OBSERVING A SOLID ANGLE FROM VARIOUS VIEWPOINTS

By

Yoichi Maeda

(Received December 6, 2007)

Abstract. Let AOB be a triangle in \mathbb{R}^3 . When we look at this triangle from various viewpoints, the angle $\angle AOB$ changes its appearance, and its 'visual size' is not constant. In [3], it is proved that the average visual size of $\angle AOB$ is equal to the true size of the angle when viewpoints are chosen at random on the surface of a sphere centered at O. In this paper, a simpler proof of this result is presented. Furthermore, we extend the result to the case of a solid angle in \mathbb{R}^4 .

Introduction

Let $\angle AOB$ be a fixed angle determined by three points O, A, and B in the three dimensional Euclidean space \mathbb{R}^3 . When we look at this angle, its appearance changes according to our viewpoint. The visual angle of $\angle AOB$ from a viewpoint P is defined as follows:

DEFINITION 1. Let $\angle AOB$ be a fixed angle in \mathbb{R}^3 . For a viewpoint *P*, let us denote by

$\angle_P AOB$

the dihedral angle of the two faces OAP and OBP of the (possibly degenerate) tetrahedron POAB. This angle \angle_PAOB is called the *visual angle* of $\angle AOB$ from the viewpoint P. Its size (measure) is called the *visual size* of $\angle AOB$ from P, and denoted by \angle_PAOB .

For an angle with fixed size, its visual size can vary from 0 to π in radians depending on the viewpoint.

For a given angle $\angle AOB$ in \mathbb{R}^3 , take a random point P distributed uniformly on the unit sphere \mathbb{S}^2 centered at O. Then the visual size $\measuredangle_P AOB$ is a random variable, which is called the *random visual size* of $\angle AOB$.

THEOREM 1. For any angle $\angle AOB$, the expected value of the random visual

²⁰⁰⁰ Mathematics Subject Classification: 51M04, 60D05 Key words and phrases: visual angle, visual solid angle

size $\measuredangle_P AOB$ is equal to the true size of $\angle AOB$, that is, $\mathbf{E}(\measuredangle_P AOB) = \measuredangle AOB$.

Thus, when we observe an angle from several viewpoints, each chosen at random, the average visual size is approximately equal to the true size. In [3], We proved this theorem using Santaló's chord theorem (see, [4]). In this paper, we will present a simpler proof of Theorem 1 in Section 1.

For a potential extension of Theorem 1, let us consider 'visual solid angle'. For a tetrahedron OABC in the four dimensional Euclidean space \mathbb{R}^4 , the triangular cone $\angle(O: \triangle ABC) := \bigcup_{X \in \triangle ABC} \overrightarrow{OX}$ is called the solid angle with vertex O. The area of the intersection of the unit sphere \mathbb{S}^3 with center O and the solid angle $\angle(O: \triangle ABC)$ is called the measure (steradian) of the solid angle $\angle(O: \triangle ABC)$, and it is denoted by $\measuredangle(O: \triangle ABC)$. The visual solid angle of $\angle(O: \triangle ABC)$ from a viewpoint P is defined as follows:

DEFINITION 2. Let $\angle(O: \triangle ABC)$ be a fixed solid angle in \mathbb{R}^4 . For a viewpoint *P*, let us denote by

$$\angle_P(O: \triangle ABC)$$

the orthogonal projection of $\angle(O: \triangle ABC)$ into the hyperplane through P and perpendicular to the line PO. This solid angle $\angle_P(O: \triangle ABC)$ is called the visual solid angle of $\angle(O: \triangle ABC)$ from the viewpoint P. Its measure is called the visual measure of $\angle(O: \triangle ABC)$ from P, and denoted by $\angle_P(O: \triangle ABC)$.

For a solid angle with fixed measure, its visual measure can vary from 0 to 2π in steradians depending on the viewpoint as we will see in Section 2.

For a given solid angle $\angle(O: \triangle ABC)$ in \mathbb{R}^4 , take a random point P distributed uniformly on the unit sphere \mathbb{S}^3 centered at O. Then the visual measure $\angle_P(O: \triangle ABC)$ is a random variable, which is called the *random visual measure* of $\angle(O: \triangle ABC)$.

THEOREM 2. For any solid angle $\angle (O : \triangle ABC)$, the expected value of the random visual measure $\measuredangle_P(O : \triangle ABC)$ is equal to the true measure of $\angle (O : \triangle ABC)$, that is, $\mathbf{E}(\measuredangle_P(O : \triangle ABC)) = \measuredangle (O : \triangle ABC)$.

