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Abstract. Let Z(t) be Igusa local zeta function of a linear combination αf(x)+
βg(y) of two strongly nondegenerate forms f(x) and g(y) with p-adic integers
coefficients α and β. We show that the successive applications of the p-adic
stationary phase formula to Z(t) teminate by periodically, hence the explicit

formula of Z(t) is obtained.

Introduction

We have some examples of ecplicit formulae of Igusa Local zeta functions

and some methods of compyting them ([2], [3], [4], [7]). In [5], Chap.10, § 10.2,
J. Igusa states the p-adic stationary phase formula for Igusa local zeta functions

and , applying this formula successibly, he gives the explicit formulae of Igusa

local zeta functions of two polynomials x21+x
3
2 and x

2
1+x

3
2+x

5
3. Moreover J. Igusa

points out that, in these examples, it is crusial that the successive applications

of the p-adic stationary phase formula terminate by periodically and states the

problem; Does this fact hold in general case? This is Igusa’s problem for the

p-adic stationary formula in the title.

We shall state the subjects of this paper. We denote by K a p-adic number

field and OK its subring of ht mathfrakp-adic integers. We fix a prime element

πK of K once and for all. Thus we observe that πKOK is the unique maximal

ideal of OK and the residue field OK/πKOK is finite. We put Fq = OK/πKOK .
For a polynomial f(x) = f(x1, . . . , xn) in n-letters x1, . . . , xn with its coefficients

in OK , we put f(x) = f(x) mod πK . We denotes by Sf the set of Fq-rarional
singular points of the hypersurface defined by f(x) = 0. We say that f(x) is

strongly nondegenrate if Sf consists of only the origin of mathbbF
n
1 , and if f(x) is

also homogeneous we call it strongly nondegenerate form. Now let f(x) and g(y)

by two strongly nondegenerate forms (with some assumptions) and αf(x)+βg(y)

a linear combination of f(x) a nd g(y) with p-adic integers coefficients α and β,

then we shall consider the subjects; Which is the answer to Igusa’s problem for

2000 Mathematics Subject Classification:
Key words and phrases:



2 H. HOSOKAWA

the p-adic stationary phase formula in th case of αf(x)+βg(y), yes or no?, and

if the answer is yes, then, give the explicit formula of Igusa local zeta function of

αf(x) + βg(y). We find the answer to the former subject is yes, and the latter

subject is also solvable, these are the main results of this paper.

Contents.

§ 1 p-adic stationary phase formula
§ 2 Recurent formulae
§ 3 Some sequences
§ 4 Case I
§ 5 Case II

In § 1 we shall recall the p-adic stationary phase formula and give some examples
of its applications. In § 2 we shall give some recurrent formulae related to the
p-adic stationary phase formula and we shall show that our subjects can be

reduced to some simple cases – Case I and Case II – by these formulae. In § 3
we shall give some sequences related to the successive applications of the p-adic

stationary phase formula. Using these sequences we shall give our main results

in § 4 and § 5.

1. p-adic stationary phase formula

In this section, we shall recall the p-adic stationary phase formula (§ 1.1)
and, applying this formula, we shall geve the explicit formulae of Igusa local

zeta functions of some polynomials (§ 1.2).

1.1 p-adic stationary phase formula

Let K,OK ,πK , . . . be as in the introduction. We denote by O
×
K the multi-

plicative group of all unit in OK . We can uniquely express every element α in

the multiplicative group K× of K as α = π
ordK(α)
K acK(α) is a rational integer

and acK(α) is in O
×
K . We call ordK(α) the order of α and acK(α) the argu-

ment component of α. We denote the p-adic absolute value |α|K of α in K by

|α|K = q−ordK(α) (α ∈ K×) and |0|K = 0.
For a positive integer n, we put Kn the n-dimensional vector space over K

with the canonical basis. We observe that Kn is a locally compact additive

group. We denote by |dx|K the Haar measure on Kn such that the measure of

an open compact subset OnK is 1. For a polynomial f(x) = f(x1, . . . , xn) in n-

letters x1, . . . , xn with its coefficients in K, we define a p-adic integral associated
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to f(x) as follows

Z(s) =

Z
x∈On

K

|f(x)|sK |dx|K (s ∈ C, Re(s) > 0).

We immediately observe that the integral in the right hand side is absolutely

convergent for Re(s) > 0. Moreover we find that it has an analytic continuation

to a rational function of T = q−s on the whole complex plane C (see [5], Chap.8,
§ 8.2, Theorem 8.2.1 or [6], II Theorem 1). We call this rational function Igusa

local zeta function of f(x) after J.P. Serre. In this paper, we denote it by Z(T )

instead by Z(s).

We shall recall the p-adic stationary phase formula for Igusa local zeta func-

tion Z(T ) of a polynomial f(x). After multiplying a suitable power of πK to

f(x), we may assume that the coefficients of f(x) are in OK but not all in πKOK .

Hence we observe that f(x) = f(x) mod πK is a nonzero polynomial with its co-

efficients in Fq. As in the introduction, we denote by Sf the set of Fq-rational
singular points of the hypersurface defined by f(x) = 0, namely,

S f =
©
x ∈ Fnq : f(x) = 0

¡
gradxf

¢
(x) = (0, 0, . . . , 0)

ª
,

in which we put¡
gradxf

¢
(x) =

µ
∂f

∂x1
(x),

∂f

∂x2
(x), · · · , ∂f

∂xn
(x)

¶
,

and by ]S f the cardinarity of S f . Moreover we denote by S f the preimage of

S f under the canonical homomorphism OnK −→
¡
OK/πKOK

¢n
= (Fq)n : x →

x = x mod πK and by N f the number of zeros of f(x) in F
n
q . Then we have

Z(T ) =
¡
1− q−nN f

¢
+ q−n

¡
N f − ]S f

¢ (1− q−1)T
1− q−1T +

Z
x∈S f

|f(x)|sK |dx|K .

