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Abstract. We prove that the affine case of a conjecture by C. Hayashi that any
connected finite quandle has a large orbit.

1. Results

A quandle is a set Q with a binary operation ∗ : Q × Q → Q satisfying the

following three axioms.

(1) For any a ∈ Q, a ∗ a = a.

(2) For any b ∈ Q, the map rb : Q → Q; a 7→ a ∗ b is bijective.

(3) For any a, b, c ∈ Q, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

The conception was first introduced by D. Joyce [2] and S. V. Matveev [4] in

the context of knot theory.

A homomorphism of quandles is a map preserving the operations. Note that

(3) means that the map rb in (2) is an automorphism of Q.

Let Aut(Q) be the group of automorphisms of Q and Inn(Q) its subgroup

generated by {rb | b ∈ Q}. A quandle Q is said to be connected if Inn(Q) acts

transitively on Q.

In the rest of this article, we only treat finite quandles. Let Q be a finite

quandle. For b ∈ Q, let Cb be the cycle type of rb as a permutation of Q defined

by rb. The multiple set of Cb for the elements b of Q is called the profile of Q

([3]). For a connected quandle Q, since Cb is independent of b, the profile reduces

to a single cycle type {1, `1, `2, . . . , `k}. (Note that any rb has a fixed point by

the axiom (1).) So we denote the profile of Q just by the cycle type of rb for any

b ∈ Q.

C. Hayashi [1] conjectured the following.

CONJECTURE 1.1. Let Q be a connected finite quandle. Let {1, `1, `2, . . . , `k}
with 1 ≤ `1 ≤ `2 ≤ · · · ≤ `k be its profile. Then any `i divides `k.
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Let X be a finite set X, and let σ : X → X be a bijection of order n (in

the permutation group of X). An orbit of σ in X is said to be large if it is of

cardinality n. Then the conclusion of the above conjecture is equivalent to that

there is a large orbit for rb for one (hence for all) b ∈ Q.

In this paper, we prove this conjecture in the affine case. Recall that a quandle

is affine if there are an abelian group M and an automorphism T of M such that Q

is isomorphic as a quandle to Aff (M,T ) := (M, ∗), where x∗y = T (x)+(1−T )(y)

(x, y ∈ M).

Our theorem is a slight generalization of the affine case of the conjecture:

THEOREM 1.2. Let Q be an affine quandle of finite order. Then there is an

element b ∈ Q such that there is a large orbit for rb.

Since, in the case of Q = Aff (M,T ), r0 coincides with T (where 0 is the

unit element of M), this theorem is reduced to the following group-theoretic

statement.

PROPOSITION 1.3. Let M be a finite abelian group, and let T be a group au-

tomorphism of M . Then there is a large orbit for T .

In the next section, we give a proof by using the elementary divisor theory.
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2. Proofs

We prove Proposition 1.3, which implies Theorem 1.2 and the affine case

of Conjecture 1.1, as was explained in the previous section. Let M be a finite

abelian group and let T be an automorphism of M .

2.1. First we claim that it is enough to show the case where M is a p-group

for some prime p. To see this, we identify M with the direct sum
⊕

Mp of its

p-primary parts Mp, where p runs over the set of all primes. For each prime p,

let Tp be the automorphism of Mp induced by T . Then the given automorphism

T of M can be identified with the direct sum
⊕

Tp of Tp on Mp.

Assume that Proposition 1.3 is valid for Mp for every p. Then, we have a

large orbit Op for Tp in Mp for any p. Let xp be an element of Op for each p. We

prove that the orbit through the element (xp)p of the direct sum
⊕

Mp, whose



A LARGE ORBIT IN A FINITE AFFINE QUANDLE 27

component for a prime p is xp, is a large orbit for
⊕

Tp in
⊕

Mp. Let np be the

order of Tp. Then the order of
⊕

Tp is the least common multiple of all np. On

the other hand, the cardinality of Op is np. Hence the cardinality of the orbit

through (xp)p is also the least common multiple of all np. Therefore, this orbit

is a large orbit. Hence Proposition 1.3 is valid for M , which completes the proof

of the claim.

Thus we may assume that M is a p-group for a prime p. In the remaining

part of the proof, we fix a prime p and we assume that M is a p-group.

2.2. Next we treat the case where pM = 0. In this case, Proposition 1.3 is a

direct consequence of the elementary divisor theory as follows. But we prove a

stronger statement for later use. In this case, M is regarded as an Fp[t]-module,

where t is an indeterminate acting via the given automorphism T . Hence, by the

elementary divisor theory, M is isomorphic to, as an Fp[t]-module,
d⊕

i=1

Fp[t]/(ei),

where e1, . . . , ed are polynomials over Fp satisfying e1 | e2 | · · · | ed. Here, f | g

means that f divides g. In the following, we identify M with this Fp[t]-module.

