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Abstract. An even triangulation on a surface F 2 is a triangular embedding of a
loopless graph on F 2, possibly with multiple edges, such that each vertex has even
degree. In this paper, we prove that any two even triangulations on the projective
plane with the same number of vertices and the same chromatic number can be
transformed into each other by two specified local transformations, an N -flip and
a D2-flip, preserving the chromatic number.

1. Introduction

A surface F 2 is a connected compact 2-dimensional manifold without bound-

aries. A map G on F 2 is a fixed embedding of a loopless graph on F 2. A face of

G is a component of F 2 −G. For a vertex v of G, the link of v is the boundary

walk of the region consisting of all faces of G incident to v. A closed curve γ

on F 2 is contractible (resp., essential) if γ does (resp., does not) bound a 2-cell

on F 2. This definition is also applied for a closed walk or cycle of a map on

F 2. A triangulation on F 2 is a map on F 2 such that each face is triangular.

A triangulation is even if each vertex has even degree. If a graph has neither

multiple edges nor loops, then it is simple. A k-vertex means a vertex of degree

k, and a k-cycle or a k-path is one with length k. When we use subscripts for

symbols, we take them by suitable modulus.

A k-coloring of a graph G is a color-assignment c : V (G) → {1, ..., k} such

that for any xy ∈ E(G), c(x) ̸= c(y), andG is k-colorable ifG admits a k-coloring.

The chromatic number of G, denoted χ(G), is the minimum integer k ≥ 1 such

that G is k-colorable. In particular, if χ(G) = k, then G is k-chromatic.

Let G be a triangulation on a surface F 2, and let e ∈ E(G). A diagonal flip of

e is to replace e with another diagonal in the quadrilateral region formed by two

faces of G sharing e. Wagner proved that any two simple triangulations on the
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sphere with the same number of vertices can be transformed by diagonal flips,

preserving the simpleness of graphs [16]. This theorem was extended to simple

triangulations on the torus [2], the projective plane and the Klein bottle [13].

After those results, Negami proved that any two simple triangulations on any

surface with the same and sufficiently large number of vertices can be transformed

by diagonal flips, preserving the simpleness of graphs [14]. These results with

some others for diagonal flips in triangulations have been summarized in a survey

[15].

An even embedding on a surface F 2 is a map on F 2 with each face bounded by

a closed walk of even length, and a quadrangulation on F 2 is an even embedding

with each face quadrilateral. It is known that every even embedding on the

sphere is bipartite (i.e., 2-colorable), but every non-spherical surface admits non-

bipartite ones. For quadrangulations, a diagonal slide is to slide an edge as

shown in the left of Figure 1, and a diagonal rotation is to rotate a 2-path

containing a 2-vertex in a middle, as shown in the right of Figure 1. Note

that both operations preserve the bipartiteness of quadrangulations. The second

author pointed out that any two homotopic closed walks in a quadrangulation

have the same parity of length, and that the diagonal slide and rotation preserve,

not only the bipartiteness of graphs, but also the parity of length of closed walks

with any fixed homotopy type in the quadrangulation. Extending this argument,

he proved that any two simple quadrangulations G and G′ on any surface F 2

with the same and sufficiently large number of vertices can be transformed by

diagonal slides and rotations, preserving the simpleness of graphs, if and only if

for each homotopy type l on F 2, a closed walk of G and that of G′ homotopic

to l have the same parity of length [7, 8]. Such a property can be described by

a homomorphism from the fundamental group of F 2 to Z2, and this notion is

called the cycle parity. See [9] for the detail.

diagonal
slide

diagonal
rotation

v1v2 v3v1 v2 v3

v5 v4v6 v6 v5 v4

x x

Figure 1 A diagonal slide and a diagonal rotation

Now we consider even triangulations on surfaces. It is well known that every

even triangulation on the sphere is 3-chromatic, but any other surface admits

non-3-colorable ones.

