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Abstract. The notions of symbolic matrix system and λ-graph system for a
subshift are generalizations of symbolic matrix and λ-graph (= finite symbolic
matrix) for a sofic shift respectively ([Doc. Math. 4(1999), 285-340]). M. Nasu
introduced the notion of textile system for a pair of graph homomorphisms to
study automorphisms and endomorphisms of topological Markov shifts ([Mem.
Amer. Math. Soc. 546,114(1995)]). In this paper, we formulate textile systems
on λ-graph systems and study automorphisms on subshifts. We will prove that
for a forward automorphism φ of a subshift (Λ,σ), the automorphisms φkσn, k ≥
0, n ≥ 1 can be explicitly realized as a subshift defined by certain symbolic
matrix systems coming from both the strong shift equivalence representing φ
and the subshift (Λ,σ). As an application of this result, if an automorphism
φ of a subshift Λ is a simple automorphism, the dynamical system (Λ,φ ◦ σ) is
topologically conjugate to the subshift (Λ,σ).

1. Introduction

Let Σ be a finite set with its discrete topology, that is called an alphabet.

Let ΣZ be the compact Hausdorff space of all bi-infinite sequences of Σ. One has

the homeomorphism σ defined by the left-shift that sends a point (αi)i∈Z ∈ ΣZ
into the point (αi+1)i∈Z ∈ ΣZ. A subshift (Λ,σ) is the topological dynamical

system that is obtained by restricting the shift to a closed shift-invariant subset

Λ of ΣZ. The space Λ ⊂ ΣZ is uniquely determined by a set of forbidden words,
such as a sequence (xi)i∈Z ∈ ΣZ of Σ belongs to Λ if and only if any word

in the forbidden words can not apper as a subward of (xi)i∈Z. If a subshift
is obtained by a finite set of its forbidden words, it is said to be a shift of

finite type. It is well-known that the class of shifts of finite type coincides

with the class of topological Markov shifts, that are defined by finite square

nonnegative matrices. For an introduction to the theory of topological Markov

shifts see [8] or [13]. R. F. Williams [23] proved that two shifts of finite type

are topologically conjugate if and only if their defining nonnegative matrices

are strong shift equivalent. This result also says a structure of automorphisms
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of topological Markov shifts. That is, an automorphism is given by a strong

shift equivalence from the defining matrix to itself, and conversely a strong shift

equivalence from the defining matrix to itself gives rise to an automorphism

of the shift of finite type. M. Nasu [18] formulated strong shift equivalence

between finite symbolic matrices and generalized the above Williams’s result to

sofic shifts. He proved that two sofic shifts are topologically conjugate if and

only if their canonical symbolic matrices are strong shift equivalent ([18]).

For a subshift (Λ,σ), a homeomorphism ϕ on Λ satisfying ϕ ◦ σ = σ ◦ ϕ is
called an automorphism of (Λ,σ). It is also well-known that if an automorphism

ϕ of a subshift (Λ,σ) is expansive, it is topologically conjugate to a subshift

[5]. The problem studied in this paper is to subshift-identify the dynamical

system (Λ,ϕ). Namely, for an expansive automorphism ϕ of a subshift (Λ,σ),

the problem is to find, in an explicit way, a subshift (Λϕ,σ) that is topologically

conjugate to (Λ,ϕ). This problem has been studied in several situations for

the case of topological Markov shifts and sofic shifts. Boyle and Krieger [1]

proved that for an automorphism ϕ of topological Markov shift (ΛA,σA) defined

by a nonnegative matrix A and for all integers n greater than a coding bound

for ϕ and ϕ−1, the dynamical system (ΛA,ϕσ
n
A) is topologically conjugate to

a topological Markov shift, and specified its dimension triple. M. Nasu [19]

has introduced the notion of textile system, which is very useful to analyze

the automorphisms and endomorphisms of topological Markov shifts. A textile

system is defined by an ordered pair of graph homomorphisms p and q of a

directed finite graph Γ into a directed finite graph G, that is written as T =

(p, q : Γ → G). Nasu also generaized the fiomulation of the textile systems to

textile systems on finite labeled graphs. Among other things, he proved that if ϕ

is a forward automorphism of a sofic shift (ΛA,σA) defined by a finite symbolic
matrix A and is given by a strong shift equivalence

A κ0' P1Q1, Q1P1
κ1' P2Q2, · · · , QN−1PN−1

κN−1' PNQN , QNPN
κN' A,

then the dynamical system (ΛA,ϕkσnA) is topologically conjugate to the sofic
shift defined by the symbolic matrix PkAn for all k ≥ 0 and n ≥ 1, where

P = P1 · · · PN . If in particular ϕ is expansive, the dynamical system (ΛA,ϕ) is
topologically conjugate to a sofic shift.

In [15], the author has introduced the notion of symbolic matrix system

and λ-graph system from an idea of C∗-algebras (cf. [14], [16]). The symbolic
matrix system is a generalization of symbolic matrix, and λ-graph system is a

generalization of λ-graph (= finite labeled graph). We henceforth denote by Z+
the set of all nonnegative integers and by N the set of all positive integers. A
symbolic matrix system over alphabet Σ consists of two sequences of rectangular

matrices (Ml,l+1, Il,l+1), l ∈ Z+. The matricesMl,l+1, l ∈ Z+ have their entries
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in formal sums of Σ and the matrices Il,l+1, l ∈ Z+ have their entries in {0, 1}.
They satisfy the commutation relations:

Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2, l ∈ Z+.

We further assume that each row of Il,l+1 has at least one 1 and each column

of Il,l+1 has exactly one 1. We denote (Ml,l+1, Il,l+1), l ∈ Z+ by (M, I) or

(M, IM). A λ-graph system L = (V,E,λ, ι) consists of a vertex set V = V0 ∪
V1 ∪ V2 ∪ · · · , an edge set E = E0,1 ∪ E1,2 ∪ E2,3 ∪ · · · , a labeling λ : E → Σ

and a surjective map ι(= ιl,l+1) : Vl+1 → Vl for each l ∈ Z+. It naturally
arises from a symbolic matrix system (M, I). The edges from a vertex vli ∈ Vl
to a vertex vl+1j ∈ Vl+1 are given by the (i, j)-component Ml,l+1(i, j) of the

matrix Ml,l+1. The matrix Il,l+1 defines a surjection ιl,l+1 from Vl+1 to Vl
for each l ∈ Z+. The symbolic matrix systems and the λ-graph systems are
the same objects and give rise to subshifts by gathering all the label sequences

appearing in the labeled Bratteli diagram. A canonical method to construct a

symbolic matrix system and a λ-graph system from an arbitrary subshift has

been introduced in [15]. The obtained symbolic matrix system and the λ-graph

system are said to be canonical for the subshift. The notion of strong shift

equivalence for nonnegative matrices and symbolic matrices has been generalized

to symbolic matrix systems as properly strong shift equivalence. Two symbolic

matrix systems (M, I) and (M0, I 0) are said to be properly strong shift equivalent
in 1-step if there exist alphabets C,D and specifications κ : Σ→ CD, κ0 : Σ0 →
DC and increasing sequences n(l), n0(l) on l ∈ Z+ such that for each l ∈ Z+,
there exist an n(l) × n0(l + 1) matrix Pl over C, an n0(l) × n(l + 1) matrix Ql
over D, an n(l)× n(l + 1) matrix Xl over {0, 1} and an n0(l)× n0(l + 1) matrix
Yl over {0, 1} satisfying the following equations:

Ml,l+1
κ'P2lQ2l+1, M0

l,l+1

κ0' Q2lP2l+1,
Il,l+1 =X2lX2l+1, I 0l,l+1 = Y2lY2l+1

and

XlPl+1 = PlYl+1, YlQl+1 = QlXl+1.
This situation is written as (P,Q, X, Y ) : (M, I) ≈

1−pr
(M0, I 0). A finite chain of

properly strong shift equivalences in 1-step with length N is called a properly

strong shift equivalence (in N-step). Then the previously mentioned Williams’s

result and Nasu’s result have been generalized to topological conjugacy between

subshifts. That is, if two symbolic matrix systems are properly strong shift equiv-

alent, then their presented subshifts are topologically conjugate. Furthermore,

two subshifts are topologically conjugate if and only if their canonical symbolic
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matrix systems are properly strong shift equivalent ([15]). Hence, in particular,

a properly strong shift equivalence from a symbolic matrix system to itself gives

rise to an automorphism of the presented subshift. And an automorphism of

a subshift exactly corresponds to a properly strong shift equivalence from the

canonical symbolic matrix system of the subshift to itself.

In this paper, we will generalize the Nasu’s textile systems for graph homo-

morphisms between finite directed (labeled) graphs to graph homomorphisms

between λ-graph systems and generalize the Nasu’s formalism for topological

Markov shifts and sofic shifts to general subshifts. Namely we will formulate

textile systems for graph homomorphisms between λ-graph systems and study

automorphisms of general subshifts by using the generalized textile systems. Let

(M, IM), (K, IK), (N , IN ) be symbolic matrix systems and LK,LM,LN their

respect λ-graph systems. Assume that the vertex sets VMl of LM and the ver-

tex sets V Nl of LN coincide and that the condition IMl,l+1 = INl,l+1 hold for all
l ∈ Z+. We further assume that the vertex set V Kl of LK is identified with

the edge set ENl,l+1 of L
N for l ∈ Z+. A label preserving graph homomorphism

p : LK −→ LM compatible to ι is called a λ-graph system homomorphism if

p(V Kl ) = V
M
l , l ∈ Z+. A label preserving graph homomorphism q : LK −→ LM

compatible to ι is called a one-shift λ-graph system homomorphism if q(V Kl ) =
VMl+1, l ∈ Z+. Hence the source map sK : EKl,l+1 −→ V Kl = ENl,l+l and the terminal
map tK : EKl,l+1 −→ V Kl+1 = ENl+1,l+2 of L

K yield a λ-graph system homomor-

phism and a one-shift λ-graph system homomorphism respectively. Then for a

λ-graph system homomorphism p : LK −→ LM and a one-shift λ-graph system

homomorphism q : LK −→ LM, the diagram

LMx⏐⏐p
LN

sK←−−−− LK
tK−−−−→ LN⏐⏐yq

LM

is called a textile system on λ-graph systems if some further conditions are sat-

isfied. It is written as TKM
N
. This formulation is a generalization of Nasu’s sofic

textile systems [19]. We will follow and generalize Nasu’s machinery of [19] so

that the dual of TKM
N
can be defined and we may consider LR textile systems

on λ-graph systems. We will prove that for a forward automorphism φ of a

subshift (Λ,σ), the automorphisms φkσn, k ≥ 0, n ≥ 1 can be explicitly realized
as a subshift defined by certain symbolic matrix systems coming from both the

strong shift equivalence representing φ and the subshift (Λ,σ). Suppose that

Λ is equipped with a metric for which σ has 1 as its expansive constant. If in
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particular, φ is expansive with 1
m
as its expansive constant for some m ∈ N, the

dynamical system (Λ,φ) can be realized as a subshift defined by certain symbolic

matrix system coming from the strong shift equivalence representing φ and the

subshift (Λ,σ) (Theorem 7.6).

We will prove the following

THEOREM 1.1 (Theorem 7.8). Let (Λ,σ)(= (ΛM,σM)) be a subshift presented
by a symbolic matrix system (M, I). Let φ be a forward automorphism on (Λ,σ)

defined by a properly strong shift equivalence

(P(j),Q(j), X(j), Y (j)) : (M(j−1), I(j−1)) ≈
1−pr

(M(j), I(j)), j = 1, 2, . . . , N

in N -step where (M(0), I(0)) = (M(N), I(N)) = (M, I). Then the dynamical

system (Λ,φkσn) is topologically conjugate to the subshift (ΛPkMn ,σPkMn) pre-

sented by the symbolic matrix system (PkMn, IkN+n) for k ≥ 0, n ≥ 1 defined
by

(PkMn)l,l+1

=Pl(kN+n),l(kN+n)+NPl(kN+n)+N,l(kN+n)+2N · · · Pl(kN+n)+(k−1)N,l(kN+n)+kN ·
· Ml(kN+n)+kN,l(kN+n)+kN+1Ml(kN+n)+kN+1,l(kN+n)+kN+2

· · ·M(l+1)(kN+n)−1,(l+1)(kN+n), I
kN+n
l,l+1

=Il(kN+n),l(kN+n)+1Il(kN+n)+1,l(kN+n)+2 · · · I(l+1)(kN+n)−1,(l+1)(kN+n), l ∈ Z+

where Pl,l+1 = P(1)2l Y
(1)
2l+1P

(2)
2l+2Y

(2)
2l+3 · · · P

(N)
2l+2N−2Y

(N)
2l+2N−1 and P

(i)
2l+2(i−1),

Y
(i)
2l+2i−1, i = 1, . . . , N are matrices appearing in the above properly strong shift

equivalence.

Namely these automorphisms φkσn, k ≥ 0, n ≥ 1 are subshift-identified. As
an application of this result, if an automorphism φ of a subshift (Λ,σ) is a simple

automorphism, that is conjugate to a symbolic automorphism fixing vertices of

a λ-graph system, the dynamical system (Λ,φ ◦σn) is topologically conjugate to
the n-th power (Λ,σn) of the subshift (Λ,σ) for n ∈ Z, n 6= 0 (Theorem 8.2).

This paper is organized as in the following way.

1. Introduction

2. Symbolic matrix systems and λ-graph systems

3. Textile systems on λ-graph systems

4. Textile shifts on λ-graph systems

5. LR textile systems on λ-graph systems

6. LR textile systems and properly strong shift equivalences
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7. Subshift-identifications of automorphisms of subshifts

8. An application

2. Symbolic matrix systems and λ-graph systems

We call each element of a finite set Σ a symbol or a label. The transformation

σ on the infinite product space ΣZ given by σ((xi)i∈Z) = (xi+1)i∈Z is called the
(full) shift. Let Λ be a shift-invariant closed subset of ΣZ i.e. σ(Λ) = Λ. We

write the subshift (Λ,σ) as Λ for short. We denote by Λ+(⊂ ΣN) the set of

all right-infinite sequences (xi)i∈N that (xi)i∈Z belongs to Λ. A finite sequence
μ = (μ1, ...,μk) of elements μj ∈ Σ is called a block or a word of length k. We
write the empty symbol ∅ in Σ as 0. We denote by SΣ the set of all finite

formal sums of elements of Σ. By a symbolic matrix A over Σ we mean a finite

matrix with entries in SΣ. A square symbolic matrix A naturally gives rise to a
labeled directed graph, called a λ-graph, which we denote by GA. The labeled
directed graph defines a subshift over Σ which consist of all infinite labeled

sequences following the labeled edges in GA. Such a subshift is called a sofic
shift presented by GA (cf. [4], [9], [10], [22], [8], [13]). If, in particular, different
edges have different labels, the sofic shift is called a topological Markov shift.

