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Abstract. A graph is said to be distinguishing k-colorable if it has a proper
k-coloring such that no automorphism other than the identity map preserves the
colors. A truncated 3-regular graph is one obtained from a 3-regular graph by
replacing a small part around each vertex with a triangle. We shall show that
any truncated 3-regular connected graph is distinguishing 3-colorable.

Introduction

A simple graph G is said to be distiguishing k-colorable if there is a k-coloring

c : V (G) → {1, . . . , k} such that no automorphism of G other than the identity

map preserves the colors given by c. Such a coloring is called a distinguishing

k-coloring of G. The distinguishing chromatic number of G is defined as the

minimum number k such that G is distinguishing k-colorable and is denoted by

χD(G). These notions for abstract graphs have been introduced in [1].

In general, the gap between the chromatic number and the distinguishing

chromatic number of a graph can be arbitrarily large; χ(Kn,n) = 2 < χD(Kn,n) =

n+n for example. However, if we embed a graphG on a closed surface and restrict

its automorphisms to its map automorphisms, which exhibit the symmetry over

the surface, then the distinguishing chromatic number of a map defined similarly

is so close to its chromatic number, as is shown in [2, 3, 4, 5, 6, 7, 8, 9, 10].

This suggests that 3-regular maps on closed surfaces might be distinguishing

3-colorable with few exceptions; there actually exist some exceptions and the

distinguishing chromatic number of the cube is equal to 4 for example.

As one of evidences supporting it, Negami [4] has already shown that 3-regular

maps on closed surfaces have distinguishing 4-coloring with color 4 used only for

one vertex, with three exceptions. Recently, Negami and Sugihara [5] have proved

that any truncated 3-regular polyhedron is distinguishing 3-colorable, developing

a method to discuss it in more general situation from a point of view of topological
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graph theory. In this paper, we shall prove their result in a combinatorial way

and generalize it to a theorem for “truncated 3-regular graphs” defined below.

Let Ḡ be a 3-regular graph. Truncation of a vertex v in Ḡ is to replace a small

part around v with a triangle xyz; remove v as a point and cut off a sufficiently

short segment on each edge incident to v. The endpoints of such three segments

will be x, y and z, which form a triangle with three short edges xy, yz and zx

added. A truncated 3-regular graph G is one obtained from a 3-regular graph Ḡ

by truncating each of all vertices in Ḡ. This is actually 3-regular, but the reason

why we call it a truncated “3-regular graph” is that its underlying graph Ḡ is a

“3-regular graph”. Note that if we contract each of the triangles in G to a point,

then we will recover Ḡ itself.

THEOREM 1. Any truncated 3-regular connected graph has a distinguishing 3-

coloring.

This is our main theorem in this paper, which states a fact on the distin-

guishing chromatic number of an abstract graph. Our arguments below do not

need any assumption on topological properties, embeddings or the polyhedrality

of maps, so well as in Negami and Sugihara’s result [5].

1. Modifying colorings

Let G be a truncated 3-regular connected graph, that is, one obtained from

another 3-regular connected graph Ḡ by truncating each vertex v; denote the

triangle corresponding to v by ∆v. Since G is 3-regular and is not isomorphic to

K4, it has a 3-coloring c : V (G) → {1, 2, 3} by Brooks Theorem, which is well

known and can be found in a standard texbook of graph theory.

We identify the color set {1, 2, 3} with Z3 to use the addition of integers

modulo 3. Then we can give a direction from x to y for each edge xy of G so

that c(y) ≡ c(x) + 1 (mod 3). Since three vertices forming ∆v = xyz have three

different colors, one orientation along the cycle ∆v is induced by directions of

edges xy, yz and zx. There are other three edges incident to x, y and z. If one

of them has the direction from ∆v to another vertex not on ∆v, we assign “+”

to it; otherwise, assign “−”. Counting the number of “+” and “−” around ∆v,

we call ∆v Type (+ + −) for exampe. There are four types, namely (+ + +),

(+ +−), (+−−) and (−−−).

