TRUNCATED 3-REGULAR CONNECTED GRAPHS ARE DISTINGUISHING 3-COLORABLE

By
Masayuki Fujita and Seiya Negami

(Received April 30, 2017; Revised October 23, 2017)

Abstract

A graph is said to be distinguishing k-colorable if it has a proper k-coloring such that no automorphism other than the identity map preserves the colors. A truncated 3 -regular graph is one obtained from a 3 -regular graph by replacing a small part around each vertex with a triangle. We shall show that any truncated 3 -regular connected graph is distinguishing 3 -colorable.

Introduction

A simple graph G is said to be distiguishing k-colorable if there is a k-coloring $c: V(G) \rightarrow\{1, \ldots, k\}$ such that no automorphism of G other than the identity map preserves the colors given by c. Such a coloring is called a distinguishing k-coloring of G. The distinguishing chromatic number of G is defined as the minimum number k such that G is distinguishing k-colorable and is denoted by $\chi_{D}(G)$. These notions for abstract graphs have been introduced in [1].

In general, the gap between the chromatic number and the distinguishing chromatic number of a graph can be arbitrarily large; $\chi\left(K_{n, n}\right)=2<\chi_{D}\left(K_{n, n}\right)=$ $n+n$ for example. However, if we embed a graph G on a closed surface and restrict its automorphisms to its map automorphisms, which exhibit the symmetry over the surface, then the distinguishing chromatic number of a map defined similarly is so close to its chromatic number, as is shown in $[2,3,4,5,6,7,8,9,10]$. This suggests that 3 -regular maps on closed surfaces might be distinguishing 3 -colorable with few exceptions; there actually exist some exceptions and the distinguishing chromatic number of the cube is equal to 4 for example.

As one of evidences supporting it, Negami [4] has already shown that 3-regular maps on closed surfaces have distinguishing 4-coloring with color 4 used only for one vertex, with three exceptions. Recently, Negami and Sugihara [5] have proved that any truncated 3-regular polyhedron is distinguishing 3-colorable, developing a method to discuss it in more general situation from a point of view of topological

[^0]graph theory. In this paper, we shall prove their result in a combinatorial way and generalize it to a theorem for "truncated 3 -regular graphs" defined below.

Let \bar{G} be a 3 -regular graph. Truncation of a vertex v in \bar{G} is to replace a small part around v with a triangle $x y z$; remove v as a point and cut off a sufficiently short segment on each edge incident to v. The endpoints of such three segments will be x, y and z, which form a triangle with three short edges $x y, y z$ and $z x$ added. A truncated 3-regular graph G is one obtained from a 3 -regular graph \bar{G} by truncating each of all vertices in \bar{G}. This is actually 3 -regular, but the reason why we call it a truncated "3-regular graph" is that its underlying graph \bar{G} is a " 3 -regular graph". Note that if we contract each of the triangles in G to a point, then we will recover \bar{G} itself.

THEOREM 1. Any truncated 3 -regular connected graph has a distinguishing 3coloring.

This is our main theorem in this paper, which states a fact on the distinguishing chromatic number of an abstract graph. Our arguments below do not need any assumption on topological properties, embeddings or the polyhedrality of maps, so well as in Negami and Sugihara's result [5].

1. Modifying colorings

Let G be a truncated 3-regular connected graph, that is, one obtained from another 3-regular connected graph \bar{G} by truncating each vertex v; denote the triangle corresponding to v by Δ_{v}. Since G is 3 -regular and is not isomorphic to K_{4}, it has a 3 -coloring $c: V(G) \rightarrow\{1,2,3\}$ by Brooks Theorem, which is well known and can be found in a standard texbook of graph theory.

We identify the color set $\{1,2,3\}$ with \mathbb{Z}_{3} to use the addition of integers modulo 3. Then we can give a direction from x to y for each edge $x y$ of G so that $c(y) \equiv c(x)+1(\bmod 3)$. Since three vertices forming $\Delta_{v}=x y z$ have three different colors, one orientation along the cycle Δ_{v} is induced by directions of edges $x y, y z$ and $z x$. There are other three edges incident to x, y and z. If one of them has the direction from Δ_{v} to another vertex not on Δ_{v}, we assign "+" to it; otherwise, assign "-". Counting the number of "+" and "-" around Δ_{v}, we call Δ_{v} Type $(++-)$ for exampe. There are four types, namely $(+++)$, $(++-),(+--)$ and $(---)$.