Let A and A0 be symbolic matrices over Σ and Σ0 respectively such that
the size of A is the same as that of A0. Let κ be a bijection from a subset of

Σ onto a subset of Σ0. Following M. Nasu in [18],[19], we say that A and A0
are specified equivalence under specification κ if A0 can be obtained from A by

replacing every symbol a appearing in the components of A by κ(a). We write

it as A κ' A0.
Two symbolic matrix systems (M, I) over Σ and (M0, I 0) over Σ0 are said to

be isomorphic if for l ∈ Z+ the size ofMl,l+1 coincides with that ofM0
l,l+1 and

there exist a specification κ from Σ to Σ0 and an m(l)×m(l)-square permutation
matrix Sl for each l ∈ Z+ such that

SlMl,l+1
κ'M0

l,l+1Sl+1, SlIl,l+1 = I
0
l,l+1Sl+1.

Recall that a λ-graph system L = (V,E,λ, ι) over Σ is a directed Bratteli diagram

with vertex set

V = ∪l∈Z+Vl
and edge set

E = ∪l∈Z+El,l+1
that is labeled by a map λ(= λl,l+1) : El,l+1 → Σ with symbols in Σ for l ∈ Z+,
and that is supplied with a sequence of surjective maps

ι(= ιl,l+1) : Vl+1 → Vl for l ∈ Z+.
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Here each vertex set Vl and each edge set El,l+1 are both finite sets. An edge

e in El,l+1 has its source vertex s(e) in Vl and its terminal vertex t(e) in Vl+1.

Every vertex in V has a successor and every vertex in V , except the verteces in

V0 at level 0, has a predecessor. It is then required that there exists an edge in

El,l+1 with label α and its terminal is v ∈ Vl+1 if and only if there exists an edge
in El−1,l with label α and its terminal is ι(v) ∈ Vl. A λ-graph system is said

to be essential if there is no distinct edges that have the same source vertices,

the same terminal vertices and the same labels. Throughout this paper, we will

treat essential λ-graph systems. For u ∈ Vl−1 and v ∈ Vl+1, we put

Eι
l,l+1(u, v) = {e ∈ El,l+1 | t(e) = v, ι(s(e)) = u},

El−1,lι (u, v) = {e ∈ El−1,l | s(e) = u, t(e) = ι(v)}.

Then there exists a bijective map ϕL(u,v) from Eι
l,l+1(u, v) to E

l−1,l
ι (u, v) such

that

λ(ϕL(u,v)(e)) = λ(e) for e ∈ Eι
l,l+1(u, v).

Hence two sets Eι
l,l+1(u, v) and E

l−1,l
ι (u, v) bijectively correspond in preserving

labels for all pairs (u, v) ∈ Vl−1 × Vl+1. We call this property the local property
of the λ-graph system. We immediately see

LEMMA 2.1. For a λ-graph system L = (V,E,λ, ι) over Σ, there exists a sur-

jection

ϕLl : El,l+1 −→ El−1,l

for each l ∈ N such that

ϕLl |Eιl,l+1(u,v) = ϕL(u,v) for u ∈ Vl−1, v ∈ Vl+1

and

ιl−1,l(s(e)) = s(ϕ
L
l (e)), ιl,l+1(t(e)) = t(ϕ

L
l (e)) for e ∈ El,l+1.

We call an edge e ∈ El,l+1 a λ-edge and a connecting finite sequence of λ-
edges a λ-path. For u ∈ Vl and v ∈ Vl+1, if ι(v) = u, we say that there exists an
ι-edge from u to v. Similarly we use the term ι-path.

Two λ-graph systems (V,E,λ, ι) over Σ and (V 0, E0,λ0, ι0) over Σ0 are said
to be isomorphic if there exist bijections ΦV : Vl → V 0l , ΦE : El,l+1 → E0l,l+1
for l ∈ Z+, and a specification κ : Σ → Σ0 such that ΦV (s(e)) = s(ΦE(e)),

ΦV (t(e)) = t(ΦE(e)) and λ0(ΦE(e)) = κ(λ(e)) for e ∈ E, and ι0(ΦV (v)) =
ΦV (ι(v)) for v ∈ V. There exists a bijective correspondence between the set of all
isomorphism classes of symbolic matrix systems and the set of all isomorphism
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classes of λ-graph systems. We identify isomorphic symbolic matrix systems,

and similarly isomorphic λ-graph systems.

A symbolic matrix system (M, I) is denoted by (M, IM) although the ma-
trices Il,l+1 are not determined by the symbolic matrices Ml,l+1, l ∈ Z+. We
denote its λ-graph system by LM = (VM, EM,λM, ιM). The surjections ϕL

M
l :

EMl,l+1 −→ EMl−1,l, l ∈ Z+ defined in Lemma 2.1 are denoted by ϕMl , l ∈ Z+.
A λ-graph (= a finite labeled graph) defines a λ-graph system as in the

following way. Let G = (G,λ) be a λ-graph with underlying finite directed graph
G and its labeling λ. Let V G be the vertex set of G. Put Vl = V

G for all l ∈ Z+
and ι = id.Write labeled edges from Vl to Vl+1 for l ∈ Z+ following the directed
graph G with labeling λ. It is clear to see that the resulting labeled Bratteli

diagram with ι(= id) becomes a λ-graph system. A λ-graph and also a λ-graph

system are said to be left-resolving if different edges with the same label must

have different terminals. By the construction if a λ-graph G is left-resolving, so
is the above defined λ-graph system by G. In what follows, we assume that a
λ-graph system is left-resolving.

For a λ-graph system L = (V,E,λ, ι) over Σ and a natural number N ≥ 2, the
N -higher block L[N ] of L is defined to be a λ-graph system (V [N ], E[N ],λ[N ], ι[N ])

over Σ[N ] = Σ · · ·Σ| {z }
N-times

as follows ([15]):

V
[N ]
l = {(e1, e2, . . . , eN−1) ∈ El,l+1 × El+1,l+2 × · · · × El+N−2,l+N−1 |

t(ei) = s(ei+1) for i = 1, 2, . . . , N − 2},
E
[N ]
l,l+1 = {((e1, . . . , eN−1),(f1, . . . , fN−1)) ∈ V

[N ]
l × V [N ]l+1 |

t(eN−1) = s(fN−1), ei+1 = fi for i = 1, 2, . . . , N − 2}.

The maps

s[N ] : E
[N ]
l,l+1 → V

[N ]
l , t[N ] : E

[N ]
l,l+1 → V

[N ]
l+1

are defined by

s[N ]((e1, . . . , eN−1), (f1, . . . , fN−1)) = (e1, . . . , eN−1),

t[N ]((e1, . . . , eN−1), (f1, . . . , fN−1)) = (f1, . . . , fN−1).

Set V [N ] = ∪l∈Z+V [N ]l and E[N ] = ∪l∈Z+E[N ]l,l+1. Hence (V
[N ], E[N ], s[N ], t[N ]) is

a Bratteli diagram. A labeling λ[N ] on (V [N ], E[N ]) is defined by

λ[N ]((e1, . . . , eN−1), (f1, . . . , fN−1)) = λ(e1)λ(e2) . . .λ(eN−1)λ(fN−1) ∈ Σ[N ]

for ((e1, . . . , eN−1), (f1, . . . , fN−1)) ∈ E[N ]. A sequence of surjections ι[N ] : V [N ]l+1

→ V
[N ]
l , l ∈ Z+ is defined as follows. As the λ-graph system (V,E,λ, ι) is left-

resolving, for (e1, . . . , eN−1) ∈ V [N ]l+1 , there uniquely exist e
0
i ∈ El+i−1,l+i for
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i = 1, 2, . . . , N − 2 such that

ι(s(ei)) = s(e
0
i), ι(t(ei)) = t(e

0
i), λ(ei) = λ(e0i).

As (e01, . . . , e
0
N−1) ∈ V

[N ]
l , by setting ι[N ](e1, . . . , eN−1) = (e01, . . . , e

0
N−1), we get

a λ-graph system (V [N ], E[N ],λ[N ], ι[N ]) over Σ[N ]. We set L[1] = L. The N -

higher block (M[N ], I [N ]) of a symbolic matrix system (M, I) is defined to be

the symbolic matrix system for the N -higher block L[N ] of the λ-graph system

L for (M, I).

3. Textile systems on λ-graph systems

In what follows, let (K, IK), (M, IM) and (N , IN ) be symbolic matrix sys-
tems over alphabets ΣK, ΣM and ΣN respectively. Let us consider their re-

spect λ-graph systems LK = (V K, EK,λK, ιK), LM = (VM, EM,λM, ιM) and
LN = (V N , EN ,λN , ιN ). We denote by (sK, tK), (sM, tM) and (sN , tN ) their
source maps and terminal maps in the λ-graph systems respectively.

A λ-graph system homomorphism p = (pV , pE , pΣ) : LK −→ LM consists of

sequences of maps

pV (= pVl ) : V
K
l −→ VMl , pE(= pEl,l+1) : E

K
l,l+1 −→ EMl,l+1, l ∈ Z+

together with a map pΣ : ΣK −→ ΣM such that

(1) pVl (s
K(e)) = sM(pEl,l+1(e)), pVl+1(t

K(e)) = tM(pEl,l+1(e)) for e ∈ EKl,l+1,
(2) pVl (ι

K
l,l+1(v)) = ιMl,l+1(p

V
l+1(v)) for v ∈ V Kl+1,

(3) pΣ(λK(e)) = λM(pEl,l+1(e)) for e ∈ EKl,l+1.
We call it a homomorphism and write it as p : LK −→ LM for short.

A one-shift λ-graph system homomorphism q = (qV , qE , qΣ) : LK −→ LM

consists of sequences of maps

qV (= qVl ) : V
K
l −→ VMl+1, qE(= qEl,l+1) : E

K
l,l+1 −→ EMl+1,l+2, l ∈ Z+

together with a map qΣ : ΣK −→ ΣM such that

(1) qVl (s
K(e)) = sM(qEl,l+1(e)), qVl+1(t

K(e)) = tM(qEl,l+1(e)) for e ∈ EKl,l+1,
(2) qVl (ι

K
l,l+1(v)) = ιMl+1,l+2(q

V
l+1(v)) for v ∈ V Kl+1,

(3) qΣ(λK(e)) = λM(qEl,l+1(e)) for e ∈ EKl,l+1.
We call it a one-shift homomorphism and write it as q : LK −→ LM for short. For

a one-shift homomorphism q = (qV , qE , qΣ) : LK −→ LM, put pVq l = ιMl,l+1 ◦ qVl :
V Kl −→ VMl , pEq l,l+1 = ϕMl+1,l+2 ◦ qEl,l+1 : EKl,l+1 −→ EMl,l+1, l ∈ Z+, and pΣq = qΣ :
ΣK −→ ΣM. Then pq = (pVq , p

E
q , p

Σ
q ) : L

K −→ LM is a homomorphism.



10 K. MATSUMOTO

LEMMA 3.1.

(i) For a homomorphism p : LK −→ LM, we have pE ◦ ϕKl = ϕMl ◦ pE .
(ii) For a one-shift homomorphism q : LK −→ LM, we have qE ◦ϕKl = ϕMl ◦qE .

Proof. Let p : LK −→ LM be a homomorphism. For u ∈ V Kl−1, v ∈ V Kl+1 and
e ∈ EKι

K

l,l+1(u, v), it is direct to see that s
M(pE(ϕKl (e))) = sM(ϕMl (p

E(e))),

tM(pE(ϕKl (e))) = tM(ϕMl (p
E(e))) and λM(pE(ϕKl (e))) = λM(ϕMl (p

E(e))). As

LM is essential, one sees that pE(ϕKl (e)) = ϕMl (p
E(e)). Hence (i) holds. The

assertion for (ii) is similarly shown to (i).

We say that LM and LN form squares if

VMl = V Nl , IMl,l+1 = I
N
l,l+1, l ∈ Z+. (3.1)

In this case, one may see a square as in the following figure:

V Nl = VMl
EM
l,l+1−−−−→ VMl+1 = V

N
l+1⏐⏐yEN

l,l+1

⏐⏐yEN
l+1,l+2

V Nl+1 = V
M
l+1

EM
l+1,l+2−−−−−→ VMl+2 = V

N
l+2

for l ∈ Z+.

We will formulate textile system on λ-graph systems as in the following way.

DEFINITION (Textile system on λ-graph systems). For λ-graph systems LM,
LN and LK with a homomorphism p : LK −→ LM and a one-shift homomor-

phism q : LK −→ LM, the diagram

LMx⏐⏐p
LN

sK←−−−− LK
tK−−−−→ LN⏐⏐yq

LM

is called a textile system on λ-graph systems if the following six conditions are

satisfied:

(1) LM and LN form squares.

(2) V Kl = ENl,l+1, l ∈ Z+.
(3) Under the equality (2),

(ιKl,l+1 : V
K
l+1 → V Kl ) = (ϕ

N
l+1 : E

N
l+1,l+2 → ENl,l+1), l ∈ Z+.
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(4) Under the equalities (3.1) and (2),

(pV : V Kl → VMl ) =(sN : ENl,l+1 → V Nl ),

(qV : V Kl → VMl+1) =(t
N : ENl,l+1 → V Nl+1), l ∈ Z+.

(5) The quadruple:

(sK(e), tK(e), pE(e), qE(e)) ∈ V Kl × V Kl+l × EMl,l+1 × EMl+1,l+2

determines e ∈ EKl,l+l.
(6) Under the equality (2), there exists a specified equivalence between ΣN ×

ΣN × ΣM × ΣM and ΣK by the correspondence between the symbols:

(λN (sK(e)),λN (tK(e)),λM(pE(e)),λM(qE(e))) ∈ ΣN × ΣN × ΣM × ΣM

and λK(e) ∈ ΣK.
A textile system on λ-graph systems is called a textile λ-graph system for short.

We write the textile λ-graph system as TKM
N
= (p, q : LK → LM), or simply as

T . In viewing the textile λ-graph system, one uses the following square

· λM(pE(e))−−−−−−−→ ·

λN (sK(e))

⏐⏐y ⏐⏐yλN (tK(e))
· λM(qE(e))−−−−−−−→ ·

for e ∈ EK.

PROPOSITION 3.2. For a textile λ-graph system TKM
N
= (p, q : LK → LM),

there exists a λ-graph system LK
∗
and a textile λ-graph system TK∗NM = (sK, tK :

LK
∗ → LN ) defined by the diagram:

TK∗NM LNx⏐⏐sK
LM

p←−−−− LK
∗ q−−−−→ LM⏐⏐ytK

LN

Proof. We define a λ-graph system LK
∗
= (V K

∗
, EK

∗
,λK

∗
, ιK

∗
) over ΣK

∗
by

setting

V K
∗

l = EMl,l+1, EK
∗

l,l+1 = E
K
l,l+1, ιK

∗
l,l+1 = ϕMl+1, ΣK

∗
= ΣK for l ∈ Z+
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and for e ∈ EK∗l,l+1 = EKl,l+1

sK
∗
(e)=pE(e) ∈ EMl,l+1=V K

∗
l , tK

∗
(e)=qE(e) ∈ EMl+1,l+2=V K

∗
l+1, λ

K∗(e)=λK(e).

