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Summary. Corresponding to the Black-Scholes equation and other SDE’s
Yoshihara (2012,2013) considered difference equations based on strong mixing
random variables and proved that their solutions converge almost surely to the
analogous solutions to those of the SDE’s. In Takahashi-Kanagawa-Yoshihara
(2015) their multidimensional versions are considered. In this paper, we show
that the same results hold for other weakly dependent random vectors for which
strong invariance principles hold. By the way we prove the strong invariance
principle for weakly M-dependent random vectors.

1. Introduction

Let (Ω,F , P ) be a complete probability space. Let {ξi} be a stationary se-

quence, with Eξ1 = 0 and Eξ2
1 = 1, satisfying the strong mixing condition, a

kind of dependence conditions. Let {X(t); t ≥ 0} be a one-dimensional continu-

ous process. Corresponding to the Black-Scholes equation

dX(t) = X(t)(νdt + σdW (t)), X(0) = z > 0,(1)

where ν and σ > 0 are constants and {W (t); t ≥ 0} is a standard Wiener process,

Yoshihara (2012) considered difference equation

∆X(si) = X(si) − X(si−1) = X(si−1)

{
ν
T

n
+ σ

√
T

n
ξi

}
,(2)

X(0) = z > 0

with si = (iT )/n (1 ≤ i ≤ n) and showed that the solution X(n)(T ) of (2)

converges almost surely to

X(t) = z exp

{(
ν − σ2

2

)
T + σγ1W (T )

}
.(3)
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as n → ∞ where γ1 > 0 is a constant which comes from the property of the

sequence {ξi}. We note here that if the {ξi} is a sequence of i.i.d zero-mean

random variables, with Eξ2
1 = 1 and E|ξ1|p < ∞ (p > 2), then γ1 = 1 and (3)

coinsides with the solution of (1).

Further, corresponding to the one-dimensional Itô formula with respect to

the SDE

dX(t) = h(X(t), t)dt + v(X(t), t)dW (t),(4)

Yoshihara (2013) obtained asymptotics of functions of solutions of difference

equation

∆X(sk) = h(X(sk−1), sk−1)
T

n
+ v(X(sk−1), sk−1)ξk

√
T

n
(5)

and proved that the functions of solutions of (5) behave analogously to the func-

tions of the solution of (4). Further, Takahasi-Kanagawa-Yosihara (2015) con-

sidered the asymptoics of multidimendional difference equations based on the

strong mixing random vectors.

The crucial tools of the proofs are moment inequalities for maxima of partial

sums and the stong invariance approximations of sums, as will be seen in the

proof of Theorem 1 in Section 2. Hence, many other dependent sequences may

be used instead of the strong mixing sequences.

In this paper, firstly, we prove the general results (Section 2), and then the

strong invariance for weakly M-dependent random vector sequence which is the

multidimensional version of Berkes et al (Section 3). In Sections 4 and 5 the

same problems of another types of weak dependency are considered.

In the following sections, we use ”c” to denote some absolute constant which

does not depend on i, j, k, n and may differ from line to line. Also, we use ε’s

to denote arbitrarily small positive numbers. For any vector a ∈ Rd, |a| denotes

the Euclidean norm, aT denotes the transpose of the vector a. For any random

vector X we write ‖X‖p = {E|X|p}1/p if the right-side exists and by Cov(X)

denote the covariance matrix of X. Further, we define the norm of any d × d

matrix M by

|M | = sup
|x|≤1

|Mx|, x ∈ Rd.
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2. The general case

Let (Ω,F , P ) be a complete probability space. Let d ≥ 1. Let {ξi} =

{(ξi,1, · · · , ξi,d)} be a stationary d-dimensional sequence of centered vectors. Let

Sm =
m∑

j=1

ξj.

We consider the following assumption.

ASSUMPTION A. Suppose E|ξ1|p+δ < ∞ for p ≥ 6 and 0 < δ < 1.

(I) For any r (2 ≤ r < p) and any sequence {ak} of real numbers such that

|ak| ≤ K < ∞ (k ≥ 1)

E

(
max

1≤m≤n

∣∣∣∣ m∑
k=

akξk

∣∣∣∣)r

≤ CKr

(
n‖ξi‖

2
2+δ

2+δ

) r
2

,(6)

where K is some positive constant.

(II) Put

lim
n→∞

1

n
ST

nSn = Γ a.s.,(7)

where Γ = (γq,q′) is the d × d matrix with

γq = γq,q = Eξ2
1,q + 2

∞∑
i=2

Eξ1,qξi,q,

γq,q′ = Eξ1,qξi,q′ +
∞∑
i=2

Eξ1,qξi,q′ +
∞∑
i=2

Eξi,qξ1,q′ .

Γ is positive definite.

(III) there exists an Wiener process with covariance matrix Γ such that∣∣∣∣ ∑
j≤t

ξj − W(t)

∣∣∣∣ = o(n
1
4 ).(8)

If E|ξ1|6+δ < ∞, then there exists a κ with 1/3 < κ < (4+ δ)/(2(6+ δ)) such

that

|ξ1|
n

1
2

= O(n−κ) a.s.(9)

Define the d × d matrix R = (rq,q′) with rq,q′ = Eξ1,qξ1,q′ (q, q′ = 1, · · · , d).

By the stationarity and the moment condition of {ξi}∣∣∣∣ 1n
n∑

j=1

ξj,qξj,q′ − rq,q′

∣∣∣∣ = O
(
n− 1

6
+ε1

)
a.s. (q, q′ = 1, · · · , d).(10)
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Here, 0 < ε1 < 1
6

is arbitrary.

Let F b
a be the σ-algebra generated by ξa, · · · , ξb (a ≤ b). Let {Ft} be a

family of sub-σ-algebras defined by Ft = F t
−∞ = ∪a≤tFa

−∞. Let {X(t); t ≥ 0} be

a time-continuous process with filteration {Ft}.
Let T > 0 be fixed. For any integer n put

sk =
kT

n
(1 ≤ k ≤ n), s0 = 0.