For an even triangulation G, an N-flip in G is to flip three consecutive edges
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v1v3, v3v6 and v6v4 forming “N”, as shown in the left of Figure 2, where the edge

v3v6 is the middle edge of the 3-path. Suppose that G has adjacent 4-vertices x, y.

A P2-flip of {x, y} in G is one shown in the right of Figure 2. It is easy to see

that both of the operations preserve the 3-chromaticity of even triangulations.

v1 v1v6 v6

v4v4 v3 v3

v2v2 v5v5

v

v3

v2v1

vk

v

v3

v2v1

vkx

y

x

y
P2-flipN -flip

Figure 2 An N -flip and a P2-flip

Using these two operations, Nakamoto et al. [11] proved the following.

THEOREM 1. (Nakamoto et al. [11]) Any two simple even triangulations on

the sphere with the same number of vertices can be transformed into each other

by N- and P2-flips, preserving the simpleness of graphs.

It was also proved in [3] that two even triangulations on any surface with the

same and sufficiently large number of vertices can be transformed by these two

operations, preserving the simpleness of graphs, if and only if their monodromies

coincide, where the monodromy is a homomorphism from the fundamental group

of the surface to the symmetric group of degree 3, and its definition should be

referred to [3]. Roughly speaking, the monodromy classifies even triangulations

into several distinct classes, depending on their homological structures, in which

the 3-chromatic ones have the trivial monodromy. (Its definition is similar to the

cycle parity for quadrangulations on surfaces.)

In this paper, we deal with even triangulations on the projective plane P,
where we let P denote the projective plane throughout the paper. The projective

plane is known to admit two distinct types of monodromies, which are of 3-

chromatic ones and of non-3-chromatic ones, respectively. For even triangulations

on P, Nakamoto and Suzuki [12] proved the following.

THEOREM 2. (Nakamoto and Suzuki [12]) Any two simple even triangulations

G and G′ on the projective plane with |V (G)| = |V (G′)| ≥ 14 can be transformed

into each other by N- and P2-flips, preserving the simpleness of graphs, if and

only if G and G′ are simultaneously 3-chromatic or not.

In this paper, we would like to consider the following problem:

Can any two even triangulations G and G′ on the projective plane P
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with |V (G)| = |V (G′)| ≥ 14 and χ(G) = χ(G′) be transformed by N-

and P2-flips, preserving the chromatic number?

The motivation comes from the corresponding result for quadrangulations.

Nakamoto and Negami [10] pointed out that any two simple quadrangulations

G and G′ on the projective plane P with the same number of vertices can be

transformed by diagonal slides and rotations if and only if both or neither are

bipartite. The key is the fact that any quadrangulation on P is known to be

either 2- or 4-chromatic [17]. Moreover, using the similar fact for chromatic

numbers of quadrangulations on other surfaces [1], they proved in [10] that if

two quadrangulations G and G′ on a surface with high representativity can be

transformed by diagonal slides and rotations, then χ(G) = χ(G′) (where the

representativity of G on a surface F 2 is the minimum number of intersecting

points of G and ℓ, where ℓ ranges over all essential closed curves on F 2).

However, for the above-mentioned problem, we encounter a counterexample

for simple even triangulations, as in the following proposition (which will be

proved in Section 2):

PROPOSITION 3. There exists a pair of simple even triangulations G and G′

on the projective plane P with |V (G)| = |V (G′)| and χ(G) = χ(G′) which cannot

be transformed by N- and P2-flips, preserving the simpleness and the chromatic

number of graphs.