For u ∈ V K∗l−1, v ∈ V K
∗

l+1 put w = ιK
∗

l,l+1(v). It then follows that

El−1,l
ιK∗

(u, v) = {e ∈ EK∗l−1,l | sK
∗
(e) = u, tK

∗
(e) = w}

= {e ∈ EKl−1,l | pE(e) = u, qE(e) = w},
EιK

∗

l,l+1(u, v) = {f ∈ EιK
∗

l,l+1 | ιK
∗

l−1,l(s
K∗(f)) = u, tK

∗
(f) = v}

= {f ∈ EKl,l+1 | ϕMl (pE(f)) = u, qE(f) = v}.

For e ∈ El−1,l
ιK∗

(u, v), one sees tK(e) ∈ ENl,l+1. As LN is left-resolving, there

uniquely exists v0 ∈ ENl+1,l+2 = V Kl+1 such that

λN (v0) = λN (tK(e)), tN (v0) = tM(v), ϕNl+1(v
0) = tK(e).

For the two vertices sK(e) ∈ V Kl−1, v0 ∈ V Kl+1 with ιK(v0) = t(e), by the local

property of LK, there uniquely exists f ∈ EKl,l+1 such that

ιKl−1,l(s
K(f)) = sK(e), tK(f) = v0, λK(f) = λK(e).

· pE(e)=u∈EM
l−1,l−−−−−−−−−−→ ·

sK(e)∈EN
l−1,l

⏐⏐y ⏐⏐ytK(e)∈EN
l,l+1

· qE(e)=w∈EM
l,l+1−−−−−−−−−−→ ·

· pE(f)=u∈EM
l,l+1−−−−−−−−−−→ ·

sK(f)∈EN
l,l+1

⏐⏐y ⏐⏐ytK(f)∈EN
l+1,l+2

· qE(f)=v∈EM
l+1,l+2−−−−−−−−−−−−→ ·

Hence one has

(λN (sK(f)),λN (tK(f)),λM(pE(f)),λM(qE(f))

=(λN (sK(e)),λN (tK(e)),λM(pE(e)),λM(qE(e)).

Since LM is left-resolving, the edge pE(f), whose label is λM(pE(e)) and ter-
minal is the source of v0 ∈ ENl+1,l+2, is unique, and also the edge qE(f), whose
label is λM(qE(e)) and terminal is the terminal of v0 ∈ ENl+1,l+2, is unique, Since
LN is left-resolving, the edge sK(f), whose label is λN (sK(e)) and terminal is
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the source of v ∈ EMl+1,l+2, is unique, and also the edge tK(f), whose label is
λN (tK(e)) and terminal is the terminal of v ∈ EMl+1,l+2, is unique, Hence the
square

· pE(f)=u∈EM
l,l+1−−−−−−−−−−→ ·

sK(f)∈EN
l,l+1

⏐⏐y ⏐⏐ytK(f)∈EN
l+1,l+2

· qE(f)=v∈EM
l+1,l+2−−−−−−−−−−−−→ ·

is uniquely determined by e ∈ El−1,l
ιK∗

(u, v) so that f ∈ EιK
∗

l,l+1(u, v) is uniquely

determined and hence ϕKl (f) = e. Conversely, for an edge f ∈ EιK
∗

l,l+1 there

uniquely exists e ∈ El−1,l
ιK∗

(u, v) such that ϕKl (f) = e. Hence (V
K∗ , EK

∗
,λK

∗
, ιK

∗
)

satisfies the local property so that it yields a λ-graph system over ΣK, that is
written as LK

∗
.

We define a homomorphism p∗ : LK
∗ → LN by setting

p∗(e) = sK(e) ∈ ENl,l+1 for e ∈ EK∗l,l+1

and a one-shift homomorphism q∗ : LK
∗ → LN by setting

q∗(e) = tK(e) ∈ ENl+1,l+2 for e ∈ EK∗l,l+1.

Then the diagram below

LNx⏐⏐p∗=sK
LM

sK
∗
=p←−−−− LK

∗ tK
∗
=q−−−−→ LM⏐⏐yq∗=tK

LN

yields a textile λ-graph system TK∗NM = (sK, tK : LK
∗ → LN ).

We call the textile λ-graph system TK∗NM = (sK, tK : LK
∗ → LN ) the dual of

TKM
N
= (p, q : LK → LM). It is written as TKM

N
∗. It is clear that (TKM

N
∗)∗ = TKM

N
.

For TKM
N
= (p, q : LK → LM) and N ∈ N, we will define the N -higher block

T [N ]KM
N
of TKM

N
as in the following way. Let LK

[N]

and LM
[N]

be the N -higher

blocks of LK and LM respectively. For N ≥ 2, we will define the λ-graph system

LN
[N]
T = (V N

[N]
T , EN

[N]
T ,λN

[N]
T , ιN

[N]
T )
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over ΣN
[N]
T = ΣK × · · · × ΣK| {z }

N − 1 times

by setting

V
N [N]
T

l = VM
[N]

l ,

E
N [N]
T

l,l+1 = V
K[N]

l

(= {(e1, e2, . . . , eN−1) ∈ EKl,l+1 × EKl+1,l+2 × · · · × EKl+N−2,l+N−1 |
tK(ei) = s

K(ei+1), i = 1, 2, . . . , N − 2}),
λN

[N]
T = λK × λK × · · · × λK| {z }

N − 1 times

,

ιN
[N]
T = ιM

[N]

,

and

sN
[N]
T (e1, e2, . . . , eN−1) = p

E(e1)p
E(e2) · · · pE(eN−1),

tN
[N]
T (e1, e2, . . . , eN−1) = q

E(e1)q
E(e2) · · · qE(eN−1),

for (e1, e2, . . . , eN−1) ∈ EN
[N]
T

l,l+1 = V K
[N]

l . The λ-graph system LN
[N]
T is called

the N -higher block of LN relative to TKM
N
. For N = 1, we put LN

[1]
T = LN .

The homomorphism p[N ] : LK
[N] → LM

[N]

and the one-shift homomorphism

q[N ] : LK
[N] → LM

[N]

are defined by

p[N ](e1, e2, . . . , eN ) = p
E(e1)p

E(e2) · · · pE(eN ),
q[N ](e1, e2, . . . , eN ) = q

E(e1)q
E(e2) · · · qE(eN )

for (e1, e2, . . . , eN ) ∈ EKl,l+1 × EKl+1,l+2 × · · · × EKl+N−1,l+N . Then we have

PROPOSITION 3.3. The diagram

LM
[N]x⏐⏐p[N]

LN
[N]
T

sK
[N]

←−−−− LK
[N] tK

[N]

−−−−→ LN
[N]
T⏐⏐yq[N]

LM
[N]

defines a textile λ-graph system.



TEXTILE SYSTEMS ON LAMBDA-GRAPH SYSTEMS 15

We write the above textile λ-graph system TK[N]M[N]

N [N]
T

= (p[N ], q[N ] : LK
[N] →

LM
[N]

) as T [N ]KM
N
and call it the N -higher block of TKM

N
.

4. Textile shifts on λ-graph systems

For a λ-graph system L = (V,E,λ, ι), we set

XL = {(zl)∞l=0 ∈
∞Y
l=0

El,l+1 | zl ∈ El,l+1, t(zl) = s(zl+1), l = 0, 1, . . . },

XL0 = {(zl)∞l=1 ∈
∞Y
l=1

El,l+1 | zl ∈ El,l+1, t(zl) = s(zl+1), l = 1, 2, . . . }.

We define S : XL −→ XL0 by setting

S((zl)
∞
l=0) = (zl)

∞
l=1, (zl)

∞
l=0 ∈ XL.

For a textile λ-graph system TKM
N
= (p, q : LK → LM), there exist maps pX :

XLK −→ XLM and qX : XLK −→ XLM0 defined by pX((zl)
∞
l=0) = (pE(zl))

∞
l=0

and qX((zl)
∞
l=0) = (q

E(zl−1))
∞
l=1 respectively.

Following Nasu’s notation, we say that a textile λ-graph system TKM
N
is non-

degenerate if both factor maps pX : XLK → XLM and qX : XLK → XLM0 are

surjective. We henceforth assume that textile λ-graph systems TKM
N
and TKM

N
∗

are both nondegenerate.

Let4 be the lattice of the lower right half plane: 4 = {(i, j) ∈ Z2 | i+j ≥ 0},
where the vertical coordinate is reversed. A textile edge weaved by TKM

N
is a

configuration

(ei,j)(i,j)∈4

such that

(1) ei,j ∈ EKi+j,i+j+1 for (i, j) ∈ 4,
(2) (ei,−i+l)l∈Z+ ∈ XLK for each i ∈ Z+,
(3) pE(ei,j) = q

E(ei−1,j) for i, j ∈ Z with i+ j ≥ 1.
That is a sequence

(ei)i∈Z

such that

(1) ei = (ei,−i+l)l∈Z+ ∈ XLK for i ∈ Z,
(2) S ◦ pX(ei) = qX(ei−1) for i ∈ Z.
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A textile edge weaved by TKM
N
is regarded as a configuration of concatenated

edges of LK on the lattice 4 of the lower right half plane as in the following way.

· · ·
e−l,l · · · e−l

e−(l−1),l−1 e−(l−1),l · · · e−(l−1)
· · · · · · · · · · · ·

e−1,1 e−1,2 e−1,3 e−1,4 · · · e−1
e0,0 e0,1 e0,2 e0,3 e0,4 · · · e0

e1,−1 e1,0 e1,1 e1,2 e1,3 e1,4 · · · e1
e2,−2 e2,−1 e2,0 e2,1 e2,2 e2,3 e2,4 · · · e2
· · · · · · · · · · · · · · · · · · · · · · · ·

It is easy to see that (ei,j)(i,j)∈4 is a textile edge weaved by TKM
N
if and only if

(ej,i)(i,j)∈4 is a textile edge weaved by TKM
N
∗.

Consider the set X(TKM
N
) of all textile edges weaved by TKM

N

X(TKM
N
) = {(ei)i∈Z ∈

Y
i∈Z
XLK | S ◦ pX(ei) = qX(ei−1), i ∈ Z}.

For e ∈ EKl,l+1, l ∈ Z+, there exists a specified equivalence between

(λN (s(e)),λN (t(e)),λM(pE(e)),λM(qE(e))) ∈ ΣN × ΣN × ΣM × ΣM

and λK(e) ∈ ΣK. We may identify them, and assume that

ΣK = {λK(e) | e ∈ EKl,l+1, l ∈ Z+}.

We define

Jupper :Σ
K → ΣM by Jupper(λ

K(e)) = λM(pE(e)),

Jlower :Σ
K → ΣM by Jlower(λ

K(e)) = λM(qE(e)),

Jright :Σ
K → ΣN by Jright(λ

K(e)) = λN (tK(e)),

Jleft :Σ
K → ΣN by Jleft(λ

K(e)) = λN (sK(e)).

Let ΛM,ΛK,ΛN be the two-sided subshifts presented by LM,LK,LN respec-

tively. The above one-block maps Jleft, Jright, Jupper, Jlower give rise to sliding

block codes between the subshifts:

ξ = (Jupper)∞ : ΛK → ΛM,

η = (Jlower)∞ : ΛK → ΛM,

ξ∗ = (Jright)∞ : ΛK∗ → ΛN ,

η∗ = (Jleft)∞ : ΛK∗ → ΛN
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respectively. We say that TKM
N
is 1-1 if the factor codes ξ : ΛK → ΛM and

η : ΛK → ΛM are both one-to-one. Since TKM
N
is nondegenerate, the codes

ξ : ΛK → ΛM and η : ΛK → ΛM are both surjective. Hence, in this case, we

have an automorphism ϕT = η ◦ ξ−1 on the subshift ΛM.
Let ULK be the set of configurations of labels of LK on X(TKM

N
) :

ULK = {(λK(ei,j))(i,j)∈4 ∈
Y

(i,j)∈4
ΣK | (ei,j)(i,j)∈4 ∈ X(TKM

N
)}.

Consider the natural product topology on
Q
(i,j)∈4 Σ

K and restrict it to ULK so
that ULK is compact. For a connected subset Ω of 4, we set

X(TKM
N
;Ω) = {(ei,j)(i,j)∈Ω ∈

Y
(i,j)∈Ω

EKi+j,i+j+1 |

pE(ei,j) = q
E(ei−1,j) for (i, j), (i− 1, j) ∈ Ω,

qE(ei,j) = p
E(ei+1,j) for (i, j), (i+ 1, j) ∈ Ω,

sK(ei,j) = t
K(ei,j−1) for (i, j), (i, j − 1) ∈ Ω,

tK(ei,j) = s
K(ei,j+1) for (i, j), (i, j + 1) ∈ Ω}

and

ULK(Ω) = {λK(ei,j)(i,j)∈Ω ∈
Y

(i,j)∈Ω
ΣK | (ei,j)(i,j)∈Ω ∈ X(TKM

N
;Ω)}.

Hence ULK(4) = ULK . Put

4(n,k) = {(i, j) ∈ 4 | i ≤ n, j ≤ k} for (n, k) ∈ 4.

By noticing the assumption that TKM
N
and TKM

N
∗ are both nondegenerate, we

have

LEMMA 4.1. For (n, k) ∈ 4 and (ai,j)(i,j)∈4(n,k)
∈ ULK(4(n,k)), there exists

(bi,j)(i,j)∈4(n+1,k+1)
∈ ULK(4(n+1,k+1)) such that

bi,j = ai,j for all (i, j) ∈ 4(n,k).

Proof. For (ai,j)(i,j)∈4(n,k)
∈ ULK(4(n,k)), take (ei,j)(i,j)∈4(n,k)

∈X(TKM
N
;4(n,k))

such that ai,j = λK(ei,j) for all (i, j) ∈ 4(n,k). Since TKM
N
∗ is nondegenerate,

there exist ei,k+1 ∈ EKi,k+1 for i = −k − 1,−k, . . . , n− 1, n such that

pE(ei,k+1) = q
E(ei−1,k+1) and sK(ei,k+1) = t

K(ei,k)
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for i = −k,−k+1, . . . , n. Hence we have (ei,j)(i,j)∈4(n,k+1)
∈ X(TKM

N
;4(n,k+1)).

Similarly by the condition that TKM
N
is nondegenerate, there exist en+1,j ∈ EKn+1,j

for j = −n− 1,−n, . . . , k, k + 1 such that

pE(en+1,j) = q
E(en,j) and sK(en+1,j) = t

K(en+1,j−1)

for j = −n,−n+1, . . . , k, k+1. This implies that (ei,j)(i,j)∈4(n+1,k+1)
∈ X(TKM

N
;

4(n+1,k+1)) so that by putting bi,j = λK(ei,j) for (ei,j)(i,j)∈4(n+1,k+1)
we get the

assertion.

Hence one has

COROLLARY 4.2. For (n, k) ∈ 4 and (ai,j)(i,j)∈4(n,k)
∈ ULK(4(n,k)), there

exists (αi,j)(i,j)∈4 ∈ ULK such that

αi,j = ai,j for all (i, j) ∈ 4(n,k).

