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Abstract. In this paper we consider a quantum open system and treat the
master equation with some restricted dissipator which consists of a set of projec-
tion operators (projectors). The exact solution is given under the commutable
approximation (in our terminology). This is the first step for constructing the
general solution.

Quantum Computation (Computer) is one of main subjects in Quantum

Physics. To realize it we must overcome severe problems arising from Deco-

herence, so we need to study Quantum Open System to control decoherence (if

possible).

In this paper we revisit dynamics of a quantum open system as a test case.

See [1] as a general introduction to this subject. First we explain the purpose

and strategy within our necessity.

We consider a quantum open system S coupled to the environment E. Then

the total system S + E is described by the Hamiltonian

HS+E = HS ⊗ 1E + 1S ⊗HE +HI

where HS , HE are respectively the Hamiltonians of the system and environment,

and HI is the Hamiltonian of the interaction.

Then under several assumptions (see [1]) the reduced dynamics of the system

(which is not unitary) is given by the Master Equation

∂

∂t
ρ = −i[HS , ρ]−D(ρ) (1)

with the dissipator being the usual Lindblad form

D(ρ) = 1

2

X
{j}

³
A†jAjρ+ ρA†jAj − 2AjρA†j

´
. (2)
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Here ρ ≡ ρ(t) is the density operator (matrix) of the system.

It is not easy to solve the equation (1) with the dissipator (2), so we make

a simple and convenient assumption. Namely, the generators {Aj} are given by
Aj =

p
λjPj with projectors {Pj} ; P †j = Pj , P

2
j = Pj , PjPk = δjkPk. Note

that we don’t assume the rank Pj =1 (extended models). Then the dissipator

becomes

D(ρ) = 1

2

X
{j}

λj (Pjρ+ ρPj − 2PjρPj) (3)

where {λj} are decoherence parameters to determine the strength of the inter-
action. See [2], [3] (in [3] there is a very compact description on this subject). It

is interesting to rewrite (3) as

D(ρ) = 1

2

X
{j}

λj {Pjρ(1− Pj) + (1− Pj)ρPj} ≡
1

2

X
{j}

λj (PjρQj +QjρPj) .

(4)

Note that {Qj} are also projectors satisfying PjQj = QjPj = 0 for j ∈ {j}.
As a result we have only to solve the equation

∂

∂t
ρ = −i(Hρ− ρH)− 1

2

X
{j}

λj (PjρQj +QjρPj) (5)

where we have set H = HS for simplicity.

In order to study the equation (5) let us make some mathematical prelimi-

naries. For a matrix X = (xij) ∈M(n;C) we correspond to the vector bX ∈ Cn2
as

X = (xij) −→ bX = (x11, x12, · · · , x1n, · · · · · · , xn1, xn2, · · · , xnn)T (6)

where T means the transpose. Then the following formula is well—known

\AXB = (A⊗BT ) bX (7)

for A,B,X ∈M(n;C). Since the proof is easy we leave it to readers.
By use of the formula the equation (5) can be rewritten as

∂

∂t
bρ =
⎧⎨⎩−i(H ⊗ 1− 1⊗HT )− 1

2

X
{j}

λj
¡
Pj ⊗QTj +Qj ⊗ PTj

¢⎫⎬⎭ bρ, (8)
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therefore the formal solution is given by

bρ(t) = exp
⎧⎨⎩−it(H ⊗ 1− 1⊗HT )− t

X
{j}
(λj/2)

¡
Pj ⊗QTj +Qj ⊗ PTj

¢⎫⎬⎭ bρ(0).
(9)

To calculate exp(· · · ) explicitly is almost impossible, so we must appeal to
some approximation method. For that let us remind the Baker—Campbell—

Hausdorff (B-C-H) formula. For A,B ∈M(n;C) we want to decompose as

eA+B = eAeI(A,B)eB . (10)

The “interaction” term I(A,B) is given by

I(A,B) = −1
2
[A,B] +

1

6
{[[A,B], B] + [A, [A,B]]}+ · · · . (11)

The proof is easy. In fact, eI(A,B) = e−AeA+Be−B by (10) and we have only to
apply the B-C-H formula ([4] and see also [5] as an interesting topic)

eXeY = eX+Y+(1/2)[X,Y ]+(1/12){[[X,Y ],Y ]+[X,[X,Y ]]}+··· for X,Y ∈M(n;C)

two times.

