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Abstract. In this paper, we study an iterative scheme for a generalized resolvent
of a monotone operator defined on a Banach space. We obtain an iterative
approximation of a zero point of a monotone operator generated by the shrinking
projection method with errors in a Banach space. Using our result, we discuss
some applications.

1. Introduction

Let H be a real Hilbert space and let A ⊂ H × H be a maximal monotone

operator. Then, the zero point problem is to find u ∈ H such that

0 ∈ Au. (1.1)

Such a u ∈ H is called a zero point (or a zero) of A. The set of zero points of

A is denoted by A−10. This problem is connected with many problems in Non-

linear Analysis and Optimization, for example, convex minimization problems,

variational inequality problems, equilibrium problems and so on. A well-known

method for solving (1.1) is the proximal point algorithm: x1 ∈ H and

xn+1 = Jrnxn, n = 1, 2, . . . , (1.2)

where {rn} ⊂]0,∞[ and Jrn = (I+rnA)
−1. This algorithm was first introduced by

Martinet [20]. In 1976, Rockafellar [26] proved that if infn rn > 0 and A−10 ̸= ∅,
then the sequence {xn} defined by (1.2) converges weakly to a solution of the

zero point problem. Later, many researchers have studied this problem; see

[6, 7, 10, 14, 18, 19] and others.

On the other hand, Kimura [15] introduced the following iterative scheme

for finding a fixed point of nonexpansive mappings by the shrinking projection

method with errors in a Hilbert space:
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THEOREM 1.1. ([15]) Let C be a bounded closed convex subset of a Hilbert

space H and let T : C → H be a nonexpansive mapping having a fixed point. Let

{ϵn} be a nonnegative real sequence such that ϵ0 = lim supn ϵn < ∞. For a given

point u ∈ H, generate an iterative sequence {xn} as follows: x1 ∈ C such that

∥x1 − u∥ < ϵ1, C1 = C,

Cn+1 = {z ∈ C : ∥z − Txn∥ ≤ ∥z − xn∥} ∩ Cn,

xn+1 ∈ Cn+1 such that ∥u− xn+1∥2 ≤ d(u,Cn+1)
2 + ϵ2n+1

for all n ∈ N. Then,

lim sup
n→∞

∥xn − Txn∥ ≤ 2ϵ0.

Further, if ϵ0 = 0, then {xn} converges strongly to PF (T )u ∈ F (T ).

We remark that the original result of the theorem above deals with a family

of nonexpansive mappings, and the shrinking projection method was first intro-

duced by Takahashi, Takeuchi and Kubota [28]. This result was extended to

more general Banach spaces by Kimura [16] (see also Ibaraki and Kimura [9]).

Recently, Ibaraki [7] study an iterative scheme for two different types of a re-

solvent of a monotone operator in a Banach space by the shrinking projection

method with errors.

In this paper, we study an iterative scheme for a generalized resolvent of a

monotone operator which is different type of two resolvents in [7] by the shrinking

projection method with errors. We first obtain an iterative approximation of a

zero point of a monotone operator generated by the shrinking projection method

with errors in a Banach space. Using our result, we discuss some applications.

2. Preliminaries

Let E be a real Banach space with its dual E∗. We denote strong convergence

and weak convergence of a sequence {xn} to x in E by xn → x and xn ⇀ x,

respectively. We also denote the weak∗ convergence of a sequence {x∗
n} to x∗ in

E∗ by x∗
n

∗
⇀ x∗. The closed ball is defined by Br := {x ∈ E : ∥x∥ ≤ r}, where

r is a positive real number. A Banach space E is said to be strictly convex if

∥x + y∥/2 < 1 whenever x, y ∈ E satisfies ∥x∥ = ∥y∥ = 1 and x ̸= y. E is

said to be uniformly convex if for each ϵ ∈]0, 2], there exists δ > 0 such that

∥x∥ = ∥y∥ = 1 and ∥x− y∥ ≥ ϵ implies ∥x+ y∥/2 ≤ 1− δ.

A Banach space E is said to be smooth if

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.1)
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exists for each x, y ∈ S(E) = {z ∈ E : ∥z∥ = 1}. In this case, the norm of

E is said to be Gâteaux differentiable. The norm of E is said to be Fréchet

differentiable if for each x ∈ S(E), the limit (2.1) is attained uniformly for

y ∈ S(E). The norm of E is said to be uniformly Fréchet differentiable (or

E is said to be uniformly smooth) if the limit (2.1) is attained uniformly for

x, y ∈ S(E); see [27] for more details. A Banach space E is said to have the

Kadec-Klee property if a sequence {xn} of E converges strongly to x0 whenever

it satisfies xn ⇀ x0 and ∥xn∥ → ∥x0∥.
The normalized duality mapping J from E into E∗ is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for each x ∈ E. An operator A ⊂ E×E∗ with domain D(A) = {x ∈ E : Ax ̸= ∅}
and range R(A) = ∪{Ax : x ∈ D(A)} is said to be monotone if ⟨x−y, x∗−y∗⟩ ≥ 0

for all (x, x∗), (y, y∗) ∈ A. An operator A is said to be strictly monotone if

⟨x − y, x∗ − y∗⟩ > 0 for all (x, x∗), (y, y∗) ∈ A (x ̸= y). A monotone operator A

is said to be maximal if its graph G(A) = {(x, x∗) : x∗ ∈ Ax} is not properly

contained in the graph of any other monotone operator. If A is a maximal

monotone operator, then the zero point set A−10 is closed and convex. If E is

smooth, reflexive, and strictly convex, then a monotone operator A is maximal

if and only if R(J + rA) = E∗ for each r > 0; see [4, 27] for more details.