Here, we shall consider three modifications of the 3-coloring $c: V(G) \rightarrow \mathbb{Z}_{3}$ of G. We may assume that $c(y) \equiv c(x)+1$ and $c(z) \equiv c(x)-1(\bmod 3)$. Let x^{\prime}, y^{\prime} and z^{\prime} be the neighbors of x, y and z, respecively, not lying on the triangle $\Delta_{v}=x y z$. We can define another 3-coloring $c^{\prime}: V(G) \rightarrow \mathbb{Z}_{3}$ by $c^{\prime}(s) \equiv-c(s)$
$(\bmod 3)$ and call it the reverse of c. The directions of all edges induced by c^{\prime} are opposite to those by c.

Suppose that Δ_{v} is of Type $(+++)$. Then x^{\prime}, y^{\prime} and z^{\prime} have three different colors since $c\left(x^{\prime}\right) \equiv c(x)+1, c\left(y^{\prime}\right) \equiv c(y)+1$ and $c\left(z^{\prime}\right) \equiv c(z)+1(\bmod 3)$. Change the colors of only x, y and z in c by $c_{-}(x) \equiv c(x)-1, c_{-}(y) \equiv c(y)-1$ and $c_{-}(z) \equiv c(z)-1(\bmod 3)$ in order to define another 3-coloring $c_{-}: V(G) \rightarrow \mathbb{Z}_{3}$. Since $c_{-}\left(x^{\prime}\right)=c\left(x^{\prime}\right) \equiv\left(c_{-}(x)+1\right)+1 \equiv c_{-}(x)-1(\bmod 3)$ and so one, the type of Δ_{v} changes from $(+++)$ to (---). We call this modification the rotation along Δ_{v}. Similarly, if Δ_{v} of Type (---), then we can define the rotation along Δ_{v} to get another 3 -coloring $c_{+}: V(G) \rightarrow \mathbb{Z}_{3}$ with $c_{+}(s) \equiv c(s)+1$ $(\bmod 3)(s \in\{x, y, z\})$, which makes Δ_{v} be of Type $(+++)$.

We shall modify the 3 -coloring of G, step by step, to adapt it for use in the later proof of Theorem 1.

LEMMA 2. Any truncated 3-regular connected graph has a 3-coloring such that there is at least one triangle of Type $(+++)$.

Proof. Let G be a truncated 3-regular connected graph and choose a triangle $\Delta_{v}=x y z$ which corresponding to a vertex v in the underlying 3-regular graph \bar{G}. Let G_{v} be the graph obtained from G by shrinking Δ_{v} to a vertex v. Since G_{v} is 3-regular and is not isomorphic to K_{4}, G_{v} has a 3-coloring $c_{v}: V\left(G_{v}\right) \rightarrow \mathbb{Z}_{3}$. We shall construct a 3-coloring $c: V(G) \rightarrow \mathbb{Z}_{3}$ of G, modifying c_{v} as follows.

Let x^{\prime}, y^{\prime} and z^{\prime} be the neighbors of x, y and z not lying in Δ_{v}, respectively, which are the three neighbors of v in G_{v}. We may assume that $c_{v}(v)=0$. First suppose that all of x^{\prime}, y^{\prime} and z^{\prime} have the same color, say 1 , in the coloring c_{v}. Consider the subgraph of G_{v} induced by the vertices colored by 1 and 2 and let $H_{1,2}$ be its component containing z^{\prime}, called the (1,2)-Kempe chain from z^{\prime}.

Since each triangle in G_{v} consists of three vertices with three colors 0,1 and 2, $H_{1,2}$ forms a path which goes along edges lying and not lying on triangles alternately. Each of edges in $H_{1,2}$ lying on triangles is colored by 1 and 2 in this order while each of those not on triangles are colored by 2 and 1 . This implies that $H_{1,2}$ contains neither x^{\prime} nor y^{\prime} and we can exchange colors 1 and 2 along the path $H_{1,2}$ to obtain a new 3 -coloring of G_{v}. Thus, we may assume that $c_{v}\left(x^{\prime}\right)=c_{v}\left(y^{\prime}\right)=1$ and $c_{v}\left(z^{\prime}\right)=2$ after modifying colors.