PROPOSITION 4.3. Let (αi,j)(i,j)∈4 be a family αi,j ∈ ΣK of symbols in-

dexed by (i, j) ∈ 4. Then (αi,j)(i,j)∈4 ∈ ULK if and only if (αi,j)(i,j)∈4(n,k)
∈

ULK(4(n,k)) for all (n, k) ∈ 4.

Proof. The only if part is clear. Suppose that (αi,j)(i,j)∈4(n,k)
∈ ULK(4(n,k))

for all (n, k) ∈ 4. By Corollary 4.2, for (n, k) ∈ 4 there exists α(n,k) =

(α
(n,k)
i,j )

(i,j)∈4 ∈ ULK such that

α
(n,k)
i,j = αi,j for all (i, j) ∈ 4(n,k).

As ULK is compact, there exists ᾱ = (ᾱi,j)(i,j)∈4 ∈ ULK such that
ᾱ = limn,k→∞ α(n,k). Since ᾱi,j = α

(n,k)
i,j = αi,j for all (i, j) ∈ 4(n,k), one has

ᾱi,j = αi,j for all (i, j) ∈ 4 and hence (αi,j)(i,j)∈4 ∈ ULK .

LEMMA 4.4. For α = (αi,j)(i,j)∈4 ∈ ULK , put

SR(α)i,j = αi,j+1, SD(α)i,j = αi+1,j for (i, j) ∈ 4.

Then we have SR(α), SD(α) ∈ ULK .

Proof. For α = (αi,j)(i,j)∈4 ∈ ULK , take (ei,j)(i,j)∈4 ∈ X(TKM
N
) such that

αi,j = λK(ei,j), where ei,j ∈ EKi+j,i+j+1. By the map ϕKi+j,i+j+1 : EKi+j,i+j+1 →
EKi+j−1,i+j in Lemma 3,1, one has ϕ

K(ei,j+1)(i,j)∈4∈X(TKM
N
). As λK(ϕK(ei,j+1))

= λK(ei,j+1) = αi,j+1, one sees that SR(α) ∈ ULK . One may symmetrically prove
that SD(α) ∈ ULK by considering ϕK

∗
.
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The assertions above mean that ULK can be shifted to both left and upper.
We note that SR ◦ SD = SD ◦ SR on ULK to set

U∞LK =
∞\

n,m=0

SnR ◦ SmD (ULK).

Hence one has

SR(U∞LK) = U∞LK = SD(U∞LK).
A textile label weaved by T =TKM

N
is a two-dimensional configuration (αi,j)(i,j)∈Z2

of ΣK such that

(αi−k,j)(i,j)∈4 ∈ U∞LK for all k ∈ Z.

The condition is equivalent to the condition

(αi,j−k)(i,j)∈4 ∈ U∞LK for all k ∈ Z.

Let UT be the set of all textile labels weaved by T . We note

LEMMA 4.5. For (αi,j)(i,j)∈Z2 ∈ UT one has (αi,j)j∈Z ∈ ΛK for all i ∈ Z, and
(αi,j)i∈Z ∈ ΛK∗ for all j ∈ Z.

Proof. For (αi,j)(i,j)∈Z2 ∈ UT , one sees that (αi,j−k)(i,j)∈4 ∈ ULK for k ∈ Z+.
Hence there exists (ei,j−k)(i,j)∈4 ∈ X(TKM

N
) such that αi,j−k = λK(ei,j−k), so

that (αi,j−k)j∈Z,(i,j)∈4 ∈ Λ+K for all i ∈ Z and k ∈ Z+.We then have (αi,j)j∈Z ∈
ΛK for all i ∈ Z. We similarly have (αi,j)i∈Z ∈ ΛK∗ for all j ∈ Z.

We define a metric δM on ΛM by setting

δ(α,α0) =

(
0 if α = α0,
1

k+1 if α 6= α0

for α = (αi)i∈Z,α
0 = (α0i)i∈Z in ΛM, where k = min{|i| | i ∈ Z,αi 6= α0i}.

Similarly we define a metric δN on ΛN . We next define a metric δT on UT by
setting

δT (u, u
0) =

(
0 if u = u0,
1

k+1 if u 6= u0

for u = (αi,j)(i,j)∈Z2 , u
0 = (α0i,j)(i,j)∈Z2 in UT , where k = min{|i| + |j| | i, j ∈

Z,αi,j 6= α0i,j}.

LEMMA 4.6. UT is compact.
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Proof. We first note that the set X(TKM
N
) of all textile edges is a compact set

in a natural topology of the edge set so that the label sets ULK and U∞
LK are

both compact. Let
Q
(i,j)∈Z2 Σ

K be the set αi,j ∈ ΣK, (i, j) ∈ Z2 of all two-
dimensional configurations of ΣK, that is endowed with the topology similarly
defined by the above δT . Consider the sequence of the following continuous maps

ζk : (αi,j)(i,j)∈Z2 ∈
Y

(i,j)∈Z2
ΣK −→ (αi−k,j)(i,j)∈4 ∈

Y
(i,j)∈4

ΣK, k ∈ Z.

Since we have

UT =
\
k∈Z

ζ−1k (ULK),

the set UT is compact.

Define a one-block code

ΦT : UT → ΛK

by setting

ΦT ((αi,j)(i,j)∈Z2) = (α0,j)j∈Z, (αi,j)(i,j)∈Z2 ∈ UT .

We say that the textile λ-graph system TKM
N
is surjective if the map ΦT : UT →

ΛK is surjective. Define the one-block codes

ΘT : UT → ΛM, Θ∗T : UT → ΛN

by setting

ΘT ((αi,j)(i,j)∈Z2) = (Jlower(α0,j))j∈Z, Θ∗T ((αi,j)(i,j)∈Z2) = (Jright(αi,0))i∈Z.

They are continuous in the topology defined by the metric δK on UT . Since
η : ΛK → ΛM is always surjective and ΘT = η ◦ ΦT , if TKM

N
is surjective, the

map ΘT is surjective. For k, n ∈ Z, the homeomorphism

σ
(k,n)
T : UT −→ UT

is defined by

σ
(k,n)
T ((αi,j)(i,j)∈Z2) = (αi+k,j+n)(i,j)∈Z2 for (αi,j)(i,j)∈Z2 ∈ UT .

The dynamical system

(UT ,σ(k,n)T )

is called the (k, n)-textile shift on λ-graph systems.
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LEMMA 4.7.

(i) If TKM
N
is 1-1 and surjective, then ΘT : UT → ΛM is a homeomorphism

such that ΘT ◦ σ(0,n)T = σnM ◦ΘT .
(ii) If TKM

N
∗ is 1-1 and surjective, then Θ∗T : UT → ΛN is a homeomorphism

such that Θ∗T ◦ σ
(k,0)
T = σkN ◦Θ∗T .

Proof. (i) If TKM
N
is 1-1 and surjective, then ΘT : UT → ΛM is one-to-one and

surjective so that it is a homeomorphism. (ii) The assertion is symmetric to (i).

PROPOSITION 4.8. If TKM
N
is 1-1 and surjective, then (ΛM,ϕkT σ

n
M) is conju-

gate to (UT ,σ(k,n)T ) for all k, n ∈ Z.

Proof. We note that ϕkT ((Jlower(α0,j))j∈Z) = (Jlower(αk,j))j∈Z) for (αk,j)(k,j)∈Z2
∈ UT . Since TKM

N
is 1-1 and surjective, the map ΘT : UT → ΛM is a homeo-

morphism that gives rise to a conjugacy between (ΛM,ϕkT σ
n
M) and (UT ,σ

(k,n)
T ).

Now we reach the following theorem.

THEOREM 4.9. Suppose that TKM
N
and TKM

N
∗ are both 1-1 and surjective. Then

there exists a homeomorphism

χT : ΛM → ΛN

such that the diagrams

ΛM
ϕT−−−−→ ΛM⏐⏐yχT ⏐⏐yχT

ΛN
σN−−−−→ ΛN ,

ΛM
σM−−−−→ ΛM⏐⏐yχT ⏐⏐yχT

ΛN
ϕT ∗−−−−→ ΛN

are both commutative.

Proof. We set

χT = Θ
∗
T ◦ΘT −1 : ΛM → ΛN .

It satisfies

χT ◦ ϕT = σN ◦ χT , χT ◦ σM = ϕT ∗ ◦ χT .
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There are various metrics on ΛM by which the product topology on ΛM is

given. Any such metric makes the homeomorphism σM on ΛM expansive. We

may fix the previously defined metric on ΛM. By the metric, σM has 1 as its

expansive constant. Theorem 4.9 is generalized as follows:

THEOREM 4.10 (cf. [19; Theorem 4.1]). Assume that TKM
N
is 1-1 and surjec-

tive.

(i) If ϕT is expansive and its expansive constant c satisfies c ≥ 1
k for some

k ∈ N, then TKM
N
[2k]∗ is 1-1. Hence if there is no n ∈ N such that TKM

N
[n]∗

is 1-1, then ϕT : ΛM → ΛM is not expansive.

(ii) If there is n ∈ N such that (TKM
N
[n])
∗
is 1-1 and surjective, then one has

topological conjugacies:

(ΛM,ϕT ) ' (ΛN [n]
T
,σN [n]

T
), (ΛN [n]

T
,ϕT [n]∗) ' (ΛM,σM),

where N [n]
T is the n-higher block of LN relative to TKM

N
. Hence the topolog-

ical dynamical system (ΛM,ϕT ) is realized as the subshift (ΛN [n]
T
,σN [n]

T
). If

in particular ϕT is expansive and its expansive constant c satisfies c ≥ 1
k

for some k ∈ N and TKM
N
[2k]∗ is surjective, then the topological dynamical

system (ΛM,ϕT ) is topologically conjugate to the subshift (ΛN [2k]
T
,σN [2k]

T
)

presented by the λ-graph system LN
[2k]
T .

Proof. The proofs below are essentially similar to the proofs of [19, Theorem

4.1]. We will give the proofs for the sake of completeness. (i) Assume that ϕT is
expansive and its expansive constant c satisfies c ≥ 1

k for some k ∈ N. Suppose
that TKM

N
[2k]∗ is not 1-1. There are distinct textile labels s = (βi,j)(i,j)∈Z2 and

s0 = (β0i,j)(i,j)∈Z2 in UT such that βi,j = β0i,j for i ∈ Z,−(k − 1) ≤ j ≤ k − 1.
Now TKM

N
is 1-1, by putting y = (yj)j∈Z = ΘT (s), y0 = (y0j)j∈Z = ΘT (s0), we

have y 6= y0 ∈ ΛM. Since one has yj = y0j for −(k− 1) ≤ j ≤ k− 1, one sees that
ϕiT (y)j = ϕiT (y

0)j for i ∈ Z and −(k − 1) ≤ j ≤ k − 1. Hence we have

d(ϕiT (y),ϕ
i
T (y

0)) <
1

k

for all i ∈ Z, a contradiction.
(ii) Since (ΛM[n] ,ϕT [n]) is topologically conjugate to (ΛM,ϕT ) and

(ΛM[n] ,σM[n]) is topologically conjugate to (ΛM,σM), The assetion holds from
Theorem 4.9.

Following Nasu’s consideration as in [19, Section 2], we will define bias shifts

on textile λ-graph systems. For a symbolic matrix system (M, I), we set for
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k ∈ N

Ml,l+k =Ml,l+1 · · ·Ml,l+k, Il,l+k = Il,l+1 · · · Il,l+k, l ∈ Z+.

Let (M, IM) and (N , IN ) form squares. Then for k, n ∈ Z+, we set

(N kMn)l,l+1 = Nl(k+n),(l+1)k+lnM(l+1)k+ln,(l+1)(k+n),

(IN
kMn

)l,l+1 = I
N
l(k+n),(l+1)k+lnI

M
(l+1)k+ln,(l+1)(k+n), l ∈ Z+.

As INl,l+1 = IMl,l+1, one sees that (N kMn, IN
kMn

) becomes a symbolic ma-

trix system over (ΣN )
k
(ΣM)

n
. Similarly we have a symbolic matrix system

(MnN k, IM
nNk

) over (ΣM)
n
(ΣN )

k
. For α = (αi,j)(i,j)∈Z2 ∈ UT , we set

(č(k,n)(α)(ik,in)) = bik,inbik+1,in · · · bik+k−1,inaik+k,inaik+k,in+1 · · · aik+k,in+n−1
(ĉ(k,n)(α)(ik,in)) = aik,inaik,in+1 · · · aik,in+n−1bik,ik+inbik+1,ik+in · · · bik+k−1,ik+n
where ai,j = Jupper(αi,j), bi,j = Jleft(αi,j). Define

Θ̌
(k,n)
T : UT → ΛNkMn , Θ̂

(k,n)
T : UT → ΛMnNk

by setting

Θ̌
(k,n)
T (α) = (č(k,n)(α)(ik,in))i∈Z ∈ ΛNkMn ,

Θ̂
(k,n)
T (α) = (ĉ(k,n)(α)(ik,in))i∈Z ∈ ΛMnNk .

We set

Ǔ (k,n)T = Θ̌
(k,n)
T (UT ), Û (k,n)T = Θ̂

(k,n)
T (UT ),

σ̌
(k,n)
T ((č(k,n)(α)(ik,in))i∈Z) = (č

(k,n)(α)((i+1)k,(i+1)n))i∈Z,

σ̂
(k,n)
T ((ĉ(k,n)(α)(ik,in))i∈Z) = (ĉ

(k,n)(α)((i+1)k,(i+1)n))i∈Z.

We have subshifts

(Ǔ (k,n)T , σ̌
(k,n)
T ) and (Û (k,n)T , σ̂

(k,n)
T )

over (ΣN )
k
(ΣM)

n
and over (ΣM)

n
(ΣN )

k
respectively.

LEMMA 4.11. (Ǔ (k,n)T , σ̌
(k,n)
T ) is topologically conjugate to (Û (k,n)T , σ̂

(k,n)
T ).

Proof. Define ψ : Û (k,n)T → Ǔ (k,n)T by setting

ψ(Θ̂
(k,n)
T (α)) = Θ̌

(k,n)
T (σ

(0,n)
T (α))

for α ∈ UT . It is direct to see that ψ is a topological conjugacy between

(Ǔ (k,n)T , σ̌
(k,n)
T ) and (Û (k,n)T , σ̂

(k,n)
T ).
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We call the subshift (Ǔ (k,n)T , σ̌
(k,n)
T ) the (k, n)-bias shift defined by TKM

N
.

5. LR textile systems on λ-graph systems

In this section, we formulate LR textile λ-graph systems, that are general-

ization of sofic LR textile systems defined by Nasu [19].

PROPOSITION 5.1. Assume that λ-graph systems LM and LN form squares.

If there exists a specification κ between ΣMΣN and ΣNΣM that gives specified

equivalences

Ml,l+1Nl+1,l+2
κ' Nl,l+1Ml+1,l+2, l ∈ Z+, (5.1)

then there exists a λ-graph system LK and a textile λ-graph system TKM
N
= (p, q :

LK → LM).

