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Abstract. The notions of symbolic matrix system and A-graph system for a
subshift are generalizations of symbolic matrix and A-graph (= finite symbolic
matrix) for a sofic shift respectively ([Doc. Math. 4(1999), 285-340]). M. Nasu
introduced the notion of textile system for a pair of graph homomorphisms to
study automorphisms and endomorphisms of topological Markov shifts ([Mem.
Amer. Math. Soc. 546,114(1995)]). In this paper, we formulate textile systems
on A-graph systems and study automorphisms on subshifts. We will prove that
for a forward automorphism ¢ of a subshift (A, o), the automorphisms ¢*c™, k >
0,n > 1 can be explicitly realized as a subshift defined by certain symbolic
matrix systems coming from both the strong shift equivalence representing ¢
and the subshift (A,0). As an application of this result, if an automorphism
¢ of a subshift A is a simple automorphism, the dynamical system (A, ¢ o o) is
topologically conjugate to the subshift (A, o).

1. Introduction

Let ¥ be a finite set with its discrete topology, that is called an alphabet.
Let X% be the compact Hausdorff space of all bi-infinite sequences of ¥. One has
the homeomorphism o defined by the left-shift that sends a point (a;);cz € ¥
into the point (a;i1)icz € ¥%. A subshift (A,o) is the topological dynamical
system that is obtained by restricting the shift to a closed shift-invariant subset
A of X%, The space A C X7 is uniquely determined by a set of forbidden words,
such as a sequence (z;)icz € L% of ¥ belongs to A if and only if any word
in the forbidden words can not apper as a subward of (x;);ez. If a subshift
is obtained by a finite set of its forbidden words, it is said to be a shift of
finite type. It is well-known that the class of shifts of finite type coincides
with the class of topological Markov shifts, that are defined by finite square
nonnegative matrices. For an introduction to the theory of topological Markov
shifts see [8] or [13]. R. F. Williams [23] proved that two shifts of finite type
are topologically conjugate if and only if their defining nonnegative matrices
are strong shift equivalent. This result also says a structure of automorphisms
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of topological Markov shifts. That is, an automorphism is given by a strong
shift equivalence from the defining matrix to itself, and conversely a strong shift
equivalence from the defining matrix to itself gives rise to an automorphism
of the shift of finite type. M. Nasu [18] formulated strong shift equivalence
between finite symbolic matrices and generalized the above Williams’s result to
sofic shifts. He proved that two sofic shifts are topologically conjugate if and
only if their canonical symbolic matrices are strong shift equivalent ([18]).

For a subshift (A, o), a homeomorphism ¢ on A satisfying p oo = g o ¢ is
called an automorphism of (A, 7). It is also well-known that if an automorphism
¢ of a subshift (A, o) is expansive, it is topologically conjugate to a subshift
[6]. The problem studied in this paper is to subshift-identify the dynamical
system (A, ). Namely, for an expansive automorphism ¢ of a subshift (A, o),
the problem is to find, in an explicit way, a subshift (A,, o) that is topologically
conjugate to (A, ). This problem has been studied in several situations for
the case of topological Markov shifts and sofic shifts. Boyle and Krieger [1]
proved that for an automorphism ¢ of topological Markov shift (A4, 04) defined
by a nonnegative matrix A and for all integers n greater than a coding bound
for ¢ and ¢!, the dynamical system (A4, po%) is topologically conjugate to
a topological Markov shift, and specified its dimension triple. M. Nasu [19]
has introduced the notion of textile system, which is very useful to analyze
the automorphisms and endomorphisms of topological Markov shifts. A textile
system is defined by an ordered pair of graph homomorphisms p and ¢ of a
directed finite graph I' into a directed finite graph G, that is written as T =
(p,q : T — G). Nasu also generaized the fiomulation of the textile systems to
textile systems on finite labeled graphs. Among other things, he proved that if ¢
is a forward automorphism of a sofic shift (A4, 0 4) defined by a finite symbolic
matrix A and is given by a strong shift equivalence

AP, QPR Py, o, QuvaPrno1 ~ PnQn, QvPyE A
then the dynamical system (A A,(pkaffl) is topologically conjugate to the sofic
shift defined by the symbolic matrix P*A" for all k¥ > 0 and n > 1, where
P =Py ---Pn. If in particular ¢ is expansive, the dynamical system (A4, p) is
topologically conjugate to a sofic shift.

In [15], the author has introduced the notion of symbolic matrix system
and A-graph system from an idea of C*-algebras (cf. [14], [16]). The symbolic
matrix system is a generalization of symbolic matrix, and A-graph system is a
generalization of A-graph (= finite labeled graph). We henceforth denote by Z
the set of all nonnegative integers and by N the set of all positive integers. A
symbolic matrix system over alphabet ¥ consists of two sequences of rectangular
matrices (M 41,11141),1 € Zy4. The matrices M, +1,] € Zy have their entries
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in formal sums of ¥ and the matrices I ;41,1 € Z; have their entries in {0,1}.
They satisfy the commutation relations:

I i Miga420 = My dig1 42, leZ,.

We further assume that each row of I;;;; has at least one 1 and each column
of I;;+1 has exactly one 1. We denote (M 41,11,:41),! € Z4 by (M,I) or
(M, IM). A A-graph system £ = (V, E, \,1) consists of a vertex set V = Vj U
ViuVoU---,anedgeset F = Ey1 UFE2UFEy3U---, alabeling A : F = X
and a surjective map ¢(= ¢ 41) @ Vigr — V; for each | € Z,. It naturally
arises from a symbolic matrix system (M, I). The edges from a vertex v € V
to a vertex vé“ € Vi41 are given by the (¢, j)-component M, ;41(4,j) of the
matrix M, ;1. The matrix I; ;1 defines a surjection ¢;;41 from Vj4; to V)
for each | € Z,. The symbolic matrix systems and the A-graph systems are
the same objects and give rise to subshifts by gathering all the label sequences
appearing in the labeled Bratteli diagram. A canonical method to construct a
symbolic matrix system and a A-graph system from an arbitrary subshift has
been introduced in [15]. The obtained symbolic matrix system and the A-graph
system are said to be canonical for the subshift. The notion of strong shift
equivalence for nonnegative matrices and symbolic matrices has been generalized
to symbolic matrix systems as properly strong shift equivalence. Two symbolic
matrix systems (M, I) and (M’ I') are said to be properly strong shift equivalent
in 1-step if there exist alphabets C, D and specifications k : ¥ — CD, &’ : ¥/ —
DC and increasing sequences n(l),n’(l) on | € Z; such that for each | € Z,
there exist an n(l) x n/(I + 1) matrix P; over C, an n/(l) x n(l + 1) matrix Q;
over D, an n(l) x n(l 4+ 1) matrix X; over {0,1} and an n’(l) x n’(I + 1) matrix
Y; over {0,1} satisfying the following equations:

’
K
~

I /
M 41 2P Qoit1, i1 =~ QuPart1,

!
D1 =X Xor1, v = YaYo

and
XiPry1 = PiYiq, Y1Qi41 = QXiga.
This situation is written as (P, 9, X,Y) : (M, I) R (M, I'). A finite chain of

pr
properly strong shift equivalences in 1-step with length N is called a properly

strong shift equivalence (in N-step). Then the previously mentioned Williams’s
result and Nasu’s result have been generalized to topological conjugacy between
subshifts. That is, if two symbolic matrix systems are properly strong shift equiv-
alent, then their presented subshifts are topologically conjugate. Furthermore,
two subshifts are topologically conjugate if and only if their canonical symbolic
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matrix systems are properly strong shift equivalent ([15]). Hence, in particular,
a properly strong shift equivalence from a symbolic matrix system to itself gives
rise to an automorphism of the presented subshift. And an automorphism of
a subshift exactly corresponds to a properly strong shift equivalence from the
canonical symbolic matrix system of the subshift to itself.

In this paper, we will generalize the Nasu’s textile systems for graph homo-
morphisms between finite directed (labeled) graphs to graph homomorphisms
between A-graph systems and generalize the Nasu’s formalism for topological
Markov shifts and sofic shifts to general subshifts. Namely we will formulate
textile systems for graph homomorphisms between A-graph systems and study
automorphisms of general subshifts by using the generalized textile systems. Let
(M, IM), (KK, I7), (N, IN) be symbolic matrix systems and £X, €M ¢V their
respect A-graph systems. Assume that the vertex sets VlM of £M and the ver-
tex sets VlN of &V coincide and that the condition I l/,\l/l+1 = Il{\lf 41 hold for all
| € Z,. We further assume that the vertex set V;* of £~ is identified with
the edge set E{\{ 41 of &N for | € Z, . A label preserving graph homomorphism
p: &° — M compatible to ¢ is called a A-graph system homomorphism if
p(V*) = VM 1l € Z,. A label preserving graph homomorphism ¢ : £ — €M
compatible to ¢ is called a one-shift A\-graph system homomorphism if ¢(V;*) =
VM, 1 € Z. Hence the source map s* : ElK,l+1 — V= El/,\{+l and the terminal
map t° : EN | — V5, = B, ,, of £° yield a A-graph system homomor-
phism and a one-shift A-graph system homomorphism respectively. Then for a
A-graph system homomorphism p : £& — €M and a one-shift A-graph system
homomorphism ¢ : £¢ — M, the diagram

EM

oM
is called a textile system on A-graph systems if some further conditions are sat-
isfied. It is written as 7. This formulation is a generalization of Nasu’s sofic
textile systems [19]. We will follow and generalize Nasu’s machinery of [19] so
that the dual of Ty can be defined and we may consider LR textile systems
on A-graph systems. We will prove that for a forward automorphism ¢ of a
subshift (A, o), the automorphisms ¢*¢™,k > 0,n > 1 can be explicitly realized
as a subshift defined by certain symbolic matrix systems coming from both the
strong shift equivalence representing ¢ and the subshift (A, o). Suppose that
A is equipped with a metric for which o has 1 as its expansive constant. If in
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particular, ¢ is expansive with % as its expansive constant for some m € N, the
dynamical system (A, ¢) can be realized as a subshift defined by certain symbolic
matrix system coming from the strong shift equivalence representing ¢ and the
subshift (A, o) (Theorem 7.6).

We will prove the following

THEOREM 1.1 (Theorem 7.8). Let (A, 0)(= (Anm,onm)) be a subshift presented
by a symbolic matriz system (M, I). Let ¢ be a forward automorphism on (A, o)
defined by a properly strong shift equivalence

('p(j)’ Q(j)7X(j)’Y(j)) . (M(j—l)’_r(j—l)) ~ (M(J')J(j))’ j=1,2,...,N
1—pr
in N-step where (M@ 1) = (MW [Ny = (M, I). Then the dynamical
system (A, pFo™) is topologically conjugate to the subshift (Apx pqn,Tprpqn) pre-
sented by the symbolic matriz system (P*M™, I¥N+7) for k > 0,n > 1 defined
by

(Pan)l,l+1

=Pi(kN+n),i(kN+n)+N Pi(kN+n)+ N, i(kN+n)+2N * * * PlkN-+n)+(k—1)N,I(kN+n)+kN *
“ MikN4n) 4k NIk N+n) 4k N+1MIEN £1) 4N +1,1(kN+n)+kN+2
EN+n
w M) (kN +n) 1,04 1) (EN+n)> 1141

=D (kN +n) 1 (kN+n)+1 Li(kN+0)+1,1(EN+n)+2 * L(141) (kN +0) —1,(4+1) (kN +n), | € Zy

_ pWy (1) p(2) 1(2) (N) (N) (@)
where Priyi = Poy Yo 11 PorioYorrs - Paryan—2Yarron -1 and Potagi-1)
Y2(l?—2i—17 i =1,...,N are matrices appearing in the above properly strong shift

equivalence.

Namely these automorphisms ¢*¢™, k > 0,n > 1 are subshift-identified. As
an application of this result, if an automorphism ¢ of a subshift (A, o) is a simple
automorphism, that is conjugate to a symbolic automorphism fixing vertices of
a A-graph system, the dynamical system (A, ¢ oo™) is topologically conjugate to
the n-th power (A, o™) of the subshift (A, o) for n € Z,n # 0 (Theorem 8.2).

This paper is organized as in the following way.

