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Abstract. A quadrangulation G on a closed surface F is a map of a simple
graph on F with each face quadrilateral. In this paper, as an application for
the result of Matsumoto et al. [10], we give a forbidden structure of a bipartite
quadrangulation on the projective plane to have a K3,4-minor.

1. Introduction

Let G be a graph and let e be an edge of G. An edge deletion of e is to remove

e from G, and an edge contraction of e is to remove e from G and identify the

two endpoints of e. If these operations destroy the simpleness of graphs, then

we do not apply them. A deletion of an isolate vertex is to remove an isolate

vertex. A graph H is a minor of G or G has an H-minor , if H is obtained from

G by edge contractions, edge deletions and deletions of isolate vertices. The

three operations are called minor operations . If we deal with only connected

graphs, we never need to use the third operation under careful use of the first

two. Therefore, we only use the first two as minor operations. A graph G is

H-minor-free if G does not have H as a minor. A vertex of degree k is a k-vertex

and a cycle of length k is a k-cycle.

A surface F is a compact 2-dimensional manifold without boundary, and a

map G on F is a fixed embedding of a simple graph on F. For a 2-cell region

R in G with boundary walk W , inner vertices and edges are ones in R but not

contained in W . (An inner vertex or edge of a plane graph is similarly defined

as one not contained in the boundary walk of the infinite face.) A triangulation

(resp., quadrangulation) on F is a map of a simple graph on F such that each

face is bounded by a 3-cycle (resp., 4-cycle). A simple closed curve ℓ on a

non-spherical surface is essential if ℓ does not bound a 2-cell on the surface.

The representativity of a map G on F is defined as the minimum number of

intersecting points of G and a closed curve ℓ, where ℓ ranges over all essential
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simple closed curves on F. A map is k-representative if it has representativity at

least k.

We introduce two local operations for quadrangulations. Suppose that a

quadrangulation G has a 2-vertex v with neighbors a1 and a2. A 2-vertex deletion

of v is to delete v from G, as shown in the left of Figure 1. Suppose that a

quadrangulation G has a 3-vertex x with neighbors a1, a2, a3. Let a1b1a2b2a3b3
be the boundary walk of the region consisting of all faces incident to x. A

hexagonal contraction of x at a2, a3 is to delete x, identify a2 and a3, and replace

a pair of multiple edges a2b2, a3b2 with a single edge, as shown in the right of

Figure 1. We do not apply these reductions if the resulting graph is not simple.

It is easy to see that each of the two operations is obtained by a sequence of edge

contractions and edge deletions. For these operations, the inverse operations are

a 2-vertex addition and a hexagonal splitting , respectively.

b3
b1b3

a1

b1

a3 a2

v

a1

a2

x

b2

a1

a2

a1

b2

a2 = a3

Figure 1 The 2-vertex deletion and the hexagonal contraction

Bau, Matsumoto, Nakamoto and Zheng proved the following result for quad-

rangulations on the sphere by those operations.

THEOREM 1. (Bau et al. [3]) Every quadrangulation of order at least 5 on

the sphere can be reduced to a 4-cycle C4 by a sequence of 2-vertex deletions and

hexagonal contractions.

Matsumoto, Nakamoto and Yonekura obtained an analogy for quadrangula-

tions on the projective plane by the same operations, where K−−
4,4 is a quadran-

gulation on the projective plane whose graph is K4,4 with two independent edges

deleted, as follows.

THEOREM 2. (Matsumoto et al. [10]) Every bipartite quadrangulation on the

projective plane can be reduced to either K3,4 or K−−
4,4 by a sequence of 2-vertex

deletions and hexagonal contractions, through bipartite ones. Every non-bipartite

quadrangulation can be reduced to K4 by those operations, through non-bipartite

ones. (Figure 2 shows two bipartite quadrangulation isomorphic to K3,4 and

K−−
4,4 , respectively.)
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K3,4 K−−
4,4

Figure 2 The graphs K3,4 and K−−
4,4

We have already known several theorems generating quadrangulations [2, 4,

15]. However, Theorem 2 has given a new direction for a minor relation of quad-

rangulations. Since each of the 2-vertex deletion and the hexagonal contraction

is obtained by a combination of minor operations, Theorem 2 asserts that ev-

ery bipartite quadrangulation on the projective plane contains K3,4 or K−−
4,4 as

a minor, and that every non-bipartite quadrangulation on the projective plane

containsK4 as a minor. (ForK4- andK5-minors in quadrangulations on surfaces,

see a related result [5].)