Firstly, we prove the following theorem.

THEOREM 1. Let d ≥ 1. Let T > 0 be arbitrarily given. Let h(t) and vi(t) >

0 (i = 1, · · · , d) be continuous functions with bounded derivatives on [0, T ] and

consider the d-dimensional vector function v(t) = (v1(t), · · · , vd(t)) on [0, T ].

Suppose Assumption A is satisfied. Let {X(t); 0 ≤ t ≤ T} be a time-continuous

process. Suppose the difference equation

∆X(sk) = X(sk−1)

{
h(sk−1)

T

n
+

√
T

n
v(sk−1)ξ

T
k

}
, (1 ≤ k ≤ n)(11)

X(0) = z > 0

holds for all n and denote by X(n)(T ) with X(n)(0) = z > 0 the solution of the

difference equation (11), i.e.,

X(n)(T )

z
= exp

{ n∑
k=1

log

(
1 + h(sk−1)

T

n
+

√
T

n
v(sk−1)ξ

T
k

)}
.(12)

Then, as n → ∞, X(n)(T )/z converges almost surely to

X(T )

z
= exp

{∫ T

0

h(t)dt(13)

−1

2

∫ T

0

v(t)Rv(t)Tdt +
d∑

i=1

∫ T

0

vi(t)dWi(t)

}
where {W(t); 0 ≤ t ≤ T} = {(W1(t), · · · , Wd(t)); 0 ≤ t ≤ T} is a Wiener process

with covariance matrix Γ.

Proof. Theorem 1 may be proved by the same method used in the strong mixing

case. (See, Yoshihara (2013) and Takahasi-Kanagawa-Yoshihara (2015).) But,

we repeat here the method in the case d = 1
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Let 1 ≤ k ≤ n . Rewriting (11) and using the Taylor theorem

log
X(sk)

X(sk−1)
= log

(
1 + h(sk−1)

T

n
+

√
T

n
v(sk−1)ξk

)
=

(
h(sk−1)

T

n
+

√
T

n
v(sk−1)ξk

)
−1

2

(
h(sk−1)

T

n
+

√
T

n
v(sk−1)ξk

)2

+ R
(n)
k .

Here, R
(n)
k is the remainder term, that is,

R
(n)
k :=

1

3

(
h(sk−1)

T
n

+
√

T
n
v(sk−1)ξk

)3

(
1 + θk−1

(
h(sk−1)

T
n

+
√

T
n
v(sk−1)ξk

))3

and θk−1 is a random variable such that |θk−1| < 1. Since h and v are continuous

functions with bounded derivatives, by (9) we have

|R(n)
k | = O(n−3κ) a.s.(14)

Now, we have

log
X(T )

X(0)
=

n∑
k=1

log
X(sk)

X(sk−1)
(15)

=
n∑

k=1

log

(
1 + h(sk−1)

T

n
+

√
T

n
v(sk−1)ξk

)

=
n∑

k=1

{(
h(sk−1)

T

n
+

√
T

n
v(sk−1)ξk

)

−1

2

(
h(sk−1)

T

n
+

√
T

n
v(sk−1)ξk

)2

+ R
(n)
k

}
for all n.

Let lq = lq(n) and mq = mq(n) (q = 1, 2) be integer-valued functions of n

defined by

m1 = [n
2
11 ], l1 = [n/m1] and m2 = [n

3
16 ], l2 =

[
n/m2],

where [a] denotes the integer part of a, and put

s
(q)
i,j =

T

lqmq

{lq(i − 1) + j} (1 ≤ i ≤ mq, 1 ≤ j ≤ lq),

s
(q)
0,0 = 0 (q = 1, 2)
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Then, we can rewrite (15) as follows:

log
X(T )

X(0)
=

n∑
k=1

h(sk−1)
T

n
(16)

+

{√
T

n

m1∑
i=1

l1∑
j=1

v(s
(1)
i−1,j−1)ξl1(i−1)+j +

n∑
k=l1m1+1

√
T

n
v(sk−1)ξk

}

−1

2

{ m2∑
i=1

l2∑
j=1

(
h(s

(2)
i−1,j−1)

T

n
+

√
T

n
v(s

(2)
i−1,j−1)ξl2(i−1)+j

)2

+
n∑

k=l2m2+1

(
h(sk−1)

T

n
+

√
T

n
v(sk−1)ξk

)2}
+

n∑
k=1

R
(n)
k

= U
(n)
0 + (U

(n)
1 + V

(n)
1 ) − 1

2
(U

(n)
2 + V

(n)
2 ) + U

(n)
3 (say),

for all n ≥ 1.

Since h(t) is a continuous function with a bounded derivative, it is obvious

that ∣∣∣∣U (n)
0 −

∫ T

0

h(t)dt

∣∣∣∣ ≤ cn−1.(17)

By (14) we have

|U (n)
3 | ≤ c

n∑
k=1

n−3κ = O(n−3κ+1) = o
(
n− δ

2(6+δ)
)

a.s.(18)

Next, we consider U
(n)
1 and V

(n)
1 . Since h(t) and v(t) are continuous functions

with bounded derivatives on [0, T ], we put

M = max

{
sup

0≤t≤T
|h(t)|, sup

0≤t≤T
|v(t)|

}
.