. Introduction

. Symbolic matrix systems and A-graph systems

. Textile systems on A-graph systems

. Textile shifts on A-graph systems

. LR textile systems on A-graph systems

. LR textile systems and properly strong shift equivalences

SO s W N
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7. Subshift-identifications of automorphisms of subshifts
8. An application

2. Symbolic matrix systems and A-graph systems

We call each element of a finite set > a symbol or a label. The transformation
o on the infinite product space X% given by o((;);c7) = (Ti41);ez is called the
(full) shift. Let A be a shift-invariant closed subset of X% i.e. o(A) = A. We
write the subshift (A,o) as A for short. We denote by A*(C XV) the set of
all right-infinite sequences (z;);cy that (z;);c, belongs to A. A finite sequence
= (p1, ..., ) of elements p; € ¥ is called a block or a word of length k. We
write the empty symbol @ in ¥ as 0. We denote by Sy the set of all finite
formal sums of elements of 3. By a symbolic matrix A over ¥ we mean a finite
matrix with entries in &x. A square symbolic matrix A naturally gives rise to a
labeled directed graph, called a A-graph, which we denote by G 4. The labeled
directed graph defines a subshift over ¥ which consist of all infinite labeled
sequences following the labeled edges in G 4. Such a subshift is called a sofic
shift presented by G 4 (cf. [4], [9], [10], [22], [8], [13]). If, in particular, different
edges have different labels, the sofic shift is called a topological Markov shift.

Let A and A’ be symbolic matrices over ¥ and Y’ respectively such that
the size of A is the same as that of A’. Let x be a bijection from a subset of
Y onto a subset of ¥'. Following M. Nasu in [18],[19], we say that 4 and A’
are specified equivalence under specification x if A’ can be obtained from A by
replacing every symbol a appearing in the components of A by k(a). We write
itas A~ A

Two symbolic matrix systems (M, I) over 3 and (M, I') over ¥’ are said to
be isomorphic if for [ € Z, the size of M ;41 coincides with that of Mf,l 41 and
there exist a specification x from ¥ to ¥’ and an m(l) x m(l)-square permutation
matrix S; for each [ € Z such that

g ! !
SiMiipr = Mi 1S4, Stliivr = 1; 1415141+

Recall that a A-graph system £ = (V, E, \, ) over ¥ is a directed Bratteli diagram
with vertex set

V =Uez, Vi
and edge set
E=Uez, B+
that is labeled by a map A(= A;;41) : By 41 — X with symbols in ¥ for { € Z,

and that is supplied with a sequence of surjective maps

(=vi+1) : Vigr =V for le€Z;.
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Here each vertex set V; and each edge set E; ;1 are both finite sets. An edge
e in Ej ;41 has its source vertex s(e) in V; and its terminal vertex t(e) in Vj4q.
Every vertex in V' has a successor and every vertex in V, except the verteces in
Vo at level 0, has a predecessor. It is then required that there exists an edge in
E; ;41 with label a and its terminal is v € V;4; if and only if there exists an edge
in E;_1; with label a and its terminal is «(v) € V;. A A-graph system is said
to be essential if there is no distinct edges that have the same source vertices,
the same terminal vertices and the same labels. Throughout this paper, we will
treat essential A-graph systems. For u € V;_; and v € V41, we put

Ej 111 (u,0) = {e € By | te) = v,u(s(e)) = u},
EV(u,v) ={e € Ei_1; | s(e) = u,t(e) = 1(v)}.

Then there exists a bijective map c,ofu,v) from Ej; ., (u,v) to E'=Y(u,v) such
that

)\(gofuw)(e)) = A(e) for e € By ;.4 (u,v).

Hence two sets Ef;(u,v) and E!~!(u,v) bijectively correspond in preserving
labels for all pairs (u,v) € V;_1 x Vi11. We call this property the local property
of the \-graph system. We immediately see

LEMMA 2.1. For a \-graph system £ = (V,E, )\, 1) over X, there exists a sur-
jection

c.
o7 B — Ei_y

for each l € N such that
S01£|E;,H1(u,v) = @fu,v) forueVi_1,v eV
and
u-11(s(e)) = s(er (e)), uari(t(e)) =tlei’(e))  foree By

We call an edge e € Ej ;41 a A-edge and a connecting finite sequence of A-
edges a A-path. For v € V; and v € Vi1, if ¢(v) = u, we say that there exists an
t-edge from u to v. Similarly we use the term ¢-path.

Two A-graph systems (V, E, \,¢) over ¥ and (V',E’; X ,) over ¥’ are said
to be isomorphic if there exist bijections @y : V; — V/, &g : Ej 11 — El’,l+1
for | € Z4, and a specification k : ¥ — ¥’ such that Sy (s(e)) = s(Pg(e)),
Sy (tle)) = t(Pp(e)) and N (Pgr(e)) = k(A(e)) for e € E, and J/(Py(v)) =
&y (1(v)) for v € V. There exists a bijective correspondence between the set of all
isomorphism classes of symbolic matrix systems and the set of all isomorphism



8 K. MATSUMOTO

classes of A-graph systems. We identify isomorphic symbolic matrix systems,
and similarly isomorphic A-graph systems.

A symbolic matrix system (M, I) is denoted by (M, I™) although the ma-
trices Ij ;41 are not determined by the symbolic matrices M;;41,l € Z,. We
denote its A-graph system by £M = (VM EM AM_ M), The surjections gofM :
Elf)‘l’l_s_1 — Elf‘_’ll,l,l € Z4 defined in Lemma 2.1 are denoted by golM,l €Zy.

A M-graph (= a finite labeled graph) defines a A-graph system as in the
following way. Let G = (G, A) be a A-graph with underlying finite directed graph
G and its labeling X. Let V¢ be the vertex set of G. Put V; = V& forall | € Z
and ¢ = id. Write labeled edges from V; to Vjy; for [ € Z, following the directed
graph G with labeling \. It is clear to see that the resulting labeled Bratteli
diagram with +(= id) becomes a A-graph system. A A-graph and also a A-graph
system are said to be left-resolving if different edges with the same label must
have different terminals. By the construction if a A-graph G is left-resolving, so
is the above defined A-graph system by G. In what follows, we assume that a
A-graph system is left-resolving.

For a A-graph system £ = (V, E, A, ¢) over ¥ and a natural number N > 2, the
N-higher block £V of £ is defined to be a A-graph system (V¥ BINT \INT ,[NT)
over LIVl = ¥... % as follows ([15]):

—

N-times

Vl[N] ={(e1,e2,...,en-1) € Ej 41 X Ejp1040 X -+ X Bl N_214N-1
t(e;) = s(ejqpq) fori=1,2,...,N — 2},

ENL ={((er,...,en—1),(fr, -, fv-1)) € VIV < I
tlen-1) = s(fv-1),€i41 = fifori=1,2,...,N — 2}.

The maps
(V]

N
sVl :E[ ] b1

Livl Vl[N]a N Bl 1=V

1+
are defined by
S[N]((ela' . ‘76N—1)7(f1" "7fN—1)) = (61,.. "eN—l);

t[N}((el, .. .,eNfl), (fl, .. .,fN,1>> = (fl, . .,fol).

Set VIV = UZELVZ[N] and EWV = UleZJrEl[fﬂﬂ. Hence (V[N],E[N],S[N],tm]) is

a Bratteli diagram. A labeling AV on (VIN!] EIND) is defined by

)\[N]((el, ey eNfl), (fl, ey fN71>) = )\(61))\(62) . )\(€N71))\(fN,1) S E[N]

for ((e1,...,en—1),(f1,...,fnv_1)) € EIVl. A sequence of surjections ¢!V : Vl[f_vl]
— Vl[N],l € Z4 is defined as follows. As the A-graph system (V, E, A1) is left-

resolving, for (ey,...,en—_1) € Vl[_f_vl], there uniquely exist e} € Ejy;_1,4; for
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1=1,2,..., N — 2 such that
u(s(e)) = s(ef), wlt(es)) =t(es), Alei) = Ale;)-

As (ef,...,ey_) € V by setting «V(eq, ... en_1) = (€},...,€N_1), We get
a A-graph system (V[N],E[N AN over IV We set £ = €. The N-
higher block (M, TV of a symbolic matrix system (M, I) is defined to be
the symbolic matrix system for the N-higher block £V) of the A-graph system
£ for (M, I).

3. Textile systems on A-graph systems

In what follows, let (K, I), (M, I™) and (N, IV) be symbolic matrix sys-
tems over alphabets ¥, ¥M and SV respectively. Let us consider their re-
spect A-graph systems £X = (VX EX KK gM — (yM M AM MY and
oV = (VN,EN,)\N,LN). We denote by (s, %), (sM,t+M) and (s, tV) their
source maps and terminal maps in the A-graph systems respectively.

A \-graph system homomorphism p = (p¥,p¥,p¥) : &€& — &M consists of
sequences of maps

P (=p):V* — VM pP(=pf) BNy — BN ey

together with a map p* : ¥& — M such that

(1) pr(S’C(e)) = sM(pih41(e)), pz‘il(t’c(e)) = t"(pf141(e)) for e € Bl
(2) pl Vg l+1( v)) = L%+1(pl+1( ) for v € Vl+1)
(3) p (/\K( ) =AM (pl,l+1( e)) for e € El 141
We call it a homomorphism and write it as p : £& — €M for short.
A one-shift A\-graph system homomorphism q = (¢¥,q¢",¢%) : & — M
consists of sequences of maps
"=ad) vt — v, 6

_E .k M
q = QZ,l+1) BN — B e leZy

together with a map ¢* : ¥ — ¥M such that

(1) qlV(S’C(e)) = sM(g741(0)), @1 (tF(e)) = tM(afi 1 () for e € Efy 4,

(2) qz Gy 141(v) = l’lj\-}/-ll,l-q—Q(ql‘fi-l(U)) for v € V%,

(3) °(\(e) = MM (g, (e)) for e € B,
We call it a one-shift homomorphism and write it as ¢ : £° — €M for short. For
a one-shift homomorphism q= (qV, q?,q¢%) : &F — eM put p(‘;l = L{:?_H oq/
Ve — VM pE LI+ = P12 00l Bl — Efif1,1 € Zy, and py = ¢”
Y& — M. Then p, = (pl‘]/,pqE,pqE) £k — ¢M s a homomorphism.
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LEMMA 3.1.

(i) For a homomorphism p : £& — €M we have p¥ o cpfc = cle opP.
(ii) For a one-shift homomorphism q : £ — €M we have g% o pl* = pMogP.
Proof. Let p : £¢ — €M be a homomorphism. For u € Vl’fl,v € Vﬁl and

K

e € E’ClL,lH(u,@), it is direct to see that s™M(pZ(p(e))) = sM(pM(pF(e))),
M (0" (o (e))) = tM(" (P (e))) and MM (PP (¢ (e))) = AM(" (P (e))). As
£M is essential, one sees that pZ (¢ (e)) = ¢ (p¥(e)). Hence (i) holds. The
assertion for (ii) is similarly shown to (i). O

We say that €M and £V form squares if
M N
VM =Y, Ii = Ly leZs. (3.1)
In this case, one may see a square as in the following figure:

M
El,l+1

vV =M

lE{YH—l J{EZ,\-(—I,H—Q for e Z-|--

M _ N
Viih =Vita

EM
‘f./\/ — ‘7./\/1 l+1vl+2; ‘IM — ‘r/\/
+1 = Vi+1 +2 = Vi42

We will formulate textile system on A-graph systems as in the following way.
DEFINITION (Textile system on A-graph systems). For A-graph systems £,

&V and £X with a homomorphism p : £¢ — €M and a one-shift homomor-
phism ¢ : £° — €M the diagram

SN

is called a textile system on A-graph systems if the following six conditions are
satisfied:

(1) &M and &V form squares.

(2) VllC = Elj,\lf+1v leZy.

(3) Under the equality (2),

K . K Ky _ (N . N N
(Ll,l+1 Vi = V) = (e Eillq 40— El,l+1)a leZy.
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(4) Under the equalities (3.1) and (2),

(" V= VM) =V Bl - VY,
@ V= v =tV BN - V), leZ,.

5) The quadruple:
( ) q p
(SK(e)atK(e)7p (6),(] (6)) € [llC x [ZK—H X Elj,\l/t+1 X El.A/t+1,l+2

determines e € E{CJH.
(6) Under the equality (2), there exists a specified equivalence between IV x
YN x M x =M and ©X by the correspondence between the symbols:

(AN (55(0), M (E5(0)), MM (97 (0)), A (g5 (0))) € B x 5 s 5M 5 M

and \*(e) € ©X.