This is the p-adic stationary phase formula for Z(T ) of f(x) (see [5], Chap.10,

§ 10.2, Theorem 10.2.1).

1.2 Examples

As the first example, we start from Igusa local zeta functions of the polynomi-

als f0(x) = x
2
1+x

3
2, f1(x) = x

2
1+πKx

3
2, f2(x) = πKx

2
1+x

3
2 and f3(x) = x

2
1+π

2
1x

3
2.

We denote by Z(i)(T ) Igusa local zeta functions for fi(x) (i = 0, 1, 2, 3). In this

example, we assume that 2 and 3 are in O×K . Since the hypersurface defined by
f0 parametrized by x1 = u

3, x2 = −u2 and¡
gradxf0

¢
(x) =

µ
∂f0
∂x1

(x),
∂f0
∂x2

(x)

¶
= (2x1, 3x

3
2),
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we have Nf0 = q, Sf0 = {(0, 0)} and Sf0 = πKOK × πKOK . Similarly, we

have Nf1 = q, Sf1 = {(0, y) : y ∈ Fq} and Sf1 = πKOK × OK ; Nf2 = q,

Sf2 = {(x, 0) : x ∈ Fq} and Sf2 = OK × πKOK ; Nf3 = q, Sf3 = {(0, y) : y ∈ Fq}
and Sf1 = πKOK × OK . Hence, applying the p-adic stationary phase formula
successively, we obtain the following foumulae

Z(0)(T ) = (1− q−1) +
(1− q−1)2q−1T
1− q−1T + q−2T 2Z(1)(T ),

Z(i)(T ) = (1− q−1) + q−1TZ(i+1)(T ) (i = 1, 2),

Z(3)(T ) = (1− q−1) + q−1T 2Z(0)(T ).

Therefore we can compute all Z(i)(T ) (i = 0, 1, 2, 3);

Z(0)(T ) =
(1− q−1)

¡
1− q−2T (1− T )− q−5T 5

¢
(1− q−1T )(1− q−5T 6) ,

Z(1)(T ) =
(1− q−1)

¡
1− q−3T 3(1− T )− q−5T 5

¢
(1− q−1T )(1− q−5T 6) ,

Z(2)(T ) =
(1− q−1)

¡
1− q−2T 2(1− T )(1 + T 2)− q−5T 6

¢
(1− q−1T )(1− q−5T 6) ,

Z(3)(T ) =
(1− q−1)

¡
1− q−1T (1− T )(1 + T 2)− q−5T 6

¢
(1− q−1T )(1− q−5T 6) .

Next we consider Igusa local zeta functions of strongly nondegenerate forms.

Let f(x) be a strongly nondegenerate and d its homogeneous degree, then we have

that Sf consists of only the origin of Fq, Sf = πKOK and f(πKx) = πdKf(x).

Hence, by the p-stationary phase formula, we have

Z =
¡
1− q−nN f

¢
+ q−n

¡
N f − 1

¢ (1− q−1)T
1− q−1T + q−nT dZ(T ).

Therefore we have

Z(t) =
(1− q−1)(1− q−n)T +

¡
1− q−nN f

¢
(1− T )

(1− q−1T )(1− q−nT d) .

This formula is given by J. Igusa (see [5], Chap.10, § 10.2, Proposition 10.2.1).
On the other hand, J.R. Goldman gives the explicit formula of the Póincare series
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for strongly nondegenerate forms by using Hensel’s lemma (see [1], § 3, Theorem
(B)). By the relation between Igusa local zeta functions and Póincare series (see

[5], Chap.8, § 8.2, Theorem 8.2.2), we can immediately derive the above formula

from Goldman’s fomula.

NOTATION. For a strongly nondegenerate form f(x), we denote by Df (T ) the

polynomial in the denominator of Z(T ) of f(T );

D f (T ) = (1− q−1)(1− q−n)T +
¡
1− q−nN f

¢
(1− T ),

because it repeatedlly appears our results.

2. Recurrent formulae

In this section, we shall give some recurrent formulae of the Igusa local zeta

function of αf + βg (§ 2.1) and we shall show that our subjects can be reduced
to some simple cases by these formulae (§ 2.2).

2.1 Recurrent formula

Let αf(x)+ βg(y) be as in the introduction. We denote by df , dg the homo-

geneous degree of f(x), g(y), respectively and assume that

(A1) df , dg ∈ O×K .

We put d = ordK(α), e = ordK(β) and denote by Z(d,e)(T ) Igusa local zeta

function of αf(x)+βg(y). We shall give some recurrent formulae of Z(d,e)(T ) in

the following Lemma.

LEMMA 1. (1) We put d1 = min(df , dg), then we have

Z(0,0)(T ) =
D αf+βg (T )

1− q−1T + q−(n+m)T d1Z(df−d1,dg−d1)(T ).

(2) For a positive integer e, we have

Z(0,e)(T ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D f (T )

1− q−1T + q
−nT eZ(df−e,0)(T ) (0 < e < df )

D f (T )

1− q−1T + q
−nT dfZ(df−e,0)(T ) (e = df ).
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(3) For a positive integer d, we have

Z(d,0)(T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D g (T )

1− q−1T + q
−mT dZ(0,dg−d)(T ) (0 < d < dg)

D g (T )

1− q−1T + q
−mT dgZ(d−dg ,0)(T ) (d = dg).

Proof. (1) At first we shall show that αf + βg is strongly nondegenerate. Let

Cf be the set of Fq-rational singular points of f(x);

C f =
©
x ∈ Fnq :

¡
gradxf

¢
(x) = (0, 0, . . . , 0)

ª
.