Since n − l1m1 ∼ m1 = [n
2
11 ] and κ > (1/3), by (9)

|V (n)
1 | ≤

√
T

n
M

n∑
k=l1m1+1

|ξi| = m1O
(
n−κ

)
= O

(
n−(κ− 2

11
)
)

(19)

Now, we consider

U
(n)
1 =

m1∑
i=1

√
T

n
v(s

(1)
i−1,0)

l1∑
j=1

ξl1(i−1)+j(20)

+

m1∑
i=1

l1∑
j=1

√
T

n
(v(s

(1)
i−1,j) − v(s

(1)
i−1,0))ξl1(i−1)+j

= U
(n)
1,1 + U

(n)
1,2 (say.)
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By Assumption A (III) there is a Wiener process W with EW 2(t) = γ1t such

that ∣∣∣∣ l1∑
j=1

ξl1(i−1)+j − {W (il1) − W ((i − 1)l1)}
∣∣∣∣ = O

(
l
1
4
1

)
= O

(
n

9
44

)
(21)

Hence, noting l1m1 ∼ n, we have√
1

l1m1

m1∑
i=1

l1∑
j=1

v(s
(1)
i−1,0)ξl1(i−1)+j

=

√
1

l1m1

m1∑
i=1

v(s
(1)
i−1,0)

l1∑
j=1

ξl1(i−1)+j

=

√
1

m1l1

m1∑
i=1

v(s
(1)
i−1,0)

{
{W (il1) − W ((i − 1)l1)} + O

(
l
1
4
1

)}
=

m1∑
i=1

v(s
(1)
i−1,0)

(
W

(
i

m1

)
− W

(
i − 1

m1

))
+ O

(
n− 1

44

)
a.s.

Since m1 = [n
2
11 ] and v(t) is a continuous function with bounded derivative, we

have

U
(n)
1,1 →

∫ T

0

v(t)dW (t) a.s.(22)

Denote

M(m1, l1) := max
1≤i≤l1

max
1≤j≤m

|v(s
(1)
i−1,j−1) − v(s

(1)
i−1,0)| ≤

c

m1

,(23)

We proceed to estimate U
(n)
1,2 . By the Markov inequality and Assumption A (I)

P
(
|U (n)

1,2 | > n− 1
132

)
(24)

≤ cn
1
22 E

( m1∑
i=1

l1∑
j=1

√
T

n
(v(s

(1)
i−1,j−1) − v(s

(1)
i−1,0)ξl1(i−1)+j

)6

≤ cn
1
22 M6(m1, l1) ≤ cn

1
22 m−6

1 ≤ cn− 12
11

+ 1
22 ≤ cn− 23

22 .

Hence,

|U (n)
1,2 | = O

(
n− 1

132

)
a.s.(25)

Now, we consider U
(n)
2 and V

(n)
2 . By (9)

V2 (n) =
n∑

k=l2m2+1

(
h(sk)

T

n
+

√
T

n
v(sk−1)ξk

)2

(26)

≤ cm2n
−2κ = o

(
n− 23

48

)
≤ cn− 1

3
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To estimate U
(n)
2 , we rewrite U

(n)
2 as

U
(n)
2 =

m2∑
i=1

l2∑
j=1

(
h(si−1,j−1)

T

n

)2

(27)

+2

m2∑
i=1

l2∑
j=1

T

n

√
T

n
h(s

(2)
i−1,j−1)v(s

(2)
i,j−1)ξl2(i−1)+j

+

m2∑
i=1

l2∑
j=1

(√
T

n
v(s

(2)
i−1,j−1)ξl2(i−1)+j

)2

= U
(n)
2,1 + 2U

(n)
2,2 + U

(n)
2,3 (say).

It is obvious that

|U (n)
2,1 | ≤ M2

m2∑
i=1

l2∑
j=1

(
T

n

)2

≤ cM2n

(
T 2

n

)2

≤ cn−1(28)

and by (9)

|U (n)
2,2 | ≤ cM

√
T

n

(
T

n

m2∑
i=1

l2∑
j=1

|ξl2(i−1)+j|
)

≤ cn−κ a.s.(29)

It remains to consider U
(n)
2,3 . Firstly, we consider

T

l2m2

m2∑
i=1

l2∑
j=1

v2(s
(2)
i−1,0)ξ

2
l2(i−1)+j =

T

m2

m2∑
i=1

v2

(
(i − 1)T

m2

)
1

l2

l2∑
j=1

ξ2
l2(i−1)+j.

Since Eξ2
1 = 1, by (10)∣∣∣∣ 1

l2

l2∑
j=1

ξ2
l2(i−1)+j − 1

∣∣∣∣ ≤ c

l
1
6
−ε

2

≤ n− 1
8 a.s..

for each 1 ≤ i ≤ m2. Noting

T

m2

m2∑
i=1

v2(s
(2)
i,0 ) =

T

m2

m2∑
i=1

v2

(
(i − 1)T

m2

)
≤ M2T,(30)

we have ∣∣∣∣ T

l2m2

m2∑
i=1

l2∑
j=1

v2(s
(2)
i−1,0)ξ

2
l2(i−1)+j −

T

m2

m2∑
i=1

v2

(
(i − 1)T

m2

)∣∣∣∣(31)

≤ T

m2

m2∑
i=1

v2

(
(i − 1)T

m2

)∣∣∣∣ 1

l2

l2∑
j=1

ξ2
l2(i−1)+j − 1

∣∣∣∣ ≤ cn− 1
8 a.s.
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Further, since v is a continuous function with bounded derivative, we have∣∣∣∣ T

m2

m2∑
i=1

v2

(
(i − 1)T

m2

)
−

∫ T

0

v2(t)dt

∣∣∣∣ ≤ cT

m2

≤ cn− 1
8 .(32)

Hence from (31) and (32) we obtain∣∣∣∣ T

l2m2

m2∑
i=1

l2∑
j=1

v2(s
(2)
i−1,0)ξ

2
l2(i−1)+j −

∫ T

0

v2(t)dt

∣∣∣∣ ≤ cn− 1
8 a.s.,(33)

which, in turn, implies ∣∣∣∣U (n)
2,3 −

∫ T

0

v2(t)dt

∣∣∣∣ ≤ cn− 1
8 a.s.(34)

Combining (16)-(20), (22), (25)-(29) and (34), we have

log
X(T )

X(0)
= lim

n→∞

n∑
k=1

log

(
1 + h(sk−1)

T

n
+

√
T

n
v(sk−1)ξk

)
= lim

n→∞
{U (n)

0 + (U
(n)
1 + V

(n)
1 ) − 1

2
(U

(n)
2 + V

(n)
2 ) + U

(n)
3 }

=

∫ T

0

h(t)dt − 1

2

∫ T

0

v2(t)dt + γ1

∫ T

0

v(t)dW (t) a.s.

and the proof is completed.