A textile system on A-graph systems is called a textile A-graph system for short.
We write the textile A-graph system as ’779/&/4 = (p,q: &° — £M), or simply as
T. In viewing the textile A-graph system, one uses the following square

MEe
AT (p7(e)

Ve | [Werey for ec B

MEE
A (g7 (e))

PROPOSITION 3.2. For a textile \-graph system 779/\‘,4 = (p,q : &F = M),

there exists a \-graph system £ and a textile X-graph system T]C*J\A{t = (s, "

£K" 5 N defined by the diagram:

URY fvil
[+

L A W VA
lt,c
EN

Proof. We define a A-graph system €5 = (VX7 EXT A K7 over X7 by
setting

K* _ oM oK K* _ M K* _ sk
Vit =EL B =B, s = @i, X0 =X forl e Zy
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and for e € ElKH_1 = El’?H_l
K M T o M K* \K* K
s% (e)=p"(e) € Efl\1=V"", #* (e)=q¢"(e) € Bl 11, =V/1, X (e)=2"(e).
For u € VX v € Vl’_f_l put w = Lf;_l(v). It then follows that

B (u0) = {e € BE, | 857 (e) = u, 7 (e) = w}
—{e€ EF L, [P%(e) = u, ¢°(e) = w},

By (u,0) = {f € Bfppr | 50,57 () = u, 57 () = v}
={f € B | oM ®P(f) = u, ¢°(f) = v}.

For e € Ef,z*l’l(u,v), one sees t*(e) € E%_H. As £V is left-resolving, there
uniquely exists v’ € E{XLH_Q = V¥, such that

W) =X e), V) =tME), @) =t ).

For the two vertices s*(e) € V/*,,v" € Vi, with /*(v) = t(e), by the local
property of £X, there uniquely exists f € El’cl 41 such that

W M) =85), (=0, N = M)
pP(e)=ueE{,
—_—

S’C(e)EEﬁul lt’c(e)eE{‘le

qE(e):weEzj?/thrl
%

PP (f)=ueBE]{,
S

S’c(f)eEzA,/z+1l J{t}c(f)eEﬁLH’z

qE(f)=”€ELAf1,l+z

Hence one has

VS, MW (1)), M (), M (F))
=WV (5()), W (£ (€)), M (pP (e)), M (¢P (e)).

Since £M is left-resolving, the edge pZ(f), whose label is MM (p¥(e)) and ter-
minal is the source of v/ € E{YHJ 4o, is unique, and also the edge q?(f), whose
label is A (¢P(e)) and terminal is the terminal of v’ € EfY |, ,, is unique, Since
&N s left-resolving, the edge s*(f), whose label is M (s(e)) and terminal is
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the source of v € Elf-\fl,l+2’ is unique, and also the edge t*(f), whose label is
M (t*(e)) and terminal is the terminal of v € E{:‘l,l_ﬂ, is unique, Hence the
square

PE(f):ueEzjt?Jrl
R A

S)C(f)GELA,/Hll lt’c(f)eEﬁ1,z+2

‘IE (f)=U€ElAj:Ll+2

is uniquely determined by e € Ef;*l ’l(u,v) so that f € Eff_:l(u,v) is uniquely
determined and hence <pf( f) = e. Conversely, for an edge f € Ef}lc_;l there
uniquely exists e € Ef,z*l’l(u, v) such that o°(f) = e. Hence (VX, EX" AKX ,K7)
satisfies the local property so that it yields a A-graph system over ¥X, that is
written as £5.

We define a homomorphism p* : ££° — ¢V by setting

p*(e) =sF(e) € Elj}{-s-l for ee€ El’cl*+1
and a one-shift homomorphism ¢* : £° — €V by setting
K N Kc*
q*(e) =t"(e) € Eify 142 for ee K.

Then the diagram below
oN

et

sK*zp * t’c*zq
M = gkt -~ oM

lq*:tn
oV
vields a textile A-graph system Tjc.n = (s, ¢* : oL 5 eN) . O
We call the textile A-graph system ﬁc% = (s, t% . g&° 5 ¢eN) the dual of
Tim = (pyq: gk — ¢M). Tt is written as Tias ™~ Tt is clear that (T,CJQ/A*)* = Ticp-
For Tiea = (psq - £k — ¢M) and N € N, we will define the N-higher block

Tf%] of ’7;{% as in the following way. Let o™ and eM™ be the N-higher

blocks of £X and £M respectively. For N > 2, we will define the A-graph system

[N] [N] [N] [N] [N]
,QNT :(VNT ,ENT ,)\NT ,LNT )
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over N7 = K x ... x B by setting
—_—

N — 1 times
NI [N]
V‘l T V'l/\/l ,
N KVl
E =V
_ K K K
(={(e1,e2,...,en—1) € Epn X Bl e X X BN 014N

t*(e;) = s®(eip1),i =1,2,...,N = 2}),

[N]
T M N xR

N — 1 times
N LM[N],
and
SN[TN] (61762, .- ~7€N—1) ZPE(el)pE(ez) e 'pE(eN—1),
N7 (er, e, en—1) = ¢ (e1)d®(e2) - 4" (en—1),

N KN NN
for (e1,e2,...,en—1) € E} %, = Vi . The A-graph system £%7 is called

the N-higher block of £V relative to T,CA/\;(. For N = 1, we put oNF = eN

The homomorphism p™V! : ek M and the one-shift homomorphism
g™ ;oK™ e M e defined by

pM(er,ea,... en) = pFer)pP(e2) -+ pP(en),
g (e1,e2,... en) = q"(e1)q" (e2) -+ ¢ (en)
for (e1,e2,...,en) € EfS 1 X By 110 X -+ X Ef{ y_1 . n- Then we have

PROPOSITION 3.3. The diagram
K[N] t;c[N]

foacil

defines a textile \-graph system.



TEXTILE SYSTEMS ON LAMBDA-GRAPH SYSTEMS 15
We write the above textile A-graph system TIC[NJM[[NN]] = (p[N]7 g™ kN
N’T

£M[N]) as Tlgj%],‘/] and call it the N-higher block of Ticp.

4. Textile shifts on A-graph systems

For a A-graph system £ = (V, E, )\, 1), we set

oo

Xg = {(Zl)?io S HEl,l+1 | zZl € El7l+1,t(zl) = 8(2[4.1),1 = 0, 1, - },
=0

Xgo = {(Zl);)i1 S HEU'FI | Zl € El7l+1,t(zl) = S(ZH_l),l = 1,2, .. }
=1

We define S : X¢ — Xg, by setting
S((z1).20) = (21)215 (21)20 € Xe.

For a textile A-graph system ’T,Cﬁ = (p,q : £F — £M), there exist maps px :
Xex — Xom and gx @ Xex — Xgam defined by px((21),2,) = (0%(21))12
and gx ((z1)20) = (¢%(21-1));=, respectively.

Following Nasu’s notation, we say that a textile A-graph system 77@\/\?1 is non-
degenerate if both factor maps px : Xex — Xem and gx : Xex — X%w are
surjective. We henceforth assume that textile A-graph systems R% and T’C%*
are both nondegenerate.

Let A be the lattice of the lower right half plane: A = {(i,5) € Z? | i+j > 0},
where the vertical coordinate is reversed. A textile edge weaved by 7;9\/\;1 is a
configuration

(ei,j)(i,j)eA
such that
(1) e;; € Eﬁj’iﬂ-ﬂ for (i,j4) € A,
(2) (€i,—i+1)ez, € Xex for each i € Zy,
(3) pP(ei;) = qF(ei—1,) for i,j € Z with i+ j > 1.

That is a sequence
(€i)iez
such that

(1) e; = (ei;_i+l)leZ+ S X)yc for i € 7,
(2) Sopx(e;) =gx(ei—1) fori e Z.
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A textile edge weaved by 77@:[4 is regarded as a configuration of concatenated
edges of £F on the lattice A of the lower right half plane as in the following way.

e_1y S ey
€_(1-1),l-1 €—(-1), o €(1-1)
€-11 €-12 €-1,3 €-1,4 Tt €
€0,0 €0,1 €0,2 €0,3 €0,4 €
€1,-1 €10 €1, €1,2 €1,3 €1,4 e €1
€22 €21 €20 €21 €22 €23 €24 Tt €2

It is easy to see that (em-)(i jen is a textile edge weaved by Ticu if and only if
(€j:i) (i jyen 18 @ textile edge weaved by T ™
Consider the set X (TK%) of all textile edges weaved by Ty

X(Teg) = {(e0)sez € [[ Xex | Sopx(ed) = ax(eis), i € Z}.
i€Z
For e € ElKl 41,1 € Z, there exists a specified equivalence between
(A (s(€)), M (#(€)), MM (" (€)), A (g (e))) € N 3 BN 5 mM s mM
and \*(e) € £X. We may identify them, and assume that
K={\Ne) e B, 12}
We define

),
);

Jupper X = vM by upper()"c(e» =M (p (e)
Jiower 15 = M by Jiower(V<(€)) = MM (g7 (e)
Tright X5 = IV by Jugne(V(e)) = M (5 (e)),
Jiest 8= IV by T (V(e) = M (s (e)).
Let Apq, Axc, Ay be the two-sided subshifts presented by £M, €5 ¢V respec-
tively. The above one-block maps Jieft, Jrights Jupper> Jiower give rise to sliding
block codes between the subshifts:
= (Jupper) e A = A,
= (Jiower) oo * Ak = Au,
§" = (Jright) o * Aicx = A,
n* = (Jieft) o * Aicx — A
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respectively. We say that 77@\/\?1 is 1-1 if the factor codes £ : Ax — A and
n : Ax — Apq are both one-to-one. Since Tlcﬁ is nondegenerate, the codes
&: Ax — Ap and 1 0 A — A are both surjective. Hence, in this case, we
have an automorphism @7 = 1o =1 on the subshift A .

Let Ugx be the set of configurations of labels of £~ on X('ﬁcﬁ;‘) :

— (X CeDanen € 1T =1 €s)gen € X(Tey)}.

[CNISPA

Consider the natural product topology on H(i fea ¥X and restrict it to Ugx so
that Ugx is compact. For a connected subset 2 of A\, we set

X(TIC/VM Q) = {(el,])(l pen € H E7,+3 i+l |

(i,7)€Q
p¥(eiz) = q%(ei-1,5) for (i,5), (i = 1,5) €
q"(eij) = E(€z+1 ) for (i,7), (i+1,5) €
(e ;) = t*(ei 1) for (i,4), (1,5 — 1) €
t*(eig) = " (ei541) for (4,5), (6,5 +1) € Q}

and

Uec () = (M) i jyea € 1T E° 1 (€id)yea € X (Teas D)
(3,5)€Q
Hence Upx (A) = Ugk. Put
Ay ={0,j) € A]i<n, j<k} for (n,k) € A

By noticing the assumption that Tjp and TK;A/\;I* are both nondegenerate, we
have

LEMMA 4.1. For (n,k) € A and (ai ) Nebmn € Uk (A k), there exists

(bi’j)(iyj)eA(n+1,k+1) € Uer (A(nt1,k+1)) such that

bz’ j = Qi j fO’I’ all (’L,j) € A(n,k)

)

Proof. For (ai»j)(i,j)eA( o E Uk (D), take (€i ) e, EX Tyt D))
such that a;; = A*(e; ;) for all (4,7) € A(nk Since Ty ™ is nondegenerate,
there exist e; j41 € E el fori=—-k—1,—k,. —1,n such that

pP(eins1) = ¢%(eim1ps1)  and s (eipgr) =t (eik)
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fori = —k,—k+1,...,n. Hence we have (eivj)(i,j)emn,kﬂ) € X(’ECA/\?; A(nkt1))-
Similarly by the condition that 77@:/4 is nondegenerate, there exist e, +1; € EX Y1,
forj=-n—1,—n,...,k,k+ 1 such that

PP (ent1y) = a%(eny) and  s(ens1;) = tN(ens1-1)

for j = —n,—n+1,...,k,k+1. This implies that (ei»j)(ij)ea( I

€ X(Ticyys
A (n+1,k+1)) S0 that by putting b; ; = )\’C(em-) for (e; we get the

assertion. O

’j>(i7j)€A(n+1,k+1)

Hence one has

COROLLARY 4.2. For (n,k) € A and (a;;)
exists (i) ; jyen € Uer such that

() EA iy Ugr (An,ky), there

QG = Qi for all (i,7) € Agy 1)

PROPOSITION 4.3. Let (aivj)(ij)eA be a family o;; € YK of symbols in-
dexed by (i,7) € A. Then (ozi,j)(i’j)eA € Ugr if and only if (ai’j)(i,j)eA(n o €
Ugr (An k) for all (n, k) € A.