We also know the following properties; see [4, 27] for more details.

(1) Jx ̸= ∅ for each x ∈ E;

(2) if E is reflexive, then J is surjective;

(3) If E is smooth, then the duality mapping J is single valued;

(4) if E is strictly convex, then J is one-to-one and strictly monotone;

(5) if E is reflexive, smooth and strictly convex, then the duality mapping J∗
on E∗ is the inverse of J , that is, J∗ = J−1;

(6) E is reflexive, strictly convex, and has the Kadec-Klee property if and only

if E∗ has a Fréchet differentiable norm;

(7) if E uniformly smooth, then the duality mapping J is uniformly norm to

norm continuous on each bounded set of E.

Let E be a smooth Banach space and consider the following function V :

E × E → R defined by

V (x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for each x, y ∈ E. We know the following properties (see [1, 11, 14] for more
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details):

(1) (∥x∥ − ∥y∥)2 ≤ V (x, y) ≤ (∥x∥+ ∥y∥)2 for each x, y ∈ E;

(2) V (x, y) + V (y, x) = 2⟨x− y, Jx− Jy⟩ for each x, y ∈ E; (2.2)

(3) if E is additionally assumed to be strictly convex, thenV (x, y) = 0 if

and only if x = y.

Let D be a nonempty subset of a smooth Banach space E and let T be a

mapping from D into E. We denote by F (T ) the set of fixed points of T . A

mapping T : D → E is said to be generalized nonexpansive [11] if F (T ) ̸= ∅ and

V (Tx, p) ≤ V (x, p)

for each x ∈ D and p ∈ F (T ). A mapping T : D → E is said to be of firmly

generalized nonexpansive type [12, 3] if

⟨(x− Tx)− (y − Ty), JTx− JTy⟩ ≥ 0

for each x, y ∈ D. We know that T is a generalized nonexpansive if T is a firmly

generalized nonexpansive type with F (T ) ̸= ∅ (see [12] for more details). Let

E be a smooth Banach space. Then, a point p in C is said to be a generalized

asymptotic fixed point [13] of T if C contains a sequence {xn} such that Jxn
∗
⇀Jp

and Jxn − JTxn → 0. The set of generalized asymptotic fixed points of T is

denoted by F̌ (T ). We know the following results.

LEMMA 2.1. ([13]) Let E be a reflexive, smooth and strictly convex Banach

space, let C be a nonempty subset of E such that JC is closed and convex and

let T : C → C be a generalized nonexpansive mapping. Then JF (T ) is closed

and convex

In [13], Lemma 2.1 was proved in case of C = E. However, we know that

Lemma 2.1 holds under the above condition by s similar proof of [13].

THEOREM 2.2. ([3, 12]) Let E be a reflexive and smooth Banach space whose

dual space has a uniformly Gâteaux differentiable norm, let D be a nonempty

subset of E and let T : D → E be a firmly generalized nonexpansive type mapping.

If F (T ) is nonempty, then F̌ (T ) = F (T ).

A mapping R : E → D is said to be sunny if

R(Rx+ t(x−Rx)) = Rx

for all x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction if R2 =

R. If E is smooth and strictly convex, then a sunny generalized nonexpansive
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retraction of E onto D is uniquely determined if it exists; see [11]. Then, such a

sunny generalized nonexpansive retraction of E onto D is denoted by RD.

A nonempty subset D of E is called a sunny generalized nonexpansive retract

of E if there exists a sunny generalized nonexpansive retraction of E onto D.

Obviously, the set of fixed points of a sunny generalized nonexpansive retraction

of E onto D is D; see [11] for more details. We recall the following results for

sunny generalized nonexpansive retractions and sunny generalized nonexpansive

retracts.

LEMMA 2.3. ([11]) Let D be a nonempty subset of a smooth and strictly convex

Banach space E. Let RD be a retraction of E onto D. Then RD is sunny and

generalized nonexpansive if and only if

⟨x−RDx, JRDx− Jy⟩ ≥ 0.

for each x ∈ E and y ∈ D.

THEOREM 2.4. ([18]) Let D be a nonempty subset of a smooth, reflexive, and

strictly convex Banach space E. Then, the following conditions are equivalent:

(1) D is a sunny generalized nonexpansive retract of E;

(2) JD is closed and convex.

In this case, D is closed.

THEOREM 2.5. ([18]) Let D be a nonempty subset of a smooth, reflexive, and

strictly convex Banach space E with JD is closed and convex and let (x, z) ∈
E ×D. Then, the following are equivalent:

(1) z = RDx;

(2) V (x, z) = min{V (x, y) : y ∈ D}.

We also know the following result. For the exact definition of Mosco limit

M-limn Cn; see [21].

THEOREM 2.6. ([8]) Let E be a reflexive and strictly convex Banach space

having a Fréchet differentiable norm and the Kadec-Klee property. Let {Cn} be a

sequence of nonempty sunny generalized nonexpansive retracts of E. Let u ∈ E

and let {un} be a sequence of E converging strongly to u. If C∗
0 = M-limn JCn

exists and is nonempty, then {RCnun} converges strongly to RC0u, where C0 =

J−1C∗
0 .