Here, we shall consider three modifications of the 3-coloring c : V (G) → Z3

of G. We may assume that c(y) ≡ c(x) + 1 and c(z) ≡ c(x) − 1 (mod 3). Let

x′, y′ and z′ be the neighbors of x, y and z, respecively, not lying on the triangle

∆v = xyz. We can define another 3-coloring c′ : V (G) → Z3 by c′(s) ≡ −c(s)
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(mod 3) and call it the reverse of c. The directions of all edges induced by c′ are

opposite to those by c.

Suppose that ∆v is of Type (+ + +). Then x′, y′ and z′ have three different

colors since c(x′) ≡ c(x)+1, c(y′) ≡ c(y)+1 and c(z′) ≡ c(z)+1 (mod 3). Change

the colors of only x, y and z in c by c−(x) ≡ c(x) − 1, c−(y) ≡ c(y) − 1 and

c−(z) ≡ c(z)− 1 (mod 3) in order to define another 3-coloring c− : V (G) → Z3.

Since c−(x
′) = c(x′) ≡ (c−(x) + 1)+ 1 ≡ c−(x)− 1 (mod 3) and so one, the type

of ∆v changes from (+ + +) to (−−−). We call this modification the rotation

along ∆v. Similarly, if ∆v of Type (− − −), then we can define the rotation

along ∆v to get another 3-coloring c+ : V (G) → Z3 with c+(s) ≡ c(s) + 1

(mod 3) (s ∈ {x, y, z}), which makes ∆v be of Type (+ + +).

We shall modify the 3-coloring of G, step by step, to adapt it for use in the

later proof of Theorem 1.

LEMMA 2. Any truncated 3-regular connected graph has a 3-coloring such that

there is at least one triangle of Type (+ + +).

Proof. Let G be a truncated 3-regular connected graph and choose a triangle

∆v = xyz which corresponding to a vertex v in the underlying 3-regular graph

Ḡ. Let Gv be the graph obtained from G by shrinking ∆v to a vertex v. Since Gv

is 3-regular and is not isomorphic to K4, Gv has a 3-coloring cv : V (Gv) → Z3.

We shall construct a 3-coloring c : V (G) → Z3 of G, modifying cv as follows.

Let x′, y′ and z′ be the neighbors of x, y and z not lying in ∆v, respectively,

which are the three neighbors of v in Gv. We may assume that cv(v) = 0. First

suppose that all of x′, y′ and z′ have the same color, say 1, in the coloring cv.

Consider the subgraph of Gv induced by the vertices colored by 1 and 2 and let

H1,2 be its component containing z′, called the (1, 2)-Kempe chain from z′.

Since each triangle in Gv consists of three vertices with three colors 0, 1 and

2, H1,2 forms a path which goes along edges lying and not lying on triangles

alternately. Each of edges in H1,2 lying on triangles is colored by 1 and 2 in this

order while each of those not on triangles are colored by 2 and 1. This implies

that H1,2 contains neither x′ nor y′ and we can exchange colors 1 and 2 along

the path H1,2 to obtain a new 3-coloring of Gv. Thus, we may assume that

cv(x
′) = cv(y

′) = 1 and cv(z
′) = 2 after modifying colors.

Now consider the (1, 0)-Kempe chain H1,0 from x′ in Gv − v, but not in Gv.

As in the previous, H1,0 forms a path and contians neither y′ nor z′. Thus, we can

exchange colors 1 and 0 along H1,0 to obtain a 3-coloring c : V (Gv−v) → Z3 with

c(x′) = 0, c(y′) = 1 and c(z) = 2. This 3-coloring c of Gv − v = G−∆v extends

to a 3-coloring of G so that c(x) ≡ c(x′)− 1, c(y) ≡ c(y′)− 1 and c(z) ≡ c(z′)− 1

(mod 3). Therefore, ∆v is of Type (+ + +) in the 3-coloring c : V (G) → Z3
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finally obtained.