Proof. The only if part is clear. Suppose that (ai’j)(i,j)ea(nk) € Uex (Aniy)

for all (n,k) € A. By Corollary 4.2, for (n,k) € A there exists a(™F) =

n,k
(ag,j ))(i,j)EA € Ugx such that
ol = @, for all (,7) € A
ij T Y »J (nk)-

As Ugk is compact, there exists & = (di,j)(i fen € Ugx such that
(n,k)

a = limy, g—oo a(™k) | Since Qij = Q; ;) = Qj for all (i,j) € Ag,k), one has

&;; = oy ; for all (4,7) € A and hence (ozi,j)(i’j)eA € Uax. O

LEMMA 4.4. For a = (a; ;) A €EUgk, put

(i,9)€
Sr(@); ; = aijt1,  Sp(a);; = qitr, for (i,7) € A.
Then we have Sg(a), Sp(a) € Ugxk.

Proof. For a = (aiyj)(i,j)eA € Ugx, take (eiﬁj)(i,j)ea € X(Txy) such that
ai; = A(e; ), where e; ; € Eﬁj’iﬂ-ﬂ. By the map goﬁj’iﬂ-ﬂ : Eﬁj,iﬂ-“ —
Ezzi-j—l,i-i-j in Lemma 3,1, one has @K(ei7j+1)(i7j)€A€X(TK% ). As A (% (e;541))
= M(e;j+1) = @i j+1, one sees that Sgp(a) € Ugx. One may symmetrically prove

that Sp(a) € Ugx by considering ¢ . O
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The assertions above mean that Ugx can be shifted to both left and upper.
We note that Sg o Sp = Sp o Sg on Uex to set

&= [ SkoSHUx).
n,m=0
Hence one has
SrUR) = U = SpUR).

A teatile label weaved by T =Ty is a two-dimensional configuration (am)(i ez
of =X such that

(ai*kaj)(i,j)eA € Ugk for all ke€Z.
The condition is equivalent to the condition

(aivj*k)(i,j)eA € Ugk for all ke€Z.
Let U+ be the set of all textile labels weaved by 7. We note

LEMMA 4.5. For (O‘iwj)(ij)ep € Ut one has (o, ;) ., € A for alli € Z, and

(@i j)iez € Axcx for all j € Z.

JEZ

Proof. For (i ;) ; ;yez2 € Ur, one sees that (aij—k)(; jyen € Uer for k € Zy.
Hence there exists (eivj*k)(i,j)eA € X(Ticpr) such that o = N(eij—k), so
that (aij—k) ez Gjen € Af for all i € Z and k € Z.. We then have (a; ;).., €
Ay for all ¢ € Z. We similarly have (O‘i,j)iez € Mg« for all j € Z. O

JEL

We define a metric dpq on Apq by setting

0 if a=d,
(5(0(,0/):{L if a#a/
B+l

for a = (a;);cz,0" = ('4);cy 0 Arg, where k = min{li| | i € Z,a; # o;}.
Similarly we define a metric dpr on Ap. We next define a metric 7+ on U by
setting

0 if u =1,
= ifu#d
for w = (i) ; jyezer ' = (@ij)(; jyeze In Ur, where k = min{li + |j] | i,j €

Loy 5 # oy}

LEMMA 4.6. U7 is compact.
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Proof. We first note that the set X (77CA/\/4) of all textile edges is a compact set
in a natural topology of the edge set so that the label sets Ugx and Uk are
both compact. Let H(i,j)622 YK be the set a;; € ¥X, (i,5) € Z? of all two-

dimensional configurations of ¥*, that is endowed with the topology similarly
defined by the above §7. Consider the sequence of the following continuous maps

Ck : (O‘M)(i,j)eZ? S H E’C — (ai—kvj)(i,j)eA S H E’C, keZ.
(i,§)€2> (1,5)ED

Since we have

Ur = () ¢ M Uer),

keZ
the set U7 is compact. O
Define a one-block code
Q7 Ur — A}C
by setting
D7 (i) jyeze) = (@05) ez (@g)ijyeze € UT

We say that the textile A-graph system 7y e is surjective if the map &7 : Uy —
Ax is surjective. Define the one-block codes

@T:UT%AM, @;—:UT%AN
by setting
GT((ai,j)(i,j)ep) = (Jlower(O‘O,j))jeza efr((ai,j)(i,j)ep) = (Jright(ai,o))iez-

They are continuous in the topology defined by the metric dx on Uy. Since
1 : A — Apq is always surjective and @7 = n o &4, if 77@:/4 is surjective, the
map O7 is surjective. For k,n € Z, the homeomorphism

ch,n) Uy — Ur

is defined by

k.n
o )((ai,j)(i,j)ez2) = (it jtn) (i jyeze for  (ai;) jyeze € Ur-

The dynamical system
(Z/{T7 0-'(7]'c 7"))

is called the (k,n)-textile shift on A-graph systems.
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LEMMA 4.7.
(i) If Ticar is 1-1 and surjective, then O : U — A is a homeomorphism

such that ©1 o Ugg’n) =0 00O7.
(i) If 7761/\\/4* is 1-1 and surjective, then ©% : U — Ax is a homeomorphism

such that ©% o U%ﬁc’o) = aj’i/ 0 OF.

Proof. (i) If T,C% is 1-1 and surjective, then ©1 : Uy — A, is one-to-one and
surjective so that it is a homeomorphism. (ii) The assertion is symmetric to (i).
O

PROPOSITION 4.8. IfT’C% is 1-1 and surjective, then (AM,@’%U%{) is conju-
gate to (L{T,crsrk’")) for all k,n € Z.

Proof. We note that @s’((']lower(ao,j))jez> = (Jiower(k,5)) j7) for (ar;) 1. jyeze
€ Uy. Since TK% is 1-1 and surjective, the map ©5 : Uy — Apq is a homeo-

morphism that gives rise to a conjugacy between (Anq, p5-o") and (Ur, a%lc ’")).
O

Now we reach the following theorem.

THEOREM 4.9. Suppose that 77@/4 and TK:J/Q/’A * are both 1-1 and surjective. Then
there exists a homeomorphism

X7 Am = Anx

such that the diagrams

AM L AM AM U—M> AM
lXT lXT lm lm
Ay —22 s A, Ay —2705 Ay

are both commutative.
Proof. We set

XT=0%007" Ay — Ay
It satisfies

XTOPT =O0NOXT:  XTOO0M=PT*OXT-
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There are various metrics on A by which the product topology on A, is
given. Any such metric makes the homeomorphism o on Ap expansive. We
may fix the previously defined metric on A. By the metric, o has 1 as its
expansive constant. Theorem 4.9 is generalized as follows:

THEOREM 4.10 (cf. [19; Theorem 4.1]). Assume that Ticar is 1-1 and surjec-
tive.

(i) If o7 is expansive and its expansive constant c satisfies ¢ > % for some
k €N, then Ticpm K" s 1-1. Hence if there is no n € N such that Ticj\‘;l []*
is 1-1, then o : Ay — Aaq is not expansive.

(i) If there is n € N such that (TK% ["])* is 1-1 and surjective, then one has
topological conjugacies:

(Ants ) = Apn, opim)s (Aot prim=) = (Aa o),

where N[T"] is the n-higher block of &N relative to ’77@&/4 Hence the topolog-
ical dynamical system (A, 1) is realized as the subshift (AN[n] s O pint)- If
T T

in particular o1 is expansive and its expansive constant c satisfies ¢ > %

for some k € N and Tcpm (2K s surjective, then the topological dynamical
system (A, 7) is topologically conjugate to the subshift (AN[%],JN[%])
T T

[2k]
presented by the A-graph system oNF,

Proof. The proofs below are essentially similar to the proofs of [19, Theorem
4.1]. We will give the proofs for the sake of completeness. (i) Assume that 7 is
expansive and its expansive constant c satisfies ¢ > % for some k € N. Suppose

that ’T,Cﬁ K] is not 1-1. There are distinct textile labels s = (ﬁm-)(ij)ez2 and
s = (ﬂg,j)(i ez in Uy such that B;; = G;; fori € Z,—(k—1) <j < k-1
Now iy is 1-1, by putting y = (y;) ;5 = O7(8),y" = (y)),, = O7(5), we
have y # 3’ € A . Since one has y; = y; for —(k—1) < j <k — 1, one sees that
@%—(y)j = cpiT(y’)j fori€Z and —(k — 1) < j < k — 1. Hence we have

for all i € Z, a contradiction.

(ii) Since (A pqin1, p7m1) is topologically conjugate to (A, ¢7) and
(A pqing, 0 pqin1) is topologically conjugate to (Aag, o), The assetion holds from
Theorem 4.9. O

Following Nasu’s consideration as in [19, Section 2], we will define bias shifts
on textile A-graph systems. For a symbolic matrix system (M, ), we set for
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keN
Mg = M1 Mygg, Lovr = Iier - I gk, leZ,.

Let (M, I™) and (N, V) form squares. Then for k,n € Z, , we set
(NP M™)11 = Nitetn), (1) k-+inM 1) k-4, (141) (k)
k n
(IN M it = I%wm),(l+1)k+ln1{;11)k+ln,(z+1)(k+n)a leZ,.

As Ilj,\l/+1 = I/, one sees that (NEM™, IN"M™) becomes a symbolic ma-

trix system over (XN)"(XM)". Similarly we have a symbolic matrix system
(MPNF, TN over (EM)™ (V). For a = (as.) € Ur, we set
) . = 4,3 (i,5) €72 T
(k
(ekm (@) (ik,in)) = bikinbik41,in * * * Diktk—1,inQik-tk,inGik+k,int1 " " * ikt k,intn—1
~(k
(etkm) (@) (ik,in)) = ik, inQik,in+1 " ** Cik intn—10ik, ik +inDik 11 iktin -+ Dikth—1,iktn

where a; j = Jupper (@i ), bij = Jieft(eu, ;). Define

ég]—c’n) U = Aprepqn, @g]—c’n) U = A pgnpre
by setting
X (k,n “(k.n
O™ (@) = (E%™ () ikm) ) € At atns
A(k,n ~(k.n
OF ™ (a) = (%™ (@)t imy ) € Artrce-
We set

v (k,n X (kyn ~(kn A (k,n
F = o), Ut = oF ),

. (k,n “(k.n ~(k,n
FEM (@ (@) (ih,im))se) = (5™ (@) (i1 (141)m) g
~(k,n ~(k.n ~(k.n
FEM (@M () (ih,im))se) = (5™ (@) (i1 k(1410 g

We have subshifts
@, 585y and @, 65E)
over (EN)k(EM)n and over (EM)n(EN)k respectively.

LEMMA 4.11. (Z;lgg’”),(rsrk’n)) is topologically conjugate to (Z]ﬁ’”),&(ﬁ’n)).

Proof. Define v : Z]gﬁn) — Z/Vlgc’n) by setting
$(OF " () = 6F" (67" ()

for a« € Ur. It is direct to see that 1 is a topological conjugacy between
@™ 5 and @0, 5%m) o
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We call the subshift ( V,(rk’"), 6%’3’")) the (k,n)-bias shift defined by Ticps-

5. LR textile systems on A-graph systems

In this section, we formulate LR textile A-graph systems, that are general-
ization of sofic LR textile systems defined by Nasu [19].