By Proposition 3, we focus on even triangulations on P allowed to have mul-

tiple edges. For those even triangulations, we introduce the following transfor-

mation instead of a P2-flip. Let x be a 2-vertex with neighbors v and v1. The

D2-flip of x is to remove x and a single edge between v and v1, and add a new

2-vertex and a single edge between v and v2, where vv2 is an edge contained in

a facial triangle vv1v2 with v2 ̸= x (see Figure 3).

v

x

v1

v2 v3 vk vkv3v2

v

v1

x

Figure 3 A D2-flip

Our main theorem is as follows:
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THEOREM 4. Let G and G′ be two even triangulations on the projective plane P
with the same number of vertices. If G and G′ have the same chromatic number,

then G and G′ can be transformed into each other by N- and D2-flips, preserving

the chromatic number.

It has been known that Theorem 4 does not hold for even triangulations on

other surfaces. For example, the first author has proved that there exists a pair

of 6-chromatic even triangulations on the torus which cannot be transformed into

each other by the two transformations, preserving the 6-chromaticity [4].

In Section 2, we prove Proposition 3. In Section 3, we give some preliminaries

for proving Theorem 4, and in Section 4, we finally prove Theorem 4.

2. Proof of Proposition 3

Let G be a map on a surface F 2. The face subdivision of G, denoted FS(G),

is the triangulation on F 2 obtained from G by adding a new vertex into each face

of G and joining it to all vertices on the corresponding boundary walk. It is easy

to see that FS(G) is an even triangulation on F 2 if G is an even embedding. The

set U of the vertices of FS(G) added to G is the color factor of FS(G). Since U

is an independent set, we have χ(G) ≤ χ(FS(G)) ≤ χ(G) + 1.

For even triangulations on P, the following theorem is known.

THEOREM 5. (Mohar [6]) Let G be an even triangulation on the projective

plane. Then G is the face subdivision of some even embedding K, and χ(G) ∈
{3, 4, 5}. In particular,

(i) if χ(G) ≥ 4, then K is non-bipartite, and the color factor of G can be uniquely

taken, and

(ii) χ(G) = 5 if and only if K includes a non-bipartite quadrangulation Q as a

subgraph.

By Theorem 5, if G is an even triangulation on P with χ(G) ≥ 4, then we

have a unique expression G = FS(K) for some non-bipartite even embedding K

on P. (If K is bipartite with partite sets X and Y , then (V (G)−V (K), X, Y ) is

a tripartition of V (G), and hence G is 3-colorable, contrary to χ(G) ≥ 4.)

Let us consider what happens in K when an N -flip is applied in G to trans-

form it into another even triangulation G′. Suppose that three consecutive edges

e1, e2, e3 of G in this order are moved by an N -flip. Then the middle edge e2 of

the path e1∪ e2∪ e3 is either contained in K, or joining a vertex of K and one in

the color factor. The former and the latter cases are shown in the left and right

of Figure 4, respectively. Then, by the N -flip, the even embedding K is deformed
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into another even embedding, say K ′, by the two operations, a diagonal slide or

an edge wipe. In this case, we see that G′ = FS(K ′). The edge wipe of an edge

e in K is to move e = v1v2k to e′ = v1v2k+2, where e is shared by two faces f

and f ′ of K bounded by closed walks v1v2 · · · v2kv1 and v1v2kv2k+1 · · · v2mv1 with

1 ≤ k ≤ m− 1, respectively.

N -flip N -flip

diagonal
slide

edge
wipe

Figure 4 A diagonal slide and an edge wipe in K corresponding to an N -flip

in G

Before proving Proposition 3, we prepare the following lemma.

LEMMA 6. Let G be an even triangulation on the projective plane, and let G′

be an even triangulation obtained from G by a single N-flip. Then we have:

(i) G is 3-chromatic if and only if so is G′.

(ii) Suppose that G (resp., G′) is the face subdivision of a non-bipartite even

embedding K (resp., K ′). Let e be an edge of G which is not moved by the

N-flip. Then e ∈ E(K) if and only if e ∈ E(K ′).

Proof. Figure 2 shows that (i) holds. The statement (ii) follows from the ex-

planation before the lemma, since the expression G′ = FS(K ′) is also unique.