Remark. Instead of Assumption (III), we can use the bound Oa.s.(n
1
2
−ε0) (ε0 > 0

being sufficiently small) in (8). But, the proof is slightly complex, because we

must choose m1, and l1 = [n/m1] so that for some positive constants ε1 and ε2√
m1

l1
l
( 1
2
−ε0)

1 =
√

m1l
−ε0
1 = o(n−ε1),

and |U1,2| = oa.s.(n
−ε2).

Denote by Ca
∗ (A

b) the set of functions Ab → R which possess continuous

bounded partil derivatives up to order a. For F (x1, · · · , xr) ∈ C3
∗(R

d) write

Fxq(x1, · · · , xr) =
∂F (x1, · · · , xr)

∂xq

,

Fxq ,xq′ (x1, · · · , xr) =
∂2F (x1, · · · , xr)

∂xq∂xq′
, etc.
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Let h = (h1, · · ·hd) : Rd × [0,∞) → Rd and v = (v1, · · · , vd) : Rd × [0,∞) →
Rp × [0,∞) be component-wise C1

∗(R
r × [0,∞) functions such that

vq(x, t) > 0 (1 ≤ q ≤ d),

‖h(x, t) − h(y, t)‖ + ‖v(x, t) − v(y, t)‖ ≤ K‖x − y‖,
‖h(x, t)‖ + ‖v(x, t)‖ ≤ K(1 + x‖.

Referring the proof of Theorem 1 in Yoshihara (2013) and those of theorems

in Takahasi-Kanagawa-Yoshihara (2015) and using the above method of proof of

Theorem 1 we can also prove the following theorem which corresponds to the Itô

formula.

THEOREM 2. Let T > 0. Let {ξi} be a sequence of p-dimentional centered

random vectors. Suppose Assumption holds. Let h and v be functions defined

above. Further, let {X(t); 0 ≤ t ≤ T} be a continuous process satisfying the

difference equation

∆Xq(sk) = hq(X(sk−1), sk−1)
kT

n
+ vq(X(sk−1), sk−1)ξk

√
kT

n
(35)

X(0) = x (1 ≤ k ≤ n, 1 ≤ q ≤ d).

Let F (x, t) = F (x1, · · · , xd, t) : Rd × [0,∞) → R be an element of C3
∗(R

d × [0,∞))

and consider the sum of difference

Z(n)(T ) =
n∑

k=1

∆Z(sk) =
n∑

k=1

F (X(sk), sk) − F (X(sk−1), sk−1)(36)

with z = F (X(0), 0).

Then, Z(n)(T ) coverges almost surely to

Z(T ) = z +
d∑

q=1

∫ T

0

Fxq(X(t), t)hq(X(t), t) +

∫ T

0

F (X(t), t)dt(37)

+
1

2

d∑
q,q′=1

∫ T

0

rq,q′Fxq ,xq′
(X(t), t)vq(X(t), t)vT

q′(X(t), t)dt

+
d∑

q=1

∫ T

0

Fxq(X(t), t)vq(X(t), t)dWT(t)

as n → ∞, where {W(t); 0 ≤ t ≤ T} is a p-dimensional Wiener process with

covariance matrix Γ.
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The proof is omitted.

3. Weakly M-dependent sequence and the strong invariance principle

Let d ≥ 1 and p ≥ 1. Let {Yk} = {(Yk,1 · · · , Yk,d)} be a stationary sequence

of d-dimensional centered random vectors and δ(m) → 0 as m → ∞. We say

that {Yk} is weakly M-dependent in Lp with rate function δ(·) if the following

Condition is satisfied;

CONDITION. (A) for any k ∈ Z and m ≥ 0 one can find a d-dimensional

random vector Y
(m)
k = (Y

(m)
k,1 , · · ·Y (m)

k,d ) with finite p-th moment such that

E{max
1≤i≤d

|Yk,i − Y
(m)
k,i |p} ≤ δp(m);(38)

(B) For any disjoint intervals I1, · · · , Ir (r ≥ 1) of integers and any positive in-

tegers m1, · · · , mr the vectors {Y(m)
j , j ∈ I1}, · · · , {Y(m)

j , j ∈ Ir} are independent

provided

d(Ik, Il) > max(mk,ml) (1 ≤ k < l ≤ r).

Here,

d(A,B) = inf{|a − b| : a ∈ A, b ∈ B}

if A and B are subsets of Z.

Remark. Suppose {Yk} is weakly M-dependent in Lp with rate function δ(m).

Then, E|Yk|p is finite, since for each 1 ≤ i ≤ d

‖Yk,i‖p ≤ ‖Y (m)
k,i ‖p + ‖Yk,i − Y

(m)
k,i ‖p ≤ ‖Y (m)

k,i ‖p + δ(m).(39)

Further, if h is a Lipschitz function with Lipschitz constant K, then

‖h(Yk,i) − h(Y
(m)
k )‖p ≤ K‖Yk − Y

(m)
k ‖p ≤ Kδ(m)

and thus {h(Yk)} is also weakly M-dependent in Lp with rate function Kδ(m).

In Berkes et al (2011) the following moment inequality is shown.

