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Summary. Corresponding to the Black-Scholes equation and other SDE’s
Yoshihara (2012,2013) considered difference equations based on strong mixing
random variables and proved that their solutions converge almost surely to the
analogous solutions to those of the SDE’s. In Takahashi-Kanagawa-Yoshihara
(2015) their multidimensional versions are considered. In this paper, we show
that the same results hold for other weakly dependent random vectors for which
strong invariance principles hold. By the way we prove the strong invariance
principle for weakly M-dependent random vectors.

1. Introduction

Let (Q,F, P) be a complete probability space. Let {{;} be a stationary se-
quence, with F¢; = 0 and E&? = 1, satisfying the strong mixing condition, a
kind of dependence conditions. Let {X(¢);¢ > 0} be a one-dimensional continu-
ous process. Corresponding to the Black-Scholes equation

(1) dX (1) = X (t)(vdt + cdW (), X(0) =z >0,

where v and ¢ > 0 are constants and {W(t);¢ > 0} is a standard Wiener process,
Yoshihara (2012) considered difference equation

(2) AX(s;) = X(s:) = X(si-1) = X(Si—l){V% + 0\/%&},
X(0)=2>0

with s; = (i7)/n (1 < i < n) and showed that the solution X (T) of (2)
converges almost surely to

(3) X(t) zzexp{ (y— %2)T+071W(T)}.
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as n — oo where 7; > 0 is a constant which comes from the property of the
sequence {&}. We note here that if the {{;} is a sequence of i.i.d zero-mean
random variables, with £ = 1 and E|& P < oo (p > 2), then 4, = 1 and (3)
coinsides with the solution of (1).

Further, corresponding to the one-dimensional Ito formula with respect to
the SDE

(4) dX(t) = h(X(t),t)dt + v(X(t),t)dW (t),
Yoshihara (2013) obtained asymptotics of functions of solutions of difference
equation
T T
(5) AX(sk) = (X (s1-1), sk-1) — + 0(X(s5-1), s6-1)8k [ —

and proved that the functions of solutions of (5) behave analogously to the func-
tions of the solution of (4). Further, Takahasi-Kanagawa-Yosihara (2015) con-
sidered the asymptoics of multidimendional difference equations based on the
strong mixing random vectors.

The crucial tools of the proofs are moment inequalities for maxima of partial
sums and the stong invariance approximations of sums, as will be seen in the
proof of Theorem 1 in Section 2. Hence, many other dependent sequences may
be used instead of the strong mixing sequences.

In this paper, firstly, we prove the general results (Section 2), and then the
strong invariance for weakly M-dependent random vector sequence which is the
multidimensional version of Berkes et al (Section 3). In Sections 4 and 5 the
same problems of another types of weak dependency are considered.

In the following sections, we use ”¢” to denote some absolute constant which
does not depend on 7, j, k,n and may differ from line to line. Also, we use €’s
to denote arbitrarily small positive numbers. For any vector a € R%, |a| denotes
the Euclidean norm, a’ denotes the transpose of the vector a. For any random
vector X we write | X[, = {E|X|P}/? if the right-side exists and by Cov(X)
denote the covariance matrix of X. Further, we define the norm of any d x d
matrix M by

|M| = sup |[Mx|, x¢&R%

|x|<1
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2. The general case

Let (2, F,P) be a complete probability space. Let d > 1. Let {&} =
{(&.1,--+ ,&.a)} be a stationary d-dimensional sequence of centered vectors. Let

Sm=> &
j=1

We consider the following assumption.

ASSUMPTION A. Suppose E|&|PT < oo forp>6 and 0 <6 < 1.
(I) For any r (2 < r < p) and any sequence {ay} of real numbers such that

lag] < K < o0 (k>1)
(6) E( max > SC’KT(nH{iH;ﬂ;) :

1<m<n

Z aréy
k=

where K is some positive constant.
(II) Put
1
(7) lim —S'S, =T a.s.,
n—oo M,

where T' = (v,4) is the d x d matriz with

Yo =Yaa = BE,+2D  Béiig,
=2

Yaq = Egl,qfi,q’ + Z Egl,qgi,q’ + Z Efi,qgl,q“
=2 1=2

I’ is positive definite.
(III) there exists an Wiener process with covariance matriz T’ such that

(s) e - W<t>\ — o(n).

j<t

If B|¢,]579 < oo, then there exists a k with 1/3 < k < (4+8)/(2(6+6)) such
that

n

=0(n™") as.