Proof. We identify the vertex sets VMl and V Nl for l ∈ Z+. Put

V Kl =ENl,l+1,

EKl,l+1 ={(f 0, f, e, e0) ∈ ENl,l+1 × ENl+1,l+2 × EMl,l+1 × EMl+1,l+2 |
sM(e) = sN (f 0), tM(e) = sN (f), tN (f 0) = sM(e0),

tM(e0) = tN (f),κ(λM(e)λN (f)) = λN (f 0)λM(e0)}, l ∈ Z+

and

V K = ∪l∈Z+V Kl , EK = ∪l∈Z+EKl,l+1.
Each element (f 0, f, e, e0) ∈ EKl,l+1 is visualized as a square:

· e−−−−→ ·⏐⏐yf 0 ⏐⏐yf .

· e0−−−−→ ·

We define sK : EKl,l+1 → V Kl , t
K : EKl,l+1 → V Kl+1 by setting

sK(f 0, f, e, e0) = f 0, tK(f 0, f, e, e0) = f for (f 0, f, e, e0) ∈ EKl,l+1,

and ιKl,l+1 : V
K
l+1 → V Kl by setting ιKl,l+1 = ϕNl+1. We put

ΣK = {(λN (f 0),λN (f),λM(e),λM(e0)) ∈ ΣN × ΣN × ΣM × ΣM |
(f 0, f, e, e0) ∈ EKl,l+1, l ∈ Z+}
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and

λK : EK 3 (f 0, f, e, e0) −→ ΣK 3 (λN (f 0),λN (f),λM(e),λM(e0)).

Then we will show that LK = (V K, EK,λK, ιK) is a λ-graph system over ΣK.
For u ∈ V Kl−1, v ∈ V Kl+1, put w = ιKl,l+1(v). One sees

(EK)l−1,l
ιK (u, v) = {(u,w, e, e0) ∈ EKl−1,l | e ∈ EMl−1,l, e0 ∈ EMl,l+1}.

As w ∈ V Kl = ENl,l+1 is fixed, if we choose e ∈ EMl−1,l such that (u,w, e, e0) ∈
(EK)l−1,l

ιK (u, v) for some e0, the label λM(e)λN (w) ∈ ΣMΣN determines the

labels λN (u) and λM(e0) of u and e0 through the specification κ. Since the label
λM(e0) and the terminal tM(e0) = tN (w) are determined, the edge e0 is uniquely
determined because LM is left-resolving. Hence under fixing both u ∈ V Kl−1
and v ∈ V Kl+1, the edge e0 ∈ EMl,l+1 is uniquely determined by e ∈ EMl−1,l, so
that (EK)l−1,l

ιK (u, v) is identified with {e ∈ EMl−1,l | sM(e) = sN (u), tM(e) =
sN (w)}. Now ιN = ιM so that sN (w) = ιNl,l+1(s

N (v)) = ιMl,l+1(s
N (v)). Hence

(EK)l−1,l
ιK (u, v) is identified with (EM)l−1,l

ιM (sN (u), sN (v)). On the other hand,
one sees

(EK)ι
K
l,l+1(u, v) = {(w0, v, g, g0) ∈ EKl,l+1 | ιKl−1,l(w0) = u}.

Similarly to the discussion of (EK)l−1,l
ιK (u, v), if we choose g ∈ EMl,l+1 such that

(w0, v, g, g0) ∈ (EK)ιKl,l+l(u, v) for some g0, the label λM(g)λN (v) ∈ ΣMΣN de-

termines the labels λN (w0) and λM(g0) of w0 and g0 through the specification κ.
Since the label λM(g0) and the terminal tM(g0) = tN (v) are determined, the edge
g0 is uniquely determined because LM is left-resolving, so that the source vertex

sM(g0) ∈ VMl+1 of g0 is determined. Since tN (w0) = sM(g0), the edge w0 ∈ ENl,l+1
is uniquely determined. Hence under fixing the vertices u ∈ V Kl−1, v ∈ V Kl+1, both
the edges g0 ∈ EMl+1,l+2 and w0 ∈ ENl,l+1 are uniquely determined by g ∈ EMl,l+1.
Now one has sM(g) = sN (w0),ϕNl+1(w

0) = u so that

ιMl−1,l(s
N (w0)) = ιNl−1,l(s

N (w0)) = sN (u) ∈ VMl−1 = V Nl−1.

It then follows that (EK)ι
K
l,l+1(u, v) is identified with {g ∈ EMl,l+1 | ιMl−1,l(sM(g)) =

sN (u), tM(g) = sN (v)}, that is (EM)ιMl,l+1(sN (u), sN (v)). By the local property
of LM, one has a label preserving bijection between

(EM)ι
M
l,l+1(s

N (u), sN (v)) and (EM)l−1,l
ιM (sN (u), sN (v))

that yields a a label preserving bijection between

(EK)ι
K
l,l+1(u, v) and (EK)l−1,l

ιK (u, v).
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This means that LK = (V K, EK,λK, ιK) is a λ-graph system over ΣK.
Define a homomorphism p : LK −→ LM and a one-shift homomorphism

q : LK −→ LM by setting

pE : (f 0, f, e, e0) ∈ EKl,l+1 −→ e ∈ EMl,l+1,
pV : f ∈ V Kl = ENl,l+1 −→ sN (f) ∈ V Nl ,

pΣ : (λN (f 0),λN (f),λM(e),λM(e0)) ∈ ΣK −→ λM(e) ∈ ΣM

and

qE : (f 0, f, e, e0) ∈ EKl,l+1 −→ e0 ∈ EMl+1,l+2,
qV : f 0 ∈ V Kl = ENl,l+1 −→ tN (f 0) ∈ V Nl+1,

qΣ : (λN (f 0),λN (f),λM(e),λM(e0)) ∈ ΣK −→ λM(e0) ∈ ΣM

respectively. Since for α = (f 0, f, e, e0) ∈ EKl,l+1, one has

(sK(α), tK(α), pE(α), qE(α)) = (f 0, f, e, e0)

the square (sK(α), tK(α), pE(α), qE(α)) determines α, and the quadruple

(λN (sK(α)),λN (tK(α)),λM(pE(α)),λM(qE(α)))

determines λK(α). Hence one has a textile λ-graph system TKM
N
= (p, q : LK →

LM) through the specified equivalences (5.1).

We call this textile λ-graph system an LR textile λ-graph system, following

Nasu’s terminology for sofic textile systems ([19]).

LEMMA 5.2 (cf. [19; Fact.6.14]). An LR textile λ-graph system TKM
N
is nonde-

generate.

Proof. Let TKM
N
be an LR textile λ-graph system defined by (5.1). Keep the

notation as in the previous proposition. We will prove that pX : XLK −→ XLM

is surjective. We set for l ∈ Z+, n ∈ N

EMl,l+n ={(e1, . . . , en) ∈ EMl,l+1 × EMl+1,l+2 × · · · × EMl+n−1,l+n |
tM(ei) = s

M(ei+1), i = 1, 2, . . . , n− 1}

and similarly EKl,l+n. SinceXLK is compact, it suffices to show that for(e1, . . . , en)
∈ EMl,l+n there exists (g1, . . . , gn) ∈ EKl,l+n such that pX(gi) = ei, i = 1, 2, . . . , n.
Take fn ∈ ENl+n,l+n+1 such that tM(en) = sN (fn). Since TKM

N
is LR, there

uniquely exists fn−1 ∈ ENl+n−1,l+n and e0n ∈ EMl+n,l+n+1 such that the quadruple
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(fn−1, fn, en, e0n) denoted by gn gives rise to an element of EKl+n−1,l+n. One may
inductively find fk ∈ ENl+k,l+k+1, e0k ∈ EMl+k,l+k+1 for k = 1, 2, . . . , n and f0 ∈
ENl,l+1 such that the quadruple (fk−1, fk, ek, e

0
k) denoted by gk gives rise to an

element of EKl+k−1,l+k for k = 1, 2, . . . , n. They satisfy (g1, . . . , gn) ∈ EKl+1,l+n+1
and pX(gi) = ei, i = 1, 2, . . . , n. One also sees that qX : XLK −→ XLM0 is

surjective in a smilar way.

PROPOSITION 5.3. Let TKM
N
be an LR textile λ-graph system. For k, n ≥ 1,

we have

(Ǔ (k,n)T , σ̌
(k,n)
T ) = (ΛNkMn ,σNkMn), (Û (k,n)T , σ̂

(k,n)
T ) = (ΛMnNk ,σMnNk).

Proof. We will prove that the map Θ̌
(k,n)
T : UT → ΛNkMn is surjective so that the

first equality holds. Take an arbitrary sequence (ai)i∈Z ∈ ΛNkMn . Since TKM
N

is LR, there exists a two dimensional configuration (αi,j)(i,j)∈Z2 ∈
Q
(i,j)∈Z2 Σ

K

such that by putting

αhi = (αi,j)j∈Z, αvj = (αi,j)i∈Z

αhi belongs to ΛK for all i ∈ Z and αvj belongs to ΛK∗ for all j ∈ Z, that satisfy

ξ(αhi ) = η(αhi−1) for i ∈ Z, ξ∗(αvj ) = η∗(αvj−1) for j ∈ Z,

and

ai = (p
∗(αki,ni), . . . , p

∗(α(k+1)i−1,ni), q(α(k+1)i−1,ni), . . . , q(α(k+1)i−1,(n+1)i−1))

for i ∈ Z. For m ∈ N and ((k+1)m− 1, (n+1)m− 1) ∈ 4, we may take an edge

(eki,ni, . . . , e(k+1)i−1,ni, e(k+1)i−1,ni, . . . , e(k+1)i−1,(n+1)i−1) (5.2)

that belongs to

EKki+ni,ki+ni+1 × · · · × EK(k+1)i+ni−1,(k+1)i+ni × EK(k+1)i+ni−1,(k+1)i+ni ×
· · · × EK(k+1)i+(n+1)i−2,(k+1)i+(n+1)i−1, i = 0, 1, . . . ,m

such that

(λK(eki,ni), . . . ,λ
K(e(k+1)i−1,ni),λ

K(e(k+1)i−1,ni), . . . ,λ
K(e(k+1)i−1,(n+1)i−1))

=(αki,ni, . . . ,α(k+1)i−1,ni,α(k+1)i−1,ni, . . . ,α(k+1)i−1,(n+1)i−1), i = 0, 1, . . . ,m.

Since LK and LK
∗
are both left-resolving, edges of LK located in

4((k+1)m−1,(n+1)m−1) are uniquely determined by the edges (5.2) and the labels
(αi,j)(i,j)∈4((k+1)m−1,(n+1)m−1)

. Hence we know that

(αi,j)(i,j)∈4((k+1)m−1,(n+1)m−1)
∈ ULK(TKM

N
,4((k+1)m−1,(n+1)m−1)).
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Since m is arbitrary, we have (αi,j)(i,j)∈4 ∈ ULK . By applying the above discus-
sion to the sequences (ai−K)i∈Z ∈ ΛNkMn forK ∈ Z, one has that (αi,j)(i,j)∈4 ∈
U∞
LK , and (αi−K,j)(i,j)∈4 ∈ U∞LK and (αi,j−K)(i,j)∈4 ∈ U∞LK for K ∈ Z. Thus
we have (αi,j)(i,j)∈Z2 ∈ UT and Θ̌

(k,n)
T ((αi,j)(i,j)∈Z2) = (ai)i∈Z. Therefore we

conclude that

Ǔ (k,n)T = ΛNkMn and σ̌
(k,n)
T = σNkMn .

The other equality is similarly proved.

PROPOSITION 5.4 (cf. [19; Lemma 6.2]). Let TKM
N
be an LR textile λ-graph

system. Then for k, n ≥ 1 the map Θ̌(k,n)T : UT → Ǔ (k,n)T is injective. Hence it

gives rise to a topological conjugacy between (UT ,σ(k,n)T ) and (Ǔ (k,n)T , σ̌
(k,n)
T ). Sim-

ilarly we have a topological conjugacy between (UT ,σ(k,n)T ) and (Û (k,n)T , σ̂
(k,n)
T ).

Proof. By a similar way to the proof of [19, Lemma 6.2], we can show that for

(ai)i∈Z ∈ Ǔ
(k,n)
T there uniquely exists (αi,j)(i,j)∈Z2 ∈ UT such that

Θ̌
(k,n)
T ((αi,j)(i,j)∈Z2) = (ai)i∈Z.

We note that if TKM
N
is LR, then TKM

N
∗ is LR. We provide the following

lemma.

LEMMA 5.5. A 1-1 LR textile λ-graph system is surjective.

Proof. Let TKM
N
be a 1-1 LR textile λ-graph system. Since TKM

N
∗ is LR, the both

TKM
N
and TKM

N
∗ are nondegenerate. We will prove that the map

ΦT : UT → ΛK

is surjective. For (aj)j∈Z ∈ ΛK, take (ej)j∈Z+ ∈ XLK = {(ej)j∈Z+ | ej ∈
EKj,j+1, t(ej) = s(ej+1), j ∈ Z+} such that aj = λK(ej), j ∈ Z+. Recall 4 =

{(i, j) ∈ Z2 | i+ j ≥ 0}. We set
4r,u = {(i, j) ∈ 4 | i ≤ 0, 0 ≤ j},
4l,d = {(i, j) ∈ 4 | 1 ≤ i, j ≤ −1},
¤r,d = {(i, j) ∈ 4 | 1 ≤ i, 0 ≤ j}.

Now TKM
N
is 1-1 so that there uniquely exists αi,j ∈ ΣK for (i, j) ∈ Z2 such that

by putting αi = (αi,j)j∈Z one has αi ∈ ΛK, α0 = (aj)j∈Z and η(αi) = ξ(αi+1)

for i ∈ Z. Take an arbitrary (n, k) ∈ 4. We set
4r,u(k) = {(i, j) ∈ 4r,u | j ≤ k},
4l,d(n) = {(i, j) ∈ 4l,d | i ≤ n},

¤r,d(n, k) = {(i, j) ∈ ¤r,d | i ≤ n, j ≤ k}.
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Take fk(i) ∈ ENi+k+1,i+k+2, i = 1, 2, . . . , n such that there exist ei,j ∈ EKi+j,i+j+1
for (i, j) ∈ ¤r,d(n, k) ∪4l,d(n) satisfying

(ei,j)(i,j)∈¤r,d(n,k)∪4l,d(n)
∈ X(TKM

N
;¤r,d(n, k) ∪4l,d(n)),

pE(e1,j) =q
E(ej) for j = 1, 2, . . . , k,

t(ei,k) =fk(i) for i = 1, 2, . . . , n,

αi,j =λ
K(ei,j) for (i, j) ∈ ¤r,d(n, k) ∪4l,d(n)).

