} T^{3}$

Observing the letter table, we obtain that

$$
\begin{aligned}
P(T)= & q^{-(n+m)} T^{3}\left(1+q^{-n} T^{3}\left(1+q^{-n} T^{2}\left(0+q^{-m} T\right.\right.\right. \\
& \quad \times\left(1+q^{-n} T^{3}\left(1+q^{-n} T^{3}\left(1+q^{-n} T\left(0+q^{-m} T^{2}\left(1+q^{-n} T^{3}\right) \cdots\right)\right.\right.\right. \\
= & q^{-(n+m)} T^{3}\left(1+q^{-(2 n+m)} T^{6}+q^{-(3 n+2 m)} T^{9}+q^{-(4 n+2 m)} T^{12}\right. \\
& +q^{-(5 n+2 m)} T^{15}+q^{-(6 n+3 m)} T^{18}+q^{-(7 n+3 m)} T^{21} \\
& \quad \times\left(0+q^{-3} T^{3}\left(0+q^{-n} T^{3}\left(0+q^{-n} T\left(1+q^{-m} T^{2}\left(0+q^{-n} T^{3}\right) \cdots\right)\right.\right.\right. \\
Q(T)= & q^{-(n+m)} T^{3}\left(0+q^{-n} T^{3}\left(0+q^{-n} T^{2}\left(1+q^{-m} T\right.\right.\right. \\
& \quad q^{-(3 n+m)} T^{8}+q^{-(6 n+2 m)} T^{16} .
\end{aligned}
$$

Here we should give some remarks on the above formulae.
(i) The corresponding coefficients in $P(T)$ and $Q(T)$, which are 1 or 0 , are opposite to each other. For example, we see $P(T)=q^{-(n+m)} T^{3}(1+\cdots$; $Q(T)=q^{-(n+m)} T^{3}(0+\cdots$.
(ii) The coefficient 1 in $P(T)$ corresponds to $D_{\bar{f}} /\left(1-q^{-1} T\right)$ in teh successive applications of the \mathfrak{p}-adic stationary phase formula to $Z_{0}(T)$. On the other hand, the coefficients 1 in $Q(T)$ corresponds to $D_{\bar{g}}(T) /\left(1-q^{-1} T\right)$. We should emphasize the above facts generally hold in our case.

LEMMA 5. $P(T)=q^{-\left(\left(e_{g}-1\right) n+e_{f} m\right)} T^{\ell-d_{f}}+($ terms of lower degree $)$.
Proof. The term of the highest degree in $P(T)$ is

$$
\begin{aligned}
& q^{-\left(\alpha_{e_{f}-1} n+e_{f} m\right)} T^{\alpha_{e_{f}-1} d_{f}} \cdot q^{-\left(d_{g / f}+\delta_{e_{f}}\right) n} T^{\left(d_{g / f}+\delta_{e_{f}}\right)} d_{f} \\
& \quad=q^{-\left(\left(\alpha_{e_{f}-1}+d_{g / f}+\delta_{e_{f}} n+e_{f} m\right)\right.} T^{\left(\alpha_{e_{f}-1}+d_{g / f}+\delta_{e_{f}}\right) d_{f}} .
\end{aligned}
$$

Here we have

$$
\begin{gathered}
\alpha_{e_{f}-1}+d_{g / f}+\delta_{e_{f}}=d_{g / f}\left(e_{f}-1\right)+\Delta_{e_{f}-1}+d_{g / f}+\delta_{e_{f}} \\
=d_{g / f} e_{f}+\Delta_{e_{f}}=d_{g / f} e_{f}+(r-1)=e_{g}-1,
\end{gathered}
$$

since $\Delta_{e_{f}}=\sharp \Lambda=r-1$ from Lemma 3., and $\left(e_{g}-1\right) d_{f}=\ell-d_{f}$. Thus we have the formula in the lemma.
Q.E.D.