N

Define the d x d matrix R = (r, o) with r,y = E& &1y (¢, = 1,--+ ,d).
By the stationarity and the moment condition of {¢;}

1 < 1.
(10) ‘ﬁ Z§j7q€j’ql - ’f'q7q/ — O(n 6T 1) a.s. (q, q/ = 1, te 7d)
j=1
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Here, 0 < ¢; < % is arbitrary.

Let F? be the o-algebra generated by &,,---,& (a < b). Let {F} be a
family of sub-c-algebras defined by F;, = F! = Uy« F* .. Let {X(t);t > 0} be
a time-continuous process with filteration {F;}.

Let T' > 0 be fixed. For any integer n put

kT
sp=— (1<k<n), s9=0.
n

Firstly, we prove the following theorem.

THEOREM 1. Let d > 1. Let T > 0 be arbitrarily given. Let h(t) and v;(t) >
0(=1,---,d) be continuous functions with bounded derivatives on [0,T] and
consider the d-dimensional vector function v(t) = (vi(t),--- ,v4(t)) on [0,T].
Suppose Assumption A is satisfied. Let {X(t);0 <t < T} be a time-continuous
process. Suppose the difference equation

(11)  AX(sg) = X(skl){h(skl)% + \/gv(skl)f,j}, (1<k<n)
X0)=2>0

holds for all n and denote by X™(T) with X™(0) = z > 0 the solution of the
difference equation (11), i.e.,

(12) X (n;m = exp{i log (1 + h(skl)% + \/gv(s“)g,j> }

Then, as n — oo, X™(T)/z converges almost surely to

(13) @ = exp{/OT h(t)dt

_% /OT V(O Ry (1) dt + i /OT Ui<t)dWi<t)}

where {W (t);0 <t < T} = {(Wi(t), -, Wa(t));0 <t < T} is a Wiener process
with covariance matriz I'.

Proof. Theorem 1 may be proved by the same method used in the strong mixing
case. (See, Yoshihara (2013) and Takahasi-Kanagawa-Yoshihara (2015).) But,
we repeat here the method in the case d =1
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Let 1 <k <n . Rewriting (11) and using the Taylor theorem

log X)gz)l) = log (1 + h(skl)% + \/%V(Skl)fk)
= (oo + \/gvcskl)sk)
5 (0 + @vw@f + R,

Here, ngn) is the remainder term, that is,

T Vi a)

Lol (1 4O, (h(sk_l)g n \/gv(sk_l)gk»3

and 0j_; is a random variable such that |f;_;| < 1. Since h and v are continuous
functions with bounded derivatives, by (9) we have

(14) IR = 0(n™) a.s.
Now, we have
X(T . X (s,
(15) log X((O)) = ;;bg X(ik_)l)
= log(l + h(skl)% + \/gv(skl)fk>
- T T
S (s L+ Eose
o { (i)

1 T T 2 "
—5 (h(Sk_l)g + E'U(Sk—l)ék) + Rl(c )}
for all n.

Let I, = l,(n) and my, = my(n) (¢ = 1,2) be integer-valued functions of n
defined by

Sl

]7l2 = [n/mQ]v

my = [n%],ll =[n/my] and my = [ni
where [a] denotes the integer part of a, and put

T . . . .
Sz(',qj):lm{lq(l_l)"’]} (1<i<mg1<j<]),
q"Myq
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Then, we can rewrite (15) as follows:

(16) 1o T =3 (i)

X(0) P
mi
{\/ ZZU 'LlJ D& -1+ + Z \/ Sklfk}
i=1 j=1 k=limi1+1
m2 T 2
1090 (CCRE SR ER Y
i=1 j=1
n T 2 n
- Z (h Sk-1) + \/ _U<3k1)§k) }—FZR,&")
k=lomo+1 n k=1

n n n 1 n n n
= U + (U + W) = S0 + V) + U (say),

for all n > 1.