One of the simplest example of the sequence {Cn} ⊂ E satisfying the con-

dition in this theorem above is a decreasing sequence with respect to inclusion;
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Cn+1 ⊂ Cn for each n ∈ N. In this case, M-lim JCn = ∩∞
n=1JCn (see [16, 17, 21]

for more details).

The following results show that the existence of mappings g
r
, gr, g

∗
r
and g∗r,

which are related to the convex and smooth structures of a Banach space E.

THEOREM 2.7. ([30]) Let E be a Banach space and r ∈ ]0,∞[. Then,

(i) if E is uniformly convex, then there exists a continuous, strictly increasing

and convex function g
r
: [0, 2r] → [0,∞[ with g

r
(0) = 0 such that

∥αx+ (1− α)y∥2 ≤ α∥x∥2 + (1− α)∥y∥2 − α(1− α)g
r
(∥x− y∥)

for all x, y ∈ Br and α ∈ [0, 1];

(ii) if E is uniformly smooth, then there exists a continuous, strictly increasing

and convex function gr : [0, 2r] → [0,∞[ with gr(0) = 0 such that

∥αx+ (1− α)y∥2 ≥ α∥x∥2 + (1− α)∥y∥2 − α(1− α)gr(∥x− y∥)

for all x, y ∈ Br and α ∈ [0, 1].

From this theorem, we can show the following result; for the proof see [16]

THEOREM 2.8. ([16]) Let E be a uniformly smooth and uniformly convex Ba-

nach space and let r > 0. Then, the function g
r
and gr in Theorem 2.7 satisfies

g
r
(∥x− y∥) ≤ V (x, y) ≤ gr(∥x− y∥)

for all x, y ∈ Br.

As a direct consequence of Theorem 2.7, we obtain the following result.

THEOREM 2.9. Let E be a reflexive, smooth and strictly convex Banach space,

r ∈ ]0,∞[. Then,

(i) if E is uniformly smooth, then there exists a continuous, strictly increasing

and convex function g∗
r
: [0, 2r] → [0,∞[ with g∗

r
(0) = 0 such that

∥αJx+ (1− α)Jy∥2 ≤ α∥x∥2 + (1− α)∥y∥2 − α(1− α)g∗
r
(∥Jx− Jy∥)

for all x, y ∈ Br and α ∈ [0, 1];

(ii) if E is uniformly convex, then there exists a continuous, strictly increasing

and convex function g∗r : [0, 2r] → [0,∞[ with g∗r(0) = 0 such that

∥αJx+ (1− α)Jy∥2 ≥ α∥x∥2 + (1− α)∥y∥2 − α(1− α)g∗r(∥Jx− Jy∥)

for all x, y ∈ Br and α ∈ [0, 1].
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From this theorem, we can show the following result; for the proof see [9]

THEOREM 2.10. ([9]) Let E be a uniformly smooth and uniformly convex Ba-

nach space and let r > 0. Then, the function g∗
r
and g∗r in Theorem 2.9 satisfies

g∗
r
(∥Jx− Jy∥) ≤ V (x, y) ≤ g∗r(∥Jx− Jy∥)

for all x, y ∈ Br.

3. Approximation theorem for the generalized resolvents

We consider an iterative scheme of resolvents of a monotone operator in a

Banach space. Let C be a nonempty subset of a reflexive, smooth and strictly

convex Banach space E such that JC is closed and convex, let λ > 0 and let

B ⊂ E∗ × E be a monotone operator satisfying

D(BJ) ⊂ C ⊂ R(I + λBJ). (3.1)

It is known that if B is a maximal monotone operator, then R(I + λBJ) = E

(see [11, Proposition 4.1]). Hence, if B is maximal monotone, then (3.1) holds

for C = J−1D(B), where K is the closure of K. We also know that D(B) is

convex; see [25]. If B satisfies (3.1) for λ > 0, then we can define the generalized

resolvent Jλ : C → D(BJ) of B by

Jλx = {z ∈ E : x ∈ z + λBJz} (3.2)

for all x ∈ C. In other words, Jλx = (I + λBJ)−1x for all x ∈ C. We know the

following; see, for instance, [3, 11, 12]:

(1) Jλ is of firmly generalized nonexpansive type from C into D(BJ);

(2) (x− Jλx)/λ ∈ BJJλx for all x ∈ C;

(3) F (Jλ) = (BJ)−10.

Before showing our result, we need the following lemmas.

LEMMA 3.1. Let E be a reflexive, smooth and strictly convex Banach space and

let B ⊂ E∗ × E be an operator. Then the following holds.

(1) D(BJ) = J−1D(B);

(2) if the norms of E and E∗ are Fréchet differentiable, then D(BJ)=J−1D(B).

Proof. (1) It is easy to see that D(BJ) = J−1D(B). In fact,

x ∈ D(BJ) ⇔ BJx ̸= ∅ ⇔ Jx ∈ D(B) ⇔ x ∈ J−1D(B).
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(2) We first show that D(BJ) ⊂ J−1D(B). For each z ∈ D(BJ), there exists a

sequence {zn} ⊂ D(BJ) such that zn → z. By (1), we obtain {Jzn} ⊂ D(B).