THEOREM 2. The successive applications of the \mathfrak{p}-adic stationary phase formula to $Z_{e}(T)$ in Case I terminates by periodically and its period is

$$
e_{f}+e_{g}-\delta_{d_{(f, g)}, e}
$$

in which we put $\delta_{d_{(f, g)}, e}=1\left(d_{(f, g)} \mid e\right), 0\left(d_{(f, g)} \nmid e\right)$. As a consequence of this, the explicit formula of $Z_{e}(T)$ is given as follows
(i) $e=0$.

$$
Z_{0}(T)=\frac{D_{\overline{\alpha f+\beta g}}(T)+D_{\bar{f}}(T) P(T)+D_{\bar{g}}(T) Q(T)}{\left(1-q^{-1} T\right)\left(1-q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell}\right.}
$$

(ii) $e=1, \ldots, d_{f}-1$
(ii) ${ }_{a} d_{g / f} \mid e$. For such $a e$, there is a unique λ in Λ satisfying $e=d\left(\overline{\lambda r_{g / f}}\right)$ from Lemma 4. Here we define two polynomials $P_{e}(T)$ and $Q_{e}(T)$ as follows,

$$
\begin{aligned}
& P_{e}(T)=\left(1-q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell}\right) \\
&+\left(p_{1}(T)+\cdots+p_{\lambda}(T)\right) q^{-\left(\left(e_{g}-\alpha_{\lambda}\right) n+\left(e_{f}-\lambda\right) m\right)} T^{\ell-\alpha_{\lambda} d_{f}} \\
&+\left(p_{\lambda+1}(T)+\cdots+p_{e_{f}}(T)\right) \cdot\left(q^{-\left(\alpha_{\lambda} n+\lambda m\right)} T^{\alpha_{\lambda} d_{f}}\right)^{-1} \\
& Q_{e}(T)=\left(q_{1}(T)+\cdots+q_{\lambda-1}(T)\right) q^{-\left(\left(e_{g}-\alpha_{\lambda}\right) n+\left(e_{f}-\lambda\right) m\right)} T^{\ell-\alpha_{\lambda} d_{f}} \\
& \quad+\left(q_{\lambda}(T)+\cdots+p_{e_{f}-1}(T)\right) \cdot\left(q^{-\left(\alpha_{\lambda} n+\lambda m\right)} T^{\alpha_{\lambda} d_{f}}\right)^{-1} .
\end{aligned}
$$

Then we have

$$
Z_{e}(T)=\frac{D_{\overline{\alpha f+\beta g}}(T) q^{-\left(\alpha_{\lambda} n+\lambda m\right)} T^{\alpha_{\lambda} d_{f}}+D_{\bar{f}}(T) P_{e}(T)+D_{\bar{g}}(T) Q_{e}(T)}{\left(1-q^{-1} T\right)\left(1-q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell}\right)} .
$$

(ii) $b_{b} d_{g / f} \nmid e$. We denote by $\overline{\lambda r_{g / f}}$ and r_{1} the divisor and the remainder of the division of e by $d_{g / f}$ respectively ;

$$
e=d\left(\overline{\lambda r_{g / f}}\right)+r_{1}, \quad 1 \leqq r_{1}<d_{g / f}
$$

Here we define two polynomials $\widetilde{P}_{e}(T)$ and $\widetilde{Q}_{e}(T)$ as follows ;
$\lambda=0$.

$$
\widetilde{P}_{e}(T)=1+P(T), \quad \widetilde{Q}_{e}(T)=q^{-n r_{1}}(1+Q(T)) .
$$

$\lambda \neq 0$.

$$
\begin{aligned}
& \widetilde{P}_{e}(T)=q^{\left(\left(e_{g}-\alpha_{\lambda}\right) n+\left(e_{f}-\lambda\right) m\right)} T^{\ell-\alpha_{\lambda} d_{f}}+P_{d\left(\overline{\lambda r_{g / f}}\right)}(T), \\
& \widetilde{Q}_{e}(T)=q^{-n} T^{r_{1}}\left(q^{-\left(\left(e_{g}-\alpha_{\lambda}\right) n+\left(e_{f}-\lambda\right) m\right)} T^{\ell-\alpha_{\lambda} d_{f}}+Q_{d\left(\overline{\lambda r_{g / f}}\right)}(T)\right) .
\end{aligned}
$$