PROPOSITION 5.1. Assume that \-graph systems £M and £V form squares.
If there exists a specification r between SMEN and SNEM that gives specified
equivalences

K
MupiNi e = NppaMiga iy, leZy, (5.1)

then there exists a A-graph system £X and a textile A-graph system Ticf\‘ﬁ = (p,q:
gk - gM),
Proof. We identify the vertex sets V; and VlN forl € Z,. Put
Vl’C :El/,\{ﬂ’
ElK,lH ={(f', f.e,e) € E{}{H X Eﬁu,uz X El/,\l/lJrl X El/\f1,l+2 ‘

sM(e) = M (), tM(e) = sV (), V() = sM(€),

M) =tV (1), KM @AV () = AWV (FIWMY, TeZy
and

VE = Uier, VS, EX =Uiez, BN 4.

Each element (f', f,e,e') € El’cl 41 is visualized as a square:

K. gK
We define s™ : B}

SK(fl7faeael):fl7 t’C(flvaeael):f for (fl7faeael)eElK,l+17

— Vi BN — Vi by setting

and LfH_l : VK — V/* by setting LfH_l = @{\_{_1. We put

S — LN, V() MM (e), W) € BV x 2V x sM < sM |
(flafveve,) € EZICJ+1,Z € Z+}
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and
N ER s (f freel) — 55 5 OV (), W (), MM (e), WM (€))).

Then we will show that €& = (VX EX AKX /K) is a A\-graph system over ¥*.
For u € VX ,v e Vi, put w = 45 (v). One sees

-1,
(E}C)L’Cl (u,v) = {(uaw’eael) € ElK—l,l | ec El/\—/ll,lael € Elj,\l/t+1}'

Asw e VF = El/}lfﬂ is fixed, if we choose e € El/\—/tu such that (u,w,e,e’) €
(E’C)igl’l(u,v) for some €', the label MM (e)XV (w) € TMEN determines the
labels M (u) and AM(¢’) of u and e’ through the specification . Since the label
MM (e) and the terminal tM(¢/) = tV (w) are determined, the edge €’ is uniquely
determined because £ is left-resolving. Hence under fixing both u € V;*,
and v € V,, the edge ¢ € E/N', is uniquely determined by e € EM, , so
that (E’C)igl’l(u, v) is identified with {e € El/\_’tu | sM(e) = sV (u),tM(e) =
sN(w)}. Now N = M so that sV (w) = L%_H(SN(”U)) = L%+1(8N(v)). Hence
(E’C)igl’l(u,v) is identified with (EM)i,Ll’l(sN(u),sN(v)). On the other hand,
one sees

LIC
(B®) g1 (u,0) = {(w',0,9,9') € By | uty,(w') = u}.

Similarly to the discussion of (E*)'c" (u,v), if we choose g € E{N', such that

(w',v,9,¢") € (E’C)f;+l(u,v) for some ¢, the label AM(g)AVN (v) € SMEN de-
termines the labels AV (w') and A (g’) of w’ and ¢’ through the specification .
Since the label A (g’) and the terminal tM(g') = #V (v) are determined, the edge
¢’ is uniquely determined because £M is left-resolving, so that the source vertex
sM(g') € VA of ¢’ is determined. Since tN(w') = sM(g'), the edge w' € El{\lfﬂ
is uniquely determined. Hence under fixing the vertices u € V/*,,v € V&, both
the edges ¢’ € EM, |, and w' € E_| are uniquely determined by g € E{Y!,,.
Now one has sM(g) = sV (w'), ¥, (w') = u so that

q (M (W) = gy (M) = V(@) e i = VY

It then follows that (E’C)fsﬂ(u, v) is identified with {g € Elj,\fH | L{\fu(sM(g)) =
sN(u), tM(g) = sV (v)}, that is (EM);SAH(sN(u), s (v)). By the local property
of £M one has a label preserving bijection between

M 1-1,1
(B (M (@), sM () and  (BM)H (Y (u), s (0))
that yields a a label preserving bijection between

(EX) i (u,0)  and (BN (u,v).
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This means that €% = (VX EX AX)/X) is a A-graph system over ¥X.
Define a homomorphism p : £€¢ — €M and a one-shift homomorphism
q: & — &M by setting

PP (f, f,e€) € ElK’H_1 —ec Elj’\lﬂ_l,
p i feVE=EN, — N eV,
P2 V() MV (F), MM (e), AM()) € BF — AM(e) € 1M
and

q”: (f,fe€)e Ezlc,l+1 — e e El/\fl,l-s-%
¢ f eVt =EN, — V() eV,
7 V() WV (), M (), WM(e)) € 2F — aM(e') € SM

respectively. Since for a = (f', f,e,¢) € ElS, ,, one has
(s®(@), (), p" (), ¢"(@)) = (f', f,e,€')
the square (s<(a), tX(a), p?(a), ¢®(a)) determines a, and the quadruple
(WM (5% (@), W (1t (@), M (P (), MM (g7 (@)))

determines \* (). Hence one has a textile A-graph system TIC//\\//‘ = (p,q: &° —
£M) through the specified equivalences (5.1). O

We call this textile A-graph system an LR textile A-graph system, following
Nasu’s terminology for sofic textile systems ([19]).

LEMMA 5.2 (cf. [19; Fact.6.14]). An LR teatile A-graph system Tycps is nonde-
generate.

Proof. Let Tlcﬁ be an LR textile A-graph system defined by (5.1). Keep the
notation as in the previous proposition. We will prove that px : Xox — Xonm
is surjective. We set for I € Z,,n € N

M M M M
Ein =t(er, .. en) € By X Eify o X oo X Bl 140 |
tM(e;) = sM(eiq1),i=1,2,...,n — 1}
and similarly El’,CH_n. Since X ¢x is compact, it suffices to show that for(eq, ..., e,)

€ E{}{ﬂrn there exists (g1,...,9n) € El’?l_m such that px(g;) = e;,i =1,2,...,n.
Take f, € Elj\-"{n,l-i-n-i-l such that tM(e,) = sV(f,). Since Ticpr is LR, there
uniquely exists f,—1 € E{in_l’“rn and €/, € Elj—i\:ln,l+n+1 such that the quadruple
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(frn=1, fn,€n,€n) denoted by g, gives rise to an element of El}in—l,l-l-n' One may

inductively find f; € El/}(_k7l+k+1, ey € Elf‘_fk7l+k+1 for k =1,2,...,nand fy €
Elj}l/-x-l such that the quadruple (fr—1, fx, ek, €’x) denoted by g gives rise to an
element of Ellilc—l,l-kk for k =1,2,...,n. They satisfy (g1,...,9n) € Ellgrl,l-i-n-i-l
and px(g;) = €;,7 = 1,2,...,n. One also sees that gx : Xex — Xop is

surjective in a smilar way. [

PROPOSITION 5.3. Let TKA/\//J be an LR textile \-graph system. For k,n > 1,
we have

“(k,n) .(kmn “(kmn) ~(km
@E™ GEY = (Apeagms onipan)y  @AE™,65™) = (A pgmpre, o pgmne)-

Proof. We will prove that the map @g—g’n) s U — Aprepqn 18 surjective so that the
first equality holds. Take an arbitrary sequence (a;);c; € Apxpqn. Since Ticat
is LR, there exists a two dimensional configuration (c ;) ; ;72 € H(i,j)eZZ K
such that by putting

al = (aivj)jel’ of = (j)icy
al belongs to Ay for all i € Z and aj belongs to Ax~ for all j € Z, that satisfy
(o) =mnlaj,) forieZ,  &(a))=n*(aj_,) forjeZ,

and

a; = (p*(aki,m’)7 e 7p*(a(k+1)i71,ni)7 Q(a(k+1)i71,ni)7 cee Q(a(k+1)i71,(n+1)i71>>

fori € Z. Form € Nand ((k+1)m—1,(n+1)m—1) € A, we may take an edge

(eki,m', < E(k41)i—1,mis C(k+1)i—1,n4y + + * e(k+1)i—1,(n+1)i—1) (5.2)

that belongs to

K K K
By inikitnit1 X X B yitnio1, (k4 Ditni X Bl 1)itni—1, (k41)itni X

C .
X B it (g )i—2, (k4 Dit (nD)i—1e 0= 0,1,...,m
such that
()\’C(eki,m‘)a ceey )\K(e(kﬂ)iq,m), )‘K(e(k+1)ifl,ni)a sy )\’C(e(k+1)i71,(n+1)ifl>>
=(Qki,nis - -+ s Q(kt1)im1,mis Ak 1)i—1,nis - - » Ukt 1)i-1,(n41)i—1)s & =0,1,...,m.

Since £F and €57 are both left-resolving, edges of £5 located in
A ((k+1)m—1,(n+1)m—1) are uniquely determined by the edges (5.2) and the labels

) . Hence we kn h
(al7])(7'7J)EA((k+1)Wl*1,(n+l)7n—1) ence we ow that

(@) et imsym1.minm 1, € U (Tt Dt 1ym=1,(n+1)m-1))-
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Since m is arbitrary, we have (a;, j)(i jen € Uex. By applying the above discus-
sion to the sequences (a;—x);cy € Ankaqn for K € Z, one has that (o, ])(i fen €
U, and (i K])(” cn € Uk and (a” K)(zj)EA € U for K € Z. Thus

we have (ai,j)(i,j)ez2 € Ur and 97- ((a%J)(i,j)eZ?> = (a;);¢z- Therefore we
conclude that

U(k "= Ak pqn and &gl—cm) = O Nk pMn-
The other equality is similarly proved. O

PROPOSITION 5.4 (cf. [19; Lemma 6.2]). Let Ticar be an LR textile A-graph
system. Then for k,n > 1 the map (:)g]f’n) U — Lv{Tk’n) is injective Hence it
gives rise to a topological conjugacy between (U, ,(75: Y and (L{(k " 7]-c n)) Sim-
tlarly we have a topological conjugacy between (Ur, gfc n)) and (1/17(1C N Agic n)).

Proof. By a similar way to the proof of [19, Lemma 6.2], we can show that for
(ai);ez € Z/l(k ™) there uniquely exists (ai,j)(i jyeze € Ut such that

(ko
9%’ )((ai,j)(i,j)ezz) = (ai)jez- O

We note that if Tja is LR, then Tjep™ is LR. We provide the following
lemma.

LEMMA 5.5. A 1-1 LR textile \-graph system is surjective.

Proof. Let Ticas be a 1-1 LR textile \-graph system. Since Txa™ is LR, the both
Ticpr and ﬁcﬁ* are nondegenerate. We will prove that the map
Sr:Ur = Ax
is surjective. For (a;);., € Ax, take (ej)j€Z+ € Xeox = {(ej)j€Z+ | e; €
Efj+1,t(ej) = s(ej+1),7 € Z4} such that a; = A\(e;),j € Z;. Recall A =
{(i,j) € Z* | i+ 7 > 0}. We set
Ay = {(i,j) e A]i<0,0<j},
Apa=A{(G,j) e A|1<i,j< -1},
Ora={(,4) € A]1<4,0 <7}
Now TKA/\//} is 1-1 so that there uniquely exists a; ; € ¥ for (i, j) € Z? such that
by putting a; = (ai,;);c; one has a; € A, ag = (a;) ;o5 and n(a;) = §(it1)
for i € Z. Take an arbitrary (n, k) € A. We set
Aru(k) =106, 7) € Drw | § <k}
Apa(n) ={(i,7) € Aal i <n},
O a(n, k) ={(4,5) € Ora|i<n,j <k}
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Take f(i) € Eﬂk+1,i+k+2,i =1,2,...,n such that there exist e; ; € Eﬁj’iﬂ-“
for (¢,4) € Oy q(n, k) U L 4(n) satisfying

(ei,j)(i’j)eljryd(n’k;)UAl’d(n) € X(T)Cj‘f i 0ra(n, k) U Aa(n)),
pPler;) =¢%(e;)  forj=1,2,...,k,
teir) =fr(i) fori=1,2,...,n,
aij =N(ei;)  for (i,5) € Opa(n, k) U A a(n)).