LEMMA A. Let {Yk} be a centered stationary sequence, weakly M-dependent

in Lp with rate function δ(m) satisfying

Dp =
∞∑

m=0

δ(m) < ∞.
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Then, the following inequalities hold:

(I) If p ≥ 2, for any n ∈ N, b ∈ Z we have

E

∣∣∣∣ b+n∑
k=b+1

Yk

∣∣∣∣p ≤ Cpn
p
2(40)

where Cp is a constant depending on p and the sequence {Yk}.
(II) If p > 2, for any 2 < q ≤ p , n ∈ N, b ∈ Z we have

E

{
max
1≤l≤n

∣∣∣∣ b+l∑
k=b+1

Yk

∣∣∣∣q} ≤ C ′
p,qn

q
2(41)

where C ′
p,q is a constant depending on p, q and the sequence {Yk}.

Lemma A may be generalized as follows:

LEMMA 1. Suppose {Yk} is a stationary sequence of d-dimensional centered

random vectors which is weakly M-dependent in Lp with rate function δ(m)

satisfying

Dp =
∞∑

m=0

δ(m) < ∞.(42)

Then, the following hold:

(I)

‖Yk − Y
(m)
k ‖p ≤ Cd

1
2 δ(m).(43)

(II) If p ≥ 2, for any any n ∈ N, b ∈ Z we have

E

∣∣∣∣ b+n∑
k=b+1

Yk

∣∣∣∣p ≤ Cpd
1
2 n

p
2(44)

and

E

∣∣∣∣ b+n∑
k=b+1

Y
(m)
k

∣∣∣∣p ≤ C1,pd
p
2 n

p
2 + C2,pn

pδp(m)(45)

where s are positive constants independent of m and n.

(III) If p > 2, for any 2 < q ≤ p , n ∈ N, b ∈ Z we have

E

{
max
1≤l≤n

∣∣∣∣ b+l∑
k=b+1

Yk

∣∣∣∣}q

≤ C ′
p,qn

q
2(46)

Here, Cp, C1,p, C2,p, C
′
p,q are positive constant dependining only on p, q, d and the

sequence {Yk}.
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Proof. From Condition (A) and the Minkowski inequality

‖Yk − Y
(m)
k ‖p =

{
E

(√√√√ d∑
i=1

(Yk,i − Y
(m)
k,i )2

)p} 1
p

≤
[{

E

( d∑
i=1

(Yk,i − Y
(m)
k,i )2

) p
2
} 2

p
] 1

2

≤
[ d∑

i=1

(
E

∣∣Yk,i − Y
(m)
k,i

∣∣p) 2
p

] 1
2

=

[ d∑
i=1

‖Yk,i − Y
(m)
k,i ‖2

p

] 1
2

≤ cd
1
2 δ(m).

Hence, (43) is obtained.

Next, without loss of generality we assume b = 0. By the above method and

(40) we have∥∥∥∥ n∑
k=1

Yk

∥∥∥∥
p

≤
{

E

( d∑
i=1

( n∑
k=1

Yk,i

)2) p
2
} 1

p

≤
{ d∑

i=1

(
E

∣∣∣∣ n∑
k=1

Yk,i

∣∣∣∣p) 2
p
} 1

2

≤ c
{(

dn
p
2

)|frac2p} 1
2 ≤ cd

1
2 n

1
2 ,

which, via (40), implies (45).

By the Minkowski inequality and (44)

E

∣∣∣∣ b+n∑
k=b+1

Y
(m)
k

∣∣∣∣p ≤ c

{
E

∣∣∣∣ b+n∑
k=b+1

Yk

∣∣∣∣p + E

∣∣∣∣ b+n∑
k=b+1

Yk −
b+n∑

k=b+1

Y
(m)
k

∣∣∣∣p}

≤ c

{
E

∣∣∣∣ b+n∑
k=b+1

Yk

∣∣∣∣p +

( b+n∑
k=b+1

‖Yk − Y
(m)
k ‖p

)p}
≤ cd

p
2 n

p
2 + cnpδp(m).

and (45) follows.

(46) is obtained from Lemma A (II) by the method of proof of (41).

Remark. From the proof of Lemma 1 it easily follows that if {ai} is a sequence

of real numbers such that supi≥1 |ai| ≤ K < ∞ and the condition of Lemma 1

holds, then

E

∣∣∣∣ b+n∑
i=b+1

aiYi

∣∣∣∣p ≤ cpd
p
2 Kpn

p
2(47)
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for all b.

Suppose {Yk} is a stationary sequence of d-dimensional centered random

vectors which is weakly M-dependent in Lp withe rate function δ(·). Put

Sn =
n∑

k=1

Yk and Cov(Sn) = ESnS
T
n

and let Γ = (γq,q′) be the d × d matrix such that for q, q′ (1 ≤ q, q′ ≤ d)

γ2
q = γq,q′ = EY 2

1,q + 2
∞∑
i=2

EY1,qYi,q,(48)

γq,q′ = EY1,qY1,q′ +
∞∑
i=2

(EY1,qYi,q + EYi,qY1,q′).(49)

The existence of Γ is guranteed by the following lemma.

LEMMA 2. Let p > 2. Let {Yk} be a stationary sequence of d-dimensional

centered random vectors which is weakly M-dependent in Lp with rate function

δ(·) satisfying (42). Then, the series in (48) and (49) are absolutely convergent

and hence Γ exists.

Further, ∣∣∣∣Γ − 1

n
Cov(Sn)

∣∣∣∣ ≤ c

{
1

n

n−1∑
j=1

jδ(j) +
∞∑

j=n

δ(j)

}
(50)

and consequently

lim
n→∞

1

n
Cov(Sn) = Γ.(51)

Proof. Without loss of generality we assume that EY
(m)
k = 0 for all k ∈ Z and

m ≥ 0. Since we can use the same method, we consider only the case γ1,2. We

write

Yk,1Yk+j,2 = (Yk,1 − Y
(j−1)
k,1 )Yk+j,2 + Y

(j−1)
k,1 (Yk+j,2 − Y

(j−1)
k+j,2 )

+Y
(j−1)
k,1 Y

(j−1)
k+j,2 .