Then we have

$$
Z_{e}(T)=\frac{D_{\bar{f}}(T) \widetilde{P}_{e}(T)+D_{\bar{g}}(T) \widetilde{Q}_{e}(T)}{\left(1-q^{-1} T\right)\left(1-q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell}\right)}
$$

Proof. We start with the first statement. We shall notice the remark given in the end of $\S 3$, then we find that, to prove the first statement, it is sufficient to show the sequences $\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k},\left\{\rho_{k}\right\}_{k}$ and $\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ for $Z_{e}(T)$ is periodical and its period is as in the theorem. When $e=0,1, \ldots, d_{(f, g)}-1$, then we imediately obtain our result from Proposition 1. When e is as in the case (ii) $)_{a}$. We take λ as in the theorem, then we find that the end term (ν, μ) of the λ-th row of Table 5 , then we obtain the table of the sequences $\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k},\left\{\rho_{k}\right\}_{k}$ and $\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ for $Z_{e}(T)$, and we observe that this table is periodical and its period coincides with the period of Table $5 ; e_{f}+e_{g}-1$. When e is as in the case (ii) ${ }_{b}$. We take λ and r_{1} as in the theorem, then we find that the end term (ν, μ) of the λ-th row of Table 6 is $\left(0, d\left(\overline{\lambda r_{g / f}}\right)+r_{1}\right)$. Therefore, in a similar way of the above case, we observe that the table of the sequences $\left\{\left(\widetilde{\nu}_{k}, \widetilde{\mu}_{k}\right)\right\}_{k},\left\{\rho_{k}\right\}_{k}$ and $\left\{\left(\nu_{k}, \mu_{k}\right)\right\}_{k}$ for $Z_{e}(T)$ is periodical and its period coincides with the period of Table $6 ; e_{f}+e_{g}$.

Now we consider the explicit formula of $Z_{e}(T)\left(e=0,1, \ldots, d_{f}-1\right)$.
(i) Observing the relation between Table 5 and the polynomials $P(T)$ and $Q(T)$, we have

$$
\begin{aligned}
Z_{0}(T)=\frac{D_{\overline{\alpha f+\beta g}}(T)}{1-q^{-1} T}+\frac{D_{\bar{f}}(T)}{1-q^{-1} T} & P(T)+\frac{D_{\bar{g}}(T)}{1-q^{-1} T} Q(T) \\
& +q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell} Z_{0}(T)
\end{aligned}
$$

The reason that the coefficient monomimal of $Z_{e}(T)$ in the right hand side is $q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell}$ is as follows. From Lemma 5., we observe that the last term of $P(T)$ is $q^{-\left(\left(e_{g}-1\right) n+e_{f} m\right)} T^{\ell-d_{f}}$ and this term corresponds to the $e_{f}+e_{g}-$ 1 -th application of the \mathfrak{p}-adic stationary phase formula. Applying the \mathfrak{p}-adic stationary phase formula once more, we return to $Z_{0}(T)$ and observe that its coefficient monomial is

$$
q^{-\left(\left(e_{g}-1\right) n+e_{f} m\right)} T^{\ell-d_{f}} \cdot q^{-n} T^{d_{f}}=q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell}
$$