As X is left-resolving, such edges e;; € EN ;. ;1 for (i,j) € Oy a(n,k) U
A q(n) are unique for fr(7) € Eﬂk+17i+k+2,i =1,2,...,n. We set ey ; = e; for
§j=0,1,...,k Since €5 is left-resolving, the vertices pZ(e;),7 = 0,1,...k of
£ and labels (@i3) (i jyen, . (k) Uniquely determine edges e; ; € Ef i1 for
(i,§) € Aru(k) such that %7 (e1 ;) = % (e;),j = 1,...,k and A\¥(e; ;) = oy,
for (i,7) € Ay (k). Hence we have

(€i)iyenna € X (T Aru(k))  and hence  (ei); yen € X(Teass 2)
so that

(ai,j)(i,j)eA(n,k) € Ugr (A(n, k))
By Proposition 4.3, the configuration (ai,j)(i fea belongs to Ugex. By applying
this argument to the configurations (ai+k,j)(z‘,j)eZZ and (ai,j+k)(z',j)eZZ for k € Z,
we know that (O‘i,j)(i j)en belongs to Uk and to Ur. Since <I>7—((ai7j)(i j)eZ2) =
(aj)jez, the map @7 : Uy — Ay is surjective. O

Therefore we obtain

THEOREM 5.6. Let Tlcﬁ be a 1-1 LR textile A-graph system defined by a spec-
ified equivalence:

K
My iNiv2 2 N Mg 4o, leZy.

Then the dynamical system (AM,go’;—Uj(A), k > 0,n > 1 is topologically conju-
gate to the subshift (Ank pqn, Opre pqn) presented by the symbolic matriz system
(NEM™, IN*M™Y  defined by
(Nan)l,l+1 :M(k+n),l(k+n)+1 o 'A/‘l(k+n)+n71,l(k+n)+n
Mk tn)+n,i(k4n)4nt1 "  MEED) (ktn) = 1,(1+1) (k+n) s
L,i+1 l(k+n),l(k+n)+1 l(k+n)+n—1,l(k+n)+n

M M
’ Il(k+n)+n,l(k+n)+n+1 T I(l+1)(k+n)71,(l+1)(k+n)7 leZy.
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Proof. Since 77CA/\/4 is nondegenerate, for the case when k = 0 the assertion is clear.

We may assume that & > 1. Since Tlcj\‘ﬁ is 1-1 and LR, it is surjective by Lemma
5.4 so that (A, pRoh ) is conjugate to (Ur, aglc’")) by Proposition 4.8. As T,C%
is LR and k,n > 1, one has that (Z/{T,Ugrk’n)) is conjugate to (ch’n),&glf’n)) by
Proposition 5.4. Hence by Proposition 5.3, we obtain the assertion. O

6. LR textile systems and properly strong shift equivalences

Let (M, I) and (M’,I’) be symbolic matrix systems over ¥ and ¥’ respec-
tively.

DEFINITION ([15]). (M, I) and (M',I') are said to be properly strong shift
equivalent in 1-step if there exist alphabets C, D and specifications x : ¥ — CD,
k' ¥ — DC and increasing sequences n(l),n/(l) on I € Z, such that for each
l € Z, there exist an n(l) x n’(I+ 1) matrix P; over C, an n’(l) X n(l+ 1) matrix
Q; over D, an n(l) x n(l+1) matrix X; over {0,1} and an n'(l) x n/(I4+ 1) matrix
Y, over {0, 1} satisfying the following equations:

Mt ~ Py Qorg1, M ~ QuPari1,
141 =X X041, I = YoYor
and
XiPri1 = PiYiqa, Y9141 = QX4
We write this situation as (P, Q,X,Y) : (M, I) = (M, 1)
Tor
We in particular consider the case when (M',I') = (M, I).
LEMMA 6.1. Suppose that (P,Q,X,Y): (M,I) B (M, I). Put
Tor
Pri+1 = PaYat1(= XoPait1), Il’,,)l-l,-] =141,
Qui+1 = QuXair1(= Y21 Qa141), Iz%+1 =1Ii41, leZ,.
Then we have
(i) (P,I7) = (Plvl+1’ll7»>l+1)lez+ and (Q,19) = (Quu+1, 15,

matriz systems over C' and D respectively.
(ii) The pair €M and £F, and the pair £M and £2 both form squares such that

)leZ+ are symbolic

P
K
MiiviPrrti+2 2PriviMisi 42, leZy, (6.1)

Q
K
Mii+1Qi41,142 = Qi1 Misiiv2, leZy (6.2)
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for some specifications k¥ : SC — CY and k< : ¥D — DY.

Proof. We will prove the assertions for (P, 7). The assertions for the other one
are symmetric.

(i) The equality 73l,1+1fﬁ_17l+2 = 117731+1Pl+1,l+2 is easily shown. Hence (P, I)
= (Pri+1, IZ?H_l)l€Z+ is a symbolic matrix system over C.

(i) One has

K
M1 Priti+2 ~ Po Qo1 Xojr2Poit3
r—1

K
= PorYor41Q0142Poi43 ~ PrisaiMitri4o.

For a € ¥, ¢ € C, by putting k¥ (ac) = can’fl(dac) where k(o) = cod, € CD,
the specification k% : ©C — CY yields the desired specified equivalence (6.1).
O

By this lemma with Proposition 5.1, the relations (6.1) and (6.2) yield LR
textile A-graph systems T,q\;: and T;CJQ\A respectively.

LEMMA 6.2. Suppose that (P,Q,X,Y) : (M,I) o (M, I). Keep the nota-
or

tions as in the preceding lemma. The LR textile A-graph systems T;q; and T;C/Qw
are both 1-1 and hence surjective.

Proof. We will prove that 77@4 is 1-1. The LR textile system defined by the
specified equivalence (6.1) comes from the specified equivalence

I‘LP
P Qois1 - PorpaYorrz ~ PorYorr1 - QorroPorts. (6.3)

Let (B1),cz € Aex be such that £((81),c;) = () We put k(cq) = eid; € CD
for I € Z. By (6.3) (3, is uniquely determined by the square:

cy dl
—>—> .

J,Cl lcz+1

d; . Cl41
Namely, 3; is uniquely determined by the quadruple (c;, ciy1, cidy, diciq) € BF,
that are determined by the sequence (c;d;),.,. Hence the code § : Ax — Apq is
one-to-one. We similarly see that 1 : Ax — A4 is one-to-one. Hence by Lemma
5.5, 77%4 is surjective. We symmetrically see that 77%4 is 1-1 and surjective. O

Following Nasu’s notation [18],[19], an automorphism ¢ of a subshift A over
3 is called a forward bipartite automorphism if there exist alphabets C, D and
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specifications k : ¥ — CD,x’ : ¥ — DC such that ¢ is given by

d((a1)1ez) = (@1)1ez (c)1ez €A

where k(a;) = ¢d; for some ¢; € Cand d; € D,l € Z and o/} = K/,il(dlCLFl) e .
Hence a properly strong shift equivalence (P, Q,X,Y) : (M,I) X (M,I) in

Zor
1-step yields a forward bipartite automorphism on the subshift presented by
(M, ).

LEMMA 6.3. Let (A,0) be a subshift presented by (M,I). Let ¢ be a forward
bipartite automorphism on (A, o) defined by a properly strong shift equivalence
(P,Q,X,Y): (M,I) F (M, I) in 1-step. Let TP and T be the LR textile \-

Tor
graph systems TK7/;4 and TK/QV‘ defined by the relations (6.1) and (6.2) respectively.
Then we have

prr=¢, pre=¢ loo

as automorphisms on A = Apg.

Proof. We will prove that ¢ = @r». For (a1),c, € A, put cd; = k(ay) €
CD,l € Z. By setting o/; = &'~ (djci1) € 3, one has d(()ez) = (&1))cq- Put
B = (1, ciqn, 5 edy), k'~ (dici1)) € BK,1 € Z so that one has (Bi)1ez € Ak

and

5((5l>zez) = (’i_l(cldl))leZ’ n((ﬁl)zez) = (“/_l(dlclﬂ))lez-
It then follows that

¢((al)lez) = (a/l)zez = ("ilil(dlclﬂ))zEZ = n((ﬂl)lez) =no 571((041)162)-

The equality ;e = ¢! oo is similarly shown. O

We assume that the previously defined metric is equipped with A. Then the
homeomorphism ¢ has 1 as its expansive constant. Therefore we have

THEOREM 6.4. Let (A, o) be a subshift presented by a symbolic matriz system
(M, I). Let ¢ be a forward bipartite automorphism on (A, o) defined by a properly
strong shift equivalence (P,Q,X,Y) : (M,I) & (M, I) in l-step. If ¢ is

Zor

expansive with % as its expansive constant for some k € N, the dynamical system

(A, ¢) is topologically conjugate to the subshift (Apn,0p2n) presented by the
T T

symbolic matriz system (Pﬁk], IP[T%]) where (Pﬁk], IP[T%]) is the 2k-higher block

of the symbolic matriz system (P,I”) relative to the LR textile A\-graph system
77@4 defined by the specified equivalence

P
K
Mic1Pryiire = PrriMigiito, leZy,
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where
Priv1 = PaYair1(= XoPory1), IEH =1Ii41, leZ,.

Proof. Consider the LR textile A-graph system 77 = Ticy defined by (6.1), that
is 1-1 and surjective by Lemma 6.2. Lemma 6.3 says that ¢o7» = ¢ on A. By
the assumption on ¢ and Theorem 4.10 (i), T’C7/;/1 (k" s 1-1. Since TK:;\DA is LR,

T and hence Tiea 2K" are both LR and nondegenerate. By Lemma 5.5,
Tiem (k" is surjective. By Theorem 4.10 (ii), the topological dynamical system
(A, o77) is realized as the subshift (Apgk] T2kl ). Hence one concludes that the
dynamical system (A, ¢) is topologically conjugate to the subshift (AP,[ﬁk]  Tp2w] ).

We also have

THEOREM 6.5. Let (A,0) be a subshift presented by a symbolic matriz sys-
tem (M,I). Let ¢ be a forward bipartite automorphism on (A,o) defined by
a properly strong shift equivalence (P,Q,X,Y) : (M,I) & (M, I) in 1-step.

Zor
Then the dynamical system (A, ¢Fo™) is topologically conjugate to the subshift
(Api pqn, Opi pqn ) presented by the symbolic matriz system (PXM™, IP"M™) for
k>0,n>1 defined by

(P*M™), 11 =Pitotn) i(etn)+1*** Piletn) +n—1,1(k+n)4+n

* Mikn) 4,1 (kn)+n+1 ** M) (kn) =1, (141) (k+n) s

TR et =Ly d0een) 11 L0 1) (k) —1,(101) (o) leZy

where Ppit1 = PaYorr1(= XaPas1) forl € Zi. And also (A, (Ugﬁ_l)kan) 1

topologically conjugate to the subshift (Agr pqn, 0 gr pqn) presented by the similarly
defined symbolic matriz system (QkM”,IQan) fork>0,n>1,

Proof. By Lemma 6.2, the LR textile A-graph system T,Cg is 1-1 and surjective.
Hence by Theorem 5.6, the dynamical system (A, ap’}o"), k> 0,n > 1 is topo-
logically conjugate to the subshift (Apkaqn, opraqn ) Presented by the symbolic
matrix system (M*M", TN"M") Now Ticar is LR so that it is nondegenerate.
By Lemma 6.3 one sees that ¢7» = ¢ so that the dynamical system (A, qﬁ’;—a") is
topologically conjugate to the subshift (A pqn, Oparkpqn). It is similarly shown
that (A, (Jqﬁ_l)kan) is topologically conjugate to the subshift (Agrpqn,ograqn)
for k>0,n>1.0
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7. Subshift-identifications of automorphisms of subshifts

Two symbolic matrix systems (M, I) and (M’,I") are said to be properly
strong shift equivalent if there exists a finite sequence
(MO T 1dots, (MWN =1 TN=1)) of symbolic matrix systems such that
~ (1) (1) ~ ... (N_l) (N_l) ~ 4 4
(M.I) ~ (MO, 1) (MO0, 1)~ (M, 1),

—pr 1—pr 1—pr 1—pr

In [15], the following theorem has been proved:

THEOREM 7.1 ([15]). If two symbolic matriz systems (M, I) and (M',I') are
properly strong shift equivalent, then their respect presented subshifts Apyq and
A are topologically conjugate. Furthermore, two subshifts A and A’ are topo-
logically conjugate if and only if their canonical symbolic matriz systems (MATY)
and (MM IV) are properly strong shift equivalent.