Now consider the $(1,0)$-Kempe chain $H_{1,0}$ from x^{\prime} in $G_{v}-v$, but not in G_{v}. As in the previous, $H_{1,0}$ forms a path and contians neither y^{\prime} nor z^{\prime}. Thus, we can exchange colors 1 and 0 along $H_{1,0}$ to obtain a 3-coloring $c: V\left(G_{v}-v\right) \rightarrow \mathbb{Z}_{3}$ with $c\left(x^{\prime}\right)=0, c\left(y^{\prime}\right)=1$ and $c(z)=2$. This 3-coloring c of $G_{v}-v=G-\Delta_{v}$ extends to a 3-coloring of G so that $c(x) \equiv c\left(x^{\prime}\right)-1, c(y) \equiv c\left(y^{\prime}\right)-1$ and $c(z) \equiv c\left(z^{\prime}\right)-1$ $(\bmod 3)$. Therefore, Δ_{v} is of Type $(+++)$ in the 3-coloring $c: V(G) \rightarrow \mathbb{Z}_{3}$
finally obtained.
LEMMA 3. Any truncated 3 -regular connected graph has a 3 -coloring such that there is exactly one triangle of Type $(+++)$.

Proof. Let $c: V(G) \rightarrow \mathbb{Z}_{3}$ be a 3 -coloring of G which has a triangle $\Delta_{v_{0}}$ of Type $(+++)$, which exists by Lemma 2. Put $V_{0}=\left\{v_{0}\right\}$ and let $V_{i}(i \geq 1)$ be the subset of $V(\bar{G})$ which consists of the vertices w such that the distance between v_{0} and w in \bar{G} is equal to i. We say that the direction from V_{i-1} to V_{i} is "downward".

Let $n_{i}(i \geq 1)$ denote the number of edges $u v$ in \bar{G} such that $u \in V_{i-1}, v \in V_{i}$ and that Δ_{v} is joined to Δ_{u} by a directed edge in G, which induces the "upward" direction from v to u. Consider the complexity $n(c)=\left(n_{1}, n_{2}, \ldots\right)$ for a 3-coloring $c: V(G) \rightarrow \mathbb{Z}_{3}$ with the order " \leq " defined as:

$$
\begin{aligned}
\left(n_{1}, n_{2}, \ldots\right) \leq\left(n_{1}^{\prime}, n_{2}^{\prime}, \ldots\right) \Longleftrightarrow n_{1}=n_{1}^{\prime}, \ldots, & n_{i-1}=n_{i-1}^{\prime} \\
& \text { and } n_{i} \leq n_{i}^{\prime} \text { for some } i \geq 1
\end{aligned}
$$

We may assume that $n(c)$ is the minimum under this order taken over all 3colorings of G with $\Delta_{v_{0}}$ being of Type $(+++)$.

Suppose that there is another triangle Δ_{v} of Type $(+++)$ with $v \in V_{i}$ for some $i \geq 1$. Then there is a vertex $u \in V_{i-1}$ such that Δ_{v} is joined to Δ_{u} by an upward edge. Two or three candidates for u may exist and Δ_{v} must be joined to all of their triangles by upward edges. Since Δ_{v} is of Type $(+++)$, we can apply the rotation along Δ_{v} so that such upward edges turn into downward edges. This would decrease the value of n_{i} by at least 1 although n_{i+1} might be bigger. That is, $n(c)$ would be smaller for the modified c, which is contrary to our assumption of the minimality of $n(c)$. Therefore, there is no triangle of Type $(+++)$ other than $\Delta_{v_{0}}$ for this c.

2. Proof of Theorem

We have already prepare what we need to prove our main theorem. It suffices to discuss the 3 -coloring guaranteed by Lemma 3 with automorphisms, as follows:

Proof of Theorem 1. Let G be a truncated 3-regular connected graph. By Lemma $3, G$ has a 3-coloring $c: V(G) \rightarrow \mathbb{Z}_{3}$ such that there is exactly one triangle $\Delta_{v_{0}}$ of Type $(+++)$. It is easy to see that any automorphism $\tau \in \operatorname{Aut}(G)$ carries each of triangles created by truncation to one of them and that it preserves their types if it preserves the colors given by c. Since $\Delta_{v_{0}}$ is a unique triangle of Type $(+++)$, any color-preserving automorphism τ must fix $\Delta_{v_{0}}$.