As LK is left-resolving, such edges ei,j ∈ EKi+j,i+j+1 for (i, j) ∈ ¤r,d(n, k) ∪
4l,d(n) are unique for fk(i) ∈ ENi+k+1,i+k+2, i = 1, 2, . . . , n. We set e0,j = ej for
j = 0, 1, . . . , k. Since LK

∗
is left-resolving, the vertices pE(ej), j = 0, 1, . . . k of

LK
∗
and labels (αi,j)(i,j)∈4r,u(k)

uniquely determine edges ei,j ∈ EKi+j,i+j+1 for
(i, j) ∈ 4r,u(k) such that t

K∗(e1,j) = sK
∗
(ej), j = 1, . . . , k and λK(ei,j) = αi,j

for (i, j) ∈ 4r,u(k). Hence we have

(ei,j)(i,j)∈4r,u(k)
∈ X(TKM

N
;4r,u(k)) and hence (ei,j)(i,j)∈4 ∈ X(TKM

N
;4)

so that

(αi,j)(i,j)∈4(n,k) ∈ ULK(4(n, k))
By Proposition 4.3, the configuration (αi,j)(i,j)∈4 belongs to ULK . By applying
this argument to the configurations (ai+k,j)(i,j)∈Z2 and (ai,j+k)(i,j)∈Z2 for k ∈ Z,
we know that (αi,j)(i,j)∈4 belongs to U∞LK and to UT . Since ΦT ((αi,j)(i,j)∈Z2) =
(aj)j∈Z, the map ΦT : UT → ΛK is surjective.

Therefore we obtain

THEOREM 5.6. Let TKM
N
be a 1-1 LR textile λ-graph system defined by a spec-

ified equivalence:

Ml,l+1Nl+1,l+2
κ' Nl,l+1Ml+1,l+2, l ∈ Z+.

Then the dynamical system (ΛM,ϕkT σ
n
M), k ≥ 0, n ≥ 1 is topologically conju-

gate to the subshift (ΛNkMn ,σNkMn) presented by the symbolic matrix system

(N kMn, IN
kMn

), defined by

(N kMn)l,l+1 =Nl(k+n),l(k+n)+1 · · · Nl(k+n)+n−1,l(k+n)+n ·
· Ml(k+n)+n,l(k+n)+n+1 · · ·M(l+1)(k+n)−1,(l+1)(k+n),

IN
kMn

l,l+1 =I
N
l(k+n),l(k+n)+1 · · · INl(k+n)+n−1,l(k+n)+n ·
· IMl(k+n)+n,l(k+n)+n+1 · · · IM(l+1)(k+n)−1,(l+1)(k+n), l ∈ Z+.



30 K. MATSUMOTO

Proof. Since TKM
N
is nondegenerate, for the case when k = 0 the assertion is clear.

We may assume that k ≥ 1. Since TKM
N
is 1-1 and LR, it is surjective by Lemma

5.4 so that (ΛM,ϕkT σ
n
M) is conjugate to (UT ,σ

(k,n)
T ) by Proposition 4.8. As TKM

N

is LR and k, n ≥ 1, one has that (UT ,σ(k,n)T ) is conjugate to (Ǔ (k,n)T , σ̌
(k,n)
T ) by

Proposition 5.4. Hence by Proposition 5.3, we obtain the assertion.

6. LR textile systems and properly strong shift equivalences

Let (M, I) and (M0, I 0) be symbolic matrix systems over Σ and Σ0 respec-
tively.

DEFINITION ([15]). (M, I) and (M0, I 0) are said to be properly strong shift
equivalent in 1-step if there exist alphabets C,D and specifications κ : Σ→ CD,

κ0 : Σ0 → DC and increasing sequences n(l), n0(l) on l ∈ Z+ such that for each
l ∈ Z+, there exist an n(l)×n0(l+1) matrix Pl over C, an n0(l)×n(l+1) matrix
Ql over D, an n(l)×n(l+1) matrix Xl over {0, 1} and an n0(l)×n0(l+1) matrix
Yl over {0, 1} satisfying the following equations:

Ml,l+1
κ'P2lQ2l+1, M0

l,l+1

κ0' Q2lP2l+1,
Il,l+1 =X2lX2l+1, I 0l,l+1 = Y2lY2l+1

and

XlPl+1 = PlYl+1, YlQl+1 = QlXl+1.
We write this situation as (P,Q, X, Y ) : (M, I) ≈

1−pr
(M0, I 0).

We in particular consider the case when (M0, I 0) = (M, I).

LEMMA 6.1. Suppose that (P,Q, X, Y ) : (M, I) ≈
1−pr

(M, I). Put

Pl,l+1 = P2lY2l+1(= X2lP2l+1), IPl,l+1 = Il,l+1,

Ql,l+1 = Q2lX2l+1(= Y2lQ2l+1), IQl,l+1 = Il,l+1, l ∈ Z+.
Then we have

(i) (P, IP) = (Pl,l+1, IPl,l+1)l∈Z+ and (Q, I
Q) = (Ql,l+1, IQl,l+1)l∈Z+ are symbolic

matrix systems over C and D respectively.

(ii) The pair LM and LP , and the pair LM and LQ both form squares such that

Ml,l+1Pl+1,l+2
κP'Pl,l+1Ml+1,l+2, l ∈ Z+, (6.1)

Ml,l+1Ql+1,l+2
κQ'Ql,l+1Ml+1,l+2, l ∈ Z+ (6.2)
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for some specifications κP : ΣC −→ CΣ and κQ : ΣD −→ DΣ.

Proof. We will prove the assertions for (P , IP). The assertions for the other one
are symmetric.

(i) The equality Pl,l+1IPl+1,l+2 = IPl,l+1Pl+1,l+2 is easily shown. Hence (P, IP)
= (Pl,l+1, IPl,l+1)l∈Z+ is a symbolic matrix system over C.

(ii) One has

Ml,l+1Pl+1,l+2
κ' P2lQ2l+1X2l+2P2l+3

= P2lY2l+1Q2l+2P2l+3
κ0−1' Pl,l+1Ml+1,l+2.

For α ∈ Σ, c ∈ C, by putting κP(αc) = cακ0−1(dαc) where κ(α) = cαdα ∈ CD,
the specification κP : ΣC −→ CΣ yields the desired specified equivalence (6.1).

By this lemma with Proposition 5.1, the relations (6.1) and (6.2) yield LR

textile λ-graph systems TKM
P
and TKM

Q
respectively.

LEMMA 6.2. Suppose that (P,Q, X, Y ) : (M, I) ≈
1−pr

(M, I). Keep the nota-

tions as in the preceding lemma. The LR textile λ-graph systems TKM
P
and TKM

Q
are both 1-1 and hence surjective.

Proof. We will prove that TKM
P
is 1-1. The LR textile system defined by the

specified equivalence (6.1) comes from the specified equivalence

P2lQ2l+1 · P2l+2Y2l+3
κP' P2lY2l+1 · Q2l+2P2l+3. (6.3)

Let (βl)l∈Z ∈ ΛLK be such that ξ((βl)l∈Z) = (αl)l∈Z. We put κ(αl) = cldl ∈ CD
for l ∈ Z. By (6.3) βl is uniquely determined by the square:

· cl−−−−→ · dl−−−−→ ·⏐⏐ycl ⏐⏐ycl+1
· dl−−−−→ · cl+1−−−−→ ·

Namely, βl is uniquely determined by the quadruple (cl, cl+1, cldl, dlcl+1) ∈ ΣK,
that are determined by the sequence (cldl)l∈Z. Hence the code ξ : ΛK −→ ΛM is

one-to-one. We similarly see that η : ΛK −→ ΛM is one-to-one. Hence by Lemma

5.5, TKM
P
is surjective. We symmetrically see that TKM

Q
is 1-1 and surjective.

Following Nasu’s notation [18],[19], an automorphism φ of a subshift Λ over

Σ is called a forward bipartite automorphism if there exist alphabets C,D and
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specifications κ : Σ→ CD,κ0 : Σ→ DC such that φ is given by

φ((αl)l∈Z) = (α
0
l)l∈Z, (αl)l∈Z ∈ Λ

where κ(αl) = cldl for some cl ∈ C and dl ∈ D, l ∈ Z and α0l = κ0−1(dlcl+1) ∈ Σ.
Hence a properly strong shift equivalence (P,Q, X, Y ) : (M, I) ≈

1−pr
(M, I) in

1-step yields a forward bipartite automorphism on the subshift presented by

(M, I).

LEMMA 6.3. Let (Λ,σ) be a subshift presented by (M, I). Let φ be a forward

bipartite automorphism on (Λ,σ) defined by a properly strong shift equivalence

(P,Q, X, Y ) : (M, I) ≈
1−pr

(M, I) in 1-step. Let T P and T Q be the LR textile λ-
graph systems TKM

P
and TKM

Q
defined by the relations (6.1) and (6.2) respectively.

Then we have

ϕT P = φ, ϕT Q = φ−1 ◦ σ
as automorphisms on Λ = ΛM.

Proof. We will prove that φ = ϕT P . For (αl)l∈Z ∈ Λ, put cldl = κ(αl) ∈
CD, l ∈ Z. By setting α0l = κ0−1(dlcl+1) ∈ Σ, one has φ((αl)l∈Z) = (α0l)l∈Z. Put
βl = (cl, cl+1,κ

−1(cldl),κ0
−1
(dlcl+1)) ∈ ΣK, l ∈ Z so that one has (βl)l∈Z ∈ ΛK

and

ξ((βl)l∈Z) = (κ
−1(cldl))l∈Z, η((βl)l∈Z) = (κ

0−1(dlcl+1))l∈Z.

It then follows that

φ((αl)l∈Z) = (α
0
l)l∈Z = (κ

0−1(dlcl+1))l∈Z = η((βl)l∈Z) = η ◦ ξ−1((αl)l∈Z).
The equality ϕT Q = φ−1 ◦ σ is similarly shown.

We assume that the previously defined metric is equipped with Λ. Then the

homeomorphism σ has 1 as its expansive constant. Therefore we have

THEOREM 6.4. Let (Λ,σ) be a subshift presented by a symbolic matrix system

(M, I). Let φ be a forward bipartite automorphism on (Λ,σ) defined by a properly

strong shift equivalence (P,Q, X, Y ) : (M, I) ≈
1−pr

(M, I) in 1-step. If φ is

expansive with 1
k as its expansive constant for some k ∈ N, the dynamical system

(Λ,φ) is topologically conjugate to the subshift (ΛP[2k]
T
,σP [2k]

T
) presented by the

symbolic matrix system (P [2k]T , IP
[2k]
T ) where (P [2k]T , IP

[2k]
T ) is the 2k-higher block

of the symbolic matrix system (P, IP) relative to the LR textile λ-graph system
TKM

P
defined by the specified equivalence

Ml,l+1Pl+1,l+2
κP' Pl,l+1Ml+1,l+2, l ∈ Z+,
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where

Pl,l+1 = P2lY2l+1(= X2lP2l+1), IPl,l+1 = Il,l+1, l ∈ Z+.

Proof. Consider the LR textile λ-graph system T P = TKM
P
defined by (6.1), that

is 1-1 and surjective by Lemma 6.2. Lemma 6.3 says that ϕT P = φ on Λ. By

the assumption on φ and Theorem 4.10 (i), TKM
P
[2k]∗ is 1-1. Since TKM

P
is LR,

TKM
P
[2k] and hence TKM

P
[2k]∗ are both LR and nondegenerate. By Lemma 5.5,

TKM
P
[2k]∗ is surjective. By Theorem 4.10 (ii), the topological dynamical system

(Λ,ϕT P ) is realized as the subshift (ΛP [2k]
T
,σP[2k]

T
). Hence one concludes that the

dynamical system (Λ,φ) is topologically conjugate to the subshift (ΛP [2k]
T
,σP[2k]

T
).

We also have

THEOREM 6.5. Let (Λ,σ) be a subshift presented by a symbolic matrix sys-

tem (M, I). Let φ be a forward bipartite automorphism on (Λ,σ) defined by

a properly strong shift equivalence (P,Q,X, Y ) : (M, I) ≈
1−pr

(M, I) in 1-step.

Then the dynamical system (Λ,φkσn) is topologically conjugate to the subshift

(ΛPkMn ,σPkMn) presented by the symbolic matrix system (PkMn, IP
kMn

) for

k ≥ 0, n ≥ 1 defined by

(PkMn)l,l+1 =Pl(k+n),l(k+n)+1 · · · Pl(k+n)+n−1,l(k+n)+n ·
· Ml(k+n)+n,l(k+n)+n+1 · · ·M(l+1)(k+n)−1,(l+1)(k+n),

Ik+nl,l+1 =Il(k+n),l(k+n)+1 · · · I(l+1)(k+n)−1,(l+1)(k+n), l ∈ Z+

where Pl,l+1 = P2lY2l+1(= X2lP2l+1) for l ∈ Z+. And also (Λ, (σφ−1)kσn) is
topologically conjugate to the subshift (ΛQkMn ,σQkMn) presented by the similarly

defined symbolic matrix system (QkMn, IQ
kMn

) for k ≥ 0, n ≥ 1,

Proof. By Lemma 6.2, the LR textile λ-graph system TKM
P
is 1-1 and surjective.

Hence by Theorem 5.6, the dynamical system (Λ,ϕkT σ
n), k ≥ 0, n ≥ 1 is topo-

logically conjugate to the subshift (ΛNkMn ,σNkMn) presented by the symbolic

matrix system (N kMn, IN
kMn

). Now TKM
P
is LR so that it is nondegenerate.

By Lemma 6.3 one sees that ϕT P = φ so that the dynamical system (Λ,φkT σ
n) is

topologically conjugate to the subshift (ΛNkMn ,σNkMn). It is similarly shown

that (Λ, (σφ−1)
k
σn) is topologically conjugate to the subshift (ΛQkMn ,σQkMn)

for k ≥ 0, n ≥ 1.
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7. Subshift-identifications of automorphisms of subshifts

Two symbolic matrix systems (M, I) and (M0, I 0) are said to be properly
strong shift equivalent if there exists a finite sequence

(M(1), I(1)), ldots, (M(N−1), I(N−1)) of symbolic matrix systems such that

(M, I) ≈
1−pr

(M(1), I(1)) ≈
1−pr

· · · ≈
1−pr

(M(N−1), I(N−1)) ≈
1−pr

(M0, I 0).

In [15], the following theorem has been proved:

THEOREM 7.1 ([15]). If two symbolic matrix systems (M, I) and (M0, I 0) are
properly strong shift equivalent, then their respect presented subshifts ΛM and

ΛM0 are topologically conjugate. Furthermore, two subshifts Λ and Λ0 are topo-
logically conjugate if and only if their canonical symbolic matrix systems (MΛ, IΛ)

and (MΛ0, IΛ
0
) are properly strong shift equivalent.