Since h(t) is a continuous function with a bounded derivative, it is obvious
that

T
(17) ‘Uén) —/ h(t)dt‘ <en
0

By (14) we have

(18) |U3n)| < Cz:n_g’"C = O(n~ %) = o(n_2<ﬁi5>) a.s.

Next, we consider Ul(n) and Vl(n). Since h(t) and v(t) are continuous functions
with bounded derivatives on [0, T, we put

M = maxd sup 1), sup, [o(0)]}.

0<t<T 0<t<T

Since n — lymy ~ my = [n11] and & > (1/3), by (9)

(19) n)| < \/7M €| = m10(n_n) = O(n_(“—%))

k= llm1+1
Now, we consider

(20) Ul(n) \/ —1 0 Z Eu(i-1)+;
- [T 1)
+ Z Z E(U(Si—l,j) — v(8; ) 0))60 -1+
i=1 j=1

= Ul(ﬁ) + Ul(g) (say.)
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By Assumption A (III) there is a Wiener process W with EW?2(t) = ¢ such
that
I 1
S Guiiyes — (W il) — Wi - m)}' o} = o)

Jj=1

(21)

Hence, noting lym; ~ n, we have

l Si— 1,0)§l1(i—1)+j
LU 1 j= 1
l1
1
A\ T Lom Z z( )1,0) Zﬁh(i—l)ﬂ
1m st
1

_ Z SO (W (i) = W(G = D)} + O (1) }

_ ml U<sg£>1,0>(w(mil) - W(Z;ll)) +O(n ) as.

Since my = [ni1] and v(t) is a continuous function with bounded derivative, we

have
T
(22) U / oAV () as.
0
Denote
(23) M(myq,l;) := max max |v(s 11)1] - v( e 0)| < —

1<i<l; 1<j<m ml

We proceed to estimate U 12 . By the Markov inequality and Assumption A (I)

2y PR > nT)
mi 6
<CTL22E(ZZ\/ 113 1 —?J( )gllll )
i=1 j=1
< cn?iM(j(ml,ll) < cn22m1 6 < epritm < enm.
Hence,
(25) U] =0(n =) as.
Now, we consider U™ and V™. By (9)
n T T 2
2 = h — — _
(20 = > (nel 4y Loe)

k=laomao+1

_ _23 _1
< emon 2 = o(n 48) <en”s
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To estimate UQ(n)7 we rewrite UQ(n) as

o i)

i=1 j=1

ma

/ 2 2

+2ZZ E)lj 1 7,] 1)6122 1)+j

1= 1_] 1

S (52 ’
+ZZ le 1)51211

i=1 j=1

= Uz(ﬁ) + QUQ(Z) + Uz(g) (say).

It is obvious that

(28) |U21\<M2§Z( ) <cM2n(%2)2§cn_l

i=1 j=1

and by (9)

(29) ‘U22‘< M[( ZZ!&N 1+y’> <" as.

=1 j=1

It remains to consider Uz(g). Firstly, we consider

T mo o
ZZ (ng)l,o)gli(i—l)-&-j = m_QZ ( ) Zflg (i—1)+j"

Since F&F =1, by (10)

l2

1 Z 9 c _1

E - €l2(Z71)+] - 1‘ S i S n 8 a.s..
7=

for each 1 <7 < msy. Noting

T < T <~ o((i—1)T
30 S N ) 70 [ Nt (—) < M*T,
(30) o ; (si0) = 1 ; v =
we have

(31)

i la s ) T & 2 (Z - 1)T
A ZU (5:21,0)8ia(-1)+5 — e Zv (Tz) ‘
g —

T & (¢—1)T)
< — v ——
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Further, since v is a continuous function with bounded derivative, we have

(32) ’m2 iqﬂ(%) — /OTvz(t)dt‘ < fn—z; <cn”

=1

ool

Hence from (31) and (32) we obtain

m2 T
(2) 2 _1
g g , L — vi(t)dt| < en”8  a.s.,
lsz Si— 1,0 flz(z—l)—l—g /0 ( ) ‘ =

i=1 j=1

(33)

which, in turn, implies

[

T
34 U _ V2()dt| < enTF  a.s.
2,3 ;