In particular, an automorphism of a subshift A is given by a properly strong
shift equivalence from a symbolic matrix system that presents the subshift to
itself. Let (M,I) be a symbolic matrix system over ¥. Let us consider a
properly strong shift equivalence from (M, I) to itself. Hence we consider sym-
bolic matrix systems (M®), 1)) over X*) k= 0,1,..., N, where (M, 1(0) =
(MW TIN)) = (M, T) and % = Z(V) = % such that there exist alphabets
C® D®) and specifications /@(()k) :xk=D k) pk) Hgk) : 2k o prC)
and increasing sequences n(()k)(l),ngk)(l) on | € Z, such that for each | € Z,
there exist an nék)(l) X ngk) (14 1) matrix ’Pl(k) over C*) | an ngk) (1) x nék)(l +1)
matrix Ql(k) over D) an n(()k)(l) X nék)(l + 1) matrix Xl(k) over {0,1} and an
ngk)(l) X ngk)(l + 1) matrix Yl(k) over {0, 1} satisfying the following equations:

(k) (k)
k—1) & k) ~(k k) ® k) (k
MR PPN, MU, QPR
k—1 k) v (k k k)~ (k
Il(,l+1) = Xél)XélJ)rl’ Il(,zz-l = 2(1 )}/2(1—217 (7.1)
k) (k k) (k k) ~(k k) v (k
Xl( )Pl(+)1 = Pl( )1/1(+£7 Yl( )Ql(+)1 = Ql( )Xl(+)1~

The equations (7.1) are simply written as

(P®) QW) x ) y k) . (ME=D 1E-1) ~ (MPB) TE) k=1, N.

1—pr
LEMMA 7.2. Keep the above notations. Put m(l) x m(l + N) matrices
1)+ (1 2 2 N N
Pri+n = PZ(I )Y2(l+)17)§lizyz(l£3 o 'P§l+)2N72Y2(l+)2N717
1) +(1 2 2 N N
Qui+N = Qél)XQ(l—)o—l QéllzXz(zis e le+)2N—2X2(z+)2N—17

Lgon =T lipr 42 D N—1,04-Ns leZs.
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(i) The equalities

Prisnlieni+n+1 = L1 Pryri4N+1,

Qui+nNLis N +N+1 = 11,141 Q141,14+ N+15 leZ
and hence

PrisnliyNi+28 = Ly NPiaNi+2N,

Oui+NlinNi+on = 111+ N Qi+ N, i+2N, leZ
hold.

(ii) There exist specifications

kp: L -CVC®...cN) 5 cWc@...cV) .5
ko :%-DWDRA...pWN) 5, pMp@ ... piN) .5

such that

M1 P14 N+1 4 Prit+ NMiL NI+ N1, (7.2)
My i+1Q141,1+N+1 < QL1+ NMIEN I+ N+15 leZ,. (7.3)
Proof. (i) We note that the equalities
_ 70 _ (1) (1) _ (N) _ 3 (N)y(N)
Il,l+1 = Il,l+1 = le X2l+1 - Il,l+1 - Y2l Y21+1a le Zy

hold. It then follows that

Praynliy NN+t
Ly p) y® Ly ) pn) ) )

214+177 21424 21+3 204+2N—3“*2142N -2/ 2142N—142[4+2N 1 21+2N +1
_pD)5(1) p(2) (2) (N-1) (N) (N) (N) (N)
*’le Y2l+17>2l+2y21+3 T Y2l+2N—3X2l+2N—2X2l+2N—17)2l+2NY2l+2N+1

1 1 2 2 N-—1 N—1 N N
:Pzgz )Yz(llﬂ);w)rzyz(lls T Y2(l+2N)—3 ’ Il(+N—)1,l+N73§l+)2NY2(l+)2N+1

and hence inductively

PriteNDiyN+N+1
1 1 1 2 2 N-1 N-1 N N
= 2(1 )YZ(I£1]Z(+)1,Z+2 : 732(14)-41/2(1-25 T 732(l+21\2—2Y2(l+2N)—1P§l+)2NY2(l+)2N+1-

Since

1) (1 1 1).5(1 1 1 1 1
Péz)Y2(ZJZ1Il(+)1,z+2 = Xz(z)Pz(lJ)ﬂ ‘}3(1422}/2(123 = Il,l+1p2(li2Y5(z-g3a
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one has

PrisnliynieN+t = Liv1Pryr Nyt

One then inductively gets the equalities

Pri+nli+Ni+on = 11+ NPi4N 142N, leZy.
The other equalities

OuisNliy N+ N+1 = 11041 Qi 1,04 N+1, leZy

are similarly proved.
(ii) It follows that

M1 P4 N+1

_ (0) (1) (1) (2) (2) (N)
- Ml,l+1P l+1)Y2(l+1 +1P2(l+1 +2Y 2(14+1)+3 " P2l+2N 204+2N+1
(1)
Ro, (1) (2) (N
— Q2l+1X2(l+1)P2(l+1)+1X2(l+1 +2P2(1+1 'X21+2NP21+2N+1
_ (1) (1) H@) (1) (2) (2) (N N
- 7) Y21+1Q2(z+1 2(l+1)+1X2(l+1)+2P2(l+1) X2l+2NP2l+2N+1
(-1t
9 (1)y-(1) (1) (2) (2) (N) (N)
— 7) Yzl+1 Ml+1l+2p2(l+1 +2Y2(l+1)+3 ) P2l+2NY2l+2N+1
and similarly
(1) (2) (2) (3) (3) (N) (N)
Ml+1 l+273 2(1+1 +2Y2(l+1)+37) (l+1)+4Y2(l+1)+5 : "P2l+2NYzl+2N+1
(2)-1t
f1 N"‘O (2) (2 (2) (3) (3) (N)
— 7)21+2Y21+3 Ml+2,l+3P l+1)+4Y2(l+1 P2l+2NY21+2N+1

Hence we inductively have

M1 P4 N+1
(K(lN))ilngN;(K?))il P(I)Y2(l1421 /Pélli)zzv 2Y2(ll-\&l-)2N 1Ml(ivl)v,l+N+1
=Pl NMitNI+N+1-

By putting
Kp = (KEN))_I L (Rgl))_lﬁgl) NeWo@ ..ol s oM@ ...cNy

one has

Kp
M1 Prriien+1 2 PLisNMigN i+ N+1-
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We set,
1
Ml ES = M1, Il[,l]+1 =i
and for N > 2
MM — M I T N g
Li+1 = M NN N2 N(+1)—1,N(I+1)> Li+1 = ANLNI4N-

Then the pair (M[N 1INV ]) is a symbolic matrix system over 3. Since one has

Ml JA4+m T Ml l+1Ml+1 +2° M(l+m —1,(I+m)

= Mni,Ni+mINI4m,N(1+m)>
a word (al, ..yQm) € X™ is admissible for the subshift A~ presented by

(MINT] TNy 1f and only if it is admissible for the subshift A presented by
(M, I). Hence the subshifts A v~ and A coincide.

LEMMA 7.3. Keep the above notations. Put

N N
Pl[,l+]1 = PNl,NH—Na QE,Z]H = QNl,Nl+N7 le Z+'

Then both (PIN! IV and (QWI, IIN1) are symbolic matriz systems such that

() the pair (MW TIN) and (P TINY " and the pair (MW, TINTY and
(QIN1 IINTY both form squares, and
(i) they satisfy the relations:

N K
ML P a L PLME (7.4)
N N
ll+1Q£+l z+2 =~ Qz l-]&-lMH-l 142 leZ,. (7.5)

Hence the pair (MWL TN and (P IIND " and the pair (MW IINT) and
(Q[N},I[N]) both give rise to LR textile A-graph systems.

Proof. The assertion (i) is clear. We will show the assertion (ii). By (7.2), one
sees that

Kp
~

MnNi N+ PN, N4 1)+1 P[N]l,l+1MN(l+1),N(l+1)+1

so that

My N PN 1N )+ 1IN 41,8 (1 42)
~ P[N]l,l+1MN(l+1),N(l+1)+11N(l+1)+1,N(l+2)-
Hence we get

N N P plN] N
ME l-]‘rlfpl[+% 142 Pl[ l+1Ml[+]1,l+2'

M
We similarly have Ml 111 Ql+1 l+2 ~ Ql 111 l+1’l+2. a
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LEMMA 7.4. The LR-textile \-graph systems TP = 7;CM[N1 and T =
PIN]

TKM[ | defined by the relations (7.4) and (7.5) are both 1-1.

Proof. For (a;);c € Apqv, suppose that a; appears in a component of Ml 141

Since M

Lir1 = INl,N(l+1)—1MN(l+1)—1 N(41)° the symbol a; appears in a com-

(D
ponent of MN(l+1) LN(4+1) By the spec1ﬁed equivalence ./\/l l+1) 1LN(I+1) 2

a (1) (1)
Pana+n) 1}Q2{N(l+1) 13410 2 symbol Co{N(1+1)— 1}d2{N(l+1) 1341 = Fo (ar) €
CD appears in a component of Pz{zv (1+1)— 1}Q2{)N (1+1)—1}+1° For a;41, the
corresponding symbol Cg{N(z+2)—1} appears in a component of ’Pég\,(lw)_l}.

() 1 _ 1) 1) (1)
Since Iy(41) N(142)— 1Pognvaroy-13 = PonaenXovasny+1 Xogvasr2)—23+1

Xég\f(lw)—l} the corresponding symbol to Cgl{)N(erz)_u appears in a component

of Pz%(unp that is denoted by Cgll\)/'(l-t,-l)' As one sees that

[N] plN]
Ml l+17)l+1 142

_ (0)

=Inin 1) -1 My 1, v PN @D N 42)

(D) a D

2 Iy N (1+1) 1P2{N(l+1) 1}QQ{N(l+1) 1+1Pon 41) Yan (141)+1

(2) (2) (N) (N)
’ P2N(l+1)+2Y2N(l+1)+3 o P2N(l+1)+2N—2Y2N(l+1)+2N—1

the symbol d2N(l+1) Cglzx)/(u-l) appears in a component of QzN(l+1) 1792(2(“1).
As

1) (1)
QQN(H—I) 17)2N(l+1)Y2N(l+1)+1
(-t
(1) P F1 (1) 1)
Y2N(l+1) 1Q2N(l+1) 2N(l+1)+1  — Y2N(l+1) 1MN(Z+1),N(I+1)+1

(1) (1)
d?N(l+1) 1% 2N (+1)

1) RO

2N l+1) 2N (I+1)+1°
OfMN(H—l ),N(I4+1)+1"
starting from a; in a component of M§321+1)_1 N(+1) @ symbol CS\)/(I-H) in a com-

is determined and also n(l)_l (d( ) )
) 1 2N (14+1) 2N (1+1)+1

appearsin a component of Q2N(l+1)732N(H_1 )10 that is written

@1 1)
Hence r; (d2N(l+1 CaN(1+1)+1

This procedure shows that for a given (a;),c;, € A, by

asd ) appears in a component

ponent of 728 ) in a compo-

2N(l+1
nent of ./\/l l (1), N (1+1) 41 is determined. One may next ﬁnd a symbol in a compo-

nent of P2N (+1)+2 and a symbol in a component of /\/l One in-

l+1)+1 N(41)+2°
ductively finds corresponding symbols in 732N l_H),P;i, I41)420 Pz(J]\\rf(l+1)+2N—
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Hence one finds a symbol in Pl(_f_vl{ 142+ That is, a given sequence (ai)icz € Apaim
determines a symbol in 7)1(4]-\]1),1 4251 € Zy so that through the relation (7.4) the
labeled squares in the LR textile A-graph system are determined. Hence we

conclude that £ is injective, and similarly see that 7 is injective. O

As stated in the begining of this section, an automorphism of the subshift A
presented by (M, I) is given by a properly strong shift equivalence

M, I) =~ MY 1D ~ ... ~ (MED =Dy ~ (M,])

1—pr 1—pr 1—pr 1—pr

in N-step for some N, and conversely a properly strong shift equivalence from
(M, I) to itself gives rise to an automorphism of the subshift. Put for k =
1,...,N

Aoy pw = {(Cidi)iez ‘ c; € C(k),di S D(k),i S Z},
AD(k)C(k) = {(dici)iEZ ‘ c; € C(k),dl S D(k),’L S Z}

Define CJ(rk) : Ac(k)D(k) — AD(k)C(k) and C(,k) : Ac(k)D(k) — AD(k)C(k) by setting
Cg_k)((cidi)iez) = (diCiy1);¢z and C(_k)((cidi)iez) = (d;i—1¢;) ¢y respectively. Then
C_(f) is called a forward bipartite conjugacy and C(_k) is called a backward bipartite
conjugacy ([19]). Nasu’s result ([18], [19]) says that any automorphism ¢ is
factorized as follows:

—1 —1
o= (k") o™ oMo o (k) ol o kM)

where C(iN), ceey C(il) are forward or backward bipartite conjugacies. Since prop-
erly strong shift equivalence corresponds exactly to bipartite codes of Nasu, the
above factorization of ¢ is so called Nasu’s x — ( factorization ([18], [19]). Fol-
lowing Nasu, an automorphism ¢ is said to be forward if ¢} ,...,Qil are all
forward bipartite conjugacies CJ(rN), RN Srl).