Since by Condition (B) EY
(j−1)
k,1 Y

(j−1)
k+j,2 = 0, from Conditions (A) and (B) we have

that for j ≥ 1

|EYk,1Yk+j,2| ≤ |E(Yk,1 − Y
(j−1)
k,1 )Yk+j,2| + |EY

(j−1)
k,1 (Yk+j,2 − Y

(j−1)
k+j,2 )|

≤ ‖Yk,1 − Y
(j−1)
k,1 ‖2‖Yk+j,2‖2 + ‖Y (j−1)

k,1 ‖2‖Yk+j,2 − Y
(j−1)
k+j,2 ‖2

≤ (‖Yk+j,2‖2 + ‖Y (j−1)
k,1 ‖2)δ(j − 1)

≤ (2‖Y (j−1)
1,1 ‖2 + D2)δ(j − 1),
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which implies

∞∑
j=n

|Yk,1Yk+j,2| ≤ c

∞∑
j=n

δ(j) → 0 (n → ∞).(52)

Thus, the first part of Lemma 2 is obtained.

Next, since the (q, q′)-component of Cov(Sn)/n is

1

n
E

( n∑
i=1

Yi,q

)( n∑
j=1

Yj,q′

)
,

using the stationarity and the above method we can easily show (51).

In the sequel, we alway assume that the matrix Γ is positive definite and

denote by I the d × d identity matrix.

To prove Theorem 3 we need the following Theorem due to Götze and Zaitsev

(2009).

THEOREM A. Suppose that ξ1, · · · , ξn are independent Rd-valued random vec-

tors with Eξj = 0, j = 1, · · · , n. Let p ≥ 2 and put

Mp =
n∑

j=1

E|ξj|p < ∞.(53)

Let σ2 be the maximal eigen value of Cov(
∑n

j=1 ξj). Assume that σ ≤ C1M
1
p
p

with some positive constant C1. Then, for any construction on a probability space

of a sequence of independent random vectors X1, · · · ,Xn and a corresponding

sequence of independent Gaussian random vectors Y1, · · · ,Yn such that L(Xj) =

L(ξj), EYj = 0,Cov(Yj) = Cov(Xj) (j = 1, · · · , n). For all z > 0

P

(
max
1≤k≤n

∣∣∣∣ k∑
i=1

Xi −
k∑

i=1

Yi

∣∣∣∣ > z

)
≤ C2d

1+(p/2)Mpz
−p(54)

where C2 > 0 is a constant depending only on p and C1.

Remark. From Theorem A, we see that if p > 6, then

max
1≤k≤n

∣∣∣∣ k∑
i=1

Xi −
k∑

i=1

Yi

∣∣∣∣ = o
(
n

1
6

)
a.s.(55)

The following theorem is a multi-dimensional version of the result due to

Berkes et al. (2011)
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THEOREM 3. Let p > 2. Let {Yk} be a stationary sequence of d-dimensional

centered random vectors which is weakly M-dependent in Lp with rate function

δ(m) ≤ Cm−A(56)

where κ > 0 and

A >
p − 2

2κ

(
1 − 1 + κ

p

)
∨ 1,

1 + κ

p
<

1

2
.(57)

Suppose Γ is positive definite.

Then, {Yk} can be defined on a new probability space together with two d-

dimensional Wiener processes with covariance Γ, {W1(t); t ≥ 0} and {W2(t);

t ≥ 0} such that

n∑
k=1

Yk = W1(sn) + C2W2(tn) + O
(
n

1+κ
p

)
a.s.(58)

where {sn} and {tn} are nondecreasing numerical sequences with

sn ∼ n, tn ∼ C1n
κ′

, 0 < κ′ < 1(59)

and C1 and C2 are positive constants.

Remark. W1 and W2 are not independent. But, as in Berkes et al, we can show

that

Cov(W1(sn),W2(tn)) → 0 (m,n → ∞).(60)

Proof. Since by assumption Γ is positive definite we can assume Γ = I.

Let us specify some constants that will be used for the proof. By assump tion

on A it is possible to find a constant 0 < ε0 < 1
2

such that

A >
p − 2

2κ(1 − ε0)2

(
1 − 1 + κ

p

)
> 1.(61)

Then, we set

α =
2κ(1 − ε0)

p − 2(1 + κ)
, β = (1 − ε0)α, ρ =

β

1 + α
.(62)

For some ε1 > 0 (which will be specified later) we now define mk = [ε1k
ρ] .

The first step is to show that it is sufficient to provide the strong approxima-

tion for the perturbed sequence Y
(mk)
k . By Lemma 1 (I)

‖Yk − Y
(mk)
k ‖p ≤ ck−Aρ.(63)
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If Aρ < 1, then

P

(
max

2n≤l≤2n+1

∣∣∣∣ l∑
j=1

(Yj − Y
(mj)
j )

∣∣∣∣ >
1

n
2

n
p
(1+κ)

)

≤ P

(2n+1∑
j=1

|Yj − Y
(mj)
j | >

1

n
2

n
p
(1+κ)

)

≤ 2−n(1+κ)np

(2n+1∑
j=1

‖Yj − Y
(mj)
j ‖p

)p

≤ c2−C1nnp

where C1 = (1+κ)− (1−Aρ)p > 0. Thus, by the Borel-Cantelli lemma we have

l∑
j=1

Yj =
l∑

j=1

Y
(mj)
j + o

(
l
1+κ

p
)

a.s.

If Aρ ≥ 1 we get an (even better) error term of order o(l(1/p)).

Next, we partition N into disjoint blocks as

N = J1 ∪ I1 ∪ J2 ∪ I2 ∪ · · ·

where |Il| = [lα] and |Jl| = [lβ| with α and β as in (62). Set Il = {il, · · · , il} and

Jl = {j
l
, · · · , jl} and put

η
(1)
l =

∑
k∈Il

Y
(mk)
k and η

(2)
l =

∑
k∈Jl

Y
(mk)
k(64)

Note that il = O(l1+α) and if ε1 in the definition of ml is chosen small enough,

then

|Jl| = [lβ] > [ε1i
ρ
l ] = mi1

.