Combining (16)-(20), (22), (25)-(29) and (34), we have

n n n 1 n n n
_ lim{U0)+(U1()+‘/1( ))_§(U2)+‘/2( ))—FU?E )}

n—oo

:/OTh(t)dt—%/OTUQ(t)dt—k% /OTU(t)dW(t) as.

and the proof is completed. O

Remark. Instead of Assumption (III), we can use the bound Oy s (n27) (€y > 0
being sufficiently small) in (8). But, the proof is slightly complex, because we
must choose my, and l; = [n/my] so that for some positive constants €; and €,

mi (5—eo) € —
o [T — €1
VI = VA = o),

and |Uy 2| = 0q.5.(n7).

Denote by C2(A®) the set of functions A® — R which possess continuous

bounded partil derivatives up to order a. For F(zy,--- ,z,) € C3(R?) write
8F(I’1’--- 7xr)
F:E y T b)) = )
(1 ) Oz,
O*F e Ty
qu,xq/(xh Ce 7xr> — (xla , L ) ete.

?
Oxy0zy
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Let h = (hy,---hg) : REx [0,00) — R and v = (vy,--+ ,vg) : RT x [0,00) —
RP x [0, 00) be component-wise C!(R" x [0, 00) functions such that

ve(x,t) >0 (1 <q<d),
[h(x,t) = h(y,t)[| +[[v(x,t) = v(y,D)[| < Kllx =yl
[h(x, )| + [[v(x, )]l < K(1+x].

Referring the proof of Theorem 1 in Yoshihara (2013) and those of theorems
in Takahasi-Kanagawa-Yoshihara (2015) and using the above method of proof of
Theorem 1 we can also prove the following theorem which corresponds to the Ito6
formula.

THEOREM 2. Let T > 0. Let {&} be a sequence of p-dimentional centered
random vectors. Suppose Assumption holds. Let h and v be functions defined
above. Further, let {X(t);0 < t < T} be a continuous process satisfying the
difference equation

kT [KT
(35) AX,(sk) = hg(X(sp-1), 5k—1)7 + V(X (8k-1), Sk-1)&k o
X(0) =x (1<k<n,1<qg<d).
Let F(x,t) = F(x1, -+ ,24,t) : RTx [0,00) — R be an element of C2(R? x [0, 00))
and consider the sum of difference

n

(36) Z0N(T) =Y AZ(si) = Y F(X(s),s5) = F(X(s5-1), 551)
k=1 k=1

with z = F(X(0),0).
Then, Z™(T) coverges almost surely to

(37)  Z(T)=z+) /0 ' Fyp, (X(1), )by (X(t), 1) + /O ' F(X(t),t)dt

% > /0 Poq Frga, (X(), )0y (X(2), )vg (X (1), t)dt

q,9'=1

+; /0 Fy, (X(1), )0, (X (1), t)dW (1)

as n — oo, where {W(t);0 < t < T} is a p-dimensional Wiener process with
covariance matriz I.
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The proof is omitted.

3. Weakly M-dependent sequence and the strong invariance principle

Let d >1and p > 1. Let {Y,} = {(Yi1---,Yra)} be a stationary sequence
of d-dimensional centered random vectors and d(m) — 0 as m — oco. We say
that {Yj} is weakly M-dependent in LP with rate function d(-) if the following
Condition is satisfied;

CONDITION. (A) for any k € Z and m > 0 one can find a d-dimensional
random vector Y,im) = (Yk(,T), e Yk(g)) with finite p-th moment such that

_yvmpy < 5P
(38) E{max [Yi; — ;" |"} < 6°(m);
(B) For any disjoint intervals Iy,--- , I, (r > 1) of integers and any positive in-
tegers my, -+ - ,m, the vectors {Yj(-m),j enhLi},--, {Y](-m),j € 1.} are independent
provided

d(Ix, I;) > max(mg,my) (1<k<l<r).
Here,
d(A,B) =inf{la—b|:a € A,b€ B}
if A and B are subsets of Z.

Remark. Suppose {Y}} is weakly M-dependent in L? with rate function d(m).
Then, E|Y|P is finite, since for each 1 <1i <d

(39) 1Yilly < IV + 1Y = Y7l < 15l + 6(m).
Further, if h is a Lipschitz function with Lipschitz constant K, then
1A(Y 1) = ROVl < K Yk = Y], < K(m)
and thus {h(Yy)} is also weakly M-dependent in L” with rate function Kd(m).