LEMMA 7.5. Let (A,0) be a subshift presented by (M, I). Let ¢ be a forward
automorphism on (A, o) defined by a properly strong shift equivalence

(M’I) ~ (M(l)vI(l)) N N (M(Nil)aI(Nil)) ~ (MaI)

1—pr 1—pr 1—pr 1—pr

in N-step. Let TP and T2 be the LR textile A-graph systems defined by the
relations (7.4) and (7.5) respectively. Then we have

-1
P rpinl = @, Pro] = ¢ 00

as automorphisms on A = Ay under the identification A jqn) = Apg.
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Proof. Keep the notations as in the proof of the previous lemma. For (a;);c, €
A 1, by putting

(1) (1) _ (1)
Co(N(+1) -1} D2 N(+1) - 1141 = K0 () € CD, leZy

(1) (1) (1) (1)
the symbol CoN(i+1)— 2d2N(l+1 is written as d2N(l+1)c2N(l+1) , and the symbol

1 1 1
(ng )) (dgz\),(lﬂ)cé]\)](lﬂ)ﬂ) defines a symbol of a component of MN(1+1) N(4+1)+1°

This procedure is nothing but to apply the map (K (1)) o( +1) o n(()l). We next

do this procedure to the symbol (Hgl)) (dg\),(l_‘_l) éll\)[(l+l)+l) that corresponds

-1 —1

to apply the map (/<¢§2)) o C_(f) o F{,gz and get the symbols ((m?)) o Q_(f) o
-1

n((f)) o ((n(ll)) o C_(:) o nél))((al)). We continue this procedures and finally get

the element

() 0™ 0 k) ((5) 0 ¢P 0 n) o ((6) 0 ¢ 0 1Y) (@)

in /\/l l+1)+N 1LN(I4+1)4N" [ € Z, . The elements lie in the bottoms of the squares
arising from the relation (7.4), and hence that are the element no& ~*((a;)). Hence
we have

Ny L N
rpim = ((6) oM org™) - ((x()

-1

o¢® or@)o (k) oM orV).
O

We assume that the previously defined metric is equipped with A. Then the
homeomorphism ¢ has 1 as its expansive constant. Therefore we have

THEOREM 7.6. Let (A, o) be a subshift presented by a symbolic matriz system
(M, I). Let ¢ be a forward automorphism on (A, o) defined by a properly strong
shift equivalence
M 1) = (MWD ID) ~ oo x (MU TED) ~ (M)
1—pr 1—pr 1—pr 1—pr
in N-step. If ¢ is expansive with % as its expansive constant for some k € N, the
dynamical system (A, @) is topologically conjugate to the subshift (AP[NI [2k),0p ] (2k])
T T

presented by the 2k-higher block (P[N] I73 ) of the symbolic matriz system
(PINI 7" ) relative to the LR textile )\-gmph system TKM[N] defined by the
p[N]

[N][2K]
T

specification

[NV
[N] pIN] ff»l [N]
M, J+1 l+1,l+2 = l+1Mz+1,1+27 leZy,
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where
(Nl _ p1) (1) (2) (2) (N) (N)
Pl,l+1 - PZNIYZNl+17)2Nl+2Y2Nl+3 o "P2Nl+2N72Y2Nl+2N717
N
Il[,lJ]rl = IniNivtINer N2 - IN(41) =1, N (141) leZy
and Péﬁ\),l+2(i_l),l’2(2l+2i_l,i =1,..., N are matrices appearing in the properly

strong shift equivalence in (7.1).

Proof. Since the LR textile A-graph system TP s nondegenerate, 1-1, and
surjective, by Lemma 7.5 the assertion is proved in a similar way to the proof of
Theorem 6.4. O

For k > 0,n > 1, let (P*M™, I*N+") be the symbolic matrix system defined
by setting

(Pan)l,l+1

=PikN+n),l(kN+n)+ N Pi(kN+n)+ NI(kN+n) 42N * PikN+n)+ (k—1)N,I(kN+n)+kN *
* Mk N+1)+ kN LN +0)+kN+1MIUEN +2) +kN+1,1(kN+n) +kN+2
S M) (eNn) -1 ) (BN )y Tt

=Lk N+n) (kN +n)+1 LN +n)+ 11N +n)+2 - L0+ 1)1 (N +) —1,(4+1) (kN +n)s L€ L.

LEMMA 7.7. The subshift (Apinis pqinvims Opinik pqivin) presented by the sym-
bolic matriz system (’P[N]kM[N]n, I[N]WM) coincides with the subshift (Apk pqn,
opkapn) presented by the symbolic matriz system (PXM™, RN+,

Proof. 1t is easy to see that the admissible words of the subshift (Apnjx pqnn,
O pinikpqinn) coincides with the admissible words of the subshift (Apk pqn, Tpk agn)-
a

We reach our main theorem.

THEOREM 7.8. Let (A, 0) be a subshift presented by a symbolic matrix system
(M, I). Let ¢ be a forward automorphism on (A, o) defined by a properly strong
shift equivalence

M, I) =~ MY 1Dy ~ ...~ (MED =Dy ~ (M)

1—pr 1—pr 1—pr 1—pr

in N-step. Then the dynamical system (A, ¢*o™) is topologically conjugate to the
subshift (Apk pqn, O pqn) presented by the symbolic matriz system (PEM™ TEN+m)
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for k> 0,n>1, defined by
(Pan)l,l+1

=PikN+n), 1 (kN+1)+NPi(kN+n)+ NI(kN+n)+2N " * PikN+n)+(k—1)N,I(kN+n)+kN *

“ MieN4n) kN1 (kN+n) kN +1MIEN 11) 4 kN £1,1(kN+n) +kN+2

S M1 (EN+n) 1,04 1) (N -4m)s Lt

=L(kN+n) 1 (kN +n)+ 1 D0k N +0) 11k N+0)+2 -+ L0+1) (kN 1)~ 1,(14+1) (kN +n)» | € Ly

where P, l+1—7321 )Yégi-)lp(l%rzyég% : %(ljj—éN—QYégf;N 1‘md7)§z+2 (i—1)° Yz(H)—zz 1
i =1,...,N are matrices appearing in the properly strong shift equivalence in
(7.1).

And also (A, (Jqﬁ_l)kon) is topologically conjugate to the subshift (Agrpqn,
0 gk pmn ) presented by the similarly defined symbolic matriz system (QF M, [FN+7)
fork>0,n>1.

Proof. By a similar discussion to the proof of Theorem 6.5, the dynamical system
(A, ¢"c™) is topologically conjugate to the subshift (Ap s ygnin, Tpinie pqivin ),
that is (Apr aon, 0prpqn) by Lemma 7.7. The assertion for the dynamical system
(A, (aqﬁ_l)kan) is similarly shown. O

8. An application

Let ¢ be an automorphism of a subshift A over ¥. We say that ¢ is given
by a specification 7 of a symbolic matrix system (M, I) if (M, I) presents the
subshift A and there exists a specification 7 : ¥ — 3 such that 7 gives rise to a
specified equivalence

s
Ml,l+1 ~ Ml,l+1 forl € Z+,

and ¢ is given by the symbolic automorphism of A induced by 7. The auto-
morphism ¢ is written as ¢,. We note that the induced automorphism of the
A-graph system £ for (M, I) by the specification 7 fixes the vertices of £.

DEFINITION. An automorphism ¢ of a subshift A is called a simple automor-
phism if there exist an automorphism ¢, of a subshift Ax, that is given by a
specification 7 of a symbolic matrix system (M, I), and a topological conjugacy
¥ : A — A such that

p=1¢ " ogro.

The notion of a simple automorphism of a sofic shift has been introduced by M.
Nasu in [19].
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As an application of our results, we see the following proposition.

PROPOSITION 8.1. Let (A,0) be a subshift over . If an automorphism ¢
of (A,0) is given by a specification m of a symbolic matriz system (M,I), the
topological dynamical system (A, ¢r o 0™) is topologically conjugate to the n-th
power (A,c™) of (A,0) forn € Z,n # 0.

Proof. By assumption, the automorphism ¢, is given by the one-block code
Or((24);e7) = (7(24));ez for (2:),c € A. We will realize ¢ to be a forward
automorphism defined by a properly strong shift equivalence from (M,T) to
itself. Let I be an arbitrary fixed symbol. Put the alphabets

C =1}, D=3%.
Define the specifications x from ¥ to C' - D and &’ from X to D - C by setting
k() =1-7(v), K@)=71L ~yeX

Suppose that the both matrices M 11, ;141 are m(l) x m(l + 1) matrices. Let
I;(I) and I;(1) be the m(l) x m(l) diagonal matrices with diagonal entries T and
1 respectively. Put n(2l) = n(2l —1) = m(l) for [ € N, and n'(2]) = n'(2l +1) =
m(l) for I € Z. Define matrices P;, Q;, X;,Y; for I € Z, by setting

Pa = (D), Pair1 = L1 (D), Qa1 = Qory1 = My
and

Xoy = Yorp1 = I 41, Xor41 = Li11(1), Yor = I;(1).

By noticing that the matrices X511, Y2; are identity matrices, the above matrices
give rise to a properly strong shift equivalence

(P,Q.X,Y): (MI) = (M)

—pr

in 1-step from (M, I) to itself. It is then direct to see that the automorphism
¢ is the forward automorphism of the above properly strong shift equivalence.
Put

'Pl,l+1 = ’P21Y21+1 = IZ(H)II,HI, le Z+.

For n € Z with n > 0, we set

(PM™) 1141 =Pnt1)i,(nt+1)141 * * * Plnt1)i4n—1,(n+1)i4n
M), (i Didnt 1 M4 1) (141) =1, (n+ 1) (141) »

LY =Tt - Lty (1) =1, (n4 1) (141) -
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Then by Theorem 6.5, the topological dynamical system (A, ¢, o o™) is real-
ized as the subshift (Appan,oparn) presented by the symbolic matrix system
(PM™, I"H1). Since the symbolic matrix system (PM™, I"*1) does not depend
on the choice of the specification 7 on ¥, we have (A, ¢ 00™) is topologically con-
jugate to (A, ¢iq 0 0™) where ¢yiq is the automorphism coming from the identity
permutation. Hence (A, ¢, o 0™) is topologically conjugate to the n-th power
(A,0™) of (A,o). For n € Z with n < 0, the above argument says that the
dynamical system (A, ¢,.—1 0 0~ ™) is topologically conjugate to (A, ™). This
implies that (A, ¢, o o™) is topologically conjugate to (A,c™). O

Thanks to this proposition, one has the following theorem.

THEOREM 8.2. If an automorphism ¢ of a subshift (A,o) is a simple auto-
morphism, the dynamical system (A, ¢poc™) is topologically conjugate to the n-th
power (A, ™) of the subshift (A,o) forn € Z,n # 0.

Proof. As ¢ is a simple automorphism of A, there exist an automorphism ¢, of
a subshift A that is given by a specification 7 of a symbolic matrix system
(M, I), and a topological conjugacy ¥ : A — A such that

p=1 " ogro.
Hence

po(poa™) oyt = groon™

By Proposition 8.1, (A, ¢ 00o™) is topologically conjugate to (A, oap™). Hence
(A, ¢ o 0™) is topologically conjugate to (A,o™). O

We finally give an example. Let us consider the full shift % with alphabet
3. It is easy to see that any permutation 7 on ¥ yields a simple automorphism
¢ of 2. Hence we have

COROLLARY 8.3. Let ¢, be the automorphism of the full shift ©% defined by a
permutation @ on the symbols Y. Then the topological dynamical system (X%, g0
o) is realized as the original full shift (X%,0). That is, ¢ o o is topologically
conjugate to the original full shift o.
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