In this paper, we consider an application of Theorem 2 to give a forbidden

structure of a bipartite quadrangulation on the projective plane to have a K3,4-

minor.

Let G be a graph and let H be a subgraph of G. An H-bridge in G is a

subgraph of G which is either an edge not in H but with both ends in H, or a

connected component of G − V (H) together with all edges which have one end

in this component and the other end in H. Let B be an H-bridge. The elements

of V (B) ∩ V (H) are called its attachments. (The above two definitions can be

found in [11, Page 7].)

DEFINITION 3. (Q-structure) A quadrangulation G on the projective plane

has a Q-structure when G has a subgraph Q (shown in Figure 3) with faces

R1, . . . , R5 such that: R1 and R2 are hexagonal regions of G, R4 and R5 are

faces of G (as well as Q) and every Q-bridge in R3 has at most two attachments.

Remark. Note that if G is 3-connected, then R3 has no Q-bridge, and that K−−
4,4

has a Q-structure which is obtained from the map shown in Figure 3 by adding

two edges uv and u′v′. For examples, the quadrangulation in the left of Figure 4

has a Q-structure depicted by bold edges, but the right of Figure 4 does not since

it has Q as a subgraph but the Q-bridge in R3 has three attachments a, c and d.

The following is our main result in this paper.
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Figure 3 The Q-structure

c
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Figure 4 Examples of bipartite quadrangulations with (or without) a

Q-structure

THEOREM 4. Let G be a bipartite quadrangulation on the projective plane. If

G does not have a Q-structure, then G has a K3,4-minor.

In Section 2, we introduce some lemmas, and then we prove Theorem 4 by

those lemmas. In Section 3, we give some remarks for Theorem 4.

2. Proof of the theorem

We first prepare two lemmas to prove Theorem 4.

LEMMA 5. Let Q be a simple plane quadrangulation with outer cycle C =

v0v1v2v3. If every inner vertex of Q has at most two disjoint paths to C, then

deg(vi) = deg(vi+2) = 2 for some i.

Proof. Observe that if deg(vi) = deg(vi+1) = 2 for some i, then Q has no inner

vertex, and hence deg(vi) = 2 for i = 0, 1, 2, 3. Thus, if the lemma does not hold,

then we may suppose that v0, v1 and v2 have degree at least 3.

Let v0, x1, . . . , xk, v2 be the neighbors of v1 appearing in the rotation of v1
in this order, where k ≥ 1 and we note that each xi is an inner vertex since

Q is bipartite. Since deg(v0) ≥ 3, we can find a quadrilateral face v0v1x1y0 for
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some inner vertex y0. (Note that if y0 is contained in C, then y0 = v3, since

Q is bipartite. In this case, deg(v0) = 2, a contradiction.) Similarly, since

deg(v2) ≥ 3, we can find a quadrilateral face v1v2ykxk for some inner vertex yk.

Moreover, if k ≥ 2, take k − 1 faces xiv1xi+1yi for some yi, for i = 1, . . . , k − 1.

Note that y0, . . . , yn are not necessarily distinct, and that we might have yi = v3
for some i ∈ {1, . . . , k − 1}.

Suppose that yp = v3 for some p ∈ {1, . . . , k − 1}, where we take p as small

as possible. Then xp has three neighbors yp−1, v1, v3. By the definition of yp, all

vertices in the walk y0x1 · · ·xp−1yp−1xp are inner vertices, and hence we can find

a path P from yp−1 to v0 without intersecting v1 and v3. Hence xp has three

internally disjoint paths from xp to v1, v3 and v0 along the path P (i.e., the three

paths share xp only). Suppose that all yi are inner vertices. If y0 is distinct

from all other yi for i = 1, . . . , k, then by taking a path P from y1 to v2 in the

walk y1x2 · · ·xkykv2, we can take three internally disjoint paths from x1 to v0, v1
and v2 along the path P . If y0 coincides with other yi’s, then we let yp = y0
with p the largest. Let P ′ be a path from the vertex y0 = yp to v2 in the walk

ypxp+1yp+1 · · · ykv2, which intersects none of v0, v1, v3. Then the vertex y0 = yp
has three internally disjoint paths from y0 to v0, v1 and v2 along the path P ′.

