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Abstract. A distinguishing k-coloring of a graph G is defined as a proper
coloring with k colors such that no automorphism of G other than the identity
map preserves the colors. We call a 3-connected planar graph embedded on the
sphere a polyhedron and its truncation is obtained from it by replacing a small
local part around each vertex with a cycle. We shall show that any truncated
3-regular polyhedron has a distinguishing 3-coloring.

Introduction

Let G be a graph without loops and multiple edges. A function c : V (G) →
{1, 2, . . . , k} is called a coloring or a k-coloring if c(u) 6= c(v) for any two adjacent

vertices u and v. Furthermore, if there is no automorphism, other than the

identity map, which preserves the colors, then c is said to be distinguishing.

A graph G is said to be distinguishing k-colorable if it has a distinguishing k-

coloring. The distinguishing chromatic number of G is defined as the minimum

number k such that G is distinguishing k-colorable and is denoted by χD(G) while

χ(G) denotes the usual chromatic number of G. The notion of distinguishing

chromatic numbers has been introduced in [2].

Consider a graph G embedded on a closed surface F 2. Such a graph with

its specified embedding is called a map on F 2 with an underlying graph G and

is denoted by M(G) to distinguish it from the abstract graph G itself. Then a

subgroup in the automorphism group Aut(G) of G acts on the surface F 2 so that

each member carries faces to faces. The maximal one among such subgroups

is called the automorphsim group of M(G) and is denoted by Aut(M(G)). We

often call each member of Aut(M(G)) a map automorphism of M(G) or of G.

We can define the distinguishing chromatic number χD(M(G)) of a map

M(G) by replacing automorphisms of G with map automorphisms of M(G) in

the definition of χD(G). Then it is clear that χ(G) ≤ χD(M(G)) ≤ χD(G). In
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particular, we can conclude that χD(M(G)) = χD(G) for any 3-connected pla-

nar graph G embedded on the sphere since such a graph can be uniquely and

faithfully embedded on the sphere, as is pointed out in [7].

By recent works on this topic [3, 8, 9, 10, 11, 15, 16], we have already known

that the distinguishing chromatic number of a map M(G) is very close to the

chromatic number of its underlying graph G in most of cases. In particular, the

first author has proved the following theorem:

THEOREM 1. (Negami [9]) Every 3-regular map on a closed surface has a dis-

tinguishing 4-coloring with color 4 used for at most one vertex unless it is one of

the followings:

• The 3-cube Q3 on the sphere

• K3,3 on the torus with three hexagonal faces

• K4,4 − 4K2 on the torus with four hexagonal faces

This leads us to a conjecuture that 3-regular maps have a distinguishing 3-

coloring with a few exceptions. As a partial answer to this conjecture, we shall

show a special class of 3-regular maps on the sphere which are distinguishing

3-colorable, as follows.

Let G be a 3-connected planar graph embedded on the sphere, which is

often called a polyhedron. Replace a small local part around each vertex with

a cycle; this corresponding to cutting off each vertex from a polyhedron by a

plane. The resulting graph is called the truncation of G or “the truncated G”.

Every truncated polyhedron is 3-regular. In particular, a truncated 3-regular

polyhedron consists of triangles and edges joining them. All faces except such

triangles are bounded by cycles of even length. We shall prove the following

theorem:

THEOREM 2. Every truncated 3-regular polyhedron is distinguishing 3-colorable.

We shall show a method to generate all truncated 3-regular polyhedra in

Section 1 and discuss a special type of 3-colorings, called “good 3-colorings”,

which will be distinguishing, in Section 2. Combining these, we shall give an

inductive proof for Theorem 2 and discuss its generalization in Section 3.

1. Generating truncated 3-regular polyhedra

Let G be a 3-regular graph and take two distinct edges e1 and e2, possibly

having a common end. Subdivide them by their middle points u1 and u2, and

add a new edge u1u2 to obtain another 3-regular graph G′. This deformation of
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G into G′ is called a bridging. Negami [6] discussed generation of 3-connected

graphs using “bridgings” in more general situation to establish what is called “a

splitter theorem”. The following lemma can be obtained easily from his general

result as its corollary:

LEMMA 3. (Negami [6]) Let G be a 3-connected 3-regular graph. If G contains

a subdivision of another 3-connected 3-regular graph H, then G can be obtained

from H by a sequence of bridgings.

It is easy to see that any 3-connected 3-regular graph G contains a subdivision

of K4 and hence it can be obtained from K4 by a sequence of bridgings. Suppose

that G is embedded on the sphere as a polyhedron. Consider the inverse process

of bridgings to construct G from K4, erasing the added edges in order. Finally,

we get K4 embedded on the sphere as the tetrahedron. This observation implies

the following lemma:

LEMMA 4. Every 3-regular polyhedron can be obtained from the tetrahedron K4

by a sequence of bridgings across faces.