Since f(x) is a homogeneous polynomial of degree df , for any point x in Cf , we

have

dff(x) = x1
∂f

∂x1
(x) + x2

∂f

∂x2
(x) + · · ·+ xn

∂f

∂xn
(x) = 0.

and, by the assumption (A1), f(x) = 0. Hence we observe that Cf coincides

with Sf . Similarly we observe that the set Cg of Fq-rational singular points of
g(x) coincides with Sg. Since f and g are strongly nondegenerate, we have

Cf =
©
(0, 0, . . . , 0)

ª
, Cg =

©
(0, 0, . . . , 0)

ª
.

On the other hand, we have³
grad(x,y)αf + βg

´
(x, y) =

¡¡
gradxf

¢
(x),

¡
gradyg

¢
(y)
¢
,

since, for i = 1, 2, . . . , n and j = 1, 2, . . . ,m, we have

∂αf + βg

∂xi
(x, y) =

∂f

∂xi
(x),

∂αf + βg

∂yj
(x, y) =

∂f

∂yj
(y).

Therefore we have

S αf+βg =
n
(x, y) ∈ Fnq × Fmq : αf(x) + βg(y) = 0

o
∩
³
S f × S g

´
,

hence it consists of only the origin of Fnq × Fmq and Sαf+βg = πKO
n
K × πKO

m
K .

We apply the p-stationary phase formula to Z(0,0)(T ), then we have

Zαf+βg(T ) =
³
1− q−(n+m)Nαf+βg

´
+ q−(n+m)

³
Nαf+βg − 1

´ (1− q−1)T
1− q−1T

+

Z
(x,y)∈On

K×Om
K

|αf(πKx) + βg(πKy)|sK |dxdy|K

=
Dαf+βg (T )

1− q−1T + q−n+mT d1Z(df−d1,dg−d1)(T ).
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For the cases (2) and (3), the substantial idea has already appeared in the

first example in § 2.1. Here we shall show the case (2). Since d = ordK(α) =

0 and e = ordK(β) > 0, we have αf + βg = αf and hence Nαf+βg = Nf ,

Sαf+βg = Sf × Fmq and Sαf+βg = πKO
n
K × OmK . We apply the p-stationary

phase formula to Z(0,e)(T ), then we have

Z(0,e)(T ) =
³
1− q−(n+m)qmN f

´
+ q−(n+m)

³
qmN f − qm

´ (1− q−1)T
1− q−1T

+

Z
(x,y)∈On

K×Om
K

|αf(πKx) + βg(y)|sK |dxdy|K

=
D f (T )

1− q−1T + q
−n
Z
(x,y)∈On

K×Om
K

|απeKf(x) + βg(y)|sK |dxdy|K .

Here the last integral in the above formula is given by

T eZ(df−e,0)(T ) (0 < e < df ), T dfZ(0,e−df )(T ) (e = df ).

Thus we have our formula. Q.E.D.

2.2 Reduction of subjects

At first we may add the following assumptions.

(A2) df 5 dg
and at least one of α and β is in O×K , namely

(A3) min(d, e) = 0.

For nonnegatime integer e, we denote Z(0,e) by Ze(T ). Then we shall show

that our Z(T ) can be described with Df (T )/(1− q−1T ), Dg(T )/(1− q−1T ) and
Ze(T ) (e = 0, 1, . . . , df − 1), hence our subjects can be reduced to the case of
Ze(T ) (e = 0, 1, . . . , df − 1).

(1) d = 0, e = df . By successibly applying the p-adic stationary phase fourmula
to Z(T ), we have, from Lemma 1., (2),

Z(T ) = Ze(T )

=
D f (T )

1− q−1T ·
1− q−de/df enT de/df edf

1− qnT df

+ q−de/df enT de/df edf
Z
(x,y)∈On

K×Om
K

¯̄̄
αf(x) + π−de/df edfβg(y)

¯̄̄s
K
|dxdy|K .
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Here we have

π
−de/df edf
K β = π

e−de/df edf
K acK(β) 0 5 e−

»
e

df

¼
df < df .

(2) d = 1, e = 0. By the same way of the case (1), we have

Z(T ) = Z(d,0)(T )

=
D g (T )

1− q−1T ·
1− q−dd/dgemT dd/dgedg

1− qmT dg

+ q−dd/dgemT dd/dgedg
Z
(x,y)∈On

K×Om
K

¯̄̄
π
−dd/dgedg
K αf(x) + βg(y)

¯̄̄s
K
|dxdy|K .

Here we have

π
−dd/dgedg
K β = π

d−dd/dgedg
K acK(α) 0 5 d−

»
d

dg

¼
dg < dg.

We put r1 = d− [d/dg]dg. Our statement holds in the case of r1 = 0. Hence we
may consider the case of 0 < r1 < dg. Here we apply the p-adic stationary phase

formula once more to the last integral of the above formula, then we have, from

Lemma 1., (3),Z
(x,y)∈On

K×Om
K

¯̄̄
π
−[d/dg ]dg
K αf(x) + βg(y)

¯̄̄s
K
|dxdy|K

=
Dg(T )

1− q−1T + q
mT r1

Z
(x,y)∈On

K×Om
K

¯̄̄
αf(x) + π

dg−r1
K βg(y)

¯̄̄s
K
|dxdy|K .

Thus we obtain

Z(T ) =
D g (T )

1− q−1T

µ
1− q−dd/dgemT dd/dgedg

1− qmT dg + q−dd/dgemT dd/dgedg
¶

+ q−(dd/dge+1)mT d
Z
(x,y)∈On

K×Om
K

¯̄̄
αf(x) + π

dg−r1
K βg(y)

¯̄̄s
K
|dxdy|K .

with α,β ∈ O×K and e = 0, 1, . . . , df − 1 under the assumptions (A1), (A2) and
(A3). We divide our subjects into two cases – Case I : df | dg and Case II :
df - dg. We shall consider Case I in § 4 and Case II in § 5.
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NOTATION. We define some notations as follows,

d(f,g) = (df , dg) : the greatest common divisors of df and dg,

` =
dfdg
d(f,g)

: the least common multiplier of df and dg,

ef =
df
d(f,g)

, eg =
dg
d(f,g)

,

dg/f =

∙
eg
ef

¸
: the quotation of the division of eg by ef ,

rg/f = eg − d(f,g)ef : the remainder of the division of eg by ef ,

then we observe that the ef and r are mutually relatively prime and the quotient

and the remainder of the division of dg by df are dg/f and d(f,g)rg/f respectively.

