OBSERVING A SOLID ANGLE FROM VARIOUS VIEWPOINTS

By
Yoichi Maeda

(Received December 6, 2007)

Abstract

Let $A O B$ be a triangle in \mathbf{R}^{3}. When we look at this triangle from various viewpoints, the angle $\angle A O B$ changes its appearance, and its 'visual size' is not constant. In [3], it is proved that the average visual size of $\angle A O B$ is equal to the true size of the angle when viewpoints are chosen at random on the surface of a sphere centered at O. In this paper, a simpler proof of this result is presented. Furthermore, we extend the result to the case of a solid angle in \mathbf{R}^{4}.

Introduction

Let $\angle A O B$ be a fixed angle determined by three points O, A, and B in the three dimensional Euclidean space \mathbf{R}^{3}. When we look at this angle, its appearance changes according to our viewpoint. The visual angle of $\angle A O B$ from a viewpoint P is defined as follows:

DEFINITION 1. Let $\angle A O B$ be a fixed angle in \mathbf{R}^{3}. For a viewpoint P, let us denote by

$$
\angle{ }_{P} A O B
$$

the dihedral angle of the two faces $O A P$ and $O B P$ of the (possibly degenerate) tetrahedron $P O A B$. This angle $\angle_{P} A O B$ is called the visual angle of $\angle A O B$ from the viewpoint P. Its size (measure) is called the visual size of $\angle A O B$ from P, and denoted by $\measuredangle_{P} A O B$.

For an angle with fixed size, its visual size can vary from 0 to π in radians depending on the viewpoint.

For a given angle $\angle A O B$ in \mathbf{R}^{3}, take a random point P distributed uniformly on the unit sphere \mathbf{S}^{2} centered at O. Then the visual size $\measuredangle_{P} A O B$ is a random variable, which is called the random visual size of $\angle A O B$.

ThEOREM 1. For any angle $\angle A O B$, the expected value of the random visual

[^0]Key words and phrases: visual angle, visual solid angle
size $\measuredangle_{P} A O B$ is equal to the true size of $\angle A O B$, that is, $\mathbf{E}\left(\measuredangle_{P} A O B\right)=\measuredangle A O B$.
Thus, when we observe an angle from several viewpoints, each chosen at random, the average visual size is approximately equal to the true size. In [3], We proved this theorem using Santaló's chord theorem (see, [4]). In this paper, we will present a simpler proof of Theorem 1 in Section 1.

For a potential extension of Theorem 1, let us consider 'visual solid angle'. For a tetrahedron $O A B C$ in the four dimensional Euclidean space \mathbf{R}^{4}, the triangular cone $\angle(O: \triangle A B C):=\cup_{X \in \triangle A B C} \overrightarrow{O X}$ is called the solid angle with vertex O. The area of the intersection of the unit sphere \mathbf{S}^{3} with center O and the solid angle $\angle(O: \triangle A B C)$ is called the measure (steradian) of the solid angle $\angle(O$: $\triangle A B C)$, and it is denoted by $\measuredangle(O: \triangle A B C)$. The visual solid angle of $\angle(O$: $\triangle A B C)$ from a viewpoint P is defined as follows:

DEFINITION 2. Let $\angle(O: \triangle A B C)$ be a fixed solid angle in \mathbf{R}^{4}. For a viewpoint P, let us denote by

$$
\angle_{P}(O: \triangle A B C)
$$

the orthogonal projection of $\angle(O: \triangle A B C)$ into the hyperplane through P and perpendicular to the line $P O$. This solid angle $\angle_{P}(O: \triangle A B C)$ is called the visual solid angle of $\angle(O: \triangle A B C)$ from the viewpoint P. Its measure is called the visual measure of $\angle(O: \triangle A B C)$ from P, and denoted by $\measuredangle_{P}(O: \triangle A B C)$.

For a solid angle with fixed measure, its visual measure can vary from 0 to 2π in steradians depending on the viewpoint as we will see in Section 2.