Consequently, we can find three internally disjoint paths from some inner

vertex, a contradiction.

LEMMA 6. Let Q be a bipartite plane graph with outer 6-cycle C = v0v1v2v3v4v5
such that every inner face is quadrilateral. Suppose that Q has neither edge v0v3
nor v2v5. Then Q has an internal (v1, v4)-path, i.e., a path P joining v1 and v4
such that V (P ) ∩ V (C) = {v1, v4}, unless Q has an inner face incident to both

v0 and v2, or an inner face incident to both v3 and v5.

Proof. Adding two new vertices x to v0, v1, v2, and y to v3, v4, v5, we get a new

plane graph Q′. If we can find a path P ′ in Q′ joining x and y but intersecting

none of v0, v2, v3 and v5, then we will have a required path from v1 to v4. By

using Menger’s theorem, we find three internally disjoint paths from x to y. Since

Q′ is a plane graph with deg(x) = deg(y) = 3, one of the three paths is a required

path. If Q′ has no such three paths, then Q′ has a separator separating x and

y. Since Q′ is a plane graph, we can find a face f of Q which contains (i) v0, v2,

(ii) v3, v5, (iii) v0, v3 or (iv) v2, v5. Since Q is bipartite and each inner face is

quadrilateral, we have an edge v0v3 in (iii), and an edge v2v4 in (iv). However,

by the assumption, these cases do not happen. In the cases (i) and (ii), we have

the conclusion.

Now we shall prove Theorem 4.
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Proof of Theorem 4. Let G be a bipartite quadrangulation on the projective

plane with no Q-structure. For contradiction, we suppose that G has no K3,4-

minor. By Theorem 2, G can be reduced to K−−
4,4 by 2-vertex deletions and

hexagonal contractions. That is, there exists a sequence of bipartite quadrangu-

lations G0, G1, . . . , Gk with G = Gk such that

(i) G0
∼= K−−

4,4 , and

(ii) Gi+1 is obtained from Gi by either a single 2-vertex addition or a single

hexagonal splitting, for each i ∈ {0, 1, · · · , k − 1}.
By Remark of Definition 3, K−−

4,4 has a Q-structure, and hence, there exists an

index k such that Gk contains a Q-structure but Gk+1 does not. If we can prove

that Gk+1 has a K3,4-minor, then so does G. Therefore, we let G = Gk+1 and

G′ = Gk, and we shall prove that G has a K3,4-minor. By the assumption, we

note thatG is obtained fromG′ by either a single 2-vertex addition or a hexagonal

splitting, and that G′ contains the Q-structure. We suppose that vertices in G′

are labeled as in Figure 3, where for i = 1, 2, 3, 4, 5, Ri denotes the 2-cell region

in G′ with the Q-structure, or the plane subgraph of G contained in the interior

and the boundary cycle of Ri. Moreover, we may be assumed that there is only

one face corresponding to R4 and R5.

Case I. G is obtained from G′ by a 2-vertex addition.
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Figure 5 Case I

Let x be the added 2-vertex. We first consider the case when we put a 2-

vertex in one of the two faces R4 and R5, say R4, as in Figure 5 (a). In this case,

the region R1 has no face incident to both a and c. For otherwise, i.e., if R1 has

such a face f , then regarding f as R4, we see that G still has a Q-structure, a

contradiction. Therefore, by Lemma 6, R1 (resp., R2) has an internal (u′, v′)-

path (resp., (u, v)-path). Thus, regarding four shaded parts and three circled

parts showing Figure 5 (a′) as seven vertices of K3,4, we can find a K3,4-minor in

G.

We next consider the case when G has a Q-bridge B with two attachments
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a and c and x is adjacent to a vertex of B and d as in Figure 5 (b). Observe

that R1 has a hexagonal region R′
1 bounded by abv′′dcu′′ which has neither a face

incident to both a and c nor a face incident to b and d, even if R1 has such faces.

Similarly, we may suppose that R2 also has no such face. Hence, by Lemma 6,

since R′
1 (resp., R2) has an internal (u′′, v′′)-path (resp., (u, v)-path), we can find

a K3,4-minor in G, as in Figure 5 (b′).