For

A = −it(H ⊗ 1− 1⊗HT ), B = −t
X
{j}
(λj/2)

¡
Pj ⊗QTj +Qj ⊗ PTj

¢
there is no method to calculate eI(A,B) explicitly as far as we know. Therefore

we ignore this term, namely let us call it the “commutable approximation”1.

Under the commutable approximation we have only to calculate

bρ(t) ≈exp©−it(H ⊗ 1−1⊗HT )
ª
exp

⎧⎨⎩−tX
{j}
(λj/2)

¡
Pj ⊗QTj +Qj ⊗ PTj

¢⎫⎬⎭bρ(0)
=
³
e−itH ⊗ eitHT

´
exp

⎧⎨⎩−tX
{j}
(λj/2)

¡
Pj ⊗QTj +Qj ⊗ PTj

¢⎫⎬⎭ bρ(0)
=
³
e−itH ⊗

¡
eitH

¢T´
exp

⎧⎨⎩−tX
{j}
(λj/2)

¡
Pj ⊗QTj +Qj ⊗ PTj

¢⎫⎬⎭ bρ(0). (12)
1If [A,B] = 0 then our calculation in the following is exact
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Next let us calculate the second term in (12), which is not so difficult as

follows.

(]) ≡ exp

⎧⎨⎩−tX
{j}
(λj/2)

¡
Pj ⊗QTj +Qj ⊗ PTj

¢⎫⎬⎭
=
Y
{j}
exp

©
(−λjt/2)

¡
Pj ⊗QTj +Qj ⊗ PTj

¢ª
=
Y
{j}

n
1⊗ 1+

³
e−λjt/2 − 1

´ ¡
Pj ⊗QTj +Qj ⊗ PTj

¢o
(13)

where we have used facts

(a)
©
Pj ⊗QTj +Qj ⊗ PTj | j ∈ {j}

ª
are projectors commuting with each other.

(b) eλR = 1+
¡
eλ − 1

¢
R if R is a projector.

Here we set Rj = Pj ⊗QTj +Qj ⊗ PTj . For i < j < k it is easy to see
(c) RiRj =

¡
Pi ⊗QTi +Qi ⊗ PTi

¢ ¡
Pj ⊗QTj +Qj ⊗ PTj

¢
= Pi⊗PTj +Pj ⊗PTi .

(d) RiRjRk =
¡
Pi ⊗ PTj + Pj ⊗ PTi

¢ ¡
Pk ⊗QTk +Qk ⊗ PTk

¢
= 0.

From (13) and (c), (d)

(]) =
Y
{j}

n
1⊗ 1+

³
e−λjt/2 − 1

´
Rj

o
= 1⊗ 1+

X
j

³
e−λjt/2 − 1

´
Rj +

X
j<k

³
e−λjt/2 − 1

´³
e−λkt/2 − 1

´
RjRk

= 1⊗ 1+
X
j

³
e−λjt/2 − 1

´ ¡
Pj ⊗QTj +Qj ⊗ PTj

¢
+

X
j<k

³
e−λjt/2 − 1

´³
e−λkt/2 − 1

´ ¡
Pj ⊗ PTk + Pk ⊗ PTj

¢
. (14)

Therefore

bρ(t) ≈³e−itH ⊗ ¡eitH¢T´
⎧⎨⎩1⊗ 1+X

j

³
e−λjt/2 − 1

´ ¡
Pj ⊗QTj +Qj ⊗ PTj

¢
+

X
j<k

³
e−λjt/2 − 1

´³
e−λkt/2 − 1

´ ¡
Pj ⊗ PTk + Pk ⊗ PTj

¢⎫⎬⎭ bρ(0). (15)
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By restoring to matrix form by use of (7) we finally obtain

ρ(t) ≈ e−itH
⎧⎨⎩ρ(0) +X

j

³
e−λjt/2 − 1

´
(Pjρ(0)Qj +Qjρ(0)Pj)+

X
j<k

³
e−λjt/2 − 1

´³
e−λkt/2 − 1

´
(Pjρ(0)Pk + Pkρ(0)Pj)

⎫⎬⎭ eitH (16)

or

ρ(t) ≈ e−itH
⎧⎨⎩ρ(0) +X

j

³
e−λjt/2 − 1

´
(Pjρ(0)Qj +Qjρ(0)Pj)+

1

2

X
j 6=k

³
e−λjt/2 − 1

´³
e−λkt/2 − 1

´
(Pjρ(0)Pk + Pkρ(0)Pj)

⎫⎬⎭ eitH (17)

for j, k ∈ {j}. This is the main result.