In particular, an automorphism of a subshift Λ is given by a properly strong

shift equivalence from a symbolic matrix system that presents the subshift to

itself. Let (M, I) be a symbolic matrix system over Σ. Let us consider a

properly strong shift equivalence from (M, I) to itself. Hence we consider sym-

bolic matrix systems (M(k), I(k)) over Σ(k), k = 0, 1, . . . , N, where (M(0), I(0)) =

(M(N), I(N)) = (M, I) and Σ(0) = Σ(N) = Σ such that there exist alphabets

C(k), D(k) and specifications κ
(k)
0 : Σ(k−1) → C(k)D(k), κ

(k)
1 : Σ(k) → D(k)C(k)

and increasing sequences n
(k)
0 (l), n

(k)
1 (l) on l ∈ Z+ such that for each l ∈ Z+,

there exist an n
(k)
0 (l)× n(k)1 (l+1) matrix P(k)l over C(k), an n

(k)
1 (l)× n(k)0 (l+1)

matrix Q(k)l over D(k), an n
(k)
0 (l) × n(k)0 (l + 1) matrix X

(k)
l over {0, 1} and an

n
(k)
1 (l)× n(k)1 (l + 1) matrix Y

(k)
l over {0, 1} satisfying the following equations:⎧⎪⎪⎨⎪⎪⎩

M(k−1)
l,l+1

κ
(k)
0' P(k)2l Q

(k)
2l+1, M(k)

l,l+1

κ
(k)
1' Q(k)2l P

(k)
2l+1,

I
(k−1)
l,l+1 = X

(k)
2l X

(k)
2l+1, I

(k)
l,l+1 = Y

(k)
2l Y

(k)
2l+1,

X
(k)
l P(k)l+1 = P

(k)
l Y

(k)
l+1, Y

(k)
l Q(k)l+1 = Q

(k)
l X

(k)
l+1.

(7.1)

The equations (7.1) are simply written as

(P(k),Q(k),X(k), Y (k)) : (M(k−1), I(k−1)) ≈
1−pr

(M(k), I(k)), k = 1, . . . , N.

LEMMA 7.2. Keep the above notations. Put m(l)×m(l +N) matrices

Pl,l+N = P(1)2l Y
(1)
2l+1P

(2)
2l+2Y

(2)
2l+3 · · · P

(N)
2l+2N−2Y

(N)
2l+2N−1,

Ql,l+N = Q(1)2l X
(1)
2l+1Q

(2)
2l+2X

(2)
2l+3 · · · Q

(N)
2l+2N−2X

(N)
2l+2N−1,

Il,l+N = Il,l+1Il+1,l+2 · · · Il+N−1,l+N , l ∈ Z+.
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(i) The equalities

Pl,l+NIl+N,l+N+1 = Il,l+1Pl+1,l+N+1,
Ql,l+NIl+N,l+N+1 = Il,l+1Ql+1,l+N+1, l ∈ Z

and hence

Pl,l+NIl+N,l+2N = Il,l+NPl+N,l+2N ,
Ql,l+NIl+N,l+2N = Il,l+NQl+N,l+2N , l ∈ Z

hold.

(ii) There exist specifications

κP : Σ · C(1)C(2) · · ·C(N) −→ C(1)C(2) · · ·C(N) · Σ,
κQ : Σ ·D(1)D(2) · · ·D(N) −→ D(1)D(2) · · ·D(N) · Σ

such that

Ml,l+1Pl+1,l+N+1
κP' Pl,l+NMl+N,l+N+1, (7.2)

Ml,l+1Ql+1,l+N+1
κQ' Ql,l+NMl+N,l+N+1, l ∈ Z+. (7.3)

Proof. (i) We note that the equalities

Il,l+1 = I
(0)
l,l+1 = X

(1)
2l X

(1)
2l+1 = I

(N)
l,l+1 = Y

(N)
2l Y

(N)
2l+1, l ∈ Z+

hold. It then follows that

Pl,l+NIl+N,l+N+1
=P(1)2l Y

(1)
2l+1P

(2)
2l+2Y

(2)
2l+3 · · ·Y

(N−1)
2l+2N−3X

(N)
2l+2N−2P

(N)
2l+2N−1Y

(N)
2l+2NY

(N)
2l+2N+1

=P(1)2l Y
(1)
2l+1P

(2)
2l+2Y

(2)
2l+3 · · ·Y

(N−1)
2l+2N−3X

(N)
2l+2N−2X

(N)
2l+2N−1P

(N)
2l+2NY

(N)
2l+2N+1

=P(1)2l Y
(1)
2l+1P

(2)
2l+2Y

(2)
2l+3 · · ·Y

(N−1)
2l+2N−3 · I

(N−1)
l+N−1,l+NP

(N)
2l+2NY

(N)
2l+2N+1

and hence inductively

Pl,l+NIl+N,l+N+1
=P(1)2l Y

(1)
2l+1I

(1)
l+1,l+2 · P

(2)
2l+4Y

(2)
2l+5 · · · P

(N−1)
2l+2N−2Y

(N−1)
2l+2N−1P

(N)
2l+2NY

(N)
2l+2N+1.

Since

P(1)2l Y
(1)
2l+1I

(1)
l+1,l+2 = X

(1)
2l P

(1)
2l+1 · Y

(1)
2l+2Y

(1)
2l+3 = Il,l+1P

(1)
2l+2Y

(1)
2l+3,
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one has

Pl,l+NIl+N,l+N+1 = Il,l+1Pl+1,l+N+1.
One then inductively gets the equalities

Pl,l+NIl+N,l+2N = Il,l+NPl+N,l+2N , l ∈ Z+.

The other equalities

Ql,l+NIl+N,l+N+1 = Il,l+1Ql+1,l+N+1, l ∈ Z+

are similarly proved.

(ii) It follows that

Ml,l+1Pl+1,l+N+1
= M(0)

l,l+1P
(1)
2(l+1)Y

(1)
2(l+1)+1P

(2)
2(l+1)+2Y

(2)
2(l+1)+3 · · · P

(N)
2l+2NY

(N)
2l+2N+1

κ
(1)
0' P(1)2l Q

(1)
2l+1X

(1)
2(l+1)P

(1)
2(l+1)+1X

(2)
2(l+1)+2P

(2)
2(l+1)+3 · · ·X

(N)
2l+2NP

(N)
2l+2N+1

= P(1)2l Y
(1)
2l+1Q

(1)
2(l+1)P

(1)
2(l+1)+1X

(2)
2(l+1)+2P

(2)
2(l+1)+3 · · ·X

(N)
2l+2NP

(N)
2l+2N+1

κ
(1)
1

−1

' P(1)2l Y
(1)
2l+1 · M

(1)
l+1,l+2P

(2)
2(l+1)+2Y

(2)
2(l+1)+3 · · · P

(N)
2l+2NY

(N)
2l+2N+1

and similarly

M(1)
l+1,l+2P

(2)
2(l+1)+2Y

(2)
2(l+1)+3P

(3)
2(l+1)+4Y

(3)
2(l+1)+5 · · · P

(N)
2l+2NY

(N)
2l+2N+1

κ
(2)
1

−1
κ
(2)
0' P(2)2l+2Y

(2)
2l+3 · M

(2)
l+2,l+3P

(3)
2(l+1)+4Y

(3)
2(l+1)+5 · · · P

(N)
2l+2NY

(N)
2l+2N+1.

Hence we inductively have

Ml,l+1Pl+1,l+N+1
(κ

(N)
1 )

−1
κ
(N)
0 ···(κ(1)1 )

−1
κ
(1)
0' P(1)2l Y

(1)
2l+1 · · · P

(N)
2l+2N−2Y

(N)
2l+2N−1M

(N)
l+N,l+N+1

=Pl,l+NMl+N,l+N+1.

By putting

κP = (κ
(N)
1 )

−1
κ
(N)
0 · · · (κ(1)1 )

−1
κ
(1)
0 : ΣC(1)C(2) · · ·C(N) −→ C(1)C(2) · · ·C(N)Σ

one has

Ml,l+1Pl+1,l+N+1
κP' Pl,l+NMl+N,l+N+1.
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We set,

M[1]
l,l+1 =Ml,l+1, I

[1]
l,l+1 = Il,l+1

and for N ≥ 2

M[N ]
l,l+1 =MNl,Nl+1INl+1,Nl+2 · · · IN(l+1)−1,N(l+1), I

[N ]
l,l+1 = INl,Nl+N .

Then the pair (M[N ], I [N ]) is a symbolic matrix system over Σ. Since one has

M[N ]
l,l+m =M

[N ]
l,l+1M

[N ]
l+1,l+2 · · ·M

[N ]
(l+m)−1,(l+m)

=MNl,Nl+mINl+m,N(l+m),

a word (a1, . . . , am) ∈ Σm is admissible for the subshift ΛM[N] presented by

(M[N ], I [N ]) if and only if it is admissible for the subshift ΛM presented by

(M, I). Hence the subshifts ΛM[N] and ΛM coincide.

LEMMA 7.3. Keep the above notations. Put

P [N ]l,l+1 = PNl,Nl+N , Q[N ]l,l+1 = QNl,Nl+N , l ∈ Z+.

Then both (P [N ], I [N ]) and (Q[N ], I [N ]) are symbolic matrix systems such that
(i) the pair (M[N ], I [N ]) and (P [N ], I [N ]), and the pair (M[N ], I [N ]) and

(Q[N ], I [N ]) both form squares, and

(ii) they satisfy the relations:

M[N ]
l,l+1P

[N ]
l+1,l+2

κP' P [N ]l,l+1M
[N ]
l+1,l+2, (7.4)

M[N ]
l,l+1Q

[N ]
l+1,l+2

κQ' Q[N ]l,l+1M
[N ]
l+1,l+2, l ∈ Z+. (7.5)

Hence the pair (M[N ], I [N ]) and (P [N ], I [N ]), and the pair (M[N ], I [N ]) and

(Q[N ], I [N ]) both give rise to LR textile λ-graph systems.

Proof. The assertion (i) is clear. We will show the assertion (ii). By (7.2), one

sees that

MNl,Nl+1PNl+1,N(l+1)+1
κP' P [N ]l,l+1MN(l+1),N(l+1)+1

so that

MNl,Nl+1PNl+1,N(l+1)+1IN(l+1)+1,N(l+2)
κP' P [N ]l,l+1MN(l+1),N(l+1)+1IN(l+1)+1,N(l+2).

Hence we get

M[N ]
l,l+1P

[N ]
l+1,l+2

κP' P [N ]l,l+1M
[N ]
l+1,l+2.

We similarly haveM[N ]
l,l+1Q

[N ]
l+1,l+2

κQ' Q[N ]l,l+1M
[N ]
l+1,l+2.
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LEMMA 7.4. The LR-textile λ-graph systems T P [N]

= TKM[N]

P[N]

and T Q[N]

=

TKM[N]

Q[N]

defined by the relations (7.4) and (7.5) are both 1-1.

Proof. For (ai)i∈Z ∈ ΛM[N] , suppose that al appears in a component ofM[N ]
l,l+1.

SinceM[N ]
l,l+1 = INl,N(l+1)−1M

(0)
N(l+1)−1,N(l+1), the symbol al appears in a com-

ponent ofM(0)
N(l+1)−1,N(l+1). By the specified equivalenceM

(0)
N(l+1)−1,N(l+1)

κ
(1)
0'

P(1)2{N(l+1)−1}Q
(1)
2{N(l+1)−1}+1, a symbol c

(1)
2{N(l+1)−1}d

(1)
2{N(l+1)−1}+1 = κ

(1)
0 (al) ∈

CD appears in a component of P(1)2{N(l+1)−1}Q
(1)
2{N(l+1)−1}+1. For al+1, the

corresponding symbol c
(1)
2{N(l+2)−1} appears in a component of P

(1)
2{N(l+2)−1}.

Since I
(0)
N(l+1),N(l+2)−1P

(1)
2{N(l+2)−1} = P(1)2N(l+1)X

(1)
2N(l+1)+1 · · ·X

(1)
2{N(l+2)−2}+1

X
(1)
2{N(l+2)−1} the corresponding symbol to c

(1)
2{N(l+2)−1} appears in a component

of P(1)2N(l+1), that is denoted by c
(1)
2N(l+1). As one sees that

M[N ]
l,l+1P

[N ]
l+1,l+2

=INl,N(l+1)−1M(0)
N(l+1)−1,N(l+1)PN(l+1),N(l+2)

κ
(1)
0' INl,N(l+1)−1P(1)2{N(l+1)−1}Q

(1)
2{N(l+1)−1}+1P

(1)
2N(l+1)Y

(1)
2N(l+1)+1

· P(2)2N(l+1)+2Y
(2)
2N(l+1)+3 · · · P

(N)
2N(l+1)+2N−2Y

(N)
2N(l+1)+2N−1

the symbol d
(1)
2N(l+1)−1c

(1)
2N(l+1) appears in a component of Q

(1)
2N(l+1)−1P

(1)
2N(l+1).

As

Q(1)2N(l+1)−1P
(1)
2N(l+1)Y

(1)
2N(l+1)+1

=Y
(1)
2N(l+1)−1Q

(1)
2N(l+1)P

(1)
2N(l+1)+1

κ
(1)
1

−1

' Y
(1)
2N(l+1)−1M

(1)
N(l+1),N(l+1)+1

d
(1)
2N(l+1)−1c

(1)
2N(l+1)appears in a component ofQ

(1)
2N(l+1)P

(1)
2N(l+1)+1, that is written

as d
(1)
2N(l+1)c

(1)
2N(l+1)+1. Hence κ

(1)
1

−1
(d
(1)
2N(l+1)c

(1)
2N(l+1)+1) appears in a component

ofM(1)
N(l+1),N(l+1)+1. This procedure shows that for a given (ai)i∈Z ∈ ΛM[N] , by

starting from al in a component ofM(0)
N(l+1)−1,N(l+1) a symbol c

(1)
2N(l+1) in a com-

ponent of P(1)2N(l+1) is determined and also κ
(1)
1

−1
(d
(1)
2N(l+1)c

(1)
2N(l+1)+1) in a compo-

nent ofM(1)
N(l+1),N(l+1)+1 is determined. One may next find a symbol in a compo-

nent of P(2)2N(l+1)+2 and a symbol in a component ofM
(2)
N(l+1)+1,N(l+1)+2. One in-

ductively finds corresponding symbols in P(1)2N(l+1),P
(2)
2N(l+1)+2, . . . ,P

(N)
2N(l+1)+2N−3.
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Hence one finds a symbol in P(N)l+1,l+2. That is, a given sequence (ai)i∈Z ∈ ΛM[N]

determines a symbol in P(N)l+1,l+2, l ∈ Z+ so that through the relation (7.4) the
labeled squares in the LR textile λ-graph system are determined. Hence we

conclude that ξ is injective, and similarly see that η is injective.

As stated in the begining of this section, an automorphism of the subshift Λ

presented by (M, I) is given by a properly strong shift equivalence

(M, I) ≈
1−pr

(M(1), I(1)) ≈
1−pr

· · · ≈
1−pr

(M(N−1), I(N−1)) ≈
1−pr

(M, I)

in N -step for some N , and conversely a properly strong shift equivalence from

(M, I) to itself gives rise to an automorphism of the subshift. Put for k =

1, . . . , N

ΛC(k)D(k) = {(cidi)i∈Z | ci ∈ C(k), di ∈ D(k), i ∈ Z},
ΛD(k)C(k) = {(dici)i∈Z | ci ∈ C(k), di ∈ D(k), i ∈ Z}.