Let G be a triangulation and let f be a face of G bounded by a 3-cycle

x0x1x2. The octahedron addition to f is to put a 3-cycle a0a1a2 in the interior

of f , add edges aixi, aixi+1 for i = 0, 1, 2 where x3 = x0 , as shown in Figure 5.

In particular, the subgraph of the resulting graph induced by those six vertices

is the octahedron. The inverse operation is the octahedron removal.

Now we prove Proposition 3.

Proof of Proposition 3. Let T be the even triangulation on P shown in the cen-

ter of Figure 6, where we label the vertices of T as in the figure. (The hexagon
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f

x0 x0

x1x1x2 a1x2

addition
octahedron

removal
octahedron a0a2

Figure 5 An octahedron addition and an octahedron removal

with each pair of antipodal points identified stands for P.) Then T is the face

subdivision of a non-bipartite quadrangulation on P, say Q, isomorphic to K4,

and then χ(T ) = 5, by Theorem 5(ii). Let T1 be the even triangulation on P
obtained from T by applying a octahedron addition to the face abf and subdi-

viding the edge be to put six new vertices so that all of them have degree 4 by

adding edges. Then T1 is 5-chromatic by Theorem 5(ii). Let T be the set of

all even triangulations on P obtained from T by a single octahedron addition to

each of f1, f2 and f3, where f1, f2 and f3 are triangular faces of T chosen from

the quadrilateral regions abcd, abdc and acbd of Q, respectively. Let T2 ∈ T be

shown in Figure 6. Then T2 is also a 5-chromatic even triangulation on P with

|V (T1)| = |V (T2)|, since T2 includes T as a subgraph.
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Figure 6 Two simple even triangulations T1 and T2 on P obtained from T

We shall prove that T1 and T2 cannot be transformed into each other by N -

and P2-flips, preserving the 5-chromaticity and the simpleness of graphs. So,

for contradictions, we suppose that T2 admits a sequence of N - and P2-flips to

transform it into T1, preserving the 5-chromaticity and the simpleness of graphs.

We first observe that any pair of adjacent 4-vertices in T2 is contained in

one of the added octahedra, and hence every P2-flip in T2 yields multiple edges.

Therefore, a P2-flip cannot be applied in T2, and so, in the sequence, we must

apply an N -flip in T2 at first. Let G′ be the resulting simple even triangulation

on P by the N -flip.
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By Theorem 5 (i), T2 has a unique even embedding, sayK, such that FS(K) =

T2. Then the N -flip in T2 corresponds to either a diagonal slide or an edge wipe

in K. Observe that those transformations in K must be forbidden if the resulting

map K ′ is not simple or has a vertex of degree less than 2. Let ε be the edge in

K moved by either the diagonal slide or the edge wipe, and let ε′ be the edge

added to K ′ instead of ε by the transformation.

Suppose that ε is an edge of Q = K4 in K. We can check that if we move each

of the six edges of Q in K by a diagonal slide or an edge wipe, then the resulting

even embedding K ′ no longer contains any quadrangulation as a subgraph, or

has multiple edges. (For example, if we apply a diagonal slide of the edge ad of Q

in K, then the resulting map K ′ has no quadrilateral region containing the face

bounded by abcdpq. Moreover, if we apply the edge wipe of the edge cd to put

cq, then the face of K ′ bounded by abdpqc has no quadrilateral region containing

it.) Consequently, since K ′ contains no quadrangulation as a subgraph, G′ is

4-colorable, by Theorem 5 (ii) and Lemma 6 (ii), contrary to the assumption.

Therefore we have ε /∈ E(Q).

So we have ε ∈ E(K)−E(Q). We consider only the case when ε is either pq

or dp, since other cases are similar. If we apply an diagonal slide or an edge wipe

to ε = pq in K, then the resulting graph K ′ must have a 1-vertex, and hence the

even triangulation G′ have multiple edges, contrary to the simpleness of graphs.