Now let G be a truncated 3-regular polyhedron and choose two distinct edges

e1 and e2 which do not belong to any triangle and which meet a common face

A. It should be noticed that there is no other common face A′ which e1 and

e2 meet; otherwise, G would not be 3-connected. Make small triangles at the

middle points of e1 and e2, and join these two triangles with a new edge across A,

as shown in Figure 1. We call this deformation a truncated bridging or a bridging

for a truncated 3-regular polyhedron.
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Figure 1 A truncated bridging

Lemma 4 for 3-regular polyhedra can be immediately translated into one for

truncated 3-regular polyhedra as follows:

LEMMA 5. Every truncated 3-regular polyhedron can be obtained from the trun-
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cated tetrahedron K4 by a sequence of truncated bridgings.

2. Good 3-colorings

Let G be a truncated 3-regular polyhedron. By Brooks’ Theorem, G has a

3-coloring c : V (G) → {1, 2, 3} with colors 1, 2 and 3. We call c a good 3-coloring

if the following conditions hold:

(i) There is only one non-triangular face of G such that color 3 appears along

its boundary cycle exactly once.

(ii) Any other non-triangular face has two or more vertices with color 3 along

its boundary cycle.

Call a face of the first type a distinguished face here. For example, the truncated

tetrahedron has a good 3-coloring as shown in Figure 2. The hexagonal face

lying at the bottom is a distinguished face.
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Figure 2 A good coloring of the truncated tetrahedron

LEMMA 6. Any good 3-coloring is distinguishing.

Proof. Let c : V (G) → {1, 2, 3} be a good 3-coloring of a truncated 3-regular

polyhedron G and suppose that c is not distinguishing. Then there is an auto-

morphism σ : G → G which preserves the colors of vertices given by c. Since

there is only one distinguished face A of G, σ sends the boundary cycle of A

to itself, fixing the unique vertex v with color 3. Thus, σ must swap two edges

incident to v on the boundary cycle. However, it cannot do since one of them

is contained in a triangle but the other is not, a contradiction. Therefore, c is

distinguishing.
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It is important to discuss the configuration of vertices with color 3 to discuss

good 3-colorings. The following lemma is so useful to do it since we do not need

to care about the vertices with colors 1 and 2.

LEMMA 7. Let G be a truncated 3-regular polyhedron. If there is an independent

set S in V (G) which contains one vertex of each triangle in G, then there is a

3-coloring c : V (G) → {1, 2, 3} with c(x) = 3 for all x ∈ S and c(x) ∈ {1, 2} for

the others.

Proof. It is clear that G − S consists of only vertices of degree 1 or 2 and that

any path or cycle in G−S passes through edges lying and not lying on triangles

alternately. This implies that G−S is bipartite and hence G−S has a 2-coloring

with colors 1 and 2. Assigning color 3 to each vertex in S, we obtain a 3-coloring

as we want.

The following lemma forms an essential part of our proof for Theorem 2:

LEMMA 8. If a truncated 3-regular polyhedron G has a good 3-coloring, then so

does any truncated 3-regular polyhedron obtained from G by a truncated bridging.

Proof. Let G be a truncated 3-regular polyhedron and suppose that G has a

good coloring c : V (G) → {1, 2, 3}. Put S be the set of vertices of G with color

3, which is independent. Let A be a face of G where an extra edge w1w2 is added

by a truncated bridging joining two edges u1v1 and u2v2 on its boundary cycle

C. That is, two other vertices xi and yi are added along each edge uivi and

wixiyi forms a triangle for i = 1, 2. Let G′ be the resulting polyhedron by this

truncated bridging.

We may assume that u1, x1, y1, v1, v2, y2, x2 and u2 lie along C in this order,

as shown in Figure 1. Then C decomposes into a path P1 joining u1 and u2, a

path P2 joining v1 and v2, and two edges u1v1 and u2v2. The face A is divided

into two faces A1 and A2 by bridging, where Pi runs along the boundary cycle

of Ai for i = 1, 2. Let Bi be another face of G sharing the edge uivi with A for

i = 1, 2. Since G is a 3-connected graph embedded on the sphere, these two faces

B1 and B2 are distinct.

Case 1: The face A is distinguished. Then the boundary cycle of A contains

only one vertex in S and hence we may assume that P1 contains the unique

vertex in S while P2 contains no vertex in S. Add y1 and y2 to S and construct

a 3-coloring c′ : V (G′) → {1, 2, 3} with the new S by Lemma 7. Then A1 is a

distinguished face for c′ and A2 is not since {y1, y2} ⊂ S. The other faces are

not still distinguished. Therefore, c′ is a good 3-coloring.
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Case 2: The face A is not distinguished. Then its boundary cycle C contains

at least two vertices with color 3. Without loss of generality, we may assume

that |P1 ∩ S| ≥ |P2 ∩ S|. Under this assumption, P2 may contain no vertex in

S. Since two faces B1 and B2 are different, one of them is not distinguished, say

B2.