3. Some sequences

In this section we define some sequences which are related to the successive

applications the p-adic stationary phase formula to Ze(T ) (e = 0, 1, . . . , df − 1);©
(eαk, eβk)ªk,©(αk,βk)ª : sequences in OK ×OK ,©
(eνk, eμk)ªk,©(νk,μk)ª : sequences in N× N,
{ρk}k : sequence in N.

3.1 Definition

1. (1) e = 0. We put

(eα1, eβ1) = (απdfK ,βπdgK ), (eν1, eμ1) = (df , dg), ρ1 = df

and

(α1,β1) = (eα1π−ρ1K , eβ1π−ρ1K ) = (α,βπ
dg−df
K ), (ν1,μ1) = (0, dg − df ).

(2) e = 1, . . . , df − 1. We put

(eα1, eβ1) = (απdfK ,βπdgK ), (eν1, eμ1) = (df , e), ρ1 = e

and

(α1,β1) = (eα1π−ρ1K , eβ1π−ρ1K ) = (απ
df−e
K ,β), (ν1,μ1) = (df − e, 0).
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2. For k = 1, if (αk,βk) is defined and satisfies the assumption

(A) At least one of αk and βk is in O
×
K ,

then we define the terms (eαk+1, eβk+1), (eνk+1, eμk+1), ρk+1, (αk+1,βk+1) and
(νk+1,μk+1) as follows

(1) αk,βk ∈ O×K .

(eαk+1, eβk+1) = (απdfK ,βπdgK ),
(eνk+1, eμk+1) = ¡ordK(eαk+1), ordK(eβk+1)¢ = (df , dg), ρk+1 = df

and

(αk+1,βk+1) = (eα1π−ρk+1K , eβ1π−ρk+1K ) = (αk,βkπ
dg−df
K ),

(νk+1,μk+1) = (0, dg − df ).

(2) αk ∈ O×K , βk ∈ πKOK or αk ∈ πKOK , βk ∈ O×K .

(eαk+1, eβk+1) =
⎧⎨⎩ (αkπ

df
K , βk) (αk ∈ O×K , βk ∈ πKOK)

(αk, βkπ
dg
K ) (αk ∈ πkOK , βk ∈ O×K)

(eνk+1, eμk+1) = ¡ordK(eαk+1), ord(eβk+1)¢, ρk+1 = min(eνk+1, eμk+1)
and

(αk+1, βk+1) = (eα1π−ρk+1K , eβ1π−ρk+1K )

(νk+1, μk+1) =
¡
ordK(eαk+1), ordK(eβk+1)¢.

Here we should give some remarks.

(i) In the above definition, we have added the restrictive assumption (A).

However, actually (αk,βk) satisfies (A) for any k, this can be proved by the

induction on k.

(ii) We observe that acK(αk) = acK(α), acK(βk) = acK(β).

3.2 Relations with the p-adic stationary phase formula

For comprehension of relations between the sequences {(eαk, eβk)}k, {(eνk, eμk)}k,
{ρk}k, {(αk,βk)}k, {(νk,μk)}k and the successive applications fo the p-adic sta-
tionary phase formula to Ze(T ), we shall recall the case of x

2
1 + x

3
2, whici is



11

considered in the first example of § 1.2. Applying of the p-adic stationary phase
formula successively, we obtain

Z(0)(T ) =
D

x21+x
3
2
(T )

1− q−1T + q−1T 2Z(1)(T ), Z(1)(T ) =
D

x21
(T )

1− q−1T + q
−1TZ(2)(T ),

Z(2)(T ) =
D

x32
(T )

1− q−1T + q
−1TZ(3)(T ), Z(3)(T ) =

D
x21
(T )

1− q−1T + q
−1T 2Z(0)(T ).

Here we observe that two sequences appear in the right hand side of the above

formulae. One is the sequence of D(T )/(1− q−1T )’s ;

(S1)
D

x21+x
3
2
(T )

1− q−1T ,
D

x21
(T )

1− q−1T ,
D

x32
(T )

1− q−1T ,
D

x21
(T )

1− q−1T ,

and the othe is the sequence of the coefficients of Z(i)(T )’s ;

(S2) q−2T 2, q−1T, q−1T, q−1T 2.

We should notice that (S1) and (S2) lead to the explicit formula of Z(0).

On the other hand, we observe that the sequences {(eαk, eβk)}k, {(eνk, eμk)}k,
{ρk}k, {(αk,βk)}k, {(νk,μk)}k are given as follows.

k 1 2 3 4 5 · · ·
(eαk, eβk) (π2K ,π

3
K) (π2K ,πK) (πK ,π

3
K) (π2K ,π

2
K) (π2K ,π

3
K) · · ·

(eνk, eμk) (2, 3) (2, 1) (1, 3) (2, 2) (2, 3) · · ·
ρk 2 1 1 2 2 · · ·

(αk, βk) (1, πK) (πK , 1) (1, π2K) (1, 1) (1, πK) · · ·
(νk, μk) (0, 1) (1, 0) (0, 2) (0, 0) (0, 1) · · ·

Table 1 the sequences {(eαk, eβk)}k, {(eνk, eμk)}k, . . . for x21 + x33
Comparing (S1), (S2) and Table 1, we find that the successive applications

of the p-adic stationary phase formula to Z(0)(T ) are completely descrived with

the sequences {(eαk, eβk)}k, {(eνk, eμk)}k, . . . .
We observe that this fact generally holds for Ze(T ) in our case, In particular,

if the sequences {(eαk, eβk)}k, {(eνk, eμk)}k, . . . are periodical, then the successive
applications of the p-adic stationary phase formula to Ze(T ) terminates by pe-

riodecally, and the periods of them concide. These facts are crucial in the proof

of the theorems in the coming two sections.
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4. Case I

In this section we shall consider Case I : df | dg.