In Berkes et al (2011) the following moment inequality is shown.

LEMMA A. Let {Y;} be a centered stationary sequence, weakly M-dependent
in LP with rate function 6(m) satisfying

D, = ié(m) < 0.

m=0
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Then, the following inequalities hold:
() If p > 2, for any n € N, b € Z we have

b+n

> v

k=b+1

p

(40) < Cyn*

where C,, is a constant depending on p and the sequence {Y}}.
(I) If p> 2, forany2 < q<p,n €N, b € Z we have

b+l

q
/ q
(41) {1@% > Y } <C n
k=b+1
where C, . is a constant depending on p,q and the sequence {Y}}.

Lemma A may be generalized as follows:

LEMMA 1. Suppose {Y} is a stationary sequence of d-dimensional centered
random vectors which is weakly M-dependent in LP with rate function §(m)
satisfying

(42) D, = f: §(m

m=0
Then, the following hold:
(D)
(43) IYe =Yl < Cdzd(m).

(IT) If p > 2, for any any n € N, b € Z we have

b+n

(44) E| ) Yk < C,din®
k=b+1
and
b+n
(45) E| Y Y”” < Cy,d2n% + CoynPoP(m)
k=b+1

where s are positive constants independent of m and n.
(III) If p > 2, for any2 < q<p,n €N, b € Z we have

q
/ 9
b’

Here, Cy, Cyp, Cap, C,,, are positive constant dependining only on p,q,d and the
sequence {Yy}.

b+l

PIRL

k=b+1

(46) E{ max

1<i<n
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Proof. From Condition (A) and the Minkowski inequality

d py L
1Y, - Y, = {E( Z(Yk,i—yk{?))z) }
=1

d 2y 2
HTaT—
=1
- (m) 12 : 1
. {Z [Vis - ¥, ||p} < cdbo(m).
=1

Hence, (43) is obtained.
Next, without loss of generality we assume b = 0. By the above method and

(40) we have
ESE)) T
{Zd:< )} < ef (dn?) Y < edind,

which, via (40), implies (45).
By the Minkowski inequality and (44)

b+n b+n P b+n b+n

P
ZDIREIERED IR IRYD SR TS DRl
k=b+1 k=b+1 k=b+1 k=b+1

b+n b+n P

<eel Y uf + (X me-vn) |
k=b+1 k=b+1

< cdin® 4 cnPoP(m).

and (45) follows.
(46) is obtained from Lemma A (II) by the method of proof of (41). O

Remark. From the proof of Lemma 1 it easily follows that if {a;} is a sequence
of real numbers such that sup,>, |a;] < K < oo and the condition of Lemma 1
holds, then

b+n

Z aiYi

i=b+1

p

(47) E < ¢,d> KPn?
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for all b.

Suppose {Y}} is a stationary sequence of d-dimensional centered random
vectors which is weakly M-dependent in LP withe rate function §(-). Put

S, =) Y, and Cov(S,)=ES,S]
k=1
and let T' = (,,4) be the d x d matrix such that for ¢,¢' (1 < ¢,¢ <d)

(48) 73 = PYq,q/ = EYVl%q + 2 Z E}/LQY;',Q’
1=2
(49) Yog = EY1Y1g + > (EY1gYig+ EY; Y1),
1=2

The existence of I' is guranteed by the following lemma.

LEMMA 2. Let p > 2. Let {Yr} be a stationary sequence of d-dimensional
centered random vectors which is weakly M-dependent in LP with rate function
d(+) satisfying (42). Then, the series in (48) and (49) are absolutely convergent
and hence I' exists.