(see the end term of e_{f}-th row of Table 5). Thus we obtain the formula in the case (i).
(ii) $)_{a}$ Let λ be as in the theorem, then, as stated in the above, we observe that the end term (ν, μ) of the λ-th row is $\left(0, d\left(\overline{\lambda r_{g / f}}\right)\right)$ and this term corresponds
to $Z_{e}(T)$. Therefore we have

$$
\begin{array}{r}
Z_{0}(T)=\frac{D_{\frac{\alpha f+\beta g}{}}(T)}{1-q^{-1} T}+\frac{D_{\bar{f}}(T)}{1-q^{-1} T}\left(p_{1}(T)+\cdots+p_{\lambda}(T)-q^{-\left(\alpha_{\lambda} n+\lambda m\right)} T^{\alpha_{\lambda} d_{f}}\right) \\
\quad+\frac{D_{\bar{g}}(T)}{1-q^{-1} T}\left(q_{1}(T)+\cdots+q_{\lambda-1}(T)\right)+q^{-\left(\alpha_{\lambda} n+\lambda m\right)} T^{\alpha_{\lambda} d_{f}} Z_{e}(T)
\end{array}
$$

Combing this formula and the formula in the case (i), we obtain the formula in the case (ii) ${ }_{a}$.
(ii) ${ }_{b}$. At first we consider the case of $e=1, \ldots, d_{f}-1$; in this case $\lambda=0$ and $e=r_{1}$. Observing Table 6, we have

$$
\begin{aligned}
Z_{e}(T)=\frac{D_{\bar{f}}(T)}{1-q^{-1} T}(1+P(T))+\frac{D_{\bar{g}}(T)}{1-q^{-1} T} & \left(q^{-n} T^{e}+q^{-n} T^{e} Q(T)\right) \\
& +q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell} Z_{e}(T)
\end{aligned}
$$

Hence we obtain

$$
Z_{e}(T)=\frac{D_{\bar{f}}(T)\left(1+P_{e}(T)\right)+D_{\bar{g}}(T) q^{-n} T^{e}\left(1+Q_{e}(T)\right)}{\left(1-q^{-1} T\right)\left(1-q^{-\left(e_{g} n+e_{f} m\right)} T^{\ell}\right)}
$$

which is the formula stated in the theorem.
Next we consider the otherwise case. We take λ and r_{1} as in the theorem, then, as stated in the above, we observe that the end term (ν, μ) of the λ-th row of Table 6 is $\left(0, d\left(\overline{\lambda r_{g / f}}\right)+r_{1}\right)$, and this term corresponds to $Z_{e}(T)$. Therefore we have

$$
\begin{aligned}
Z_{r_{1}}(T)= & \frac{D_{\bar{f}}(T)}{1-q^{-1} T}\left(1+p_{1}(T)+\cdots+p_{\lambda}(T)-q^{-\left(\alpha_{\lambda} n+\lambda m\right)} T^{\alpha_{\lambda} d_{f}}\right) \\
& +\frac{D_{\bar{g}}(T)}{1-q^{-1} T}\left(q_{1}(T)+\cdots+q_{\lambda-1}(T)\right)+q^{-\left(\alpha_{\lambda} n+\lambda m\right)} T^{\alpha_{\lambda} d_{f}} Z_{e}(T)
\end{aligned}
$$

Combing this formula and the formula in the above, we obtain the formula in the case $(\mathrm{ii})_{b}$.
Q.E.D.

References

[1] Goldman, J.R., Numbers of solutions of congruences: Póincare series for strongly nondegenerate forms, Proceedings of the American mathematical society, 87, No. 4 (1983), 586-590.
[2] Hosokawa, H., The Igusa localzeta function associated with the nondegenerate nonregular irreducible prehomogeneous vector spaces, Tsukuba J. of Math., 15, No. 1 (1991), 113119.
[3] Hosokawa, H., The Igusa local zeta function associated of the quadraric form $x_{1}^{2}+\cdots+x_{n}^{2}$, Yokohama J. of Math., 46 (1999), 181-189.
[4] Hosokawa, H., Igusa local zeta functions and castling transformation of prehomogeneous vector spaces, J. Number Theory, 74 (1999), 148-171.
[5] Igusa, J., An Introduction to the Theory of Local Zeta Functions, AMS/IP studies in advanced mathematics, (2000).
[6] Igusa, J., Complex powers and asymptotic expansions. I, J. Reine Angew. Math., 268/269 (1974), 110-130; II, ibid., 278/279 (1975), 307-321.
[7] Zuniga-Galindo, W.A., Local zeta function for nondegenerate homogeneous mapping, Pacific J. Math., 219, No. 1 (2005), 187-200, Reine Angew. Math., 268/269 (1974), 110-130; II, ibid., 278/279 (1975), 307-231.