For a given solid angle $\angle(O: \triangle A B C)$ in \mathbf{R}^{4}, take a random point P distributed uniformly on the unit sphere \mathbf{S}^{3} centered at O. Then the visual measure $\measuredangle_{P}(O: \triangle A B C)$ is a random variable, which is called the random visual measure of $\angle(O: \triangle A B C)$.

ThEOREM 2. For any solid angle $\angle(O: \triangle A B C)$, the expected value of the random visual measure $\measuredangle_{P}(O: \triangle A B C)$ is equal to the true measure of $\angle(O: \triangle A B C)$, that is, $\mathbf{E}\left(\measuredangle_{P}(O: \triangle A B C)\right)=\measuredangle(O: \triangle A B C)$.

1. Proof of Theorem 1

Let $\angle A O B$ be an angle of size $\measuredangle A O B$, and let P be a random point on the unit sphere \mathbf{S}^{2} centered at O in \mathbf{R}^{3}. We may suppose that A and B lie on \mathbf{S}^{2}. Then the spherical distance $\widehat{A B}$ between A and B is equal to $\measuredangle A O B$. (We denote the shortest geodesic connecting A and B, and its length by the same
notation $\widehat{A B}$.) Notice that $\measuredangle_{P} A O B$ is equal to the interior angle $\measuredangle P$ of the spherical triangle $\triangle A P B$.

Let us assume that two points A and B are on the equator of \mathbf{S}^{2}. If it is proved that the expected value $\mathbf{E}\left(\measuredangle_{P} A O B\right)$ restricted to any fixed latitude meridian is equal to $\measuredangle A O B$, the proof of Theorem 1 has completed. Hence, in the rest of the proof, let us restrict the random point P to any fixed latitude meridian $L_{\phi}:=\left\{P \in \mathbf{S}^{2} \mid \measuredangle N O P=\phi\right\}$ where N is the north pole of \mathbf{S}^{2}.

First, let us prove the case of $\measuredangle A O B=2 \pi / n$ where n is an integer greater than 1. Divide the equator into n equal parts,

$$
\widehat{A_{1} A_{2}}=\widehat{A_{2} A_{3}}=\cdots=\widehat{A_{n-1} A_{n}}=\widehat{A_{n} A_{1}}=2 \pi / n
$$

Then, for any point P,

$$
\begin{equation*}
\measuredangle_{P} A_{1} O A_{2}+\measuredangle_{P} A_{2} O A_{3}+\cdots+\measuredangle_{P} A_{n-1} O A_{n}+\measuredangle_{P} A_{n} O A_{1}=2 \pi \tag{1}
\end{equation*}
$$

By the rotation with the axis $O N$ and angle $2 \pi / n$, the restricted expected value $\left.\mathbf{E}\right|_{L_{\phi}}\left(\measuredangle_{P} A_{2} O A_{3}\right)$ is equal to $\left.\mathbf{E}\right|_{L_{\phi}}\left(\measuredangle_{P} A_{1} O A_{2}\right)$, and so on. Therefore, taking the expectation of Equation (1), the linearity of expectation implies that

$$
\begin{equation*}
\left.n \mathbf{E}\right|_{L_{\phi}}\left(\measuredangle_{P} A_{1} O A_{2}\right)=2 \pi . \tag{2}
\end{equation*}
$$

Equation (2) shows that $\left.\mathbf{E}\right|_{L_{\phi}}\left(\measuredangle_{P} A O B\right)=\measuredangle A O B$ in the case of $\measuredangle A O B=2 \pi / n$.
In the similar way, we can prove that $\left.\mathbf{E}\right|_{L_{\phi}}\left(\measuredangle_{P} A O B\right)=\measuredangle A O B$ in the case of $\measuredangle A O B=q \pi$ where q is a rational number less than 1 .

Finally, it is clear that the expected value $\left.\mathbf{E}\right|_{L_{\phi}}\left(\measuredangle_{P} A O B\right)$ is a continuous and monotone increasing function of the size of $\angle A O B$. Therefore, we can prove that $\left.\mathbf{E}\right|_{L_{\phi}}\left(\measuredangle_{P} A O B\right)=\measuredangle A O B$ in the case of $\measuredangle A O B=r \pi$ where r is a real number less than 1 . We have completed the proof of Theorem 1.