THEOREM 1. The successive appications of the p-adic stationary phase for-

mula to Ze(T ) in Case I teminates by periodically and its period is

dg/f (e = 0), dg/f + 1 (0 < e < df ).

As a consequence of this the explicit formula of Ze(T ) is given as follows

Z0(T ) =
Dαf+βg (T ) +Df (T )P0(T )

(1− q−1T )(1− q−(egn+efm)T `) ,

Ze(T ) =
Df (T )(1 + P0(T )) +Dg (T )q

−nT e

(1− q−1T )(1− q−(egn+efm)T `) (0 < e < df ),

in which we put

P0(T ) = q
−(n+m)T df + q−(2n+m)T 2df + · · ·+ q−((dg/f−1)n+m)T dg−df .

Proof. At first we remark that, in this case, d(f,g) = df , ` = dg, ef = 1,

eg = dg/df , dg/f = eg = dg/df and rg/f = 0.

Case of e = 0. We successibily apply the p-adic stationary phase formula to

Z0(T ), then, by Lemma 1., (1), (2) in § 2.1, we have

Z0(T ) =
Dαf+βg (T )

1− q−1T + q−(n+m)T dfZ(0,dg−df )(T )

Z(0,dg−df )(T ) =
Df (T )

1− q−1T
³
1 + q−nT df + · · ·+ q−((dg/f−2)n+m)T (dg/f−2)df

´
+ q−((dg/f−1)n)T (dg/f−1)df Z0(T ).

We can obtain these formulae from the corresponding sequences {(eαk, eβk)}k,
{(eνk, eμk)}k, . . . which are given as follows.

Thus we find that the successive applications of the p-adic stationary phase

formula to Z0(T ) terminates periodically and its period is dg/f , and we obtain

Z0(T ) =
Dαf+βg (T )

1− q−1T +
Df (T )

1− q−1T P (T ) + q
−(dg/fn+m)T dgZ0(T )

and hence the formula stated in the theorem.
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k 1 2 . . . dg/f

(eαk, eβk) (π
df
K α,π

dg
K β) (π

df
K α, π

dg−df
K β) · · · (π

df
K α, π

df
K β)

(eνk, eμk) (df , dg) (df , dg − df ) · · · (df , df )

ρk df df · · · df

(αk, βk) (α, π
dg−df
K β) (α,π

dg−2df
K β) · · · (α, β)

(νk, μk) (0, dg − df ) (0, dg − 2df ) · · · (0, 0)

Table 2 The sequence {(eαk, eβk)}k, {(eνk, eμk)}k, ... for Zαf+βg(T ) in Case I
k 1 2 · · · dg/f

(eνk, eμk) (df , dg) (df , dg − df ) · · · (df , df )

ρk df df · · · df

(νk, μk) (0, dg − df ) (0, dg − 2df ) · · · (0, 0)

Table 3 {(eνk, eμk)}k, {ρk}k, {(νk, μk)}k for Zαf+βg(T ) in Case I
Here we remark that it is enough to consider the sequences {(eνk, eμk)}k, {ρk}k

and {(νk,μk)}k for the explicit formula to Igusa local zeta function. Hence we
may consider the following Table 3 instead of the above Table 2.

Case of 0 < e < df . In this case we again successibly apply the p-adic

stationary phase formula to Ze(T ), then the corresponding sequences {(eνk, eμk)}k,
{ρk}k and {(νk,μk)}k are as follows.

k 1 2 3 · · · dg/f + 1

(eνk, eμk) (df , e) (df − e, dg) (df , dg − df + e) · · · (df , df + e)

ρk e df − e df · · · df

(νk, μk) (df − e, 0) (0, dg − df + e) (0, dg − 2df + e) · · · (0, e)

Table 4 {(eνk, eμk)}k, {ρk}k, {(νk, μk)}k for Zαf+πeβg(T ) (0 < e < df ) in

Case I

Therefore we have

Ze(T ) =
Df (T )

1− q−1T + q
−nT e

½
Dg (T )

1− q−1T + q
−mT df−e

µ
Dg (T )

1− q−1T (1 + P0(T ))

+ q−((dg/f−1)n+m)T (dg/f−1)dfZe(T )

¶¾
.
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From this formula we obtain the formula stated in the theorem. Q.E.D.

5. Case II

In this section we consider Case II : df - dg. At first we give some lemmas
(§ 5.1), and then, using these lemmas, we give our results (§ 5.2).

5.1 Lemmas

We denote Z/efZ the set of congruence classes modulo ef and we take

Λ = {0, 1, . . . , ef − 1}

as a complete set of residues modulo ef . For a multiple λrg/f (λ ∈ Λ), we take a
representative point λrg/f of the congruence class λrg/f mod ef from Λ and we

put

λrg/f = rg/f + λrg/f .

We define two subsets Λ0 and Λ1 of Λ as follows

Λ0 =
©
λ ∈ Λ : (λ− 1)rg/f < hef < λrg/f for some h = 1

ª
, Λ1 = Λ− Λ0.

LEMMA 2.

λrg/f =

⎧⎨⎩(λ− 1)rg/f − ef (λ ∈ Λ0)

(λ− 1)rg/f (λ ∈ Λ1).