	1	2	1	2	..	$d_{g / f}-1$	$d_{g / f}$
1	$\begin{gathered} \left(d_{f}, d_{g}\right) \\ d_{f} \\ \left(0, d_{g}-d_{f}\right) \end{gathered}$		$\begin{gathered} \left(d_{f}, d_{g}-d_{f}\right) \\ d_{f} \\ \left(0, d_{g}-2 d_{f}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}\right) \\ d_{f} \\ \left(0, d_{g}-3 d_{f}\right) \end{gathered}$	\cdots	$\begin{gathered} \left(d_{f}, d_{f}+d_{(f, g)}\right) \underline{\left.r_{g / f}\right)} \\ d_{f} \\ \left(0, d_{(f, g)} \overline{r_{g / f}}\right) \end{gathered}$	skip
2	$\begin{gathered} \left(d_{f}, d_{(f, g)} \overline{T_{r / g}}\right) \\ d_{(f, g)} \overline{r_{g / f}} \\ \left(d_{g}-d_{f}+d_{(f, g)} \overline{r_{r / g}}, 0\right) \end{gathered}$	$\begin{gathered} \left(d_{f}-d_{(f, g)} \overline{r_{g / f}}, d_{g}\right) \\ d_{f}-d_{(f, g)} \overline{r_{g / f}} \\ \left(0, d_{g}-d_{f}+d_{(f, g)} \overline{T_{g / f}}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-d_{f}+d_{(f, g)} \overline{r_{g / f}}\right) \\ d_{f} \\ \left(0, d_{g}-2 d_{f}+d_{(f, g)} \overline{r_{g / f}}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}+d_{(f, g)} \overline{r_{g / f}}\right) \\ d_{f} \\ \left(0, d_{g}-3 d_{f}+d_{(f, g)} \overline{r_{g / f}}\right) \end{gathered}$	\cdots	$\begin{gathered} \left(d_{f}, d_{f}+d_{(f, g)}, \underline{r_{g / f}}\right) \\ d_{f} \\ \left(0, d_{(f, g)} \overline{2 r_{g / f}}\right) \end{gathered}$	skip
3	$\begin{gathered} \left(d_{f}, d_{(f, g)} \overline{2 r_{r / g}}\right) \\ d_{(f, g)} 2 r_{g / f} \\ \left(d_{g}-d_{f}+d_{(f, g)} 2 r_{r / g}, 0\right) \end{gathered}$	$\begin{gathered} \left(d_{f}-d_{(f, g)} \overline{2 r_{g / f}}, d_{g}\right) \\ d_{f}-d_{(f, g)} 2 r_{g / f} \\ \left(0, d_{g}-d_{f}+d_{(f, g)} 2 r_{g / f}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-d_{f}+d_{(f, g)} \overline{2 r_{g / f}}\right) \\ d_{f} \\ \left(0, d_{g}-2 d_{f}+d_{(f, g)} \overline{2 r_{g / f}}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}+d_{(f, g)} 2 \overline{2 r_{g / f}}\right) \\ d_{f} \\ \left(0, d_{g}-3 d_{f}+d_{(f, g)} \overline{2 r_{g / f}}\right) \end{gathered}$	\ldots	$\begin{gathered} \left(d_{f}, d_{f}+d_{(f, g)} \underline{\left.2 r_{g / f}\right)}\right. \\ d_{f} \\ \left(0, d_{(f, g)} \underline{\left.2 r_{g / f}\right)}\right. \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{(f, g)} 2 r_{g / f}\right) \\ d_{f} \\ \left(0, d_{(f, g)} \overline{3 r_{g / f}}\right) \end{gathered}$
