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Abstract. In this paper, we consider stationary measures of discrete-time
three-state quantum walks including the Fourier and Grover walks in the one-
dimensional lattice. We give non-uniform stationary measures by solving the
corresponding eigenvalue problem. Our new method is based on a reduced ma-
trix, which is different from the generating function approach in our previous
work. As a corollary, the Fourier walk on the cycle has a stationary measure
with a periodicity.

1. Introduction

The notion of discrete-time quantum walks was introduced by Aharonov et

al. [1] as a quantum analog of the classical one-dimensional random walks. It

is known that the long-time asymptotic behavior of the transition probability

for quantum walks on the one-dimensional lattice is quite different from that of

classical random walks [11]. Recently, the quantum walk is intensively studied

in quantum physics and quantum computing [15], [16].

One of the basic interests for quantum walks is to determine stationary mea-

sures of quantum walks. The stationary measures of Markov chains have been

intensively investigated, however, the corresponding study of quantum walks has

not been done enough. In 2013, Konno et al. [13] treated two-state quantum

walks with one defect at the origin and showed that a stationary measure with

exponential decay with respect to the location for the quantum walk starting

from infinite sites is identical to a time-averaged limit measure for the same

quantum walk starting from just the origin. Endo et al. [8] got a stationary

measure of the quantum walk with one defect whose coin matrices are defined by

the Hadamard matrix. Endo and Konno [6] calculated a stationary measure of

quantum walk with one defect which was introduced by Wojcik et al. [21]. The
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stationary measure of the two-phase quantum walk with one defect and without

defect was obtained by Endo et al. [3] and Endo et al. [7], respectively.

Konno and Takei [14] showed that the set of uniform measures is contained

in the set of stationary measures and gave non-uniform stationary measures.

Konno [12] obtained stationary measures of the three-state Grover walk. Wang

et al. [19] investigated stationary measures of the three-state Grover walk with

one defect at the origin. Furthermore, Endo et al. [5] clarified a relation between

stationary and limit measures of the three-state Grover walk. Endo et al. [4]

obtained stationary measures for the diagonal quantum walks with one defect or

without defect including the three-state model. These previous works are studied

by using the generating function method. On the other hand, we analyze the

three-state quantum walk via the reduced matrix.

This paper is organized as follows. Section 2 is devoted to the definition of

three-state discrete-time quantum walks on the one-dimensional integer lattice.

In Section 3, we introduce a new method based on a reduced matrix, which is

different from the generating function approach in our previous work. In Sections

4 and 5, we obtain stationary measures of Types 1 and 2 by solving the eigenvalue

problem, respectively. Moreover, we give their typical examples. Conclusions are

given in Section 6.

2. Three-state discrete-time quantum walks

In this section, we give the definition of three-state quantum walk on Z,
where Z is the set of integers. It is well known that the long-time asymptotic

behavior of the transition probability for the three-state Grover walk on Z shows

localization [10]. This phenomenon is one of typical properties for discrete-time

quantum walks [9], [10], [18], [20] which is not seen for usual classical random

walks.

The discrete-time quantum walk on Z defined by a unitary matrix;

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

We call this unitary matrix the coin matrix. To consider the time evolution,

decompose the matrix A as

A = P +R +Q
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with

P =

a11 a12 a13
0 0 0

0 0 0

 , R =

 0 0 0

a21 a22 a23
0 0 0

 , Q =

 0 0 0

0 0 0

a31 a32 a33

 .

A particle in the classical random walk moves at each step either one unit to the

right with probability p or one unit to the left with probability q, where p+q = 1,

p, q > 0. On the other hand, the discrete-time quantum walk describes not only

the motion of a particle but also the change of the states of a particle. Let C be

the set of complex numbers. The state at time n and location x can be expressed

by a three-dimensional vector:

Ψn(x) =

ΨL
n(x)

ΨO
n (x)

ΨR
n (x)

 ∈ C3 (x ∈ Z, n ∈ Z≥),

where Z≥ = {0, 1, 2, . . .}. The time evolution of a quantum walk with a coin

matrix A is defined by the unitary operator UA in the following way:

Ψn+1(x) ≡ (UAΨn)(x) = PΨn(x+ 1) +RΨn(x) +QΨn(x− 1).