A comment is in order. In [2] and [3] the master equation like (5) in the two

qubit system is treated. A general density matrix in the case is written as

ρ(t) =
1

4
(12 ⊗ 12 + pi(t)σi ⊗ 12 + qj(t)12 ⊗ σj + rij(t)σi ⊗ σj) , 1 ≤ i, j ≤ 3

where the usual Einstein’s notation on summation is used. Using this expression

one can study the equation coming from pure decoherence term

∂

∂t
ρ = −1

2

X
{j}

λj (Pjρ+ ρPj − 2PjρPj) = −
1

2

X
{j}

λj (PjρQj +QjρPj) .

The equation is then reduced to a set of (relatively simple) equations of {p},
{q} and {r} and one can solve them. However, such a (restricted) method is
irrelevant as shown in the paper. Our method is quite general !

In this paper we considered the master equation with the dissipative being

a set of projectors and constructed the exact solution under the commutable

approximation. This is just the first step for constructing the general solution

for the equation.

In order to take one step forward we must take the “interaction” term I(A,B)

in (11) into consideration. However, such a method to calculate it has not been

known as far as we know. Therefore it may be reasonable to restrict our target

to some simple models. Further work will be needed and we will report it in the

near future, [6].
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On the other hand we are studying some related topics, see [7] and [8]. How-

ever, we make no comment on them in the paper.

Lastly, we conclude the paper by stating our motivation. We are studying a

model of quantum computation (computer) based on Cavity QED (see [9] and

[10]), so to construct a more realistic model of (robust) quantum computer we

have to study severe problems arising from decoherence. This is our future task.

Acknowledgment.

The author wishes to thank K. Funahashi for helpful comments and suggestions.

References

[ 1 ] H. -P. Breuer and F. Petruccione : The theory of open quantum systems, Oxford

University Press, New York, 2002.

[ 2 ] R. A. Bertlmann and W. Grimus : Dissipation in a 2-dimensional Hilbert space : Var-

ious forms of complete positivity, Phys. Lett. A 300 (2002), 107, quant-ph/0201142.

[ 3 ] K. Durstberger : Spin geometry of entangled qubits under bilocal decoherence modes,

arXiv : 0707.3774 [quant-ph].

[ 4 ] V. S. Varadarajan : Lie Groups, Lie Algebras, and Their Representations, Springer,

1984.

[ 5 ] K. Fujii and T. Suzuki : On the Magic Matrix by Makhlin and the B—C—H Formula

in SO(4), Int. J. Geom. Methods Mod. Phys, 4 (2007), 897, quant-ph/0610009.

[ 6 ] K. Fujii : in progress.

[ 7 ] S. G. Rajeev : Dissipative Mechanics Using Complex—Valued Hamiltonians, to ap-

pear in Annals of Physics, quant-ph/0701141.

[ 8 ] K. Fujii : Quantum Mechanics with Complex Time : A Comment to the Paper by

Rajeev, quant-ph/0702148.

[ 9 ] K. Fujii, K. Higashida, R. Kato and Y. Wada : Cavity QED and Quantum Compu-

tation in the Weak Coupling Regime, J. Opt. B : Quantum and Semiclass. Opt, 6

(2004), 502, quant-ph/0407014.

[ 10 ] K. Fujii, K. Higashida, R. Kato and Y. Wada : Cavity QED and Quantum Compu-

tation in the Weak Coupling Regime II : Complete Construction of the Controlled—

Controlled NOT Gate, Trends in Quantum Computing Research, Susan Shannon

(Ed.), Chapter 8, Nova Science Publishers, 2006 and Computer Science and Quan-

tum Computing, James E. Stones (Ed.), Chapter 1, Nova Science Publishers, 2007,

quant-ph/0501046.

Department of Mathematical Sciences
Yokohama City University
Yokohama, 236—0027
Japan
E-mail address: fujii@yokohama-cu.ac.jp