Let $v_{0} v_{1} \cdots v_{k}$ be any path in the underlying 3 -regular graph \bar{G} and assume that τ fixes all vertices lying on $\Delta_{v_{0}} \cup \cdots \cup \Delta_{v_{k-1}}$, where $\Delta_{v_{i}}=x_{i} y_{i} z_{i}$ is the triangle corresponding to v_{i} and is assumed to be joined to $\Delta_{v_{i-1}}$ by an edge $x_{i} z_{i-1}$. We have already known that $\tau\left(x_{k-1}\right)=x_{k-1}, \tau\left(y_{k-1}\right)=y_{k-1}$ and $\tau\left(z_{k-1}\right)=z_{k-1}$ and x_{k} is a unique neighbor of z_{k-1} whose image by τ has been never decided yet. Thus, we must have $\tau\left(x_{k}\right)=x_{k}$. Furthermore, the colors given by c force each of y_{k} and z_{k} to be carried to itself by τ since $\left\{c\left(x_{k}\right), c\left(y_{k}\right), c\left(z_{k}\right)\right\}=\{0,1,2\}$.

Since \bar{G} is connected, any vertex v can be joined to v_{0} by a path and we conclude inductively that $\tau(x)=x, \tau(y)=y$ and $\tau(z)=z$ for any triangle $\Delta_{v}=x y z$, using the path as above. Since the triangles $\Delta_{v}(v \in V(\bar{G}))$ cover $V(G), \tau$ must be the identity map over G and hence c is a distinguishing 3coloring of G.

Note that we assume the simpleness of a truncated 3-regular graph implicitly, but its underlying 3 -regular graph may have multiple edges without self-loops. For example. the triangular prism $K_{3} \times K_{2}$ can be regarded as a truncation of a 3regular graph with two vertices joined by three multiple edges. This has a unique 3 -coloring, up to exchanging colors, and such a 3 -coloring is a distinguishing 3coloring of $K_{3} \times K_{2}$.

References

[1] K. L. Collins, and A. Trenk, The distinguishing chromatic number, Electronic J. Combin., 13 (1) (2006), R16.
[2] G. Fijavž, S. Negami, and T. Sano, 3-Connected planar graphs are 5-distinguishing colorable with two exceptions, Ars Mathematica Contemporanea, 4, No. 1 (2011).
[3] G. Fijavž, S. Negami, and T. Sano, Distinguishing colorings of 3-connected planar graphs with five colors, Yokohama Math. J., 61 (2011), 57-65.
[4] S. Negami, 3-Regular maps on closed surfaces are nearly distinguishing 3-colorable with few exceptions, Graph \mathcal{G} Combin., 31 (2015), 1929-1940.
[5] S. Negami, and A. Sugihara, Distinguishing colorings of truncated 3-regular polyhedra, Yokohama Math. J., 62 (2016), 31-38.
[6] S. Negami, and T.W. Tucker, Bipartite polyhedral maps on closed surfaces are distinguishing 3-colorable with few exceptions, Graph \& Combin., 33 (2017), 1443-1450.
[7] T. Sano, and S. Negami, The distinguishing chromatic numbers of triangulations on the projective plane, Congressus Numerantium, 206 (2010), 131-137.
[8] T. Sano, The distinguishing chromatic number of triangulations on the sphere, Yokohama Math. J., 57 (2011), 77-87.
[9] T.W. Tucker, Distinguishing Maps Electronic J. Combin., 18 (1) (2011), \#P50.
[10] T.W. Tucker, Distinguishing Maps II: General Cases, Electronic J. Combin., 20 (2) (2013), \#P50.

Masayuki Fujita
Graduate School of Environment and Information Sciences, Yokohama National University,
79-7 Tokiwadai, Hodogaya-Ku,
Yokohama 240-8501, Japan
E-mail: fujita-masayuki-mn@ynu.jp
Seiya Negami
Faculty of Environment and Information Sciences, Yokohama National University,
79-7 Tokiwadai, Hodogaya-Ku,
Yokohama 240-8501, Japan
E-mail: negami-seiya-vj@ynu.ac.jp

[^0]: 2010 Mathematics Subject Classification: 05C10, 05C15
 Key words and phrases: distinguishing cdorings, 3-regular graphs, topological graph theory