2. Proof of Theorem 2

Let $\angle(O: \triangle A B C)$ be a solid angle of measure $\measuredangle(O: \triangle A B C)$, and let P be a random point on the unit sphere \mathbf{S}^{3} centered at O in \mathbf{R}^{4}. We may suppose that A, B and C lie on \mathbf{S}^{3}. Since the tangent space $T_{P} \mathbf{S}^{3}$ is orthogonal to the line $O P$, the visual solid angle $\angle_{P}(O: \triangle A B C)$ is realized in $T_{P} \mathbf{S}^{3}$. Using the fact that for $X \in \mathbf{S}^{3}$, the orthogonal projection of $\overrightarrow{O X}$ is a vector tangent to the geodesic arc $\widehat{P X}$ at $P, \angle_{P}(O: \triangle A B C)$ is the solid angle at P of the spherical tetrahedron $P A B C$ in \mathbf{S}^{3}. Note that if $\triangle A B C$ is a hemisphere $(A, B$ and C lie on a great circle), then the spherical tetrahedron $P A B C$ is a great sphere in \mathbf{S}^{3}, hence, $\measuredangle_{P}(O: \triangle A B C)$ is equal to 2π for any $P \in \mathbf{S}^{3}$. In this way, for a solid
angle with fixed measure, its visual measure can vary from 0 to 2π in steradians depending on the viewpoint.

For the proof of Theorem 2, we prepare several subsets of \mathbf{S}^{3}. Let

$$
\begin{aligned}
& S_{0}:=\left\{(x, y, z, w) \in \mathbf{S}^{3} \mid w=0\right\} \quad\left(\text { great sphere in } \mathbf{S}^{3}\right), \\
& \left.S_{1}:=\left\{(x, y, z, w) \in \mathbf{S}^{3} \mid w=w_{0}\right\} \text { (small sphere in } \mathbf{S}^{3}\right), \\
& \left.C_{0}:=\left\{(x, y, z, w) \in S_{0} \mid z=0\right\} \text { (great circle in } \mathbf{S}^{3}\right), \\
& \left.C_{1}:=\left\{(x, y, z, w) \in S_{1} \mid z=z_{0}\right\} \text { (small circle in } \mathbf{S}^{3}\right) .
\end{aligned}
$$

In the following argument, we assume that three points A, B and C lie on S_{0} without loss of generality. Similarly as the proof of Theorem 1, it is enough to prove that for any $w_{0} \in[-1,1]$, the restricted expected value of $\mathbf{E}\left(\measuredangle_{P}(O: \triangle A B C)\right)$ to S_{1} is equal to the true solid angle $\measuredangle(O: \triangle A B C)$.

The proof of Theorem 2 is similar to that of the Girard's formula in spherical geometry([1] pp.278-279, [2] p.51).

Now, we will define a sector-like solid angle:

$$
\begin{aligned}
& \angle(O: A \text {-sec. }):=\angle(O: \triangle A B C) \cup \angle\left(O: \triangle A^{*} B C\right) \\
& \angle(O: B \text {-sec. }):=\angle(O: \triangle A B C) \cup \angle\left(O: \triangle A B^{*} C\right) \\
& \angle(O: C \text {-sec. }):=\angle(O: \triangle A B C) \cup \angle\left(O: \triangle A B C^{*}\right)
\end{aligned}
$$

where A^{*}, B^{*} and C^{*} are the antipodal points of A, B and C, respectively. (Notice that if $B^{\prime} \in \widehat{A B} \cup \widehat{B A^{*}}, C^{\prime} \in \widehat{A C} \cup \widehat{C A^{*}}$, then $\angle(O: \triangle A B C) \cup \angle(O$: $\left.\triangle A^{*} B C\right)=\angle\left(O: \triangle A B^{\prime} C^{\prime}\right) \cup \angle\left(O: \triangle A^{*} B^{\prime} C^{\prime}\right)$. Hence $\angle(O: A$-sec. $)$ depends only on the "lune" $A B A^{*} C A$.)