So we may suppose that ε = dp, and we apply the edge wide of dp so that the

new edge is bp. However, the face subdivision G′ of the resulting map K ′ is also

an even triangulation on P obtained from T by adding a single octahedron to

the triangular faces abe, adg and abf , and hence we have G′ ∈ T .

So T2 can be transformed only into one in T by an N -flip, if we preserve the

simpleness and 5-chromaticity of the graphs. Moreover, the above argument also

follows for every even triangulation in T . Therefore, since T1 /∈ T , there exists

no sequence of N - and P2-flips to transform T1 into T2 preserving the conditions.

3. Reductions in even triangulations

We first note that even triangulations in this and the following sections might

have multiple edges but no loops, though we dealt with simple even triangulations

in the proof of Proposition 3.

Let G be an even triangulation on a surface F 2, and let v be a 4-vertex of G

with link v1v2v3v4. The 4-contraction of v at {v2, v4} is to remove v, identify v2
and v4, and replace two pairs of multiple edges by two single edges respectively,
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as shown in the left of Figure 7. If the resulting graph has a loop or a pinched

point of the surface, then we do not apply it. Let x be a 2-vertex of G with

neighbors a, b. Then x is contained in the digonal region bounded by multiple

edges ab. A 2-contraction of x is to remove x and replace the two edges ab by a

single edge, as shown in the right of Figure 7. We call the inverse operation of a

2-contraction a 2-addition.

v

v1

v3

v2 = v4

v1

v3

x

a

b

a

b

v4 v2

Figure 7 A 4-contraction at {v2, v4} and a 2-contraction of x

Three graphs I3, I4, I5 in Figure 8 are even triangulations on P, and for k =

3, 4, 5, Ik is k-chromatic. The following is the main result in this section, which

has an independent interest.

I3 I5I4

Figure 8 Even triangulations I3, I4, I5 on P

THEOREM 7. Let G be an even triangulation on the projective plane with

χ(G) = k, where k ∈ {3, 4, 5}. Then G can be reduced into Ik by 4- and 2-

contractions preserving the k-chromaticity, where Ik is shown in Figure 8.

We use the following facts to prove Theorem 7.

LEMMA 8. Let G be an even triangulation on a surface and let H be a graph

obtained from G by a single 4-contraction. Then χ(G) ≤ χ(H). In particular, if

χ(G) = 3, then χ(H) = 3.

Proof. Let v be a 4-vertex of G with link v1v2v3v4. Suppose that H is obtained

from G by a 4-contraction of v at {v1, v3}, where we let v′ ∈ V (H) be the image
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of the identification v1 = v3 by the 4-contraction of v. Suppose χ(H) = k, and

let c′ : V (H) → {1, . . . , k} be a k-coloring of H, where k ∈ {3, 4, 5} by Theorem

5.

If 4 ≤ χ(H) ≤ 5, then we let c(x) = c′(x) for any x ∈ V (G) − {v, v1, v3},
and let c(v1) = c(v3) = c′(v′). Finally we let c(v) be a color distinct from the

three colors c(v1) = c(v3), c(v2) and c(v4), which is possible since k ≥ 4. If χ(H)

= 3, then c′(v2) = c′(v4), since the vertices of the link of v′ in H are colored by

two colors alternately, and since the distance between v2 and v4 on the link of

v′ in H is even. (For otherwise, v1 and v3 would have odd degree in G.) Hence,

similarly to the previous case, v can be colored by the third color distinct from

c(v1) = c(v3) and c(v2) = c(v4). Hence χ(G) = 3 = χ(H).

Consequently, G is k-colorable and hence χ(G) ≤ k = χ(H).

LEMMA 9. Let Q be a non-bipartite quadrangulation on the projective plane.

If Q has no quadrangulation as a proper subgraph, then Q is simple and has no

vertex of degree less than 3.