Since E has a Fréchet differential norm, the duality mapping J on E is norm to

norm continuous and hence we obtain Jzn → Jz. So, we have Jz ∈ D(B) and

hence we get z ∈ J−1D(B). This implies that D(BJ) ⊂ J−1D(B).

Next we show that D(BJ) ⊃ J−1D(B). Put z ∈ J−1D(B), then Jz ∈ D(B).

There exists a sequence {z∗n} ⊂ D(B) such that z∗n → Jz. Since E∗ has a Fréchet

differential norm, the duality mapping J−1 on E∗ is norm to norm continuous

and hence we obtain J−1z∗n → J−1Jz = z. By (1), we obtain {J−1z∗n} ⊂ D(BJ)

and hence we get z ∈ D(BJ). This implies that J−1D(B) ⊂ D(BJ), which

completes the proof.

LEMMA 3.2. Let E be a reflexive, smooth and strictly convex Banach space, and

let B ⊂ E∗×E be a monotone operator. Let λ > 0 and let C be a nonempty subset

of E satisfying JC is closed and convex, and (3.1) for λ. Then the following

holds.

V (x, Jλx) + V (Jλx, x) ≤ 2λ⟨y, Jx− JJλx⟩

for all x ∈ D(BJ) and y ∈ BJx.

Proof. Let x ∈ D(BJ) and y ∈ BJx. Since (x− Jλx)/λ ∈ BJJλx, we have

0 ≤
⟨
y − x− Jλx

λ
, Jx− JJλx

⟩
⇔

⟨
x− Jλx

λ
, Jx− JJλx

⟩
≤ ⟨y, Jx− JJλx⟩

⇔ ⟨x− Jλx, Jx− JJλx⟩ ≤ λ⟨y, Jx− JJλx⟩.

From (2.2), we have

V (x, Jλx) + V (Jλx, x) = 2⟨x− Jλx, Jx− JJλx⟩ ≤ 2λ⟨y, Jx− JJλx⟩

for all x ∈ D(BJ) and y ∈ BJx.

We obtain an approximation theorem for a zero point of a monotone oper-

ator in a uniformly smooth and uniformly convex Banach space by using the

generalized resolvent.

THEOREM 3.3. Let E be a uniformly smooth and uniformly convex Banach

space, let B ⊂ E∗ × E be a monotone operator with B−10 ̸= ∅ and let {λn} be a

positive real numbers such that infn λn > 0. Let C be a nonempty bounded subset

of E satisfying JC is closed and convex, and

D(BJ) ⊂ C ⊂ R(I + λnBJ)
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for all n ∈ N and let r ∈ ]0,∞[ such that C ⊂ Br. Let {δn} be a nonnegative

real sequence and let δ0 = lim supn δn < ∞. For a given point u ∈ E, generate a

sequence {xn} by x1 = x ∈ C, C1 = C, and

yn = Jλnxn,

Cn+1 = {z ∈ C : ⟨xn − yn, Jyn − Jz⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : V (u, z) ≤ inf{V (u, v) : v ∈ Cn+1}+ δn+1} ∩ Cn+1

for all n ∈ N. Then,

lim sup
n→∞

∥xn − yn∥ ≤ g−1

r
(g∗r(g

∗
r

−1(δ0))).

Moreover, if δ0 = 0, then {xn} converges strongly to R(BJ)−10u.

Proof. It follows from Lemma 2.1 and Theorem 2.4 that F (Jλ) is a sunny gen-

eralized nonexpansive retract of E for each λ > 0. Since F (Jλ) = (BJ)−10 for

each λ > 0, (BJ)−10 is a sunny generalized nonexpansive retract of E.

We first show that JCn is a closed convex subset of E and (BJ)−10 ⊂ Cn for

all n ∈ N by induction. From the assumption for C, it is obvious that JC1 is

a closed convex subset of E and (BJ)−10 ⊂ C1. From the surjectivity of J , we

have

JCn+1 = J
(
{z ∈ C : ⟨xn − yn, Jyn − Jz⟩ ≥ 0} ∩ Cn

)
,

= J{z ∈ C : ⟨xn − yn, Jyn − Jz⟩ ≥ 0} ∩ JCn,

= {z∗ ∈ JC : ⟨xn − yn, Jyn − z∗⟩ ≥ 0} ∩ JCn

for all n ∈ N. Suppose that JCk is a closed convex subset of E and (BJ)−10 ⊂ Ck

for some k ∈ N. Let

D∗
k = {z∗ ∈ JC : ⟨xk − yk, Jyk − z∗⟩ ≥ 0}.