Proof. For each λ in Λ0, there exists an integer h such that (λ− 1)rg/f < hef <
λrg/f . Then we observe that the quotient and the remainder of the division of

(λ− 1)rg/f by ef are h− 1 and (λ− 1)rg/f respectively. Hence we have

(λ− 1)rg/f = (h− 1)ef + (λ− 1)rg/f ,

and

(λ− 1)rg/f = rg/f + (λ− 1)rg/f

= r + (λ− 1)rg/f − (h− 1)ef = ef + (λrg/f − hef ).

From the definitions of λ and h, we have λrg/f − hef > 0 and

ef − (λrg/f − hef ) = (ef − rg/f ) + (hef − (λ− 1)ef ) > 0.
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Therefore we have

(λ− 1)rg/f = λrg/f − hef ∈ Λ and (λ− 1)rg/f = ef + λrg/f .

For a λ ∈ Λ1, we denote by h0 the quotient of the division (λ− 1)rg/f by ef
then we have

(λ− 1)r = h0a+ (λ− 1)rg/f
and hence

(λ− 1)rg/f = rg/f + (λ− 1)rg/f − h0ef = λrg/f − h0ef .

Thus we observe that (λ− 1)rg/f is congruent to λrg/f modulo ef . Hence we
need to show 0 5 (λ− 1)rg/f < ef . It is plain that (λ− 1)rg/f = 0. If we

assume (λ− 1)rg/f = λrg/f − h0ef = ef , then we have λrg/f = (h0 + 1)ef . Here
we put h = h0 + 1, then we have h = 1 and have (λ− 1)rg/f < h0ef + ef = hef .
On the other hand, since ef and rg/f are mutually relatively prime, we have

λrg/f 6= hef , and hence hef < λrg/f . Thus we have (λ− 1)rg/f < hef < λrg/f .

It is contragradient to the face λ ∈ Λ1, hence we observe that (λ− 1)rg/f < ef .
Thus we have (λ− 1)rg/f = λrg/f . Q.E.D.

LEMMA 3. The cardinarity ]Λ0 of Λ0 is rg/f − 1.

Proof. We consider the interval I = [0, efrg/f ] = {x ∈ R : 0 5 x 5 efrg/f}. We
decompose I into subintervals Ii = [ef (i− 1), ef i] (i = 1, 2, . . . , rg/f ).
We take a non-zero element λ0 of Λ, then we observe that λrg/f is contained

in one and only one of subintervals I1 (i = 1, 2, . . . , rg/f ), but it is not the end

of the subinterval, since ef and rg/f are mutually relatively prime.

On the other hand, we observe that the distance of two numbers λrg/f and

(λ+1)rg/f is rg/f and it is less than the length ef of each subinterval Ii. Hence

we observe that each subinterval Ii contains at least one of λrg/f (λ ∈ Λ, 6= 0)
as its interior point.

We notice the above facts and take the smallest number of the form λrg/f in

Ii (i = 1, 2, . . . , rg/f ), then we find that Λ0 consists of these numbers, and hence

]Λ0 = rg/f − 1. Q.E.D.

LEMMA 4. Λ =
©
λrg/f : λ ∈ Λ

ª
.

Proof. We consider the additive group of Z/efZ, which is a cyclic group of order
ef . Since ef and rg/f are mutually relatively prime, we have the congruence class

rg/f mod ef is a generator of this cyclic group ;©
λrg/f mod ef : λ ∈ Λ

ª
= Z/efZ.
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Since we have taken λrg/f as a representative point of the congruence class

rg/f mod ef , we have Λ =
©
λrg/f : λ ∈ Λ

ª
. Q.E.D.

5.2 Results in Case II

Here we shall give our results in Case II.

PROPOSITION 1. For each e = 0, 1, . . . , d(f,g) − 1, the sequences {(eαk, eβk)}k,
{(eνk, eμk)}k, . . . are periodical and the period ce of them is given by

ce = ef + eg − ²e

in which we put ²e = 1 (e = 0), 0 (e = 1, . . . , d(f,g) − 1).

Proof. From the definitions, we may consider the sequences {(eνk, eμk)}k, {ρk}k
and {(νk,μk)}k. We can represent the tables of those sequences as in Table 5
(e = 0) and Table 6 (e = 1, . . . , d(f,g) − 1) cited in the end of this paper. Here
we should give some remarks on Table 5 and Table 6

(i) We decompose the terms of each row into 2 type classes ; the former class

has 2 terms, except the first row in the case e = 0, it has only one term, and the

latter class has dg/f − 1 terms or dg/f terms.
(ii) The number of terms consisting in a second class depends on its number

of row. Namely, the number of terms consisting in the second class of the λ-th

row is dg/f if λ ∈ Λ0 or λ = ef and dg/f − 1 if λ ∈ Λ1 and λ 6= ef . In Table 5
and 6, we have assumed that 3, . . . ∈ Λ0 and 2, 4, . . . ∈ Λ1.
(iii) The end term (ν,μ) of the λ-th row is given as follows

(ν,μ) =

⎧⎪⎨⎪⎩
³
0, d(f,g)(λrg/f − ef ) + e²e

´
(λ ∈ Λ0)³

0, d(f,g)(λrg/f + e²e

´
. (λ ∈ Λ1)

Hence, from Lemma 2, we have (ν,μ) =
³
0, d(f,g)

¡
λ+ 1)rg/f

¢
+ e²e

´
.

Let ce be the number of the end term of the ef -th row in Table 5 or Table 6,

then we observe that the end term (νce ,μce) of the ef -th row in Table 5 or Table

6 is (0, e), hence the first term (eνce+1, eνce+1) of the next row is (df , dg) (e = 0) or
(df , 0) (e = 1, . . . , df − 1). Therefore we observe that the sequences {(eνk, eμk)}k,
{ρk}k and {(νk,μk)}k are periodical, and the period of them is ce. On the other

hand, from Lemma 3 and the above remarks, we have

c0 = 1 + 2(ef − 1) + dg/f (]Λ0 + 1) + (dg/f − 1)(]Λ1 − 1)

= ef + dg/f + rg/f − 1 = ef + eg − 1.
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Similarly we have the number ce (e = 1, . . . , df − 1) for Table 6 is
ce = 2(ef − 1) + dg/f (]Λ0 + 1) + (dg/f − 1)(]Λ1 − 1) = ef + eg.