Hence, by Condition (B) we have that {ηl} and {ζl} each define a sequence of

independent cetered random vectors.

By (43)

E

∣∣∣∣ ∑
k∈Il

Yk − η
(1)
l

∣∣∣∣p ≤ ∥∥∥∥ ∑
k∈Il

(Yk − Y
(mk)
k )

∥∥∥∥p

p

= O
(
(|Il| · i−Aρ(1+α)

l )p
)
.

Further, by the restriction on the parameters A, ρ, α, and ε0

|Il| · i−Aρ(1+α)
l ≤ clαl−Aρ(1+α) ≤ c l

α
2 ≤ c|Il|

1
2 .(65)
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Thus, we can find a constant C (which does not depend on l)

E

∣∣∣∣∑
k∈Il

Yk − η
(1)
l

∣∣∣∣p ≤ C|Il|
p
2 .(66)

Similarly, we have

E

∣∣∣∣ ∑
k∈Jl

Yk − η
(2)
l

∣∣∣∣p ≤ C|Jl|
p
2 .(67)

It is obvious that

Ll :=
l∑

k=1

|Ik| = O
(
l1+α

)
.

Put

al = L
1+κ

p

2n (2n ≤ l < 2n+1; n = 0, 1, 2, · · · ).

Then,

∞∑
l=1

1

a2
l

E

∣∣∣∣ ∑
k∈Il

Yk − η
(1)
l

∣∣∣∣p(68)

=
∞∑

n=0

2n+1−1∑
l=2n

1

ap
l

E

∣∣∣∣∑
k∈Il

Yk − η
(1)
l

∣∣∣∣p

≤
∞∑

n=0

1

L1+κ
2n

2n+1−1∑
l=1

1

ap
l

E

∣∣∣∣ ∑
k∈Il

Yk − η
(1)
l

∣∣∣∣p
≤ c

∞∑
n=0

2[−(1+α)(1+κ)+(αp/2)+1]n.

The exponent in the last line of (68) will be negative if (1+α)(1+κ) > (αp/2)+1.

This is equivalent to α < 2κ/(p − 2(1 + κ)). Hence, by (66) we have

∞∑
l=1

P

(∣∣∣∣∑
k∈Il

Yk − η
(1)
l

∣∣∣∣ > al

)
≤

∞∑
l=1

1

ap
l

E

∣∣∣∣ ∑
k∈Il

Yk − η
(1)
l

∣∣∣∣p < ∞.(69)

which, via the Borel-Cantelli lemma, implies∑
k∈Il

Yk − η
(1)
l = O(al) a.s.(70)
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By the same method, we can prove that∑
k∈Jl

Yk − η
(2)
l = O(al) a.s.(71)

Next, put

Σ1,l = Cov(η
(1)
l ) and Σ2,l = Cov(η

(2)
l ) (l = 1, 2, · · · ).

Since by Lemma 2

Σ1,l

|Il|
→ Γ = I (l → ∞),(72)

Σ1,l is positive definite and thus Σ
1
2
1,l exists. Put

ζ
(1)
1,l = Σ

− 1
2

1,l η
(1)
l (l = 1, 2, · · · )

Then, by Theorem A and (70), we can construct a new probability space (Ω0,F0, P0)

and two sequences of independent d-dimensional random vectors {Z1,k}, {Z∗
1,k},with

P0 ◦ Z1,k = P0 ◦ ζ
(1)
k , P0 ◦ Z∗

1,k = N(0, |Il|I), (k ∈ N) such that

2n∑
k=1

Z1,k −
2n∑

k=1

Z∗
1,k = O(an) a.s.(73)

Similarly, Put

ζ
(2)
1,l = Σ

− 1
2

1,l η
(2)
l (l = 1, 2, · · · ),

Then, by Theorem A and (71), we can construct a new probability space (Ω0,F0, P0)

and two sequences of independent d-dimensional random vectors {Z2,k}, {Z∗
2,k}

with P0 ◦ Z2,k = P0 ◦ ζ
(2)
k , P0 ◦ Z∗

2,k = N(0, |Jl|I), (k ∈ N) such that

2n∑
k=1

Z2,k −
2n∑

k=1

Z∗
2,k = O(an) a.s.(74)

Next, we show that

|Il|
1
2 ζ

(1)
l − η

(1)
l = O(al) a.s,(75)

Note that for any l ≥ 1

|Il|
1
2 ζ

(1)
l − η

(1)
l = (|Il|

1
2 I − Σ

1
2
1,l)ζ

(1)
l .(76)
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Since ‖(I −M)2‖ ≤ ‖I −M2‖2 for any semi-positive definite matrix M , we have∥∥(
|Il|

1
2 I − Σ

1
2
1,l

)2∥∥ ≤ |Il|−1‖|Il|I − Σ1,l‖2.(77)

Hence, by (77)

E‖|Il|
1
2 ζ

(1)
l − η

(1)
l ‖p ≤ E

∣∣(|Il|
1
2 I − Σ

1
2
1,l)ζ

(1)
l

∣∣p
≤ c

∥∥|Il|
1
2 I − Σ

1
2
1,l

∥∥p ≤ c|Il|−
p
2

∥∥|Il|I − Σ1,l

∥∥p
.

≤ |Il|
p
2

(
‖|Il|I − Σ1,l‖

|Il|

)p

≤ c|Il|
p
2

and

‖Σ1,l‖
1
2 ≥ |Il|

1
2 − |Il|−

1
2‖|Il|

1
2 I − Σ

1
2
1,l‖

≥ |Il|
1
2 − |Il|

1
2
‖|Il|I − Σ1,l‖

|Il|
≥ |Il|

1
2 − |Il|

1
2 · o(1) ≥ c|Il|

1
2 .