4	$\begin{gathered} \left(d_{f}, d_{(f, g)} \overline{3 r_{r / g}}\right) \\ d_{(f, g)}{ }^{3 r_{g / f}} \\ \left(d_{g}-d_{f}+d_{(f, g)} 33_{r / g}, 0\right) \end{gathered}$	$\begin{gathered} \left(d_{f}-d_{(f, g)} \overline{3 r_{g / f}}, d_{g}\right) \\ d_{f}-d_{(f, g)} 3 r_{g / f} \\ \left(0, d_{g}-d_{f}+d_{(f, g)} 3 r_{g / f}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-d_{f}+d_{(f, g)} \overline{3 r_{g / f}}\right) \\ d_{f} \\ \left(0, d_{g}-2 d_{f}+d_{(f, g)} \overline{3 r_{g / f}}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}+d_{(f, g)} \overline{3 r_{g / f}}\right) \\ d_{f} \\ \left(d_{f}, d_{g}-3 d_{f}+d_{(f, g)} \overline{3 r_{g / f}}\right) \end{gathered}$	\cdots	$\begin{gathered} \left.\left(d_{f}, d_{f}+d_{(f, g)}\right)=r_{g / f}\right) \\ d_{f} \\ \left(0, d_{(f, g)} \overline{4 r_{g / f}}\right) \end{gathered}$	skip
!	!						
$l+1$	$\begin{gathered} \left(d_{f}, d_{(f, g)} \overline{l_{r / g}}\right) \\ d_{(f, g)} \bar{l}_{g / f} \\ \left(d_{g}-d_{f}+d_{(f, g)} \bar{l} \overline{r_{r / g}}, 0\right) \end{gathered}$	$\begin{gathered} \left(d_{f}-d_{(f, g)} \overline{l r_{g / f}}, d_{g)}\right) \\ d_{f}-d_{(f, g)} \bar{l}_{g / f} \\ \left(0, d_{g}-d_{f}+d_{(f, g)} \overline{l_{g / f}}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-d_{f}+d_{(f, g)} \overline{l r_{g / f}}\right) \\ d_{f} \\ \left(0, d_{g}-2 d_{f}+d_{(f, g)} \overline{l_{g / f}}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}+d_{(f, g)} \bar{l} \overline{r_{g / f}}\right) \\ d_{f} \\ \left(0, d_{g}-3 d_{f}+d_{(f, g)} \overline{l_{g / f}}\right) \end{gathered}$	\cdots	$\begin{gathered} \left(d_{f}, d_{f}+d_{(f, g)} \underline{\left.l r_{g / f}\right)}\right. \\ d_{f} \\ \left(0, d_{(f, g)} \underline{\left.r_{g / f}\right)}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{(f, g)} \underline{l r_{g / f}}\right) \\ \left.d_{f} \underline{\left(0, d_{(f, g)}\right.} \overline{(l+1) r_{g / f}}\right) \end{gathered}$
;	!						
e_{f}	$\begin{gathered} \left(d_{f}, d_{(f, g)} \overline{\left(e_{f}-1\right) r_{r / g}}\right) \\ d_{f}-d_{(f, g)} r_{g / f} \\ \left(d_{f}-d_{(f, g)}\left(e_{f}-1\right) r_{r / g}, 0\right) \end{gathered}$	$\begin{gathered} \left(d_{f}-d_{(f, g)} \overline{\overline{\left(e_{f}-1\right) r_{g / f}},}, d_{g}\right) \\ d_{(f, g)} r_{g / f} \\ \left(0, d_{(f, g)} d_{f}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{(f, g)} d_{f}\right) \\ d_{f} \\ \left(0,\left(d_{(f, g)}-1\right) d_{f}\right) \end{gathered}$	$\begin{gathered} \left(d_{f},\left(d_{(f, g)}-1\right) d_{f}\right. \\ d_{f} \\ \left(0,\left(d_{(f, g)}-2\right) d_{f}\right) \end{gathered}$	\cdots	$\begin{gathered} \left(d_{f}, 2 d_{f}\right) \\ d_{f} \\ \left(0, d_{f}\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{f}\right) \\ d_{f} \\ (0,0) \end{gathered}$