This equation means that the particle moves at each step one unit to the right

with matrix P or one unit to the left with matrix Q. The particle stays at the

current location with matrix R. For time n ∈ Z≥ and location x ∈ Z, we define

the measure µn(x) by

µn(x) = ∥Ψn(x)∥2C3 ,

where ∥ · ∥C3 denotes the standard norm on C3. Our model here is considered

on the set of all the C3-valued functions on Z whose inner product is ⟨Ψ,Φ⟩ =∑
x∈Z⟨Ψ(x),Φ(x)⟩C3 , where ⟨·, ·⟩C3 denotes the standard inner product on C3.

We do not have any restrictions about the norm. Remark that this is isomorphic

to (C3)Z. We are interested in the measure ϕ induced by Ψ ∈ (C3)Z such that

ϕ : (C3)Z −→ (R≥)
Z with (ϕ(Ψ))(x) = ∥Ψ(x)∥2C3 . Let R≥ = [0,∞). Here we

introduce a map ϕ : (C3)Z −→ (R≥)
Z such that if

Ψn = T

· · · ,
ΨL

n(−1)

ΨO
n (−1)

ΨR
n (−1)

 ,

ΨL
n(0)

ΨO
n (0)

ΨR
n (0)

 ,

ΨL
n(1)

ΨO
n (1)

ΨR
n (1)

 , · · ·

 ∈ (C3)Z,

then

ϕ(Ψn) =
T
[
· · · ,

∑R
j=L |Ψj

n(−1)|2,
∑R

j=L |Ψj
n(0)|2,

∑R
j=L |Ψj

n(1)|2, · · ·
]
∈ (R≥)

Z.
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Thus for any x ∈ Z, we get

ϕ(Ψn)(x) = ϕ(Ψn(x)) =
R∑

j=L

|Ψj
n(x)|2 = µn(x).

3. Stationary measure and our method

3.1 Definition of stationary measure for quantum walk

In this subsection, we give the definition of stationary measure for the quan-

tum walk. We define a set of measures, Ms(UA), by

Ms(UA) =
{
µ ∈ (R≥)

Z \ {0}; there exists Ψ0 ∈ (C3)Z such that

ϕ
(
Un
AΨ0

)
= µ

(
n = 0, 1, 2, . . .

)}
.

where 0 is the zero vector. Here UA is time evolution operator of quantum walk

associated with a unitary matrix A. We call this measure µ ∈ Ms(UA) the

stationary measure for the quantum walk defined by the unitary operator UA. If

µ ∈ Ms(UA), then µn = µ for n ∈ Z≥, where µn is the measure of quantum walk

given by UA at time n.

Next we consider the following eigenvalue problem of the quantum walk de-

termined by UA:

UAΨ = λΨ (λ ∈ C, |λ| = 1). (3.1)

Then we see that ϕ(Ψ) ∈ Ms(UA). Our purpose of this paper is to find stationary

measures for our three-state quantum walks by using Eq. (3.1).

3.2 Our method

In this subsection, we introduce our new method to obtain the stationary

measures for the three-state quantum walks. First, we see that UAΨ = λΨ is

equivalent to the following relations:
λΨL(x) = a11Ψ

L(x+ 1) + a12Ψ
O(x+ 1) + a13Ψ

R(x+ 1),

λΨO(x) = a21Ψ
L(x) + a22Ψ

O(x) + a23Ψ
R(x),

λΨR(x) = a31Ψ
L(x− 1) + a32Ψ

O(x− 1) + a33Ψ
R(x− 1).

(3.2)
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Then we can rewrite Eq. (3.2) as
ΨO(x) = 1

λ−a22

{
a21Ψ

L(x) + a23Ψ
R(x)

}
,

λΨL(x) =
(
a11 +

a12a21
λ−a22

)
ΨL(x+ 1) +

(
a13 +

a12a23
λ−a22

)
ΨR(x+ 1),

λΨR(x) =
(
a31 +

a21a32
λ−a22

)
ΨL(x− 1) +

(
a33 +

a23a32
λ−a22

)
ΨR(x− 1).