1. Proof of Theorem 1

Let $\angle AOB$ be an angle of size $\measuredangle AOB$, and let P be a random point on the unit sphere \mathbf{S}^2 centered at O in \mathbf{R}^3 . We may suppose that A and B lie on \mathbf{S}^2 . Then the spherical distance \widehat{AB} between A and B is equal to $\measuredangle AOB$. (We denote the shortest geodesic connecting A and B, and its length by the same

notation AB.) Notice that $\measuredangle_P AOB$ is equal to the interior angle $\measuredangle P$ of the spherical triangle $\triangle APB$.

Let us assume that two points A and B are on the equator of \mathbf{S}^2 . If it is proved that the expected value $\mathbf{E}(\measuredangle_P AOB)$ restricted to any fixed latitude meridian is equal to $\measuredangle AOB$, the proof of Theorem 1 has completed. Hence, in the rest of the proof, let us restrict the random point P to any fixed latitude meridian $L_{\phi} := \{P \in \mathbf{S}^2 \mid \measuredangle NOP = \phi\}$ where N is the north pole of \mathbf{S}^2 .

First, let us prove the case of $\angle AOB = 2\pi/n$ where n is an integer greater than 1. Divide the equator into n equal parts,

$$\widehat{A_1A_2} = \widehat{A_2A_3} = \dots = \widehat{A_{n-1}A_n} = \widehat{A_nA_1} = 2\pi/n.$$

Then, for any point P,

$$\measuredangle_P A_1 O A_2 + \measuredangle_P A_2 O A_3 + \dots + \measuredangle_P A_{n-1} O A_n + \measuredangle_P A_n O A_1 = 2\pi.$$
(1)

By the rotation with the axis ON and angle $2\pi/n$, the restricted expected value $\mathbf{E}|_{L_{\phi}}(\measuredangle_P A_2 O A_3)$ is equal to $\mathbf{E}|_{L_{\phi}}(\measuredangle_P A_1 O A_2)$, and so on. Therefore, taking the expectation of Equation (1), the linearity of expectation implies that

$$n\mathbf{E}|_{L_{\phi}}(\measuredangle_P A_1 O A_2) = 2\pi.$$
⁽²⁾

Equation (2) shows that $\mathbf{E}|_{L_{\phi}}(\measuredangle_P AOB) = \measuredangle AOB$ in the case of $\measuredangle AOB = 2\pi/n$.

In the similar way, we can prove that $\mathbf{E}|_{L_{\phi}}(\measuredangle_P AOB) = \measuredangle AOB$ in the case of $\measuredangle AOB = q\pi$ where q is a rational number less than 1.

Finally, it is clear that the expected value $\mathbf{E}|_{L_{\phi}}(\measuredangle_PAOB)$ is a continuous and monotone increasing function of the size of $\measuredangle AOB$. Therefore, we can prove that $\mathbf{E}|_{L_{\phi}}(\measuredangle_PAOB) = \measuredangle AOB$ in the case of $\measuredangle AOB = r\pi$ where r is a real number less than 1. We have completed the proof of Theorem 1.

2. Proof of Theorem 2

Let $\angle(O: \triangle ABC)$ be a solid angle of measure $\measuredangle(O: \triangle ABC)$, and let P be a random point on the unit sphere \mathbf{S}^3 centered at O in \mathbf{R}^4 . We may suppose that A, B and C lie on \mathbf{S}^3 . Since the tangent space $T_P \mathbf{S}^3$ is orthogonal to the line OP, the visual solid angle $\angle_P(O: \triangle ABC)$ is realized in $T_P \mathbf{S}^3$. Using the fact that for $X \in \mathbf{S}^3$, the orthogonal projection of \overrightarrow{OX} is a vector tangent to the geodesic arc \widehat{PX} at $P, \angle_P(O: \triangle ABC)$ is the solid angle at P of the spherical tetrahedron PABC in \mathbf{S}^3 . Note that if $\triangle ABC$ is a hemisphere (A, B and C lieon a great circle), then the spherical tetrahedron PABC is a great sphere in \mathbf{S}^3 , hence, $\measuredangle_P(O: \triangle ABC)$ is equal to 2π for any $P \in \mathbf{S}^3$. In this way, for a solid

Y. MAEDA

angle with fixed measure, its visual measure can vary from 0 to 2π in steradians depending on the viewpoint.