	1	2	1	2	...	$d_{g / f}-1$	$d_{g / j}$
1	$\begin{gathered} \left(d_{f, e},\right. \\ e \\ e \\ \left(d_{f}-e, 0\right) \end{gathered}$	$\begin{gathered} \left(d_{f}-\varepsilon, d_{g}\right) \\ d_{f}-e \\ \left(0, d_{g}-d_{f}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-d_{f}+e\right) \\ d_{f} \\ \left(0, d_{g}-2 d_{f}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}+e\right) \\ d_{f} \\ \left(0, d_{g}-3 d_{f}+e\right) \end{gathered}$...	$\begin{gathered} \left.\left(d_{f}, d_{f}+d_{(f, g)}\right) r_{g / /}+e\right) \\ d_{f} \\ \left(0, d_{(G, 9)} \bar{T}_{g / J}+e\right) \end{gathered}$	skip
2		$\begin{gathered} \left(d_{f}-d_{(f, g)} \overline{\bar{T}_{g / f}}-e, d_{g}\right) \\ d_{f}-d_{(/, g)} \bar{T}_{g / f}-e \\ \left(0, d_{g}-d_{f}+d_{(f, g)} \overline{T_{g / S}}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-d_{f}+d_{(J, g)} \overline{\bar{T}_{g / J}}+e\right) \\ d_{f} \\ \left(0, d_{g}-2 d_{f}+d_{(f, g)} \overline{T_{g / J}}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}+d_{(J g)} \overline{\bar{T}_{g / /}}+e\right) \\ d_{f} \\ \left(0, d_{g}-3 d_{f}+d_{(G, g)} \overline{\bar{T}_{g / J}}+e\right) \end{gathered}$	\ldots	$\begin{gathered} \left(d_{f}, d_{f}+d_{(S, g)} r_{g / \Omega}+e\right) \\ d_{f} \\ \left.\left(0, d_{(f, s)}\right)^{2 T_{g / S}}+e\right) \end{gathered}$	skip
3		$\begin{gathered} \left(d_{f}-d_{(f, g)} \overline{2 r_{g / /}}-e, d_{g}\right) \\ \left.d_{f}-d_{(f, g)}\right) r_{g / /}-e \\ \left.\left(0, d_{g}-d_{f}+d_{(f, g)}\right)^{2 r_{g / /}}+e\right) \end{gathered}$	$\begin{gathered} \left.\left(d_{f}, d_{g}-d_{f}+d_{(f, g)}\right) \overline{r_{g / /}}+e\right) \\ d_{f} \\ \left.\left(0, d_{g}-2 d_{f}+d_{(f, g)}\right) \overline{r_{g / /}}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}+d_{(f, g)} \overline{2 r_{g / /}}+e\right) \\ d_{f} \\ \left.\left(0, d_{g}-3 d_{f}+d_{(f, g)}\right)^{2 r_{g / /}}+e\right) \end{gathered}$..'	$\begin{gathered} \left.\left(d_{f}, d_{f}+d_{(f, g)}\right) 2 r_{g / f}+e\right) \\ d_{f} \\ \left.\left(0, d_{(f, s)}\right)_{g / \rho}+e\right) \end{gathered}$	$\begin{gathered} \left.\left(d_{f}, d_{(G, q)}\right){ }_{2 r_{g / f}}+e\right) \\ d_{f} \\ \left.\left(0, d_{(f, g)}\right) r_{r_{g / J}}+e\right) \end{gathered}$