Thus, by (45) we have

E|ζ(1)
l |p =

1

‖Σ1,l‖
p
2

∣∣∣∣ ∑
k∈Il

Y
|Il|
k

∣∣∣∣p ≤ c

|Il|
p
2

|Il|
p
2 |Il|

p
2 ≤ c|Il|

p
2 .(78)

As (68) we have

∞∑
l=1

1

ap
l

E‖|Il|
1
2 ζ

(1)
l − η

(1)
l ‖p ≤ c

∞∑
n=0

2[−(1+α)(1+κ)+(αp/2)+1]n < ∞,

which, via the Borel-Cantelli lemma, implies (75).

Now, for each k let

σl = 1(l ∈ Ik), = 0 (l ∈ Jk); τl = 0(l ∈ Ik), = 1 (l ∈ Jk)

and put

sn =
n∑

l=1

σl, tn =
n∑

l=1

τl.

Then, it is obvious that sn ∼ n and tn ∼ nκ′
(κ′ > 0). By a Wiener process

{W1(t)} with covariance matrix I we can write

n∑
k=1

Zn
1,k = W1(sn) a.s.(79)
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and similarly by a Wiener process {W2(t)} with covariance matrix I we can write

n∑
k=1

Zn
2,k = W2(sn) a.s.(80)

Combining (68), (70), (73)-(75) we have (58) on an enlarged probability space.

To finish the proof, we have to show that the fluctuations of the partial sums

and the Wiener processes {W1(t)} and {W2(t)} within the blocks are small

enough. Since fluctuation properties of Wiener processes are easy to handle

using standard deviation inequality, we only investigate the partial sums. The

fact is shown, since by Lemma 2 (III) we have

P

(
max

ik≤l≤ik

∣∣∣∣ l∑
j=ik

Yj > i
1+κ

p

k

)
≤ i

−(1+κ)
k E

∣∣∣∣ ik∑
j=ik

Yj

∣∣∣∣p
≤ i

−(1+κ)
k |Ik|

p
2 ≤ ck−(1+κ)(1+α)+(αp/2) = O

(
k−(1+ε1)

)
where ε1 > 0 is some number.

Thus, if the conditions of Theorem 3 are satisfied, then the conclusion holds

for any stationary sequence of weakly M-dependent multi-dimensional random

vectors. This implies that we can apply Theorems 1 and 2 to multi-dimensional

weakly M-dependent sequences.

4. Martingale generalizations

Eberline (1986) proved the strong invariance principles under the assumptions

include various generalizations of martingales such as asymptotic martingales and

mixingales.

Let {ξk} be a stationary sequence of Rd-valued random vectors. Denote

Sn(m) =
m+n∑

k=m+1

ξk and Sn = Sn(0).

Let (Γn(m))q,q′ (1 ≤ q, q′ ≤ d) be the covariances defined by

Γn(m)q,q′ = n−1E{Sn(m)qSn(m)q′}

and write (Γ)q,q′ = (Γn(0))q,q′ . Denote the limit by Γ = (Γq,q′) if exists.

We consider the following:

ASSUMPTION B. Let {ξk} be a stationary sequence of Rd-valued random vec-

tors with E|ξ1|6+δ (0 ≤ d < 1).
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(I) For all m,n ≥ 1 there is a constant C > 0 such that

‖E{Sn(m)|Fm}‖2 ≤ C(81)

(II) For each e ∈ Rd of length 1

Var(〈e,Sn〉) ≥ r(n), r(n) → ∞ as n → ∞,(82)

where 〈·, ·〉 denotes the inner product of vectors.

(III) There exists θ > 0 such that for 1 ≤ q, q′ ≤ d.∥∥E{Sn(m)qSn(m)q′|Fm} − E{Sn(m)qSn(m)q′
∥∥ ≤ Cn1−θ(83)

uniformly in m.

Remark. If Assumption B (II) holds, then Γ exists. Moreover, Assumption B

is more strict conditions than those of Theorem 2 in Eberline (1986) and the

strong invariance hold with bound Oa.s.(n
1
2
−ρ) (0 < ρ < 1

2
). Hence, by Remark

to Theorem 1, Theorems 1 and 2 may be applied to this case. Since Assumption

B implies Assumption A, Theorems 1 and 2 may be applied.

5. Weak dependence defined by Berkes-Liu-Wu

By the new approximation method, Berkes-Liu-Wu (2014) proved the strong

invariance principle for all p > 2 and for a large class of dependent sequences. In

the sequel of this section, we use the result in the special case only.

For k ∈ Z define the shift process Ek = (εl+k, l ∈ Z). The central element of

Ek (belonging to l = 0) is εk.

Let {ξk} be a stationary sequence defined as

ξk = G(Ek) = G(· · · , εk−1, εk, εk+1, · · · )

where {εk} is an i.i.d.sequence and G : RZ → R is a measurable function. Let

{ε′j; j ∈ Z} be an i.i.d.copy of {εj; j ∈ Z} and for i, j ∈ Z let Ek,{j} denote

the process obtained from Ek by replacing the coordinate εj by ε′j. We assume

E|ξ1|6 < ∞.

Put

δk,6 = ‖ξk − ξk,{0}‖6 where ξk,{0} = G(Ek,{0}).(84)

We assume E|ξ1|6 < ∞. The dependence condition is expresses by

Θk,p =
∑
|j|≥k

δj,p (k ≥ 0).(85)
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If

Θm,6 = m−2 (m ≥ 1)

then by Corollary 2.1 to Theorem 1 in Berkes-Liu-Wu (2014) for the stationary

sequence {ξk} of random variables the strong invariance principle holds with

bound order oa.s.(n
1/6). Hence, Theorems 1 and 2 may be applied to this sequence

{ξk}.
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