Proof. If Q has a vertex v of degree 1 or 2, then we get a smaller quadrangulation

Q′ by removing v (and replacing multiple edges by a single edge suitably). This

contradicts the assumption.

So we suppose that Q is not simple. Since Q is loopless by the definition,

Q has multiple edges xy to form a 2-cycle C. If C is contractible, then the dig-

onal region bounded by C can be replaced with a single edge to get a smaller

quadrangulation, contrary to the assumption. So suppose that C is essential.

Then cut open Q on P along C to get a plane quadrangulation Q′ with outer

quadrilateral xyx′y′, where x = x′ and y = y′ in Q. Since every plane quadran-

gulation is known to be bipartite, Q′ has a unique bipartition where {x, x′} and

{y, y′} belong to distinct partite sets. Here the bipartition of V (Q′) must give a

bipartition of V (Q), since x = x′ and y = y′ in Q. This contradicts that Q is

non-bipartite.

Therefore Q is simple and has no vertex of degree less than 3.

Proof of Theorem 7. Figure 9 shows three even triangulations T1, T
k
2 and T3,

where T k
2 consists of exactly k configurations of the same structure. It was proved

in [5] that every even triangulation on P with no 2-vertex can be reduced to one

of T1, T
k
2 , T3 by a sequence of 4-contractions and octahedron removals without

introducing any 2-vertex, any pinched point and any loop. It is easy to see that

T k
2 with k ≥ 2 is reduced to T k−1

2 by a 4-contraction followed by a 2-contraction,

and that the octahedron removal is also obtained by a 4-contraction followed

by a 2-contraction. Hence every even triangulation on P can be reduced to one
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of I3, I4 and I5 by 4-contractions and 2-contractions without making loops and

pinched points, where T1 = I3, T
1
2 = I4 and T3 = I5.

T1 T3T k
2

...

v

v

v1

v1

v3

v3

v2

v4

v1

v2

u2

u1 uk

vk

Figure 9 Even triangulations T1, T
k
2 , T3 on P

We prove that for k = 3, 4, 5, any k-chromatic even triangulation can be

transformed into Ik preserving the k-chromaticity. Clearly, every 2-contraction

preserves the chromatic number, and so we consider only a 4-contraction. By

Lemma 8, no 4-contraction decreases the chromatic number, and hence every 5-

chromatic even triangulation on P can be reduced to I5 by 4- and 2-contractions,

preserving the 5-chromaticity. Moreover, since a 4-contraction always preserves

the 3-chromaticity by Lemma 8, we have only to prove that every 4-chromatic

even triangulation G on P with no 2-vertex admits a 4-contraction preserving

the 4-colorability.

Let c be a 4-coloring of G, and let v be a 4-vertex of G with link v1v2v3v4.

Since G is 4-colored, we have c(v1) = c(v3) or c(v2) = c(v4), say the former.

Apply the 4-contraction of v at {v1, v3} in G, and let H be the resulting graph.

If it is applicable, then H has a natural 4-coloring in which the vertex v1 = v3 in

H has the color c(v1) = c(v3), and we are done. So suppose that the 4-contraction

of v at {v1, v3} is not applicable in G. Since c(v1) = c(v3), H has no loop incident

to the vertex v1 = v3, and hence in G, we must have v1 = v3.

We first suppose that the 2-cycle C = v1vv3 of G with v1 = v3 is essential.

We apply a 4-contraction of v at {v2, v4} in G, and let H ′ be the resulting graph.

(If we also have v2 = v4 in G, then G contains the map I3 in Figure 8, and

hence G is 3-colorable, contrary to the assumption χ(G) = 4. Hence H ′ actually

exists.) If H ′ is 5-chromatic, H ′ is the face subdivision of an even embedding K

including a non-bipartite quadrangulation Q, by Theorem 5 (ii). By Lemma 9,

we may suppose that Q is a simple graph 2-cell embedded in P so that each face

is bounded by a cycle. So H ′ can have no essential 2-cycle, since G is the face

subdivision of K, contrary to that C is essential. Therefore, H ′ is 4-chromatic.