For the proof of Theorem 2, we prepare several subsets of S^3 . Let

$$\begin{split} S_0 &:= \{ (x, y, z, w) \in \mathbf{S}^3 \mid w = 0 \} \text{ (great sphere in } \mathbf{S}^3 \text{)}, \\ S_1 &:= \{ (x, y, z, w) \in \mathbf{S}^3 \mid w = w_0 \} \text{ (small sphere in } \mathbf{S}^3 \text{)}, \\ C_0 &:= \{ (x, y, z, w) \in S_0 \mid z = 0 \} \text{ (great circle in } \mathbf{S}^3 \text{)}, \\ C_1 &:= \{ (x, y, z, w) \in S_1 \mid z = z_0 \} \text{ (small circle in } \mathbf{S}^3 \text{)}. \end{split}$$

In the following argument, we assume that three points A, B and C lie on S_0 without loss of generality. Similarly as the proof of Theorem 1, it is enough to prove that for any $w_0 \in [-1, 1]$, the restricted expected value of

 $\mathbf{E}(\measuredangle_P(O: \triangle ABC))$ to S_1 is equal to the true solid angle $\measuredangle(O: \triangle ABC)$. The proof of Theorem 2 is similar to that of the Girard's formula in spherical geometry([1] pp.278-279, [2] p.51).

Now, we will define a sector-like solid angle:

$$\begin{split} &\angle (O:A\text{-sec.}) := \angle (O:\triangle ABC) \cup \angle (O:\triangle A^*BC), \\ &\angle (O:B\text{-sec.}) := \angle (O:\triangle ABC) \cup \angle (O:\triangle AB^*C), \\ &\angle (O:C\text{-sec.}) := \angle (O:\triangle ABC) \cup \angle (O:\triangle ABC^*). \end{split}$$

where A^*, B^* and C^* are the antipodal points of A, B and C, respectively. (Notice that if $B' \in \widehat{AB} \cup \widehat{BA^*}, C' \in \widehat{AC} \cup \widehat{CA^*}$, then $\angle (O : \triangle ABC) \cup \angle (O : \triangle A^*BC) = \angle (O : \triangle AB'C') \cup \angle (O : \triangle A^*B'C')$. Hence $\angle (O : A$ -sec.) depends only on the "lune" ABA^*CA .)

LEMMA 3. For a given point V on S_0 , let V^* be the antipodal point. Two great circles on S_0 meeting at an angle θ at V bound a solid angle $\angle(O : V\text{-sec.})$. Then,

$$\mathbf{E}|_{S_1}(\measuredangle_P(O:V\text{-}sec.)) = \measuredangle(O:V\text{-}sec.).$$

Proof. Without loss of generality, we can assume that V = (0, 0, 1, 0) and $V^* = (0, 0, -1, 0)$ on S_0 . Divide the great circle C_0 into n equal parts,

$$\widehat{A_1A_2} = \widehat{A_2A_3} = \dots = \widehat{A_{n-1}A_n} = \widehat{A_nA_1} = 2\pi/n$$

Then,

$$\mathcal{L}(O: \triangle VA_1A_2) = \mathcal{L}(O: \triangle VA_2A_3)$$

= \dots = \dots (O: \Delta VA_{n-1}A_n) = \dots (O: \Delta VA_nA_1) = 2\pi/n

For any point $P \in S_1$,

$$\mathcal{L}_P(O: \triangle VA_1A_2) + \mathcal{L}_P(O: \triangle VA_2A_3) + \dots + \mathcal{L}_P(O: \triangle VA_{n-1}A_n) + \mathcal{L}_P(O: \triangle VA_nA_1) = 2\pi ,$$

since the visual measure of a hemisphere is equal to 2π . Now, let us restrict the random point P to the small circle C_1 for any fixed $z_0 \in [-1, 1]$. By the rotation with the matrix

$$\left(egin{array}{ccc} \cos 2\pi/n & -\sin 2\pi/n & 0 & 0 \ \sin 2\pi/n & \cos 2\pi/n & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight),$$

the restricted expected value $\mathbf{E}|_{C_1}(\measuredangle_P(O: \triangle VA_2A_3))$ is equal to $\mathbf{E}|_{C_1}(\measuredangle_P(O: \triangle VA_1A_2))$, and so on. Therefore,

$$n\mathbf{E}|_{C_1}(\measuredangle_P(O:\triangle VA_1A_2)) = 2\pi.$$

This implies that $\mathbf{E}|_{C_1}(\measuredangle_P(O: \triangle VA_1A_2)) = \measuredangle(O: \triangle VA_1A_2)$ in the case of $\measuredangle A_1VA_2 = 2\pi/n$. Similar arguments in the proof of Theorem 1 show that $\mathbf{E}|_{C_1}(\measuredangle_P(O: \triangle VA_1A_2)) = \measuredangle(O: \triangle VA_1A_2)$ in the case of $\measuredangle VA_1A_2 = \measuredangle VA_2A_1 = \pi/2$ and $\measuredangle A_1VA_2 \in (0,\pi)$.