It is obvious that D∗
k is closed and convex. Therefore JCk+1 = D∗

k ∩ JCk is

also closed and convex. Let p ∈ (BJ)−10. Since Jλk
is a firmly generalized

nonexpansive type mapping and F (Jλk
) = (BJ)−10, we have

0 ≤ ⟨(xk − yk)− (p− Jλk
p), Jyk − JJλk

p⟩ = ⟨xk − yk, Jyk − Jp⟩

and thus p ∈ Ck+1. Hence JCn is a closed convex subset of E and (BJ)−10 ⊂ Cn

for all n ∈ N. Since (BJ)−10 is nonempty, Cn is also nonempty for all n ∈ N.
Let pn = RCnu for all n ∈ N. Then, since {Cn} is decreasing with respect

to inclusion, by Theorem 2.6, {pn} converges strongly to p0 = RC0u, where

C0 = J−1 (
∩∞

n=1 JCn). Since xn ∈ Cn, it follows from Theorem 2.5 that

V (u, xn) ≤ V (u, pn) + δn
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for every n ∈ N \ {1}. Since JCn is closed and convex, then for each α ∈]0, 1[,
we have

αJpn + (1− α)Jxn ∈ JCn

and hence

J−1(αJpn + (1− α)Jxn) ∈ Cn

for every n ∈ N \ {1}. From Theorem 2.9 (i), we have

V (u, pn) ≤ V
(
u, J−1(αJpn + (1− α)Jxn)

)
= ∥u∥2 − 2⟨u, αJpn + (1− α)Jxn⟩+ ∥αJpn + (1− α)Jxn∥2

≤ ∥u∥2 − 2α⟨u, Jpn⟩ − 2(1− α)⟨u, Jxn⟩
+ α∥pn∥2 + (1− α)∥xn∥2 − α(1− α)g∗

r
(∥Jxn − Jpn∥)

= αV (u, pn) + (1− α)V (u, xn)− α(1− α)g∗
r
(∥Jxn − Jpn∥)

and thus

αg∗
r
(∥Jxn − Jpn∥) ≤ V (u, xn)− V (u, pn) ≤ δn

for every n ∈ N \ {1}. Tending α → 1, we obtain g∗
r
(∥Jxn−Jpn∥) ≤ δn and thus

∥Jxn − Jpn∥ ≤ g∗
r

−1(δn). Using the definition of pn, we have that pn+1 ∈ Cn+1

and thus

⟨xn − yn, Jyn − Jpn+1⟩ ≥ 0

for every n ∈ N \ {1}. From the property of the function V , we have

0 ≤ 2⟨xn − yn, Jyn − Jpn+1⟩
= V (xn, pn+1)− V (xn, yn)− V (yn, pn+1)

≤ V (xn, pn+1)− V (xn, yn)

for every n ∈ N \ {1}. By Theorem 2.10, we obtain

V (xn, yn) ≤ V (xn, pn+1)

= V (xn, pn) + V (pn, pn+1) + 2⟨xn − pn, Jpn − Jpn+1⟩
≤ g∗r(∥Jxn − Jpn∥) + V (pn, pn+1) + 2⟨xn − pn, Jpn − Jpn+1⟩
≤ g∗r(g

∗
r

−1(δn)) + V (pn, pn+1) + 2⟨xn − pn, Jpn − Jpn+1⟩.

for every n ∈ N\{1}. Since E is uniformly convex, J is norm to norm continuous.

Therefore, from lim supn δn = δ0 and pn → p0, we have

lim sup
n→∞

V (xn, yn) ≤ g∗r(g
∗
r

−1(δ0)).
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Therefore, by Theorem 2.8, we have

lim sup
n→∞

∥xn − yn∥ ≤ lim sup
n→∞

g−1

r
(V (xn, yn)) ≤ g−1

r
(g∗r(g

∗
r

−1(δ0))).

For the latter part of the theorem, suppose that δ0 = 0. Then we have

lim sup
n→∞

∥xn − yn∥ ≤ g−1

r
(g∗r(g

∗
r

−1(0))) = 0

and

lim sup
n→∞

g
r
(∥Jxn − Jpn∥) ≤ lim sup

n→∞
δn = 0.

Therefore, we obtain

lim
n→∞

∥xn − yn∥ = 0 and lim
n→∞

∥Jxn − Jpn∥ = 0. (3.3)

Hence, we also obtain

lim
n→∞

xn = lim
n→∞

yn = p0 and lim
n→∞

Jxn = lim
n→∞

Jyn = Jp0. (3.4)

From Lemma 3.2 and we have

V (yn, Jλ1yn) ≤ V (yn, Jλ1yn) + V (Jλ1yn, yn) ≤ 2λ1⟨z, Jyn − JJλ1yn⟩
for all z ∈ BJyn. From yn, Jλ1yn ∈ D(BJ) ⊂ C ⊂ Br and (xn− yn)/λn ∈ BJyn,

we have

V (yn, Jλ1yn) ≤ 2λ1

⟨
xn − yn

λn

, Jyn − JJλ1yn

⟩
≤ 2λ1

∥∥∥∥xn − yn
λn

∥∥∥∥ ∥Jyn − JJλ1yn∥

≤ 2λ1

∥∥∥∥xn − yn
λn

∥∥∥∥ (∥yn∥+ ∥Jλ1yn∥
)
≤ 4λ1r

∥∥∥∥xn − yn
λn

∥∥∥∥ .
Since infn λn > 0 and (3.3), we obtain

lim sup
n→∞

V (yn, Jλ1yn) ≤ 0.

This implies that limn V (yn, Jλ1yn) = 0. From Theorem 2.10, we have

lim sup
n→∞

∥Jyn − JJλ1yn∥ ≤ lim sup
n→∞

g∗
r

−1 (V (yn, Jλ1yn)) = g∗
r

−1(0) = 0.

This implies that limn ∥Jyn − JJλ1yn∥ = 0. Then, by Theorem 2.2 and (3.4)

we have p0 ∈ F̌ (Jλ1) = F (Jλ1) = (BJ)−10. Since (BJ)−10 ⊂ C0, we have

p0 = RC0u = R(BJ)−10u, which completes the proof.