Secondly we suppose that C is contractible, and that v2 is contained in the

interior of the digonal region R bounded by C. If c(v2) = c(v4), then we can
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identify v2 and v4 by a 4-contraction of v, since v2 ̸= v4 by the obstruction of the

contractible 2-cycle v1vv3. So we may suppose that c(v2) ̸= c(v4). In this case,

we recolor the vertices of R so that v2 and v4 have the same color, exchanging

the two colors except c(v) and c(v1) = c(v3) in the interior of R. In the new

4-coloring c̃ of G, we have c̃(v2) = c̃(v4), and we can apply a 4-contraction of v

at {v2, v4} preserving the 4-colorability.

4. Proof of Theorem 4

Let H be an even triangulation and let H +D2(m) denote an even triangu-

lation obtained from H by a repeated application of 2-additions m times. It is

easy to see that all even triangulations expressed as H +D2(m) have the same

chromatic number, and that they can be transformed into each other by D2-flips,

preserving the chromatic number.

LEMMA 10. Let k ∈ {3, 4, 5} and let G be a k-chromatic even triangulation on

P but G ̸= Ik. Then there exists a k-chromatic even triangulation H on P such

that

(i) H is obtained from G by a single 2- or 4-contraction, and

(ii) G can be transformed into H + D2(m) by N- and D2-flips, preserving the

k-chromaticity, where m = |V (G)| − |V (H)| ∈ {1, 2}.

Proof. By Theorem 7, G admits a 2-contraction or a 4-contraction preserving

the k-chromaticity. In the former case, if we let H be the resulting graph by the

2-contraction, then we immediately have G = H +D2(1) and χ(G) = χ(H) = k,

and so we are done. So consider the latter case, in which we suppose that G

admits a 4-contraction at {v1, v3} preserving the k-chromaticity, where v1v2v3v4
is the link of v, and we let vv4p1q1p2q2 · · · qm−1pmv2 be the link of v1. In the

following, we suppose that H is the k-chromatic even triangulation on P obtained

from G by the 4-contraction.

If degG(v1) = 2, then we can apply the 2-contraction of v1. So we let H =

G − v1 and apply the same argument as above. Hence we may suppose that

degG(v1) ≥ 4, and apply induction on degG(v1). Let G
′ be the even triangulation

obtained from G by an N -flip of the path vv4v1p1. Since the 4-contraction of v

at {v1, v3} is applicable, p1 and q1 do not coincide with v3 in G, and hence G′ has

no loops and no pinched vertices. (See Figure 10. In the figure, G′′ is obtained

from G′ by an N -flip which is similar to the N -flip between G and G′. By their

several N -flips, finally, we can obtain H +D2(2) from G.) If χ(G′) = k, then we

are done, by induction hypothesis, since G′ is a k-chromatic even triangulation
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with degG′(v1) < degG(v1), which admits a 4-contraction of v at {v1, v3}. (Note
that the map obtained from G′ by the 4-contraction at {v1, v3} is nothing but

H.)

v

v2 v2 v2

v2v2

v3 v3 v3

v3v3(= v1)

p2 p2 p2

p2p2

q1 q1 q1

q1q1

p1

p1 p1 p1

p1 v4

v4v4v4

v4

v
v

v

v1

v1

v1

v1

N -flip N -flip

N -flip
4-contraction

Two 2-additions

G G′ G′′

H +D2(2)H

Figure 10 Transformations from G to H +D2(2)

So, for each k ∈ {3, 4, 5}, we shall prove that χ(G′) = k when degG(v1) ≥ 4,

using the assumption that χ(H) = k.