Define ζ
(k)
+ : ΛC(k)D(k) −→ ΛD(k)C(k) and ζ

(k)
− : ΛC(k)D(k) −→ ΛD(k)C(k) by setting

ζ
(k)
+ ((cidi)i∈Z) = (dici+1)i∈Z and ζ

(k)
− ((cidi)i∈Z) = (di−1ci)i∈Z respectively. Then

ζ
(k)
+ is called a forward bipartite conjugacy and ζ

(k)
− is called a backward bipartite

conjugacy ([19]). Nasu’s result ([18], [19]) says that any automorphism φ is

factorized as follows:

φ = ((κ
(N)
1 )

−1
◦ ζ(N)± ◦ κ(N)0 ) ◦ · · · ◦ ((κ(1)1 )

−1
◦ ζ(1)± ◦ κ(1)0 )

where ζ
(N)
± , . . . , ζ

(1)
± are forward or backward bipartite conjugacies. Since prop-

erly strong shift equivalence corresponds exactly to bipartite codes of Nasu, the

above factorization of φ is so called Nasu’s κ − ζ factorization ([18], [19]). Fol-

lowing Nasu, an automorphism φ is said to be forward if ζ
(N)
± , . . . , ζ

(1)
± are all

forward bipartite conjugacies ζ
(N)
+ , . . . , ζ

(1)
+ .

LEMMA 7.5. Let (Λ,σ) be a subshift presented by (M, I). Let φ be a forward

automorphism on (Λ,σ) defined by a properly strong shift equivalence

(M, I) ≈
1−pr

(M(1), I(1)) ≈
1−pr

· · · ≈
1−pr

(M(N−1), I(N−1)) ≈
1−pr

(M, I)

in N -step. Let T P[N]

and T Q[N]

be the LR textile λ-graph systems defined by the

relations (7.4) and (7.5) respectively. Then we have

ϕT P[N] = φ, ϕT Q[N] = φ−1 ◦ σ

as automorphisms on Λ = ΛM under the identification ΛM[N] = ΛM.
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Proof. Keep the notations as in the proof of the previous lemma. For (ai)i∈Z ∈
ΛM[N] , by putting

c
(1)
2{N(l+1)−1}d

(1)
2{N(l+1)−1}+1 = κ

(1)
0 (al) ∈ CD, l ∈ Z+

the symbol c
(1)
2N(l+1)−2d

(1)
2N(l+1)−1 is written as d

(1)
2N(l+1)c

(1)
2N(l+1)+1 and the symbol

(κ
(1)
1 )
−1
(d
(1)
2N(l+1)c

(1)
2N(l+1)+1) defines a symbol of a component ofM

(1)
N(l+1),N(l+1)+1.

This procedure is nothing but to apply the map (κ
(1)
1 )
−1
◦ ζ(1)+ ◦ κ(1)0 . We next

do this procedure to the symbol (κ
(1)
1 )
−1
(d
(1)
2N(l+1)c

(1)
2N(l+1)+1) that corresponds

to apply the map (κ
(2)
1 )
−1
◦ ζ(2)+ ◦ κ(2)0 and get the symbols ((κ

(2)
1 )
−1
◦ ζ(2)+ ◦

κ
(2)
0 ) ◦ ((κ(1)1 )

−1
◦ ζ(1)+ ◦ κ(1)0 )((al)). We continue this procedures and finally get

the element

((κ
(N)
1 )

−1
◦ ζ(N)+ ◦ κ(N)0 ) · · · ((κ(2)1 )

−1
◦ ζ(2)+ ◦ κ(2)0 ) ◦ ((κ(1)1 )

−1
◦ ζ(1)+ ◦ κ(1)0 )((al))

inM(N)
N(l+1)+N−1,N(l+1)+N , l ∈ Z+. The elements lie in the bottoms of the squares

arising from the relation (7.4), and hence that are the element η◦ξ−1((al)). Hence
we have

ϕT P[N] = ((κ
(N)
1 )

−1
◦ζ(N)+ ◦κ(N)0 ) · · · ((κ(2)1 )

−1
◦ζ(2)+ ◦κ(2)0 )◦ ((κ(1)1 )

−1
◦ζ(1)+ ◦κ(1)0 ).

We assume that the previously defined metric is equipped with Λ. Then the

homeomorphism σ has 1 as its expansive constant. Therefore we have

THEOREM 7.6. Let (Λ,σ) be a subshift presented by a symbolic matrix system

(M, I). Let φ be a forward automorphism on (Λ,σ) defined by a properly strong

shift equivalence

(M, I) ≈
1−pr

(M(1), I(1)) ≈
1−pr

· · · ≈
1−pr

(M(N−1), I(N−1)) ≈
1−pr

(M, I)

in N -step. If φ is expansive with 1
k as its expansive constant for some k ∈ N, the

dynamical system(Λ,φ) is topologically conjugate to the subshift(ΛP [N][2k]
T
,σP [N][2k]

T
)

presented by the 2k-higher block (P [N ][2k]T , IP
[N][2k]

T ) of the symbolic matrix system

(P [N ], IP[N]

) relative to the LR textile λ-graph system TKM[N]

P[N]

defined by the

specification

M[N ]
l,l+1P

[N ]
l+1,l+2

κP
[N]

' P [N ]l,l+1M
[N ]
l+1,l+2, l ∈ Z+,
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where

P [N ]l,l+1 = P
(1)
2NlY

(1)
2Nl+1P

(2)
2Nl+2Y

(2)
2Nl+3 · · · P

(N)
2Nl+2N−2Y

(N)
2Nl+2N−1,

I
[N ]
l,l+1 = INl,Nl+1INl+1,Nl+2 · · · IN(l+1)−1,N(l+1), l ∈ Z+

and P(i)2Nl+2(i−1), Y
(i)
2Nl+2i−1, i = 1, . . . , N are matrices appearing in the properly

strong shift equivalence in (7.1).

Proof. Since the LR textile λ-graph system T P [N]

is nondegenerate, 1-1, and

surjective, by Lemma 7.5 the assertion is proved in a similar way to the proof of

Theorem 6.4.

For k ≥ 0, n ≥ 1, let (PkMn, IkN+n) be the symbolic matrix system defined

by setting

(PkMn)l,l+1

=Pl(kN+n),l(kN+n)+NPl(kN+n)+N,l(kN+n)+2N · · · Pl(kN+n)+(k−1)N,l(kN+n)+kN ·
· Ml(kN+n)+kN,l(kN+n)+kN+1Ml(kN+n)+kN+1,l(kN+n)+kN+2

· · ·M(l+1)(kN+n)−1,(l+1)(kN+n), I
kN+n
l,l+1

=Il(kN+n),l(kN+n)+1Il(kN+n)+1,l(kN+n)+2 · · · I(l+1)l(kN+n)−1,(l+1)(kN+n), l∈ Z+.

LEMMA 7.7. The subshift (ΛP [N]kM[N]n ,σP [N]kM[N]n) presented by the sym-

bolic matrix system (P [N ]kM[N ]n, I [N ]
kN+n

) coincides with the subshift (ΛPkMn ,

σPkMn) presented by the symbolic matrix system (PkMn, IkN+n).

Proof. It is easy to see that the admissible words of the subshift (ΛP [N]kM[N]n ,

σP [N]kM[N]n) coincides with the admissible words of the subshift (ΛPkMn,σPkMn).

We reach our main theorem.

THEOREM 7.8. Let (Λ,σ) be a subshift presented by a symbolic matrix system

(M, I). Let φ be a forward automorphism on (Λ,σ) defined by a properly strong

shift equivalence

(M, I) ≈
1−pr

(M(1), I(1)) ≈
1−pr

· · · ≈
1−pr

(M(N−1), I(N−1)) ≈
1−pr

(M, I)

in N -step. Then the dynamical system (Λ,φkσn) is topologically conjugate to the

subshift (ΛPkMn,σPkMn) presented by the symbolic matrix system (PkMn, IkN+n)
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for k ≥ 0, n ≥ 1, defined by

(PkMn)l,l+1

=Pl(kN+n),l(kN+n)+NPl(kN+n)+N,l(kN+n)+2N · · · Pl(kN+n)+(k−1)N,l(kN+n)+kN ·
· Ml(kN+n)+kN,l(kN+n)+kN+1Ml(kN+n)+kN+1,l(kN+n)+kN+2

· · ·M(l+1)(kN+n)−1,(l+1)(kN+n), I
kN+n
l,l+1

=Il(kN+n),l(kN+n)+1Il(kN+n)+1,l(kN+n)+2 · · · I(l+1)(kN+n)−1,(l+1)(kN+n), l ∈ Z+

where Pl,l+1=P(1)2l Y
(1)
2l+1P

(2)
2l+2Y

(2)
2l+3 · · · P

(N)
2l+2N−2Y

(N)
2l+2N−1 and P

(i)
2l+2(i−1), Y

(i)
2l+2i−1,

i = 1, . . . , N are matrices appearing in the properly strong shift equivalence in

(7.1).

And also (Λ, (σφ−1)
k
σn) is topologically conjugate to the subshift (ΛQkMn ,

σQkMn)presented by the similarly defined symbolic matrix system(QkMn, IkN+n)

for k ≥ 0, n ≥ 1.

Proof. By a similar discussion to the proof of Theorem 6.5, the dynamical system

(Λ,φkσn) is topologically conjugate to the subshift (ΛP [N]kM[N]n ,σP [N]kM[N]n),

that is (ΛPkMn ,σPkMn) by Lemma 7.7. The assertion for the dynamical system

(Λ, (σφ−1)
k
σn) is similarly shown.

8. An application

Let φ be an automorphism of a subshift Λ over Σ. We say that φ is given

by a specification π of a symbolic matrix system (M, I) if (M, I) presents the

subshift Λ and there exists a specification π : Σ→ Σ such that π gives rise to a

specified equivalence

Ml,l+1
π'Ml,l+1 for l ∈ Z+,

and φ is given by the symbolic automorphism of Λ induced by π. The auto-

morphism φ is written as φπ. We note that the induced automorphism of the

λ-graph system L for (M, I) by the specification π fixes the vertices of L.

DEFINITION. An automorphism φ of a subshift Λ is called a simple automor-

phism if there exist an automorphism φπ of a subshift ΛM that is given by a

specification π of a symbolic matrix system (M, I), and a topological conjugacy

ψ : Λ→ ΛM such that

φ = ψ−1 ◦ φπ ◦ ψ.
The notion of a simple automorphism of a sofic shift has been introduced by M.

Nasu in [19].
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As an application of our results, we see the following proposition.

PROPOSITION 8.1. Let (Λ,σ) be a subshift over Σ. If an automorphism φπ
of (Λ,σ) is given by a specification π of a symbolic matrix system (M, I), the

topological dynamical system (Λ,φπ ◦ σn) is topologically conjugate to the n-th
power (Λ,σn) of (Λ,σ) for n ∈ Z, n 6= 0.

Proof. By assumption, the automorphism φπ is given by the one-block code

φπ((xi)i∈Z) = (π(xi))i∈Z for (xi)i∈Z ∈ Λ. We will realize φπ to be a forward
automorphism defined by a properly strong shift equivalence from (M, I) to

itself. Let I be an arbitrary fixed symbol. Put the alphabets

C = {I}, D = Σ.

Define the specifications κ from Σ to C ·D and κ0 from Σ to D · C by setting

κ(γ) = I · π(γ), κ0(γ) = γ · I, γ ∈ Σ.

Suppose that the both matricesMl,l+1, Il,l+1 are m(l)×m(l+ 1) matrices. Let
Il(I) and Il(1) be the m(l)×m(l) diagonal matrices with diagonal entries I and
1 respectively. Put n(2l) = n(2l− 1) = m(l) for l ∈ N, and n0(2l) = n0(2l+ 1) =
m(l) for l ∈ Z+. Define matrices Pl,Ql,Xl, Yl for l ∈ Z+ by setting

P2l = Il(I), P2l+1 = Il+1(I), Q2l = Q2l+1 =Ml,l+1

and

X2l = Y2l+1 = Il,l+1, X2l+1 = Il+1(1), Y2l = Il(1).

By noticing that the matricesX2l+1, Y2l are identity matrices, the above matrices

give rise to a properly strong shift equivalence

(P ,Q, X, Y ) : (M, I) ≈
1−pr

(M, I)

in 1-step from (M, I) to itself. It is then direct to see that the automorphism

φπ is the forward automorphism of the above properly strong shift equivalence.

Put

Pl,l+1 = P2lY2l+1 = Il(I)Il,l+1, l ∈ Z+.
For n ∈ Z with n > 0, we set

(PMn)l,l+1 =P(n+1)l,(n+1)l+1 · · · P(n+1)l+n−1,(n+1)l+n
· M(n+1)l+n,(n+1)l+n+1 · · ·M(n+1)(l+1)−1,(n+1)(l+1),

In+1l,l+1 =I(n+1)l,(n+1)l+1 · · · I(n+1)(l+1)−1,(n+1)(l+1).
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Then by Theorem 6.5, the topological dynamical system (Λ,φπ ◦ σn) is real-
ized as the subshift (ΛPMn ,σPMn) presented by the symbolic matrix system

(PMn, In+1). Since the symbolic matrix system (PMn, In+1) does not depend

on the choice of the specification π on Σ, we have (Λ,φπ◦σn) is topologically con-
jugate to (Λ,φid ◦ σn) where φid is the automorphism coming from the identity

permutation. Hence (Λ,φπ ◦ σn) is topologically conjugate to the n-th power
(Λ,σn) of (Λ,σ). For n ∈ Z with n < 0, the above argument says that the

dynamical system (Λ,φπ−1 ◦ σ−n) is topologically conjugate to (Λ,σ−n). This
implies that (Λ,φπ ◦ σn) is topologically conjugate to (Λ,σn).

Thanks to this proposition, one has the following theorem.

THEOREM 8.2. If an automorphism φ of a subshift (Λ,σ) is a simple auto-

morphism, the dynamical system (Λ,φ◦σn) is topologically conjugate to the n-th
power (Λ,σn) of the subshift (Λ,σ) for n ∈ Z, n 6= 0.

Proof. As φ is a simple automorphism of Λ, there exist an automorphism φπ of

a subshift ΛM that is given by a specification π of a symbolic matrix system

(M, I), and a topological conjugacy ψ : Λ→ ΛM such that

φ = ψ−1 ◦ φπ ◦ ψ.

Hence

ψ ◦ (φ ◦ σn) ◦ ψ−1 = φπ ◦ σMn.

By Proposition 8.1, (Λ,φπ ◦σn) is topologically conjugate to (ΛM,σMn). Hence

(Λ,φ ◦ σn) is topologically conjugate to (Λ,σn).

We finally give an example. Let us consider the full shift ΣZ with alphabet

Σ. It is easy to see that any permutation π on Σ yields a simple automorphism

φπ of Σ
Z. Hence we have

COROLLARY 8.3. Let φπ be the automorphism of the full shift ΣZ defined by a

permutation π on the symbols Σ. Then the topological dynamical system (ΣZ,φπ◦
σ) is realized as the original full shift (ΣZ,σ). That is, φπ ◦ σ is topologically
conjugate to the original full shift σ.
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