4. Applications

In this section, we give some applications of Theorem 3.3. We first study the

approximation of fixed points for mappings of firmly nonexpansive type.
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4.1 Fixed Point Problem

Let C be a nonempty subset of a Banach space E and let T be a mapping

from E to C. Then the fixed point problem is to find x0 ∈ C such that

x0 = Tx0.

Before we show our applications, we need the following results.

PROPOSITION 4.1. ([3]) Let E be a reflexive, smooth and strictly convex Ba-

nach space, let C be a nonempty subset of E, let T : C → E be a mapping, and let

BT ⊂ E∗×E be an operator defined by BT = (T−1− I)J−1. Then, T is of firmly

nonexpansive type if and only if BT is monotone. In this case T = (I +BTJ)
−1.

As a direct consequence of Theorem 3.3 and Proposition 4.1, we obtain the

following result.

COROLLARY 4.2. Let E be a uniformly smooth and uniformly convex Banach

space, let C be a nonempty bounded closed subset of E satisfying JC is closed

and convex and let r ∈ ]0,∞[ such that C ⊂ Br. Let T : C → C be a firmly

generalized nonexpansive type with F (T ) ̸= ∅, let {δn} be a nonnegative real

sequence and let δ0 = lim supn δn < ∞. For a given point u ∈ E, generate a

sequence {xn} by x1 = x ∈ C, C1 = C, and

Cn+1 = {z ∈ C : ⟨xn − Txn, JTxn − Jz⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : V (u, z) ≤ inf{V (u, v) : v ∈ Cn+1)}+ δn+1} ∩ Cn+1

for all n ∈ N. Then,

lim sup
n→∞

∥xn − Txn∥ ≤ g−1

r
(g∗r(g

∗
r

−1(δ0))).

Moreover, if δ0 = 0, then {xn} converges strongly to RF (T )u.

Proof. Put BT = (T−1 − I)J−1 and λn = 1 for all n ∈ N. It follows from

Proposition 4.1 that T is the generalized resolvent of BT for 1 and

D(BTJ) = R(T ) ⊂ C = D(T ) = R(I +BTJ).

Therefore, we obtain the desired result by Theorem 3.3.

4.2 Convex Minimization Problem

Let E be a reflexive, smooth and strictly convex Banach space with its dual

E∗ and let f : E∗ →]−∞,∞] be a proper lower semicontinuous convex function.
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Then, the convex minimization problem is to find

x∗
0 ∈ E∗ such that f ∗(x∗

0) = min
z∗∈E∗

f ∗(z∗).

The subdifferential ∂f ∗ of f ∗ is defined as follows:

∂f ∗(x∗) = {x ∈ E : f ∗(x∗) + ⟨x, y∗ − x∗⟩ ≤ f ∗(y∗), ∀y∗ ∈ E∗}

for all x∗ ∈ E∗. By Rockafellar’s theorem [22, 23], the subdifferential ∂f ∗ ⊂
E∗ ×E is maximal monotone. It is easy to see that (∂f ∗)−10 = argmin{f ∗(z∗) :

z∗ ∈ E∗}. It is also known that

D(∂f ∗) ⊂ D(f ∗) ⊂ D(∂f ∗); (4.1)

see, for instance, [4, 25]. Before showing our application, we need the following

lemma.

LEMMA 4.3. Let E be a reflexive, smooth and strictly convex Banach space and

let f : E∗ →]−∞,∞] be a proper function. Then the following holds.

(1) D(f ∗J) = J−1D(f ∗);

(2) if E and E∗ has a Fréchet differential norm, then D(f ∗J) = J−1D(f∗).

Proof. In the same way as Lemma 3.1, we have the desired result.

As a direct consequence of Theorems 3.3, we can show the following corollary.

COROLLARY 4.4. Let E be a uniformly smooth and uniformly convex Banach

space and let f : E∗ →]−∞,∞] be a proper lower semicontinuous convex function

with D(f ∗) being bounded, and let r ∈ ]0,∞[ such that D(f ∗) ⊂ B∗
r := {z∗ ∈

E∗ : ∥z∗∥ ≤ r}. Let {λn} be a positive real numbers such that infn λn > 0, let

{δn} be a nonnegative real sequence and let δ0 = lim supn δn < ∞. For a given

point u ∈ E, generate a sequence {xn} by x1 = x ∈ D(f ∗J), C1 = D(f ∗J), and

yn = J−1 argmin
y∗∈E∗

{
f ∗(y∗) +

1

2λn

∥y∗∥2 − 1

λn

⟨xn, y
∗⟩
}
,

Cn+1 = {z ∈ D(f ∗J) : ⟨xn − yn, Jyn − Jz⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ D(f ∗J) : V (u, z) ≤ inf{V (u, v) : v ∈ Cn+1)}+ δn+1} ∩ Cn+1

for all n ∈ N. If (∂f ∗)−10 ̸= ∅, then,

lim sup
n→∞

∥xn − yn∥ ≤ g−1

r
(g∗r(g

∗
r

−1(δ0))).