Further,

(50) ﬁ——Cw

{ 2)5 +§?Uﬁ

and consequently

(51) lim lCOV(Sn) =T.

n—oo N,

Proof. Without loss of generality we assume that EY,im) =0 for all £ € Z and
m > 0. Since we can use the same method, we consider only the case v; 5. We
write
YiiYirje = (Yer = Y0 ) Yo + Y Yiye — YU50)
+Yk(j_1)yk(i;§)'

Since by Condition (B) EY(J I)Yk(i] 1) = 0, from Conditions (A) and (B) we have
that for j > 1

|BYi1 Yijel < 1EYin — Y ) Yol + BV (Y2 — V950
< Yia = Y3V allYarsalle + 1V Vol Vit — Vit 5 ll2
< (Wasgallz + 1YV 12)8G — 1)
< 215 Vls + D2)d(j — 1),
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which implies

(52) D YiiYigel <) 6() =0 (n— o).
Jj=n j=n

Thus, the first part of Lemma 2 is obtained.
Next, since the (g, ¢')-component of Cov(S,)/n is

1 n n
2P (2w (),
i=1 j=1
using the stationarity and the above method we can easily show (51). O

In the sequel, we alway assume that the matrix I' is positive definite and
denote by I the d x d identity matrix.

To prove Theorem 3 we need the following Theorem due to Gotze and Zaitsev
(2009).

THEOREM A. Suppose that &, --- , &, are independent R-valued random vec-
tors with £§; = 0,5 =1,--- ,n. Let p > 2 and put

(53) My =D Bl < .
j=1

1

Let 02 be the mazimal eigen value of COV(Z?:1 §;). Assume that o < C1 My
with some positive constant Cy. Then, for any construction on a probability space
of a sequence of independent random vectors Xy,--- ,X,, and a corresponding

sequence of independent Gaussian random vectors Yy, --- , Y, such that L(X;) =
L), EY; =0,Cov(Y;) =Cov(X;) (j=1,---,n). Forallz>0

k k

2 XK= Y,

1<k<n
i=1 i=1

(54) P ( max

> z) < Cod" T#/2 M 7P

where Cy > 0 is a constant depending only on p and C4.

Remark. From Theorem A, we see that if p > 6, then

(55) max

1<k<n

The following theorem is a multi-dimensional version of the result due to
Berkes et al. (2011)
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THEOREM 3. Let p > 2. Let {Yy} be a stationary sequence of d-dimensional
centered random vectors which is weakly M-dependent in LP with rate function

(56) 5(m) < Cm™4

where k > 0 and

Y 1 |
(57) AL (1— +“)v1, TR

p p
Suppose T' is positive definite.
Then, {Yx} can be defined on a new probability space together with two d-

dimensional Wiener processes with covariance T', {W1(t);t > 0} and {Wa(t);
t > 0} such that

(58) STV = Wilsa) + CWs(t) +0(n ) aus.
k=1

where {s,} and {t,} are nondecreasing numerical sequences with

(59) Smon, th~Cint, 0<kK <1

and C7 and Cy are positive constants.

Remark. W1 and Wy are not independent. But, as in Berkes et al, we can show
that

(60) Cov(Wi(sp), Wa(t,)) — 0 (m,n — o0).

Proof. Since by assumption I' is positive definite we can assume I' = 1.
Let us specify some constants that will be used for the proof. By assump tion
on A it is possible to find a constant 0 < ¢y < % such that

p—2 1+k
61 A> — (1 — 1.
(61) >2ﬁ(1—60)2( p )>

Then, we set

~ 26(1 —€)
p—2(1+k)’

g

(62) T l+a

b= (1 - 60)a7 p

For some ¢; > 0 (which will be specified later) we now define my, = [e1£”] .
The first step is to show that it is sufficient to provide the strong approxima-
tion for the perturbed sequence Y™, By Lemma 1 (I)

(63) 1Y — Y™, < k™.
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If Ap <1, then

(m;) 2 (14k)
P Y.—Y." 2
2n+1 1
(my) 2(1+k
SP(ZWj—Yj 7> 25! >>
7=1
2n+1 p
S 2—n(1+n)np(z ||YJ o Y](mJ)Hp) S 02—C1nnp
j=1

where Cy = (14 k) — (1 — Ap)p > 0. Thus, by the Borel-Cantelli lemma we have
I 1 .
SV -V )

7=1 7j=1

If Ap > 1 we get an (even better) error term of order o({(!/)).
Next, we partition N into disjoint blocks as

N=JJJULUJULU:--

where |I;| = [1°] and |J;| = [I°| with « and 3 as in (62). Set [; = {i;,--- ,i;} and
Ji={j, 7} and put

(64) i =Y Y™ and P =3 Y™

kel; ke

Note that 7 = O(I'*®) and if ¢ in the definition of m; is chosen small enough,
then

|| =[] > [e1df] = my, .