LEMMA 3. For a given point V on S_{0}, let V^{*} be the antipodal point. Two great circles on S_{0} meeting at an angle θ at V bound a solid angle $\angle(O: V$-sec. $)$. Then,

$$
\left.\mathbf{E}\right|_{S_{1}}\left(\measuredangle_{P}(O: V \text {-sec. })\right)=\measuredangle(O: V \text {-sec. }) .
$$

Proof. Without loss of generality, we can assume that $V=(0,0,1,0)$ and $V^{*}=$ $(0,0,-1,0)$ on S_{0}. Divide the great circle C_{0} into n equal parts,

$$
\widehat{A_{1} A_{2}}=\widehat{A_{2} A_{3}}=\cdots=\widehat{A_{n-1} A_{n}}=\widehat{A_{n} A_{1}}=2 \pi / n
$$

Then,

$$
\begin{aligned}
\measuredangle\left(O: \triangle V A_{1} A_{2}\right) & =\measuredangle\left(O: \triangle V A_{2} A_{3}\right) \\
& =\cdots=\measuredangle\left(O: \triangle V A_{n-1} A_{n}\right)=\measuredangle\left(O: \triangle V A_{n} A_{1}\right)=2 \pi / n .
\end{aligned}
$$

For any point $P \in S_{1}$,

$$
\begin{aligned}
\measuredangle_{P}\left(O: \triangle V A_{1} A_{2}\right) & +\measuredangle_{P}\left(O: \triangle V A_{2} A_{3}\right) \\
& +\cdots+\measuredangle_{P}\left(O: \triangle V A_{n-1} A_{n}\right)+\measuredangle_{P}\left(O: \triangle V A_{n} A_{1}\right)=2 \pi
\end{aligned}
$$

since the visual measure of a hemisphere is equal to 2π. Now, let us restrict the random point P to the small circle C_{1} for any fixed $z_{0} \in[-1,1]$. By the rotation with the matrix

$$
\left(\begin{array}{rrrr}
\cos 2 \pi / n & -\sin 2 \pi / n & 0 & 0 \\
\sin 2 \pi / n & \cos 2 \pi / n & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

the restricted expected value $\left.\mathbf{E}\right|_{C_{1}}\left(\measuredangle_{P}\left(O: \triangle V A_{2} A_{3}\right)\right)$ is equal to $\left.\mathbf{E}\right|_{C_{1}}\left(\measuredangle_{P}\left(O: \triangle V A_{1} A_{2}\right)\right)$, and so on. Therefore,

$$
\left.n \mathbf{E}\right|_{C_{1}}\left(\measuredangle_{P}\left(O: \triangle V A_{1} A_{2}\right)\right)=2 \pi
$$

This implies that $\left.\mathbf{E}\right|_{C_{1}}\left(\measuredangle_{P}\left(O: \triangle V A_{1} A_{2}\right)\right)=\measuredangle\left(O: \triangle V A_{1} A_{2}\right)$ in the case of $\measuredangle A_{1} V A_{2}=2 \pi / n$. Similar arguments in the proof of Theorem 1 show that $\left.\mathbf{E}\right|_{C_{1}}\left(\measuredangle_{P}\left(O: \triangle V A_{1} A_{2}\right)\right)=\measuredangle\left(O: \triangle V A_{1} A_{2}\right)$ in the case of $\measuredangle V A_{1} A_{2}=\measuredangle V A_{2} A_{1}$ $=\pi / 2$ and $\measuredangle A_{1} V A_{2} \in(0, \pi)$.

In the next place, the equation $\left.\mathbf{E}\right|_{C_{1}}\left(\measuredangle_{P}\left(O: \triangle V A_{1} A_{2}\right)=\measuredangle\left(O: \triangle V A_{1} A_{2}\right)\right.$ implies that

$$
\left.\mathbf{E}\right|_{S_{1}}\left(\measuredangle_{P}\left(O: \triangle V A_{1} A_{2}\right)=\measuredangle\left(O: \triangle V A_{1} A_{2}\right)\right.
$$

Finally, since $\angle(O: V$-sec. $)=\angle\left(O: \triangle V A_{1} A_{2}\right) \cup \angle\left(O: \triangle V^{*} A_{1} A_{2}\right)$,

$$
\left.\mathbf{E}\right|_{S_{1}}\left(\measuredangle_{P}(O: V \text {-sec. })\right)=\measuredangle(O: V \text {-sec. })
$$

We have completed the proof of Lemma 3.
For a general solid angle $\angle(O: \triangle A B C)$, we prepare three sector-like solid angles $\angle(O: A$-sec. $), \angle(O: B$-sec. $)$ and $\angle(O: C$-sec. $)$. Then, using the same technique of the proof of Girard's formula in spherical geometry,

$$
\measuredangle(O: \triangle A B C)=\{\measuredangle(O: A \text {-sec. })+\measuredangle(O: B \text {-sec. })+\measuredangle(O: C \text {-sec. })-2 \pi\} / 2
$$

In the same way,
$\measuredangle_{P}(O: \triangle A B C)=\left\{\measuredangle_{P}(O: A\right.$-sec. $)+\measuredangle_{P}(O: B$-sec. $)+\measuredangle_{P}(O: C$-sec. $\left.)-2 \pi\right\} / 2$.

Taking the expectation of Equation (4) on S_{1}, Equations (3) and (4) and Lemma 3 imply that

$$
\begin{aligned}
& \left.\mathbf{E}\right|_{S_{1}}\left(\measuredangle_{P}(O: \triangle A B C)\right) \\
& =\left.\mathbf{E}\right|_{S_{1}}\left(\measuredangle_{P}(O: A \text {-sec. })+\measuredangle_{P}(O: B \text {-sec. })+\measuredangle_{P}(O: C \text {-sec. })-2 \pi\right) / 2 \\
& =\{\measuredangle(O: A \text {-sec. })+\measuredangle(O: B \text {-sec. })+\measuredangle(O: C \text {-sec. })-2 \pi\} / 2 \\
& =\measuredangle(O: \triangle A B C) \text {. }
\end{aligned}
$$

It is trivial that we can relax the restriction from S_{1} to the whole space \mathbf{S}^{3}. We have completed the proof of Theorem 2.

Finally, as a degenerated case, let us consider the case that a three dimensional being such as ourselves observes a solid angle from various viewpoints. This special case corresponds with the case that our viewpoints P is in S_{0}, and the tangent space $T_{P} \mathbf{S}^{3}$ degenerates to two dimensional plane. According as the three tangent vectors lie on a half plane or not, the visual measure takes 0 or 2π. Since for any $w_{0} \in[-1,1],\left.\mathbf{E}\right|_{S_{1}}\left(\measuredangle_{P}(O: \triangle A B C)\right)=\measuredangle(O: \triangle A B C)$, so especially,
$\left.\mathbf{E}\right|_{S_{0}}\left(\measuredangle_{P}(O: \triangle A B C)\right)=\measuredangle(O: \triangle A B C)$. This fact indicates that when we observe an solid angle from several viewpoints in \mathbf{R}^{3}, each chosen at random, the average visual measure is approximately equal to the true measure of the solid angle.

Acknowledgement. The author would like to express his thanks to the referee. The paper is much improved by his/her comments.

References

[1] M. Berger, Geometry II, Springer-Verlag, Berlin Heidelberg, (1987).
[2] G. Jennings, Modern Geometry with Application, Springer-Verlag, New York, (1994).
[3] Y. Maeda, H. Maehara, Observing an angle from various viewpoints, JCDCG2002, LNCS 2866, Springer (2003), 200-203.
[4] L. A. Santaló, Integral formulas in Crofton's style on the sphere and some inequalities referring to spherical curves, Duke Math. J. 9, (1942), 707-722.

Department of Mathematics,
Faculty of Sciences,
Tokai University,
1117 Kitakaname, Hiratsuka, Kanagawa 259-1292,
JAPAN.
E-mail address: maeda@keyaki.cc.u-tokai.ac.jp

[^0]: 2000 Mathematics Subject Classification: 51M04, 60D05