(3.3)

Since ΨO(x) is expressed by ΨL(x) and ΨR(x) from Eq. (3.3), we consider only

ΨL(x) and ΨR(x). Thus we get

λ

[
ΨL(x)

ΨR(x)

]
=

[
a11 +

a12a21
λ−a22

a13 +
a12a23
λ−a22

0 0

] [
ΨL(x+ 1)

ΨR(x+ 1)

]
+

[
0 0

a31 +
a21a32
λ−a22

a33 +
a23a32
λ−a22

] [
ΨL(x− 1)

ΨR(x− 1)

]
. (3.4)

Here we introduce a 2×2 reduced matrix A(Re) derived from our 3×3 coin matrix

A as follows:

A(Re) =
1

λ− a22

[
λa11 −B λa13 + C

λa31 +D λa33 − E

]
, (3.5)

where we put

B = det

([
a11 a12
a21 a22

])
, C = det

([
a12 a13
a22 a23

])
,

D = det

([
a21 a22
a31 a32

])
, E = det

([
a22 a23
a32 a33

])
.

We should remark that Eq. (3.4) can be expressed as follows by using A(Re):

λ

[
ΨL(x)

ΨR(x)

]
=

[
1 0

0 0

]
A(Re)

[
ΨL(x+ 1)

ΨR(x+ 1)

]
+

[
0 0

0 1

]
A(Re)

[
ΨL(x− 1)

ΨR(x− 1)

]
.

To obtain stationary measures of the quantum walk given by the coin matrix A,

we focus on the reduced matrix A(Re) given by Eq. (3.5).

From now on, we treat the two classes of three-state quantum walks, i.e.,

Type 1 and Type 2. We suppose that

aij ̸= 0 (1 ≤ i, j ≤ 3), |a22| ̸= 1.

• Type 1 : We assume that λ = − C
a13

= − D
a31

with |λ| = 1. Then the reduced

matrix A(Re) is

A(Re) =

[
ã1 0

0 ã2

]
, (3.6)
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where

ã1 = a11 −
a13a21
a23

, ã2 = a33 −
a23a31
a21

.

• Type 2 : We assume that λ = B
a11

= E
a33

with |λ| = 1. Then the reduced

matrix A(Re) is

A(Re) =

[
0 ã1
ã2 0

]
,

where

ã1 = a13 −
a11a23
a21

, ã2 = a31 −
a21a33
a23

.

4. Result of Type 1

In the previous section, we introduced a reduced matrix A(Re) to obtain sta-

tionary measures of quantum walks for Type 1 and Type 2. In this section, by

using A(Re), we present a solution of eigenvalue problem, UAΨ = λΨ, for the

three-state quantum walk of Type 1. Then, we have the following result which

gives an explicit form of the solution Ψ of the eigenvalue problem.

THEOREM 4.1. We assume that λ = − C
a13

= − D
a31

with |λ| = 1. Then we get

Ψ(x) =


(
ã−1
1 λ

)x
φ1

− a13
a12a23

{
a21

(
ã−1
1 λ

)x
φ1 + a23 (ã2λ

−1)
x
φ3

}
(ã2λ

−1)
x
φ3

 , (4.7)

for arbitrary φ1, φ3 ∈ C, where

ã1 = a11 −
a13a21
a23

, ã2 = a33 −
a23a31
a21

.

Proof. Suppose that a11 ̸= 0, a33 ̸= 0 and |λ| = 1. From Eq. (3.4) and assump-

tions, λ = − C
a13

= − D
a31

with |λ| = 1, we get

λ

[
ΨL(x)

ΨR(x)

]
=

[
ã1 0

0 0

] [
ΨL(x+ 1)

ΨR(x+ 1)

]
+

[
0 0

0 ã2

] [
ΨL(x− 1)

ΨR(x− 1)

]
=

[
ã1Ψ

L(x+ 1)

ã2Ψ
R(x− 1)

]
.

Then we have

ΨL(x+ 1) =
(
ã−1
1 λ

)
ΨL(x), ΨR(x) =

(
ã2λ

−1
)
ΨR(x− 1),

ΨO(x) =
1

λ− a22

{
a21Ψ

L(x) + a23Ψ
R(x)

}
.
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Therefore a solution Ψ of UAΨ = λΨ is given by

Ψ(x) =


(
ã−1
1 λ

)x
φ1

− a13
a12a23

{
a21

(
ã−1
1 λ

)x
φ1 + a23 (ã2λ

−1)
x
φ3

}
(ã2λ

−1)
x
φ3

 (x ∈ Z),

where ΨL(0) ≡ φ1, Ψ
R(0) ≡ φ3 and φ1, φ3 ∈ C2 with |φ1| + |φ3| > 0. This

completes the proof of Theorem 4.1.