Thus we complete the proof of our theorem. Q.E.D.

COROLLARY. Let Se = ρ1 + ρ2 + · · ·+ ρce then we have Se = `.

Proof. From Table 5 and 6, we have Se = dfeg = dfdg/d(f,g) = `. Q.E.D.

We observe that Proposition 1 guarantees that the successive applications

of the p-adic stationary phase formula leads the explicit formula of Ze(T ) (e =

0, 1, . . . , df − 1). On the bass of this observation we shall settle teh explicit
formula of Ze(T ).

At first, we define two polynomials P (T ) and Q(T ) associated to Table 5.

For each λ (λ = 0, 1, . . . , ef ), we put

δλ = 1 (λ inΛ0), 0 (λ ∈ Λ1) and δef = 1,

and

∆λ = δ0 + · · ·+ δλ, αλ = dg/fλ+∆λ.

We define

pλ(T ) = q
−(αλ−1+λm)Tαλ−1df

dg/f+δλX
k=1

q−knT kdf (λ = 1, . . . , ef )

qλ(T ) = q
−(αλ−1+λm)Tλdg (λ = 1, . . . , ef − 1)

and

P (T ) = p1(T ) + · · ·+ pef (T ), Q(T ) = q1(T ) + · · ·+ qef−1(T ).
For comprehension of the relation between Table 5 and the polynomials P (T )

and Q(T ), we observe an example ; the case of df = 3, df = 8. We have two

tables ; one is Table 5 of this case and the other is the table of monomials of the

form q−aT−b associated to the formaer table.

(3, 8) (3, 5)
1 3 3

(0, 5) (0, 2)

(3, 2) (1, 8) (3, 7) (3, 4)
2 2 1 3 3

(1, 0) (0, 7) (0, 4) (0, 1)

(3, 1) (2, 8) (3, 6) (3, 3)
3 1 2 3 3

(2, 0) (0, 6) (0, 3) (0, 0)
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1 q−n+mT 3 q−nT 3

2 q−nT 2 q−mT q−nT 3 q−nT 3

3 q−nT q−mT 2 q−nT 3 q−nT 3

Observing the letter table, we obtain that

P (T ) = q−(n+m)T 3(1 + q−nT 3(1 + q−nT 2(0 + q−mT

× (1 + q−nT 3(1 + q−nT 3(1 + q−nT (0 + q−mT 2(1 + q−nT 3) · · · )

= q−(n+m)T 3(1 + q−(2n+m)T 6 + q−(3n+2m)T 9 + q−(4n+2m)T 12

+ q−(5n+2m)T 15 + q−(6n+3m)T 18 + q−(7n+3m)T 21,

Q(T ) = q−(n+m)T 3(0 + q−nT 3(0 + q−nT 2(1 + q−mT

× (0 + q−3T 3(0 + q−nT 3(0 + q−nT (1 + q−mT 2(0 + q−nT 3) · · · )

= q−(3n+m)T 8 + q−(6n+2m)T 16.

Here we should give some remarks on the above formulae.

(i) The corresponding coefficients in P (T ) and Q(T ), which are 1 or 0, are

opposite to each other. For example, we see P (T ) = q−(n+m)T 3(1 + · · · ;
Q(T ) = q−(n+m)T 3(0 + · · · .
(ii) The coefficient 1 in P (T ) corresponds to Df/(1− q−1T ) in teh successive

applications of the p-adic stationary phase formula to Z0(T ). On the other

hand, the coefficients 1 in Q(T ) corresponds to Dg(T )/(1 − q−1T ). We should
emphasize the above facts generally hold in our case.

LEMMA 5. P (T ) = q−
¡
(eg−1)n+efm

¢
T `−df + (terms of lower degree).

Proof. The term of the highest degree in P (T ) is

q−(αef−1n+efm)Tαef−1df · q−(dg/f+δef )nT (dg/f+δef )df
= q−

¡
(αef−1+dg/f+δef n+efm

¢
T (αef−1+dg/f+δef )df .

Here we have

αef−1 + dg/f + δef = dg/f (ef − 1) +∆ef−1 + dg/f + δef

= dg/fef +∆ef = dg/fef + (r − 1) = eg − 1,
since ∆ef = ]Λ = r− 1 from Lemma 3., and (eg − 1)df = `− df . Thus we have
the formula in the lemma. Q.E.D.
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THEOREM 2. The successive applications of the p-adic stationary phase for-

mula to Ze(T ) in Case I terminates by periodically and its period is

ef + eg − δd(f,g),e,

in which we put δd(f,g),e = 1(d(f,g) | e), 0(d(f,g) - e). As a consequence of this,
the explicit formula of Ze(T ) is given as follows

(i) e = 0.

Z0(T ) =
Dαf+βg (T ) +Df (T )P (T ) +Dg (T )Q(T )

(1− q−1T )(1− q−(egn+efm)T `

(ii) e = 1, . . . , df − 1
(ii)a dg/f | e. For such a e, there is a unique λ in Λ satisfying e = d

¡
λrg/f

¢
from Lemma 4. Here we define two polynomials Pe(T ) and Qe(T ) as follows,

Pe(T ) =
¡
1− q−(egn+efm)T `

¢
+
¡
p1(T ) + · · ·+ pλ(T )

¢
q−
¡
(eg−αλ)n+(ef−λ)m

¢
T `−αλdf

+
¡
pλ+1(T ) + · · ·+ pef (T )

¢
·
³
q−(αλn+λm)Tαλdf

´−1
,

Qe(T ) =
¡
q1(T ) + · · ·+ qλ−1(T )

¢
q−
¡
(eg−αλ)n+(ef−λ)m

¢
T `−αλdf

+
¡
qλ(T ) + · · ·+ pef−1(T )

¢
·
³
q−(αλn+λm)Tαλdf

´−1
.