Moreover, if δ0 = 0, then {xn} converges strongly to R(∂f∗J)−10u.
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Proof. Put C = D(f ∗J). Since the subdifferential ∂f ∗ ⊂ E∗ × E is maximal

monotone, then E = R(I + λ∂f ∗J) for all λ > 0. By (4.1) and Lemmas 3.1 and

4.3, we have

D(∂f ∗J) = J−1D(∂f ∗) ⊂ J−1D(∂f ∗) = J−1D(f ∗) = C ⊂ E = R(I + λ∂f ∗J)

for all λ > 0. Fix λ > 0 and z ∈ C. Let Jλ be the generalized resolvent of ∂f ∗,

then we also know that; see [10, 13]

JJλz = argmin
y∗∈E∗

{
f ∗(y∗) +

1

2λ
∥y∗∥2 − 1

λ
⟨z, y∗⟩

}
.

Therefore, we obtain the desired result by Theorem 3.3.

4.3 Variational Inequality Problem

Let E be a Banach space with its dual E∗, let C be a nonempty closed subset

of E such that JC is closed and convex. Let T ∗ be a single valued operator of

JC to E. Then the variational inequality problem is to find

x ∈ C such that ⟨T ∗Jx, Jy − Jx⟩ ≥ 0 (4.2)

for each y ∈ JC. The set of solutions is denoted by V I(C, T ∗). A single-valued

operator T ∗ is said to be hemicontinuous if T ∗ is continuous from each line

segment of JC into E with weak topology.

As a direct consequence of Theorems 3.3, we can show the following corollary.

COROLLARY 4.5. Let E be a uniformly smooth and uniformly convex Banach

space, let C be a nonempty bounded closed subset of E satisfying JC is closed

and convex and let r ∈ ]0,∞[ such that C ⊂ Br. Let T ∗ : JC → E be a single

valued, monotone and hemicontinuous operator and let {λn} be a positive real

numbers such that infn λn > 0. Let {δn} be a nonnegative real sequence and let

δ0 = lim supn δn < ∞. For a given point u ∈ E, generate a sequence {xn} by

x1 = x ∈ C, C1 = C, and

yn = V I

(
C, T ∗ +

1

λn

(J−1 − xn)

)
Cn+1 = {z ∈ C : ⟨xn − yn, Jyn − Jz⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : V (u, z) ≤ inf{V (u, v) : v ∈ Cn+1)}+ δn+1} ∩ Cn+1

for all n ∈ N. If V I(C, T ∗) ̸= ∅, then,

lim sup
n→∞

∥xn − yn∥ ≤ g−1

r
(g∗r(g

∗
r

−1(δ0))).

Moreover, if δ0 = 0, then {xn} converges strongly to RV (C,T ∗)u.
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Proof. Let NJC(z
∗) be the normal cone to JC at z∗ ∈ JC, i.e.

NJC(z
∗) := {z ∈ E : ⟨z, z∗ − y∗⟩ ≥ 0, ∀y∗ ∈ JC}

and let

BT ∗z∗ :=

{
T ∗z∗ +NJC(z

∗), z∗ ∈ JC,

∅, z∗ /∈ JC.

Then, from Rockafellar [24], B is a maximal monotone operator and B−1
T ∗ 0 =

JV I(C, T ∗) and hence we have

D(BT ∗J) = J−1D(BT ∗) = J−1D(T ∗) = C ⊂ E = R(I + λBT ∗J)

for all λ > 0. Fix λ > 0 and z ∈ C and let Jλ be the generalized resolvent of

BT ∗ . Then we have

z ∈ Jλz + λBT ∗JJλz

and hence,

−T ∗JJλz +
1

λ
(z − Jλz) ∈ NJC(JJλz).

Thus, we have ⟨
T ∗JJλz +

1

λ
(Jλz − z) , y∗ − JJλz

⟩
≥ 0

for each y∗ ∈ JC and hence we obtain⟨(
T ∗ +

1

λ

(
J−1 − z

))
(JJλz) , Jy − JJλz

⟩
≥ 0

for each y ∈ C, that is,

Jλz = V I

(
C, T ∗ +

1

λ
(J−1 − z)

)
.

Therefore, we obtain the desired result by Theorem 3.3.

4.4 Equilibrium Problem

Let E be a smooth Banach space with its dual E∗ and let C be a nonempty

closed subset of E such that JC is closed and convex. Let f ∗ be a bifunction

from JC × JC to R. Then, the equilibrium problem for f ∗ : JC × JC → R is to

find

x0 ∈ C such that f ∗(Jx0, Jy) ≥ 0, ∀y ∈ C.
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The set of such solutions is denoted by EP (f ∗); see [29] for more details.

Let C be a nonempty closed subset of a reflexive, smooth and strictly convex

Banach space E such that JC is closed and convex. For solving the equilibrium

problem, let us assume that a bifunction f ∗ : JC×JC → R satisfies the following

conditions:

(A1) f ∗(x∗, x∗) = 0 for all x∗ ∈ JC;

(A2) f ∗ is monotone, i.e., f ∗(x∗, y∗) + f(y∗, x∗) ≤ 0 for all x∗, y∗ ∈ JC;

(A3) for all x∗, y∗, z∗ ∈ JC,

lim sup
t↓0

f ∗(tz∗ + (1− t)x∗, y∗) ≤ f ∗(x∗, y∗);

(A4) for all x∗ ∈ JC, f(x∗, ·) is convex and lower semicontinuous.

We know the following results for such a bifunction f ∗.