We should remark that Theorem 4.1 implies

UAΨ = λΨ.

Here Ψ can be rewritten as

Ψ(x) = φ1α1(x) + φ3α3(x),

where

α1(x) =


(
ã−1
1 λ

)x
−a13a21

a12a23

(
ã−1
1 λ

)x
0

 , α3(x) =

 0

−a13
a12

(ã2λ
−1)

x

(ã2λ
−1)

x

 . (4.8)

Furthermore, we see that

UAαj = λαj (j = 1, 3).

In general, we can notice that αj is a bounded function, however, not necessarily

square summable function on Z, that is, αj ∈ ℓ∞(Z,C3) but αj /∈ ℓ2(Z,C3).

Next we present some examples by Theorem 4.1.

EXAMPLE 4.1. We consider the three-state Grover walk given by the 3 × 3

Grover matrix as

AG =
1

3

−1 2 2

2 −1 2

2 2 −1

 . (4.9)

When we choose the value of λ = −1, then ã1 = ã2 = −1 and the reduced matrix

becomes

A
(Re)
G =

[
−1 0

0 −1

]
. (4.10)
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From Theorem 4.1 and Eq. (4.10), we get

Ψ(x) =

 φ1

−(φ1 + φ3)

φ3

 (x ∈ Z).

LetRe(z) be the real part of complex number z. So we have a stationary measure

of the Grover walk as

µ(x) = 2{|φ1|2 + |φ3|2 +Re(φ1φ3)}.

In this example, the stationary measure is a uniform measure.

EXAMPLE 4.2. We consider the three-state Fourier walk defined by the 3× 3

Fourier matrix as

AF =
1√
3

1 1 1

1 ω ω2

1 ω2 ω

 , (4.11)

where ω = e
2πi
3 . When we choose the value of λ = i, then ã1 = e−

πi
6 , ã2 = −i

and the reduced matrix becomes

A
(Re)
F =

[
e−

πi
6 0

0 i

]
. (4.12)

It follows from Theorem 4.1 and Eq. (4.12) that

Ψ(x) =

 ωxφ1

−(ωx+1φ1 + φ3)

φ3

 (x ∈ Z). (4.13)

Thus a stationary measure of the Fourier walk is given by

µ(x) = 2{|φ1|2 + |φ3|2 +Re(ωx+1φ1φ3)}.

If we take φ1 = ω, φ3 = ω2, then

µ(x) = 2{2 +Re(ωx)} =

{
6, x = 3m (m ∈ Z≥),

3, x = 3m+ 1, 3m+ 2 (m ∈ Z≥).

Therefore the stationary measure of the Fourier walk is not the uniform measure.

Furthermore, the measure has period 3. This is the first result on the Fourier

walk that the stationary measure has a periodicity. Moreover, we can apply this
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example to the three-state Fourier walk on the cycle with 3m nodes (m ∈ Z>)

and get the stationary measure with period 3. More precisely, it is shown that

the solution of the eigenvalue problem UAΨ = λΨ for the three-state Fourier

walk on Z given by Eq. (4.13) implies a solution of the eigenvalue problem on

C3m (m ∈ Z>) with the following boundary conditions:
√
3iΨR(0) = ΨL(3m− 1) + ω2ΨO(3m− 1) + ωΨR(3m− 1),

√
3iΨL(3m− 1) = ΨL(0) + ω2ΨO(0) + ωΨR(0).

Here CN is the cycle where the number of the vertices is N . Therefore we have

COROLLARY 4.2. We consider the three-state Fourier walk defined by Eq.(4.11)

on a cycle with 3m (m ∈ Z≥) nodes. Then the stationary measure of this quan-

tum walk has the stationary measure with period 3.

Note that as in the case of Z, we see

UAΨ = iΨ,

where Ψ is a linear combination of two eigenfunctions α1(x) and α3(x) given by

Eq. (4.8) whose eigenvalues are i.