Then we have

Ze(T ) =
Dαf+βg (T )q

−(αλn+λm)Tαλdf +Df (T )Pe(T ) +Dg (T )Qe(T )

(1− q−1T )
¡
1− q−(egn+efm)T `

¢ .

(ii)b dg/f - e. We denote by λrg/f and r1 the divisor and the remainder of
the division of e by dg/f respectively ;

e = d
¡
λrg/f

¢
+ r1, 1 5 r1 < dg/f .

Here we define two polynomials ePe(T ) and eQe(T ) as follows ;
λ = 0. ePe(T ) = 1 + P (T ), eQe(T ) = q−nr1¡1 +Q(T )¢.
λ 6= 0.

ePe(T ) = q¡(eg−αλ)n+(ef−λ)m¢T `−αλdf + P
d
¡
λrg/f

¢(T ),
eQe(T ) = q−nT r1 µq−¡(eg−αλ)n+(ef−λ)m¢T `−αλdf +Q

d
¡
λrg/f

¢(T )¶ .
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Then we have

Ze(T ) =
Df (T )

ePe(T ) +Dg (T ) eQe(T )
(1− q−1T )

¡
1− q−(egn+efm)T `

¢ .
Proof. We start with the first statement. We shall notice the remark given in the

end of § 3, then we find that, to prove the first statement, it is sufficient to show
the sequences {(eνk, eμk)}k, {ρk}k and {(νk,μk)}k for Ze(T ) is periodical and its
period is as in the theorem. When e = 0, 1, . . . , d(f,g) − 1, then we imediately
obtain our result from Proposition 1. When e is as in the case (ii)a. We take λ

as in the theorem, then we find that the end term (ν,μ) of the λ-th row of Table

5, then we obtain the table of the sequences {(eνk, eμk)}k, {ρk}k and {(νk,μk)}k
for Ze(T ), and we observe that this table is periodical and its period coincides

with the period of Table 5 ; ef +eg−1. When e is as in the case (ii)b. We take λ
and r1 as in the theorem, then we find that the end term (ν,μ) of the λ-th row

of Table 6 is
¡
0, d
¡
λrg/f

¢
+ r1

¢
. Therefore, in a similar way of the above case,

we observe that the table of the sequences {(eνk, eμk)}k, {ρk}k and {(νk,μk)}k for
Ze(T ) is periodical and its period coincides with the period of Table 6 ; ef + eg.

Now we consider the explicit formula of Ze(T ) (e = 0, 1, . . . , df − 1).
(i) Observing the relation between Table 5 and the polynomials P (T ) and

Q(T ), we have

Z0(T ) =
Dαf+βg (T )

1− q−1T +
Df (T )

1− q−1T P (T ) +
Dg (T )

1− q−1T Q(T )

+ q−(egn+efm)T `Z0(T ).

The reason that the coefficient monomimal of Ze(T ) in the right hand side is

q−(egn+efm)T ` is as follows. From Lemma 5., we observe that the last term

of P (T ) is q−
¡
(eg−1)n+efm

¢
T `−df and this term corresponds to the ef + eg −

1-th application of the p-adic stationary phase formula. Applying the p-adic

stationary phase formula once more, we return to Z0(T ) and observe that its

coefficient monomial is

q−
¡
(eg−1)n+efm

¢
T `−df · q−nT df = q−(egn+efm)T `

(see the end term of ef -th row of Table 5). Thus we obtain the formula in the

case (i).

(ii)a Let λ be as in the theorem, then, as stated in the above, we observe that

the end term (ν,μ) of the λ-th row is
¡
0, d
¡
λrg/f

¢¢
and this term corresponds
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to Ze(T ). Therefore we have

Z0(T ) =
D

αf+βg (T )

1− q−1T +
Df (T )

1− q−1T
³
p1(T ) + · · ·+ pλ(T )− q−(αλn+λm)Tαλdf

´
+

Dg (T )

1− q−1T
¡
q1(T ) + · · ·+ qλ−1(T )

¢
+ q−(αλn+λm)Tαλdf Ze(T ).

Combing this formula and the formula in the case (i), we obtain the formula in

the case (ii)a.

(ii)b. At first we consider the case of e = 1, . . . , df − 1 ; in this case λ = 0

and e = r1. Observing Table 6, we have

Ze(T ) =
Df (T )

1− q−1T
¡
1 + P (T )

¢
+

Dg (T )

1− q−1T
¡
q−nT e + q−nT eQ(T )

¢
+ q−(egn+efm)T `Ze(T ).

Hence we obtain

Ze(T ) =
Df (T )

¡
1 + Pe(T )

¢
+Dg (T )q

−nT e
¡
1 +Qe(T )

¢
(1− q−1T )

¡
1− q−(egn+efm)T `

¢ ,

which is the formula stated in the theorem.

Next we consider the otherwise case. We take λ and r1 as in the theorem,

then, as stated in the above, we observe that the end term (ν,μ) of the λ-th row

of Table 6 is
¡
0, d
¡
λrg/f

¢
+ r1

¢
, and this term corresponds to Ze(T ). Therefore

we have

Zr1(T ) =
Df (T )

1− q−1T
³
1 + p1(T ) + · · ·+ pλ(T )− q−(αλn+λm)Tαλdf

´
+

Dg (T )

1− q−1T
¡
q1(T ) + · · ·+ qλ−1(T )

¢
+ q−(αλn+λm)Tαλdf Ze(T ).

Combing this formula and the formula in the above, we obtain the formula in

the case (ii)b. Q.E.D.
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