Hence, by Condition (B) we have that {n} and {(;} each define a sequence of
independent cetered random vectors.

By (43)
P P
BN Y= <[ S2ve = Y| = o((nl-i ).
kell kell P

Further, by the restriction on the parameters A, p, a, and ¢,

65 | - i APH) < ppag=An(iHa) < 015 < | |2,
!
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Thus, we can find a constant C' (which does not depend on 1)

p
(66) B\ Yi—n"| <Ot
kel;
Similarly, we have
p
(67) Bl Yi—n”| <ClI%.

keJ;

It is obvious that

l

Ll = Z |Ik| = O(l1+a).

k=1
Put
14k
a =1Ly (2"<1<2"tn=0,1,2,---).
Then,
o) 1 .
(68) > SB[y Y-
1=1 ! kel
oo 2ntl_q 1
_ (1)
= > B> Yi-un
n=0 [=2n ! kel
e 1 gnt+l_q P
(1)
<> 7T P > Y-
n=0 2" =1 ! kel

<c Z 2[7(1+a)(1+n)+(ap/2)+1]n.

n=0

The exponent in the last line of (68) will be negative if (1+a)(1+r) > (ap/2)+1.
This is equivalent to a < 2r/(p — 2(1 + k)). Hence, by (66) we have

oo o0 p
GV <N L ey
(69) ZP( > Y- >al) < Zag,E Y Y-y <o
=1 kel 1=1 kel
which, via the Borel-Cantelli lemma, implies
(70) ZYk - 77[(1) =0(a;) a.s.

kel
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By the same method, we can prove that

(71) ZYk - nl(Q) =O(w) a.s.

keJ;

Next, put
1) _ (2) — .
Y1, =Cov(n ') and X,5;=Cov(n”) (=1,2,---).

Since by Lemma 2

5
(72) ‘Tll*rerzl (I — o),

1
Y1, is positive definite and thus X7, exists. Put

(1) lenl() (l:1727"")

Then, by Theorem A and (70), we can construct a new probability space (Qg, Fo, Fo)
and two sequences of independent d-dimensional random vectors {Z1 1 }, {Z] ;. } ,with

PyoZiy=Pyo(”, PyoZ;, = N(0,|L]T), (k € N) such that

(73) Zzlkz - Zzlk = a.s.

Similarly, Put

2 2
Cl(,z): 11771() (1=1,2,---),

Then, by Theorem A and (71), we can construct a new probability space (g, Fo, Fo)
and two sequences of independent d-dimensional random vectors {Zy}, {Z5,}

with Py o Zoy, = Pyo (), PyoZs, = N(0,|J|1), (k € N) such that

(74) ZZ“ - ZZM = a.s.
Next, we show that
(75) ¢ =" = Ofa) as,

Note that for any [ > 1

(76) L —n® = (L1 - 22 )
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Since [[(I — M)?|| < ||[I — M?||? for any semi-positive definite matrix M, we have
1 242 _

(77) (12121 =%2)7|| < L] HIELIT =0

Hence, by (77)

BllnjE¢" — ol < B|(441 - s
S CH|IZ|%I - Z1%,1”10 < L8 |41 = £y

» LI—-> P »
< lllP(W) < cn|>

and

1
ISullZ > [4]2 — || 73 ||| LT - 52,

[T = X0 4]

2 0] = | 2 () = (0 o(1) 2 R
l

Thus, by (45) we have

p

1 1 I & D P P
(78) BIGOP = g | Y| < g BB < dnf
L2 ey, !
As (68) we have
Z %E‘H[l’;dl) _ nl(l)Hp < Cz2[7(1+a)(1+1€)+(ap/2)+1]n < o0,
=1 1 n=0

which, via the Borel-Cantelli lemma, implies (75).
Now, for each k let

0'[21(l61k), ZO(ZEJk); TlZO(l€]k>, :1(l€<]k)

and put

n n
Sp — E gy, an = E Tl
=1 =1

Then, it is obvious that s, ~ n and t, ~ n® (k' > 0). By a Wiener process
{W ()} with covariance matrix I we can write

(79) > Zr=Wils,) as.
k=1
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and similarly by a Wiener process { Wy(t)} with covariance matrix I we can write

(80) Z Zy, = Wa(sn) as.