Case II. G is obtained from G′ by a hexagonal splitting.

Let A be the submap of G′ consisting of a quadrilateral face f = xa2a1a3 and

an edge xy, shown in the left of Figure 6 which is applied a hexagonal splitting

to get G.

f

x

y

a1

a3a2

y

x1 x2

a3

a1

a2
x0

(G′) (G)

Figure 6 The submap A and a hexagonal splitting

Observe that if A satisfies one of the following conditions (see Figure 7):

1. V (A) ⊆ V (Ri) and E(A) ⊆ E(Ri) for some i ∈ {1, 2, 3}, or
2. f and R4 (or R5) coincide and xy is on the boundary of Ri for some i ∈

{1, 2, 3},
then the resulting map by the hexagonal splitting of A still contains a Q-

structure.

R3

R2

R1 R3

R2

R1

x

y

f

R5

R4

R5

xy

1. 2.

Figure 7 Examples for two conditions

Hence we suppose that A satisfies none of the above conditions, and so by

symmetry, it suffices to consider the following three subcases.
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Subcase 1. f and R4 coincide and xy is an inner edge of Ri for some i ∈ {1, 2, 3}.
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Figure 8 Subcase 1

We have three cases (see Figure 8): Now the edge xy is by symmetry contained

in either R1 as shown in (a1) and (a2) or alternatively R3 as shown in (a3).

However, we consider only the cases (a1) and (a3), since the hexagonal splitting

in the case (a2) does not break the Q-structure.

Focusing on the case (a1), we consider the resulting graph G by applying a

hexagonal splitting to the A in G′. Note that V (G) = (V (G′)\{x})∪{x0, x1, x2},
where xi’s are vertices corresponding to them shown in Figure 6. In this case,

x0 is adjacent to x1, x2 and the common neighbor of a and c on the boundary

of f in G′ (as well as G) which is not deleted by the above hexagonal splitting.

(Note that x is excluded.) Moreover, x1c, x2a ∈ E(G) and by Lemma 6, G has

an internal path in R1 joining x1 (or x2) and the common neighbor of b and

d shared by boundaries of R1 and R5. Therefore, by symmetry, we can find a

K3,4-minor as shown in Figure 11 (A). Similarly, for the case (a3), we can find a

K3,4-minor by Lemma 6, as shown in Figure 11 (D).

Subcase 2. f is contained in R1 and xy /∈ E(R1).
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uu u

v v v v

R1R1R1

u′u′ u′ u′
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Figure 9 Subcase 2

By the assumption, we have x ∈ {a, b, c, d}, say x = c. Then we consider the

following four cases (see Figure 9): (b1) xy = cb, (b2) xy is an inner edge of R3,
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(b3) xy = cu and (b4) xy is an inner edge of R2. Observe that R1 and R2 admits

an internal (u′, v′)-path and (u, v)-path, respectively. In the case (b2), we can

find an internal (x, a)-path in R3, where c = x. Therefore, for the case (b2), G

has a K3,4-minor as shown in Figure 11 (B), and in Figure 11 (C) for other cases.

(Note that the hexagonal splitting does not break the (u′, v′)-path as shown in

Figure 11.)

Subcase 3. f is contained in R3 and xy /∈ E(R3).
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a a a a

bbbbd d d d

R3 R3 R3

Figure 10 Subcase 3

Similarly to Subcase 2, we have x = c. Hence we have four cases (see Figure

10): (c1) xy = cu′, (c2) xy is an inner edge of R1, (c3) xy is an inner edge of

R2 and (c4) xy = cu. Observe that (c2) and (c3) are equivalent by symmetry.

Similarly to the above subcases, using internal paths, we can find a K3,4-minor

as shown in Figure 11 (B) (resp., (E)) for the cases (c1), (c2) and (c3) (resp.,

(c4)).

Therefore, we can find a K3,4-minor in G in all possible cases, and hence we

are done.