LEMMA 3. Any truncated 3-regular connected graph has a 3-coloring such that

there is exactly one triangle of Type (+ + +).

Proof. Let c : V (G) → Z3 be a 3-coloring of G which has a triangle ∆v0 of Type

(+++), which exists by Lemma 2. Put V0 = {v0} and let Vi (i ≥ 1) be the subset

of V (Ḡ) which consists of the vertices w such that the distance between v0 and

w in Ḡ is equal to i. We say that the direction from Vi−1 to Vi is “downward”.

Let ni (i ≥ 1) denote the number of edges uv in Ḡ such that u ∈ Vi−1, v ∈ Vi

and that ∆v is joined to ∆u by a directed edge in G, which induces the “upward”

direction from v to u. Consider the complexity n(c) = (n1, n2, . . .) for a 3-coloring

c : V (G) → Z3 with the order “≤” defined as:

(n1, n2, . . .) ≤ (n′
1, n

′
2, . . .) ⇐⇒ n1 = n′

1, . . . , ni−1 = n′
i−1

and ni ≤ n′
i for some i ≥ 1.

We may assume that n(c) is the minimum under this order taken over all 3-

colorings of G with ∆v0 being of Type (+ + +).

Suppose that there is another triangle ∆v of Type (+ + +) with v ∈ Vi for

some i ≥ 1. Then there is a vertex u ∈ Vi−1 such that ∆v is joined to ∆u by an

upward edge. Two or three candidates for u may exist and ∆v must be joined to

all of their triangles by upward edges. Since ∆v is of Type (+++), we can apply

the rotation along ∆v so that such upward edges turn into downward edges. This

would decrease the value of ni by at least 1 although ni+1 might be bigger. That

is, n(c) would be smaller for the modified c, which is contrary to our assumption

of the minimality of n(c). Therefore, there is no triangle of Type (+ + +) other

than ∆v0 for this c.

2. Proof of Theorem

We have already prepare what we need to prove our main theorem. It suffices

to discuss the 3-coloring guaranteed by Lemma 3 with automorphisms, as follows:

Proof of Theorem 1. LetG be a truncated 3-regular connected graph. By Lemma

3, G has a 3-coloring c : V (G) → Z3 such that there is exactly one triangle ∆v0

of Type (+ + +). It is easy to see that any automorphism τ ∈ Aut(G) carries

each of triangles created by truncation to one of them and that it preserves their

types if it preserves the colors given by c. Since ∆v0 is a unique triangle of Type

(+ + +), any color-preserving automorphism τ must fix ∆v0 .
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Let v0v1 · · · vk be any path in the underlying 3-regular graph Ḡ and assume

that τ fixes all vertices lying on ∆v0∪· · ·∪∆vk−1
, where ∆vi = xiyizi is the triangle

corresponding to vi and is assumed to be joined to ∆vi−1
by an edge xizi−1. We

have already known that τ(xk−1) = xk−1, τ(yk−1) = yk−1 and τ(zk−1) = zk−1 and

xk is a unique neighbor of zk−1 whose image by τ has been never decided yet.

Thus, we must have τ(xk) = xk. Furthermore, the colors given by c force each

of yk and zk to be carried to itself by τ since {c(xk), c(yk), c(zk)} = {0, 1, 2}.
Since Ḡ is connected, any vertex v can be joined to v0 by a path and we

conclude inductively that τ(x) = x, τ(y) = y and τ(z) = z for any triangle

∆v = xyz, using the path as above. Since the triangles ∆v (v ∈ V (Ḡ)) cover

V (G), τ must be the identity map over G and hence c is a distinguishing 3-

coloring of G.

Note that we assume the simpleness of a truncated 3-regular graph implicitly,

but its underlying 3-regular graph may have multiple edges without self-loops.

For example. the triangular prismK3×K2 can be regarded as a truncation of a 3-

regular graph with two vertices joined by three multiple edges. This has a unique

3-coloring, up to exchanging colors, and such a 3-coloring is a distinguishing 3-

coloring of K3 ×K2.
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