Combining (68), (70), (73)-(75) we have (58) on an enlarged probability space.

To finish the proof, we have to show that the fluctuations of the partial sums
and the Wiener processes {W(t)} and {Ws(¢)} within the blocks are small
enough. Since fluctuation properties of Wiener processes are easy to handle
using standard deviation inequality, we only investigate the partial sums. The
fact is shown, since by Lemma 2 (III) we have

1+n
P| max Y; >’ )<2 () g
(zk<l<zk :Z k k fry
< lk (1+x) |[k‘§ < ck~ (R (+a)t(ap/2) _ O(k—(ua))

where €¢; > 0 is some number. d

Thus, if the conditions of Theorem 3 are satisfied, then the conclusion holds
for any stationary sequence of weakly M-dependent multi-dimensional random
vectors. This implies that we can apply Theorems 1 and 2 to multi-dimensional
weakly M-dependent sequences.

4. Martingale generalizations

Eberline (1986) proved the strong invariance principles under the assumptions
include various generalizations of martingales such as asymptotic martingales and
mixingales.

Let {£:} be a stationary sequence of R%-valued random vectors. Denote

m-+n

d & and S, =8,(0).

k=m+1

Let (I'n(m))gq (1 < gq,¢ < d) be the covariances defined by
Lo(m)gq =1~ E{Sn(m) Sn(m)q }

and write (I'),, = (',(0)),,4- Denote the limit by I' = (', ) if exists.
We consider the following:

ASSUMPTION B. Let {.} be a stationary sequence of R%valued random vec-
tors with B|&[570 (0 < d < 1).
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(I) For all m,n > 1 there is a constant C' > 0 such that

(81) [E{Sn(m)|Fm}2 < C

(IT) For each e € R? of length 1

(82) Var((e,S,)) > r(n), r(n)— ocoasn — oo,

where (-, -) denotes the inner product of vectors.
(IIT) There exists 6 > 0 such that for 1 < ¢,¢' < d.

S C,n/].—e

(83) HE{Sn(m)an<m>q’|fm} - E{Sn(m)qsn(m)q/|
uniformly in m.

Remark. 1f Assumption B (II) holds, then I' exists. Moreover, Assumption B
is more strict conditions than those of Theorem 2 in Eberline (1986) and the
strong invariance hold with bound Oa,s,(n%’p) 0<p< %) Hence, by Remark
to Theorem 1, Theorems 1 and 2 may be applied to this case. Since Assumption
B implies Assumption A, Theorems 1 and 2 may be applied.

5. Weak dependence defined by Berkes-Liu-Wu

By the new approximation method, Berkes-Liu-Wu (2014) proved the strong
invariance principle for all p > 2 and for a large class of dependent sequences. In
the sequel of this section, we use the result in the special case only.

For k € Z define the shift process & = (g,14,! € Z). The central element of
& (belonging to [ = 0) is .

Let {&} be a stationary sequence defined as

é-k = G(gk) - G( 5 Ck—15€k) Ek41, 7t )

where {g;} is an i.i.d.sequence and G : R* — R is a measurable function. Let
{e%;j € Z} be an iid.copy of {g;;j € Z} and for i,j € Z let & ;; denote
the process obtained from & by replacing the coordinate €; by €;. We assume
E|§1’6 < Q.

Put

(84) Or6 = IEx — Eqorlle Where & 10y = G(Erqoy)-

We assume FE|&;|® < oco. The dependence condition is expresses by

(85) Owp =Y b (k=0).

l71=k
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Ome=m"2 (m>1)

then by Corollary 2.1 to Theorem 1 in Berkes-Liu-Wu (2014) for the stationary
sequence {&;} of random variables the strong invariance principle holds with

bound order o, 5 (n'/%). Hence, Theorems 1 and 2 may be applied to this sequence

{6}
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