LEMMA 4.6. ([5]) Let C be a nonempty closed subset of a reflexive, smooth

and strictly convex Banach space E such that JC is closed and convex, let f ∗ be

a bifunction from JC×JC to R satisfying (A1)− (A4), let λ > 0 and let x ∈ E.

Then, there exists z ∈ C such that

f ∗(Jz, Jy) +
1

λ
⟨z − x, Jy − Jz⟩ ≥ 0

for all y ∈ C.

LEMMA 4.7. ([29]) Let C be a nonempty closed subset of a uniformly smooth

and strictly convex Banach space E such that JC is closed and convex and let

f ∗ be a bifunction from JC × JC to R satisfying (A1) − (A4). For λ > 0 and

x ∈ E, define a mapping Fλ : E → C as follows:

Fλ(x) =

{
z ∈ C : f ∗(Jz, Jy) +

1

λ
⟨z − x, Jy − Jz⟩ ≥ 0 for all y ∈ C

}
(4.3)

for all x ∈ E. Then, the following hold:

(1) Fλ is single-valued;

(2) F (Fλ) = EP (f ∗);

(3) JEP (f ∗) is closed and convex.

The following theorem is essentially due to Aoyama, Kimura and Takahashi

[2, Theorem 3.5].

THEOREM 4.8. Let C be a nonempty closed subset of a reflexive, smooth and

strictly convex Banach space E such that JC is closed and convex, let f ∗ be a
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bifunction from JC × JC to R satisfying (A1)− (A4). Let Bf∗ be a multi-valued

mapping of E∗ into E defined by

Bf∗x∗ =

{
{x ∈ E : f ∗(x∗, y∗) ≥ ⟨x, y∗ − x∗⟩, ∀y∗ ∈ JC} x∗ ∈ JC,

∅ x∗ /∈ JC,

Then, the following hold:

(1) EP (f ∗) = (Bf∗J)−10;

(2) Bf∗ ⊂ E∗ × E is maximal monotone;

(3) Fr = (I + λBf∗J)−1 for each λ > 0.

THEOREM 4.9. Let C be a nonempty bounded closed subset of a uniformly

smooth and uniformly convex Banach space E such that JC is closed and convex

and let r ∈ ]0,∞[ such that C ⊂ Br. Let f
∗ be a bifunction from JC × JC to R

satisfying (A1)− (A4), let {λn} be a positive real numbers such that infn λn > 0

and let {δn} be a nonnegative real sequence and let δ0 = lim supn δn < ∞. For a

given point u ∈ E, generate a sequence {xn} by x1 = x ∈ C, C1 = C, and

yn = Fλnxn,

Cn+1 = {z ∈ C : ⟨xn − yn, Jyn − Jz⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : V (u, z) ≤ inf{V (u, v) : v ∈ Cn+1)}+ δn+1} ∩ Cn+1

for all n ∈ N. If EP (f ∗) ̸= ∅, then

lim sup
n→∞

∥xn − yn∥ ≤ g−1

r
(g∗r(g

∗
r

−1(δ0))).

Moreover, if δ0 = 0, then {xn} converges strongly to REP (f∗)u.

Proof. Let Bf∗ be defined as in Theorem 4.8. From Theorem 4.8, Bf∗ is max-

imal monotone, Fλn is the generalized resolvent of Bf∗ for λn and EP (f ∗) =

(Bf∗J)−10. We also have

D(Bf∗J) = J−1D(Bf∗) = C ⊂ E = R(I +Bf∗J).

Therefore, we obtain the desired result by Theorem 3.3.
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[ 19 ] P. L. Lions, Une méthode itérative de résolution d’une inéquation variationnelle, Israel

J. Math., 31 (1978), 204–208.

[ 20 ] B. Martinet, Régularsation d’inéquations variationnells par approximations successives

(in French), Rev. Francaise Informat. Recherche Opérationnelles, 4 (1970), 154–158.

383–390.

[ 21 ] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv.

in Math., 3 (1969), 510–585.

[ 22 ] R.T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J.

Math., 17 (1966), 497–510.

[ 23 ] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J.



ITERATIVE APPROXIMATION WITH ERRORS 109

Math., 33 (1970), 209–216.

[ 24 ] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans.

Amer. Math. Soc., 149 (1970), 75–88.

[ 25 ] R.T. Rockafellar, On the virtual convexity of the domain and range of a nonlinear

maximal monotone operator, Math. Ann., 185 (1970), 81–90.

[ 26 ] R.T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control.

Optim., 14 (1976), 877–898.

[ 27 ] W. Takahashi, Nonlinear Functional Analysis – Fixed Point Theory and Its Applications,

Yokohama Publishers, 2000.

[ 28 ] W. Takahashi, Y. Takeuchi, and R. Kubota, Strong convergence theorems by hybrid

methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl.,

341 (2008), 276–286.

[ 29 ] W. Takahashi, and K. Zembayashi, A strong convergence theorem for the equilibrium

problem with a bifunction defined on the dual space of a Banach space, in Fixed Point

theory and its Applications, Yokohama Publishers, 2008, 83–93.

[ 30 ] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991),

1127–1138.

Department of Mathematics Education,
Yokohama National University,
79-2 Tokiwadai, Hodogaya-Ku,
Yokohama 240-8501, Japan
E-mail: ibaraki@ynu.ac.jp