Then the order of the automorphism T of M is the order of t in the unit group

of the last factor Fp[t]/(ed), regarded as a commutative ring. Hence, for any

element of the form (∗, ∗, . . . , ∗, 1), that is, any element whose last component is

1, the orbit through it is a large orbit of T in M . Further, the union of all large

orbits generates M as an abelian group because this union includes all elements

of the form (∗, ∗, . . . , ∗, tj) (j ≥ 0), that is, the elements whose last component

is a power of t. So we have just proved the following.

(∗) If pM = 0, a large orbit exists and furthermore the union of all large

orbits generates M as an abelian group.

The general p-group case reduces to the case where pM = 0 as follows. Recall

that M is a finite abelian p-group. Let M = M/pM .

LEMMA 2.3. The kernel of the natural homomorphism Aut M → Aut M is a

p-group, where Aut means the group of group automorphisms.

Proof. Let S : M → M be an automorphism of M which induces the identity of

M . We identify M with the direct sum of Z/pkiZ (1 ≤ i ≤ l, ki > 0). Then,

we represent S as an l × l-matrix 1l + pA whose (i, j)-coefficient is an element

of Hom(Z/pkiZ,Z/pkjZ) (1 ≤ i, j ≤ l). Here 1l is the unit matrix. Let k be

the maximum of the ki (1 ≤ i ≤ l). Then there is an invertible matrix 1l + pÃ

with coefficients in Z/pkZ which lifts 1l + pA, that is, for any 1 ≤ i, j ≤ l, the

(i, j)-component of 1l+pÃ induces the (i, j)-component of 1l+pA. By induction,

we see (1l + pÃ)pN ≡ 1 mod pN+1 for N ≥ 1. Hence the order of 1l + pÃ is a

divisor of pk−1, which implies that the order of S is also a power of p.
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2.4. We prove the case of Proposition 1.3 where M is a general p-group. Let T

be the automorphism of M induced by T . Let n = pam be the order of T , where

a is a nonnegative integer, and m is an integer prime to p. Then, by Lemma 2.3,

the order of T is pbm for some b ≤ a. By (∗), there is a large orbit for T in M .

Consider all large orbits O1, . . . , Ol for T in M . Take an element xi of Oi for

each i (1 ≤ i ≤ l). Let x̃i ∈ M be an element of M whose image in M is xi. The

cardinality of the orbit Õi through each x̃i is pcim for some ci with b ≤ ci ≤ a

because the cardinality of Oi is pbm.

In order to prove that some ci is a, we argue by contradiction. Assume that

any ci is strictly less than a, that is, any x̃i satisfies T pa−1mx̃i = x̃i. Then,

T pa−1m(x) = x for any element x belonging to the union U of the orbits Õi. This

union U generates the abelian group M . In fact, let N be the subgroup of M

generated by U . The image of U in M generates M by (∗). That is, we have

M = N + pM so that M = N + p(N + pM) = N + p2M = N + p3M = · · · = N .

(Of course, we can use here Nakayama’s lemma.) Hence T pa−1m = 1, which

contradicts the assumption that the order of T is n = pam. Therefore, there is

an index i such that ci = a, that is, the orbit Õi is large. This completes the

proof of Proposition 1.3.

EXAMPLE 2.5. Let M = Z/35Z = {0, 1, 2, . . . , 34}, and let T be an automor-

phism M → M defined by T (x) = 2x (x ∈ M). Then, the order of T is 12, and

the orbit through 1 is a large orbit {1, 2, 4, 8, 16, 32, 29, 23, 11, 22, 9, 18}. The or-

bit through 3 is another large orbit {3, 6, 12, 24, 13, 26, 17, 34, 33, 31, 27, 19}. The

other orbits {0}, {5, 10, 20}, {15, 30, 25}, {7, 14, 28, 21} are not large.

Let Q be a connected affine quandle Aff (M,T ), that is, Q = (M, ∗), where

x ∗ y = 2x− y. Then, since r0 = T , by the above observation, the profile of Q is

{1, 3, 3, 4, 12, 12}.

EXAMPLE 2.6. Let M = Z/9Z⊕Z/27Z, and let T be an automorphism M →
M defined by T ((x, y)) = (2x + y, 2y) ((x, y) ∈ M). Then, the order of T is 18.

There are nine large orbits, that are the orbits through (x, 1) for some x ∈ Z/9Z.

The other orbits are: {(0, 0)}; the orbit through (3, 0) whose cardinality is 2; the

three orbits through (x, 9) (x = 0, 3, 6) each of whose cardinality is 2; three

orbits through (1, 0), through (1, 9), and through (2, 9), respectively, each of

whose cardinality is 6; and the nine orbits through (x, 3) (x ∈ Z/9Z) each of

whose cardinality is 6.

Let Q be a connected affine quandle Aff (M,T ). Then, since r(0,0) = T , by

the above observation, the profile of Q is

{1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 18, 18, 18, 18, 18, 18, 18, 18, 18}.
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