Case 1 : k ≤ 4. Since an N -flip always preserves 3-chromaticity and the non-

3-colorability, we show that G′ is 4-colorable. Observe that degG(v1) ≥ 4 by the

assumption. Since H has a 4-coloring cH , G has a 4-coloring c such that

(i) c(x) = cH(x) for any x ∈ V (G)− {v, v1, v3},
(ii) c(v1) = c(v3) = cH([v1v3]), where [v1v3] ∈ V (H) is the image of the identi-

fication v1 = v3,

(iii) c(v) is a color distinct from the three or two colors c(v1) = c(v3), c(v2) and

c(v4).

Observe that c(v3) ̸= c(p1) and c(v3) ̸= c(q1), since cH is a proper 4-coloring of

H. If c(v) ̸= c(q1) in G, then G′ has a 4-coloring. Otherwise, i.e., if c(v) = c(q1)

in G, then we can recolor v in G′ to construct a 4-coloring of G′ so that c(v)

has a color distinct from the three colors c(v1) = c(v3), c(v2) and c(q1), since

c(v1) = c(v3) by the assumption.

Case 2 : k = 5. In this case, since every even triangulation on P is 5-colorable

(Theorem 5), we prove that the chromatic number does not decrease by the N -

flip in G to obtain G′. In order to do so, we carefully choose the 4-vertex v, as

follows:
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By Theorem 5, G is the face subdivision of an even embedding K, and K

includes a non-bipartite quadrangulation Q as a subgraph. We suppose that

Q is minimal , i.e., Q has no quadrangulation as a proper subgraph. Then, for

any 4-vertex u ∈ V (G), we have u /∈ V (Q). For, if u ∈ V (Q), then degQ(u) ≤
degG(u)

2
= 2, and this contradicts Lemma 9.

We first consider the case when G has a 4-vertex, say v, such that at least one

of the four neighbors of v, say v1, is not contained in Q, where we let v1v2v3v4 be

the link of v. Let G′ be the even triangulation as before, and let K ′ be the even

embedding on P such that G′ = FS(K ′). Since v, v1 /∈ V (Q), G − {v, v1} also

contains Q as a subgraph, since the N -flip in G moves only edges incident to v

or v1 to obtain G1. By Lemma 6, K ′ has Q as a subgraph, and hence we have

χ(G′) = 5. Similarly to the previous case, we can apply the induction hypothesis

to G′.

Secondly we suppose that every 4-vertex of G has four neighbors in Q. In

this case, we see that all the four neighbors are distinct in Q. Hence G is the

face subdivision of the quadrangulation K = Q. Then G′ is the face subdivision

of a non-bipartite quadrangulation Q′ on P which is obtained from Q by a single

diagonal slide. See Figure 11, where the thick segments stand for edges of Q and

Q′. Hence G′ is also 5-chromatic, by Theorem 5, and we are done.

v

v2

v3

v4

v1

c1

cm

c2

q

p1

pm−1

v2cm

c2

q

p1

pm−1

v1 v v3

c1
v4

Figure 11 An N -flip preserving 5-chromaticity

Now we shall prove Theorem 4.

Proof of Theorem 4. Let G be an even triangulation on P with χ(G) = k ∈
{3, 4, 5}. By Theorem 7, G can be transformed into Ik by 4- and 2-contractions

preserving the k-chromaticity. Since 2-vertices can be moved to any place pre-

serving the chromatic number, we can apply Lemma 10 repeatedly. (Note that

2-vertices do not disturb N -flips in Lemma 10.) Hence, G can be transformed

into Ik + D2(m) by N - and D2-flips preserving the chromatic number, where

m = |V (G)| − |V (Ik)|. Thus, G′ can similarly be transformed into Ik +D2(m),

since |V (G)| = |V (G′)| and χ(G) = χ(G′). Therefore, G and G′ can be trans-
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formed into each other, via the standard form Ik + D2(m), preserving the k-

chromaticity.
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