Add w1 to S. If c(v2) = 3, that is, if v2 belongs to S, then u2 does not and

hence we can add x2 to S, keeping S independent. Otherwise, we can add y2 to

S, instead of x2. Construct a 3-coloring c′ : V (G′) → {1, 2, 3} with the new S by

Lemma 7.

Since S contains {w1, v2} or {w1, y2}, the boundary cycle of A2 contains at

least two vertices in S in either case. Since A is not distinguished, |(P1∪P2)∩S| ≥
2 and we have |P1 ∩ S| ≥ |P2 ∩ S| under our assumption. This implies that

|P1 ∩ S| ≥ 1 and the boundary cycle of A1 contains at least two vertices in the

new S, including w1. The number of vertices in S along the boundary cycle of

B2 increased by one since one of x2 and y2 was added to S. The number of such

vertices for no other faces changed. Thus, the unique distinguished face is still

distinguished and the others are not distinguished and have at least two vertices

with color 3 along its boundary cycle. Therefore, c′ is a good coloring.

In either case, we have constructed a good 3-coloring for G′.

3. Proof and generalization

Combining lemmas in the previous sections, we can prove our main theorem

easily:

Proof of Theorem 2. Le G be any truncated 3-regular polyhedron. By Lemma

5, G can be obtained from the truncated tetrahedron by a sequence of truncated

bridgings. Since the truncated tetrahedron has a good 3-coloring, we can show

inductively that each of truncated 3-reguler polyhedra appearing in the sequence

has a good 3-coloring by Lemma 8. Therefore, G has a good 3-coloring, which

is distinguishing by Lemma 6, and hence it is distinguishing 3-colorable.

At the end, we shall note some arguments to generalize Theorem 2 for maps

on other surfaces. In general, a map M(G) on a closed surface is said to be

polyhedral if it satisfies the following three conditions:

(i) Its underlying graph G is 3-connected.

(ii) Each of its faces is a 2-cell bounded by a cycle.

(iii) Two distinct faces share at most one vertex or one edge.

Clearly, any polyhedron, that is, a map of any 3-connected planar graph on the
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sphere is polyhedral. It is easy to see that if a map M(G) on a closed surface is

polyhedral, then so is its truncation.

In fact, the same arguments as in the proofs of Lemmas 6, 7 and 8 hold for

3-regular polyhedral maps M(G) on a given closed surface. Thus, it would be

concluded that a truncated 3-regular polyhedral map on a closed surface F 2 is

distinguishing 3-colorable if we could carry out the following two:

• Determine the set of those 3-regular polyhedral maps on F 2 from which all

others are obtained by bridgings.

• Show that the truncation of each member in the set has a good 3-coloring,

Call each 3-regular polyhedral map in the set minimal. For example, the only

tetrahedron is a minimum 3-regular polyhedral map on the sphere and its trun-

cation has a good 3-coloring, as shown in Figure 2.

Take the dual of a 3-regular polyhedral map on a closed surface F 2 to connect

our arguments with a well developed theory on “irreducible triangulations” on

closed surfaces. A triangulation on F 2 is a simple graph embedded on F 2 so that

each face is bounded by a cycle of length 3 and that any two face meet along at

most one edge. It is clearly that the dual of a 3-regular map is a graph embedded

on the same surface with only triangular faces, but it might not be simple. The

polyhedrality of a 3-regular map guarantees the simpleness of its dual to be a

triangulation.

Shrink an edge uv in a triangulation on a closed surface to be a point u = v

and eliminate two pairs of multiple edges to erase the resulting digonal regions.

This deformation is called a contraction of uv. We allow ourselves to carry out

a contraction of an edge and call it a contractible edge only when the resulting

graph is a triangulation on the same surface. A triangulation on a closed surface

F 2 is said to be irreducible if it contains no contractible edge. There have been

already classified the irreducible triangulations on the sphere [12], the projective

plane [1], the torus [4] and the Klein bottle [5, 14]; they are 1, 2, 21 and 29 in

number.

It is easy to see that the inverse process of a bridging in a 3-regular polyhedral

map M(G) on F 2 corresponds to the contraction of an edge in its dual, which

crosses the edge in M(G) added by the bridging and that the dual of a minimal

3-regular polyhedral map on F 2 is nothing but one of irreducible triangulations

on F 2. This responds to the first item in the above. On the other hand, there

has never been any theoretical method to answer to the second yet, but we have

already done it for the projective plane, the torus and the Klein bottle in [13],

finding good 3-colorings concretely.
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