In the next place, the equation $\mathbf{E}|_{C_1}(\measuredangle_P(O: \triangle VA_1A_2) = \measuredangle(O: \triangle VA_1A_2)$ implies that

$$\mathbf{E}|_{S_1}(\measuredangle_P(O:\triangle VA_1A_2) = \measuredangle(O:\triangle VA_1A_2))$$

Finally, since $\angle (O: V\text{-sec.}) = \angle (O: \triangle VA_1A_2) \cup \angle (O: \triangle V^*A_1A_2)$,

$$\mathbf{E}|_{S_1}(\measuredangle_P(O:V\text{-sec.})) = \measuredangle(O:V\text{-sec.}).$$

We have completed the proof of Lemma 3. \blacksquare

For a general solid angle $\angle(O: \triangle ABC)$, we prepare three sector-like solid angles $\angle(O: A\text{-sec.})$, $\angle(O: B\text{-sec.})$ and $\angle(O: C\text{-sec.})$. Then, using the same technique of the proof of Girard's formula in spherical geometry,

$$\measuredangle(O:\triangle ABC) = \left\{\measuredangle(O:A\text{-sec.}) + \measuredangle(O:B\text{-sec.}) + \measuredangle(O:C\text{-sec.}) - 2\pi\right\}/2. (3)$$

In the same way,

$$\measuredangle_P(O: \triangle ABC) = \{\measuredangle_P(O: A\text{-sec.}) + \measuredangle_P(O: B\text{-sec.}) + \measuredangle_P(O: C\text{-sec.}) - 2\pi\}/2.$$
(4)

Taking the expectation of Equation (4) on S_1 , Equations (3) and (4) and Lemma 3 imply that

$$\mathbf{E}|_{S_1}(\measuredangle_P(O:\triangle ABC))$$

= $\mathbf{E}|_{S_1}(\measuredangle_P(O:A\operatorname{-sec.}) + \measuredangle_P(O:B\operatorname{-sec.}) + \measuredangle_P(O:C\operatorname{-sec.}) - 2\pi)/2$
= $\{\measuredangle(O:A\operatorname{-sec.}) + \measuredangle(O:B\operatorname{-sec.}) + \measuredangle(O:C\operatorname{-sec.}) - 2\pi\}/2$
= $\measuredangle(O:\triangle ABC).$

It is trivial that we can relax the restriction from S_1 to the whole space \mathbf{S}^3 . We have completed the proof of Theorem 2.

Finally, as a degenerated case, let us consider the case that a three dimensional being such as ourselves observes a solid angle from various viewpoints. This special case corresponds with the case that our viewpoints P is in S_0 , and the tangent space $T_P \mathbf{S}^3$ degenerates to two dimensional plane. According as the three tangent vectors lie on a half plane or not, the visual measure takes 0 or 2π . Since for any $w_0 \in [-1,1]$, $\mathbf{E}|_{S_1}(\measuredangle_P(O: \triangle ABC)) = \measuredangle(O: \triangle ABC)$, so especially,

 $\mathbf{E}|_{S_0}(\measuredangle_P(O: \triangle ABC)) = \measuredangle(O: \triangle ABC)$. This fact indicates that when we observe an solid angle from several viewpoints in \mathbf{R}^3 , each chosen at random, the average visual measure is approximately equal to the true measure of the solid angle.

Acknowledgement. The author would like to express his thanks to the referee. The paper is much improved by his/her comments.

References

- [1] M. Berger, Geometry II, Springer-Verlag, Berlin Heidelberg , (1987).
- [2] G. Jennings, Modern Geometry with Application, Springer-Verlag, New York, (1994).
- Y. Maeda, H. Maehara, Observing an angle from various viewpoints, *JCDCG2002, LNCS* 2866, Springer (2003), 200–203.
- [4] L. A. Santaló, Integral formulas in Crofton's style on the sphere and some inequalities referring to spherical curves, *Duke Math. J.* 9, (1942), 707–722.

Department of Mathematics, Faculty of Sciences, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, JAPAN. E-mail address: maeda@keyaki.cc.u-tokai.ac.jp