3. Some Remarks

For triangulations on surfaces, we can find several results on a character-

ization of ones containing a complete graph as a minor. Such results might

affirmatively support the well-known Hadwiger’s Conjecture, which states that

every graph with no Kk-minor is (k−1)-colorable, and has been solved for k ≤ 6,

but is still open for k ≥ 7. It is easy to see that every triangulation on any surface

has a K4-minor, and that every triangulation on any non-spherical surface has a

K5-minor, where we note that every graph on the sphere cannot have aK5-minor,

by the Kuratowski-Wagner’s result [18]. Using the complete list of “minimal tri-

angulations” on surfaces with respect to the minor relations, called irreducible
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Figure 11 Five cases with a K3,4-minor

triangulations [1, 7, 8, 16, 17], Mukae et al. characterized triangulations with no

K6-minor [6, 12, 13, 14].

In this paper, we have given a sufficient condition for a bipartite quadran-

gulation on the projective plane P to have a K3,4-minor by a single forbidden

structure called the Q-structure, using the fact that every bipartite quadrangu-

lation on P contains K3,4 or K−−
4,4 as a minor [10]. So we wonder if avoiding the

Q-structure can also be a necessary condition for a bipartite quadrangulation on

P to have a K3,4-minor.

For this problem, Maharry and Slilaty [9] gave a constructive characteriza-

tion of projective planar maps with no K3,4-minor, using the notion of a “patch

graph”. A patch is a plane graph with quadrilateral outer cycle. A map G on P
is a patch graph if it is obtained by the following procedures:

• Step 1: Start with the initial map (a) shown in Figure 12, where the

quadrilateral region P0 is a patch.

• Step 2: Apply patch operations, each of which replaces a single patch with

a configuration H or Y containing two or one patch(es) ((b), (c) in Figure

12, where the regions P1, P2 and P3 are patches). Repeat this operation

several times.

• Step 3: Finally, replace each of the remaining patches with one of the two

configurations X and I ((d), (e) in Figure 12), called the terminal patch.

We note that a patch graph is always a triangulation on P, and almost 4-connected

(i.e., it is 3-connected and every 3-cut separates the graph into one with an iso-

lated vertex). Actually, Maharry and Slilaty proved that an almost 4-connected
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map G ̸= K6 on P has no K3,4-minor if and only if G is a subgraph of a patch

graph.

P1

P2

P3
P0

A

A

B

B

(a) (b) (c) (d) (e)

H Y X I

Figure 12 The initial patch graph (a) and four patch operations H, Y,X and

I

Let T be a patch graph. Assign black or white to each vertex of T so that no

triangular face has three vertices of the same color in its three corners, and that

the subgraph of T induced by the black-white edges is simple. We see that T

has such a vertex-coloring only if the first patch operation applied to the initial

patch for constructing T is H. Deleting the edges of T joining the same color, we

obtain a spanning bipartite quadrangulation G of T . Then we can see that G has

a Q-structure since the first patch operation is H. Hence by Maharry-Slilaty’s

theorem, if G does not have a Q-structure, then G has a K3,4-minor. This is our

main claim in this paper, but on the other hand, we would like to know whether

the converse is true or not. However, we have a counterexample G shown in the

left of Figure 13, which has a Q-structure but also has a K3,4-minor, as in the

right.

G

Figure 13 Bipartite quadrangulation G on the projective plane having a

K3,4-minor and a Q-structure

Let T be the patch graph which is obtained from the initial map by the single

patch operation H. Then T has exactly two patches, say P1 and P2. From T , we

can get infinitely many patch graphs T1, T2, . . . by applying patch operations to

P1 and P2. Unless both P1 and P2 are replaced with the terminal patches, each Ti



128 N. MATSUMOTO, A. NAKAMOTO AND S. YONEKURA

contains a spanning bipartite quadrangulation, say Gi, and by Maharry-Slilaty’s

theorem, all Gi’s have no K3,4-minor. However, the bipartite quadrangulation G

in Figure 13 is constructed as a spanning subgraph of a triangulation obtained

from T by replacing P1 and P2 with some dense graphs, and hence the failure of

the patch operations in T causes the existence of a K3,4-minor in G.

Finally, we would like to know whether we can obtain a necessary and suf-

ficient condition for a bipartite quadrangulation on P to have a K3,4-minor, by

analyzing the structure more carefully than what we did in this paper. Even if

it can be, then the argument will be so long and complicated, and moreover, it

might be nothing but tracing Maharry-Slilaty’s proof through bipartite quadran-

gulations.
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