4	$\begin{gathered} \left(d_{f}, d_{(f, g)} 3 \overline{3 r / g}+e\right) \\ \left.d_{(f, g}\right)^{3 r_{g / g}}+e \\ \left.\left(d_{g}-d_{f}+d_{(f, g)}\right)^{3 r_{r / g}}-e, 0\right) \end{gathered}$	$\begin{gathered} \left(d_{f}-d_{(f, g)} \overline{r_{g / f}}-e, d_{g}\right) \\ \left.d_{f}-d_{(f, g)}\right)_{g / / /}-e \\ \left.\left(0, d_{g}-d_{f}+d_{(f, g)}\right)^{3} r_{g / /}+e\right) \end{gathered}$	$\begin{gathered} \left.\left(d_{f}, d_{g}-d_{f}+d_{(f, g)}\right) \overline{r_{g / /}}+e\right) \\ d_{f} \\ \left.\left(0, d_{g}-2 d_{f}+d_{(f, g)}\right) \overline{r_{g / /}}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}+d_{(f, g)} \overline{3 r_{g / /}}+e\right) \\ d_{f} \\ \left(d_{f}, d_{g}-3 d_{f}+d_{(f, g)} \overline{3_{g / /}}+e\right) \end{gathered}$...	$\begin{gathered} \left.\left(d_{f}, d_{f}+d_{(f, g)}\right) r_{g / f}+e\right) \\ d_{f} \\ \left(0, d_{(f, f)} \overline{4 r_{g / f}}+e\right) \end{gathered}$	skip
:	:						
$l+1$	$\begin{gathered} \left.\left(d_{f}, d_{(f, g)}\right] \overline{T_{r / g}}+e\right) \\ d_{(f, g)} T_{r / g}+e \\ \left(d_{g}-d_{f}+d_{(f / g)} \mid r_{r / g}-e, 0\right) \end{gathered}$		$\begin{gathered} \left(d_{f}, d_{g}-d_{f}+d_{(f, g)} \overline{r_{g / /}}+e\right) \\ d_{f} \\ \left(0, d_{g}-2 d_{f}+d_{(f, g)}\right) \\ \left.\hline r_{g / J}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{g}-2 d_{f}+d_{(f, g)} \overline{T_{g / J}}+e\right) \\ d_{f} \\ \left(0, d_{g}-3 d_{f}+d_{(f, g)} \overline{r_{g} / f}+e\right) \end{gathered}$	\ldots	$\begin{gathered} \left(d_{f}, d_{f}+d_{(f, g)} l_{g / f}+e\right) \\ d_{f} \underline{1} \\ \left.\left(0, d_{(f, g)}\right) r_{g / f}+e\right) \end{gathered}$	$\begin{gathered} \left.\left(d_{f}, d_{(J, g)}\right) r_{g / S}+e\right) \\ \left.\left(0, r_{(f, g)}\right)(l+1) r_{g / S}+e\right) \end{gathered}$
:	!						
e_{f}	$\left.\left.\begin{array}{c} \left(d_{f}, d_{(f, g)} \overline{\left(e_{f}-1\right) r_{/ / g}}+e\right) \\ d_{f}-d_{(f, g)} r_{g / f}+e \\ \left(d_{f}-d_{(f, g)}\left(e_{f}-1\right) r_{r / g}\right. \end{array}\right)=e, 0\right)$	$\begin{gathered} \left(d_{f}-d_{(f, g)} \overline{\left(e_{f}-1\right) r_{g / f}}-e, d_{g}\right) \\ d_{(f, g)} r_{g / f}-e \\ \left(0, d_{(G, g)} d_{f}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{(f, e)} d_{f}+e\right) \\ d_{f} \\ \left(0,\left(d_{(f, g)}-1\right) d_{f}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f},\left(d_{(f, g)}-1\right) d_{f}+e\right) \\ d_{f} \\ \left(0,\left(d_{(f, g)}-2\right) d_{f}+e\right. \end{gathered}$...	$\begin{gathered} \left(d_{f}, 2 d_{f}+e\right) \\ d_{f} \\ \left(0, d_{f}+e\right) \end{gathered}$	$\begin{gathered} \left(d_{f}, d_{f}+e\right) \\ d_{f} \\ (0, e) \end{gathered}$

[^0]: 2000 Mathematics Subject Classification:
 Key words and phrases:

