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Abstract. In this paper, we consider periodicity for space-inhomogeneous quan-
tum walks on the cycle. For isospectral coin cases, we propose a spectral analysis.
Based on the analysis, we extend the result for periodicity for Hadamard walk to
some isospectral coin cases. For non-isospectral coin cases, we consider the the
system that uses only one general coin at the origin and the identity coin at the
other sites. In this case, we show that the periodicity of the general coin at the
origin determines the periodicity for the whole system.

1. Introduction

In the last two decades, the theory of quantum walk (QW) has bees exten-

sively studied by many researchers. There exist good reviews for this develop-

ment, for example, Kempe [5], Kendon [6], Venegas-Andraca [12, 13], Konno [7],

Manouchehri and Wang [9], and Portugal [10]. In the present paper, we focus

on periodicity of the time evolution operator of two-state discrete-time QWs

(DTQWs) on the cycle graph. The periodicity of the Hadamard walk on the

cycle graph was determined by Dukes [3] and Konno et al. [8]. Note that the

word periodicity is also used in the theory of perfect state transfer [4, 2] but we

consider little bit stronger version of periodicity in this paper.

The rest of this paper is organized as follows. In Sect. 2, we give the defini-

tions of our DTQWs and periodicity. Sections 3 and 4 are devoted to spectral

analysis of the time evolution operator of our DTQWs. We note that the spec-

tral analysis is viewed as a generalization of that of Segawa [11]. Corollary 4.6

is an extension of the results given by Dukes [3] and Konno et al. [8] for space-

inhomogeneous coin cases. In Sect. 5, we deal with periodic arranged coin cases

which is motivated by Chou and Ho [1].
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2. Definition of the DTQWs on the cycle graph

In this paper, we consider DTQWs on the cycle graph Cn = (Vn, En) with

the vertex set Vn = {0, 1, . . . , n − 1} and the edge set En = {(i, i + 1) : i ∈ Vn (

mod n)}. The Hilbert space of DTQWs is defined by Hn = span{|i, L⟩, |i, R⟩ :
i ∈ Vn} with state vectors |i, J⟩ = |i⟩ ⊗ |J⟩ (i ∈ Vn, J ∈ {L,R}) given by the

tensor product of elements of two orthonormal bases: {|i⟩ : i ∈ Vn} for position

of the walker, and {|L⟩ = T [1, 0], |R⟩ = T [0, 1]} for the chirality (direction) of the

motion of the walker. Here TA denotes the transpose of a matrix A.

Now we define two types of time evolution operators UMS
n = SMS

n Cn and

UFF
n = SFFn Cn on Hn with the coin operator Cn, the moving shift operator SMS

n

and the flip-flop shift operator SFFn defined as follows:

Cn =
n−1∑
i=0

|i⟩⟨i| ⊗ Ci,

SMS
n |i, J⟩ =

{
|i+ 1, R⟩ ( mod n) if J = R,

|i− 1, L⟩ ( mod n) if J = L,

SFFn |i, J⟩ =

{
|i+ 1, L⟩ ( mod n) if J = R,

|i− 1, R⟩ ( mod n) if J = L,

where Ci (i = 0, . . . , n− 1) are 2× 2 unitary matrices.

Let X
(n)
t ∈ Vn be the position of our quantum walker driven by the time

evolution operator Un (= UMS
n or UFF

n ) at time t. The probability that the

walker with an initial state (unit vector) |ψ⟩ ∈ Hn is found at time t and the

position x is defined by

P|ψ⟩(X
(n)
t = x) =

∥∥(⟨x| ⊗ I2)U
t|ψ⟩

∥∥2 .
In this paper, we consider periodicity of the DTQWs. In order to define period-

icity, we use the following notation:

Tn(U) = inf
{
t : U t = In ⊗ I2

}
. (2.1)

We will investigate the period Tn(U
MS
n ) and Tn(U

FF
n ). We should remark the

following fact:

REMARK 2.1. Let λ1, . . . , λ2n be the eigenvalues of the time evolution operator

Un (= UMS
n or UFF

n ) then U t
n = In ⊗ I2 ⇐⇒ λt1 = · · · = λt2n = 1.

By Remark 2.1, the spectral structure of the time evolution operators are

important. Here we show a connection between Spec UMS
n and Spec UFF

n .
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LEMMA 2.2. Let σx = |R⟩⟨L|+ |R⟩⟨L| and Cnσx =
∑n−1

i=0 |i⟩⟨i| ⊗Ciσx. We de-

note UMS
n (Cn) = SMSCn and UFF

n (Cn) = SFFCn. Then we have Spec UFF
n (Cn) =

Spec UMS
n (Cnσx)

Proof of Lemma 2.2.. By the definition, we have SFFn = (In⊗ σx)S
MS
n . Then by

using (In ⊗ σx)
2 = (In ⊗ I2), we obtain

UFF
n (Cn) = SFFCn = (In ⊗ σx)S

MS
n Cn = (In ⊗ σx)S

MS
n Cn(In ⊗ σx)

2

= (In ⊗ σx)S
MS
n Cnσx(In ⊗ σx) = (In ⊗ σx)U

MS
n (Cnσx)(In ⊗ σx).

This completes the proof.

Lemma 2.2 shows that Tn(U
MS
n ) = Tn(U

FF
n ) whenever we consider a pair of

DTQWs defined by UMS
n (Cnσx) and UFF

n (Cn). Note that the coin operator Cnσx
is given by exchanging column of all Ci in Cn =

∑n−1
i=0 |i⟩⟨i| ⊗ Ci.

3. Jacobi matrix

Before we investigate periodicity of quantum walks defined in Sect.2, it is

helpful to consider a related Jacobi matrix. Let ν1,i, ν2,i and |w1,i⟩, |w2,i⟩ be the

eigenvalues and the corresponding orthonormal eigenvectors of Ci (i = 0, . . . , n−
1). We consider the spectral decomposition of each unitary matrix Ci as follows:

Ci = ν1,i|w1,i⟩⟨w1,i|+ ν2,i|w2,i⟩⟨w2,i|
= ν1,i|w1,i⟩⟨w1,i|+ ν2,i (I2 − |w1,i⟩⟨w1,i|)
= (ν1,i − ν2,i) |w1,i⟩⟨w1,i|+ ν2,iI2, (3.2)

where Ik is the k× k identity matrix. Here we use the relation I2 = |w1,i⟩⟨w1,i|+
|w2,i⟩⟨w2,i| coming from unitarity of Ci. This shows that we can represent Ci
without |w2,i⟩.

We define the n× n Jacobi matrix JQWn for the DTQW as follows:

(JQWn )i,j = (JQWn )j,i =

{
wi(R)wj(L) if j = i+ 1 ( mod n),

0 otherwise,
(3.3)

where |w1,i⟩ = T [wi(L), wi(R)] and z means the complex conjugate of z ∈ C. In
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this setting, the corresponding Jacobi matrix is the following:

JQWn =

0 w0(R)w1(L) w0(L)wn−1(R)

w1(L)w0(R) 0
. . . O

. . . . . . . . .
. . . 0 wn−2(R)wn−1(L)

wn−1(R)w0(L) O wn−1(L)wn−2(R) 0


.

(3.4)

As we will point out at the next line of Eq. (4.7), each eigenvalue of JQWn becomes

inner product of two unit vectors. It means that Spec(JQWn ) ⊆ [−1, 1]. By direct

calculation, we obtain the following lemma for the characteristic polynomial of

the Jacobi matrix JQWn :

LEMMA 3.1. Let

KQW
i,j (λ) =

λ −wi(R)wi+1(L)

−wi+1(L)wi(R) λ
. . . O

... . . . . . .
. . . λ −wj(R)wj+1(L)

O −wj+1(L)wj(R) λ


.

Then

det(λIn − JQWn )

= λ det(KQW
1,n−2(λ)) (3.5)

− |w0(R)|2|w1(L)|2 det(KQW
2,n−2(λ))− |wn−1(R)|2|w0(L)|2 det(KQW

1,n−3(λ))

+ (−1)n · 2ℜ

(
n−1∏
i=0

wi(R)wi(L)

)
,

where ℜ(z) denotes the real part of z ∈ C.

In addition, we have

det(KQW
i,j (λ)) = λ det(KQW

i,j−1(λ))

− |wj(R)|2|wj+1(L)|2 det(KQW
i,j−2(λ)), (j ≥ i+ 1),

det(KQW
i,i (λ)) = λ2 − |wi(R)|2|wi+1(L)|2,
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with a convention det(KQW
i,i−1(λ)) = λ. This leads to the following lemma:

LEMMA 3.2. det(KQW
i,j (λ)) is a polynomial with real coefficients. If we define

pi = |wi(R)|2 and qi = |wi(L)|2 for i ∈ Vn then the coefficients of det(KQW
i,j (λ))

are determined by pi, . . . , pj, qi, . . . , qj+1.

4. Isospectral coin cases

Now we give a framework of spectral analysis for DTQWs with flip-flop shift

on Cn. In order to do so, we restrict the coin operator as follows:

ASSUMPTION 4.1. We assume all the local coins are isospectral. Thus we use

Cn =
n−1∑
i=0

|i⟩⟨i| ⊗ {(ν1 − ν2)|wi⟩⟨wi|+ ν2I2} , (4.6)

as the coin operator.

Let λm (m = 0, . . . n − 1) be the eigenvalues and |vm⟩ (m = 0, . . . n − 1) be

the corresponding (orthonormal) eigenvectors of JQWn . For each λm and |vm⟩, we
define two vectors

am =
n−1∑
i=0

vm(i)|i⟩ ⊗ |wi⟩,

bm = SFFn am,

where |vm⟩ = T [vm(0) . . . vm(n− 1)]. By using (SFFn )2 = In ⊗ I2, it is easy

to see that Cnam = ν1am and then UFF
n am = ν1bm. Also we have Cnbm =

(ν1 − ν2)λmam + ν2bm and UFF
n bm = ν2am + (ν1 − ν2)λmbm. So we have the

following relationship:

UFF
n

[
am
bm

]
=

[
0 ν1
ν2 (ν1 − ν2)λm

] [
am
bm

]
. (4.7)

We also obtain |am| = |bm| = 1 and the inner product (am,bm) = λm. This

shows that if λm = ±1 then bm = ±am. Therefore if λm = ±1 then UFF
n am =

±ν1am.
For cases with λm ̸= ±1, we see from Eq. (4.7) that the operator UFF

n is a

linear operator acting on the linear space Span (am,bm). In order to obtain the

eigenvalues and eigenvectors, we take a vector αam + βbm ∈ Span (am,bm). The
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eigen equation for UFF
n is given by UFF

n (αam + βbm) = µ(αam + βbm). From Eq.

(4.7), this is equivalent to[
0 ν2
ν1 (ν1 − ν2)λm

] [
α

β

]
= µ

[
α

β

]
.

Therefore we can obtain two eigenvalues µ±m of UFF
n which are related to the

eigenvalue λm of JQWn as solutions of the following quadratic equation:

µ2 − (ν1 − ν2)λmµ− ν1ν2 = 0.

Also we have the corresponding eigenvectors ν2am+ µ±mbm by setting α = ν2, β =

µ±m. As a consequence, we obtain the following lemma:

LEMMA 4.2. Let λm (m = 0, . . . , n − 1) be the eigenvalues of JQWn , then the

corresponding eigenvalues µ±m and the eigenvectors u±m of UFF
n are the follow-

ing:

1. If λm = ±1 then µm = ±ν1 and um = am.

2. If λm ̸= ±1 then µ±m are the solutions of the following quadratic equation:

µ2 − (ν1 − ν2)λmµ− ν1ν2 = 0,

and u±m = ν2am + µ±mbm.

REMARK 4.3. The quadratic equation in Lemma 4.2 is rearranged to{
iν1

1/2ν2
1/2µ

}2
+ 2ℑ(ν1/21 ν2

1/2)λm
{
iν1

1/2ν2
1/2µ

}
+ 1 = 0.

Thus we have

iν1
1/2ν2

1/2µ±m = −ℑ(ν1/21 ν2
1/2)λm ± i

√
1−

(
ℑ(ν1/21 ν2

1/2)λm

)2
µ±m = (−ν1ν2)1/2 e±iθm ,

where cos θm = −ℑ(ν1/21 ν2
1/2)λm. Therefore if we put νj = eiϕj then the eigenvalues

µ±m are given by the following procedure:

1. Rescale the eigenvalue λm of JQWn as −ℑ(ν1/21 ν2
1/2)λm = − sin[(ϕ1−ϕ2)/2]×

λm.

2. Map the rescaled eigenvalue upward and downward to the unit circle on the

complex plane.

3. Take [(ϕ1 + ϕ2 − π)/2]-rotation of the mapped eigenvalues.

For usual Szegedy walk cases, i.e., ν1 = 1, ν2 = −1 case, we have ϕ1 = 0, ϕ2 = π.

Thus we can omit 1 and 3 of the procedure because − sin[(ϕ1 − ϕ2)/2] = 1, [(ϕ1 +

ϕ2 − π)/2] = 0.
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REMARK 4.4. According to Lemma 4.2, if all n numbers of eigenvalues of JQWn
are not equal to ±1 then we obtain all 2n numbers of eigenvalues of UFF

n . But

if there exist s numbers of the λm = ±1 eigenvalues of JQWn then we can only

obtain 2n− s numbers of eigenvalues of UFF
n .

In this case, for every λm = ±1, we construct the following two vectors:

ãm =
n−1∑
i=0

vm(i)|i⟩ ⊗ |w2,i⟩,

b̃m = SFFn ãm,

where |w2,i⟩ is the eigenvector corresponding to the eigenvalue ν2 of Ci in Eq.

(3.2). By the definition, we have |ãm| = |b̃m| = 1. Also we obtain the in-

ner product (ãm, am) = 0 from orthogonality and (b̃m, am) = (b̃m,±bm) =

±(SFFn ãm, S
FF
n am) = 0 from λm = ±1 and (SFFn )2 = In ⊗ I2. Since am belongs

to the eigensystem of ν1 of Cn, this shows that both ãm and b̃m belong to the

eigensystem of ν2 of Cn. This implies that

UFF
n

[
ãm
b̃m

]
=

[
0 ν2
ν2 0

] [
ãm
b̃m

]
.

Therefore UFF
n (ãm ± b̃m) = ±ν2(ãm ± b̃m). These are the candidates of eigen-

values and eigenvectors.

On the other hand, the two sets H(±)
n = span{|i+ 1, L⟩ ± |i, R⟩ : i ∈ Vn(mod

n)} are subspaces of whole Hilbert spaceHn with dimH(±)
n = n, i.e., Hn = H(+)

n ⊕
H(−)
n . Note that am±bm ∈ H(±)

n . If λm = ±1 then am = ±bm. This implies that

if λm = ±1 then the dimension of H(∓)
n ∩Span (am,bm) decreases by 1. Therefore

if λm = 1 then we can only choose UFF
n (ãm − b̃m) = ν2(ãm − b̃m). In the same

way, if λm = −1 then we can only choose UFF
n (ãm+ b̃m) = −ν2(ãm+ b̃m). Using

these procedure, we have remaining s numbers of eigenvalues and eigenvectors.

As a consequence of Lemmas 3.1, 3.2, 4.2 and Remark 4.4, we have the

following result:

THEOREM 4.5. Under the Assumption 4.1, let wj(R) =
√
pje

iθR(j) and wj(L) =√
qje

iθL(j) for j ∈ Vn where pj = |wj(R)|2 and qj = |wi(L)|2. Also let ŨFF
n

which is defined by the coin operator C̃n with w̃j(R) =
√
pje

i(θR(j)+θ̃R(j)) and

w̃j(L) =
√
qje

i(θL(j)+θ̃L(j)) for j ∈ Vn. If
∑n−1

j=1 (θ̃L(j)− θ̃R(j)) = 2πk (k ∈ Z) then
Tn(U

FF
n ) = Tn(Ũ

FF
n ).

Proof of Theorem 4.5.. From Eq. (3.5), if
∑n−1

j=1 (θ̃L(j) − θ̃R(j)) = 2πk (k ∈ Z)
then ℜ

(∏n−1
j=0 wj(R)wj(L)

)
= ℜ

(∏n−1
j=0 w̃j(R)w̃j(L)

)
. Then from Lemmas 3.1,
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3.2, 4.2 and Remark 4.4, we have Spec UFF
n = Spec ŨFF

n . Therefore we have

Tn(U
FF
n ) = Tn(Ũ

FF
n ).

Theorem 4.5 provides a classification of our DTQW from the point of the pe-

riodicity. Indeed, Tn(U
FF
n ) depends only on the sequence {pj}0≤j≤n−1 and a value∑n−1

j=1 (θ̃L(j) − θ̃R(j)). Therefore we can identify DTQWs having the same set of

these values. The next corollary provides “Hadamard class” of periodicity.

COROLLARY 4.6. Let C ′
n =

∑n−1
j=0 |j⟩⟨j| ⊗ C ′

j with C
′
j =

1√
2

[
eiθ̃(j) 1

1 −e−iθ̃(j)

]
.

If
∑n−1

j=0 θ̃(j) = 2πk (k ∈ Z) then

Tn(U
MS
n (C ′

n)) =


2, (n = 2)

8, (n = 4)

24 (n = 8)

∞ (n ̸= 2, 4, 8).

Proof of Corollary 4.6.. Let Cn =
∑n−1

j=0 |j⟩⟨j| ⊗ H with H = 1√
2

[
1 1

1 −1

]
, i.e.,

the Hadamard walk case. The periodicity for this case is as follows [3, 8]:

Tn(U
MS
n (Cn)) =


2, (n = 2)

8, (n = 4)

24 (n = 8)

∞ (n ̸= 2, 4, 8).

From Lemma 2.2, we have Tn(U
MS
n (Cn)) = Tn(U

FF
n (Cnσx)). So we consider

Hσ1 =
1√
2

[
1 1

−1 1

]
case. By direct calculation, we obtain

1√
2

[
1 1

−1 1

] [
1/
√
2

i/
√
2

]
=

1 + i√
2

[
1/
√
2

i/
√
2

]
= eiπ/4

[
1/
√
2

i/
√
2

]
,

1√
2

[
1 1

−1 1

] [
1/
√
2

−i/
√
2

]
=

1− i√
2

[
1/
√
2

−i/
√
2

]
= e−iπ/4

[
1/
√
2

−i/
√
2

]
.

Therefore the spectral decomposition of the coin operator Hσ1 is

Hσ1 = (eiπ/4 − e−iπ/4)

[
1/
√
2

i/
√
2

] [
1/
√
2 −i/

√
2
]
+ e−iπ/4I2.
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We consider the coin operator C̃n =
∑n−1

j=0 |j⟩⟨j| ⊗ (̃Hσ1)j with

(̃Hσ1)j = (eiπ/4 − e−iπ/4)

[
1eiθ̃L(j)/

√
2

ieiθ̃R(j)/
√
2

] [
1e−iθ̃L(j)/

√
2 −ie−iθ̃R(j)/

√
2
]
+ e−iπ/4I2

=
i√
2

[
1 −iei(θ̃L(j)−θ̃R(j))

ie−i(θ̃L(j)−θ̃R(j)) 1

]
+

1√
2

[
1− i 0

0 1− i

]

=
1√
2

[
1 ei(θ̃L(j)−θ̃R(j))

−e−i(θ̃L(j)−θ̃R(j)) 1

]
=

1√
2

[
1 eiθ̃(j)

−e−iθ̃(j) 1

]
.

Using Theorem 4.5, we have Tn(U
FF
n (C̃n)) = Tn(U

FF
n (Cn)) if

∑n−1
j=0 θ̃(j) = 2πk

(k ∈ Z). Noting that C ′
n = C̃nσ1, we obtain the desired result by Lemma 2.2.

REMARK 4.7. By the same arguments of the proof of Corollary 4.6, we obtain

the following result:

Let Cn =
∑n−1

j=0 |j⟩⟨j| ⊗ C with C =

[
a b

c d

]
and C̃n =

∑n−1
j=0 |j⟩⟨j| ⊗ C̃j

with C̃j =

[
aeiθ̃(j) b

c de−iθ̃(j)

]
. If

∑n−1
j=0 θ̃(j) = 2πk (k ∈ Z) then Tn(UMS

n (Cn)) =

Tn(U
MS
n (C̃n)).

5. Non-isospectral coin cases

In this section, we consider several types of DTQWs with non-isospectral coin

and the moving shift. In order to define periodic coin operator, we introduce a

notation [C : l, C̃ : m] which denotes

Ci =

{
C if 0 ≤ i ≤ l − 1 ( mod (l +m)),

C̃ if l ≤ i ≤ l +m− 1 ( mod (l +m)),

in the coin operator Cn =
∑n−1

i=0 |i⟩⟨i|⊗Ci. In this section, we consider [C : 1, I2 :

m] model with n = 0 ( mod m+ 1) for 2× 2 unitary matrix C.

At the beginning, we considerm = n−1 cases. In this cases, the coin operator

is defined by Cn = |0⟩⟨0| ⊗C +
∑n−1

i=1 |i⟩⟨i| ⊗ I2 then the time evolution operator
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UMS
n = SMS

n Cn is given by

UMS
n = |0⟩⟨1| ⊗ |L⟩⟨L|I2 + |0⟩⟨n− 1| ⊗ |R⟩⟨R|I2

+ |1⟩⟨2| ⊗ |L⟩⟨L|I2 + |1⟩⟨0| ⊗ |R⟩⟨R|C

+
n−2∑
i=2

(|i⟩⟨i+ 1| ⊗ |L⟩⟨L|I2 + |i⟩⟨i− 1| ⊗ |R⟩⟨R|I2)

+ |n− 1⟩⟨0| ⊗ |L⟩⟨L|C + |n− 1⟩⟨n− 2| ⊗ |R⟩⟨R|I2
= |0⟩⟨1| ⊗ |L⟩⟨L|+ |0⟩⟨n− 1| ⊗ |R⟩⟨R|
+ |1⟩⟨2| ⊗ |L⟩⟨L|+ |1⟩⟨0| ⊗ |R⟩⟨R|C

+
n−2∑
i=2

(|i⟩⟨i+ 1| ⊗ |L⟩⟨L|+ |i⟩⟨i− 1| ⊗ |R⟩⟨R|)

+ |n− 1⟩⟨0| ⊗ |L⟩⟨L|C + |n− 1⟩⟨n− 2| ⊗ |R⟩⟨R|.

Thus we have

(⟨0| ⊗ I2)
(
UMS
n

)kn
(|0⟩ ⊗ I2) = |L⟩⟨L|Ck + |R⟩⟨R|Ck = (|L⟩⟨L|+ |R⟩⟨R|)Ck

= I2C
k = Ck,

for k = 1, 2, . . .. Also for i ̸= 0, we obtain

(⟨i| ⊗ I2)
(
UMS
n

)kn
(|i⟩ ⊗ I2) = (|L⟩⟨L|)n−i−1 (|L⟩⟨L|C)Ck−1 (|L⟩⟨L|)i

+ (|R⟩⟨R|)i−1 (|R⟩⟨R|C)Ck−1 (|R⟩⟨R|)n−i

= |L⟩⟨L|Ck|L⟩⟨L|+ |R⟩⟨R|Ck|R⟩⟨R|,

for k = 1, 2, . . .. Using this observation, we can reach the following result:

THEOREM 5.1. For the [C : 1, I2 : n − 1] model for 2 × 2 unitary matrix C,

let λ1, λ2 be the pair of eigenvalues of C. If λ1 = exp[2πi(L1/N1)] and λ2 =

exp[2πi(L2/M2)] where L1/N1 and L2/N2 are reduced rational numbers, we take

M = l.c.m.(M1,M2) then Tn(U
FF
n ) = Mn, where l.c.m.(a, b) denotes the least

common multiple of two integers a and b.

From the above discussion, we can see the vertex which has the coin I2 just

through the coin state. Therefore we have the following result for general [C :

1, I2 : m] model with n = 0 ( mod m+ 1) for 2× 2 unitary matrix C:

COROLLARY 5.2. For the [C : 1, I2 : m] model with n = 0 ( mod m + 1) for

2× 2 unitary matrix C, let T FFn/(m+1) be the period of the time evolution operator

with coin operator Cn/(m+1) =
∑n/(m+1)−1

i=0 |i⟩⟨i| ⊗ C and flip-flop shift operator

SFFn/(m+1). Then we have Tn(U
FF
n ) = (m+ 1)T FFn/(m+1).
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