EXAMPLE 4.3. We consider a class of quantum walks determined by the 3× 3

unitary matrices A1(η) (η ∈ [0, 2π)) introduced by Stefanak et al. [17] as

A1(η) =
1

6

−1− e2iη 2(1 + e2iη) 5− e2iη

2(1 + e2iη) 2(1− 2e2iη) 2(1 + e2iη)

5− e2iη 2(1 + e2iη) −1− e2iη

 , (4.14)

where η ∈ [0, 2π). Note that the quantum walk determined by A1(0) becomes

the Grover walk. When we choose the value of

λ =
10− 26 cos(2η)− 24i sin(2η)

26− 10 cos(2η)
≡ eiξ, cos ξ =

10− 26 cos(2η)

26− 10 cos(2η)
,

then ã1 = ã2 = −1 and the reduced matrix becomes

A1(η)
(Re) =

[
−1 0

0 −1

]
.

From Theorem 4.1, we obtain

Ψ(x) =

 (−λ)x φ1

−
(
1− 3

2
tan η · i

){
(−λ)x φ1 +

(
−λ

)x
φ3

}
(−λ)xφ3

 (x ∈ Z).
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Especially, we set φ1 = φ3 and Tx(cos ξ) = cos(xξ), where Tx(u) is the Chebyshev

polynomial of the first kind. Then we have

|ΨO(x)|2 =
∣∣∣∣−(

1− 3

2
tan η · i

)
(−1)x

(
λx + λ

x
)
φ1

∣∣∣∣2
= |− (2− 3 tan η · i) (−1)x Tx (cos ξ)φ1|2

=
(
4 + 9 tan2 η

)
T 2
x (cos ξ) |φ1|2 ,

Therefore we get

µ(x) =
{
2 + (4 + 9 tan2 η)T 2

x (cos ξ)
}
|φ1|2.

EXAMPLE 4.4. We consider a class of quantum walks determined by the 3× 3

unitary matrices A2(ρ) (ρ ∈ (0, 1)) introduced by Stefanak et al. [17] as

A2(ρ) =

 −ρ2 ρ
√

2(1− ρ2) 1− ρ2

ρ
√

2(1− ρ2) 2ρ2 − 1 ρ
√

2(1− ρ2)

1− ρ2 ρ
√

2(1− ρ2) −ρ2

 , (4.15)

where ρ ∈ (0, 1). Remark that the quantum walk determined by the matrix

A2(1/
√
3) becomes the Grover walk.

When we choose the value of λ = −1, then ã1 = ã2 = −1 and the reduced

matrix becomes

A2(ρ)
(Re) =

[
−1 0

0 −1

]
.

So we have

Ψ(x) =

 φ1

−
√

1−ρ2√
2ρ

(φ1 + φ3)

φ3

 (x ∈ Z).

Therefore we obtain

µ(x) =
1 + ρ2

2ρ2

(
|φ1|2 + |φ3|2

)
+

1− ρ2

ρ2
Re(φ1φ3).

We see that this stationary measure is a uniform measure.

5. Result of Type 2

In the previous section, we obtained the stationary measure for the three-

state quantum walk (Type 1) determined by the reduced matrix A(Re) whose
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off-diagonal component is zero (i.e., diagonal matrix). This section deals with

the stationary measure for the three-state quantum walk (Type 2) given by the

reduced matrix A(Re) whose diagonal component is zero. By using A(Re), we

present a solution of UAΨ = λΨ, for the quantum walk of Type 2 for ΨL(x) =

φx ∈ C (x ∈ Z) with φ ̸≡ 0. Here φ ≡ 0 means that φx = 0 (x ∈ Z). The

following result for Type 2 is a counterpart of Theorem 4.1 for Type 1.

THEOREM 5.1. We assume that λ = B
a11

= E
a33

with |λ| = 1 and λ2 = ã1ã2.

Let {φx}x∈Z be arbitrary sequence of complex numbers except for φ ≡ 0. Then

we get

Ψ(x) =

 φx

− a11
a12a21

{
a21φx + a23

(
ã−1
1 λ

)
φx−1

}(
ã−1
1 λ

)
φx−1

 (x ∈ Z),

where

ã1 = a13 −
a11a23
a21

, ã2 = a31 −
a21a33
a23

.

Proof. Suppose that λ = B
a11

= E
a33

with |λ| = 1. From Eq. (3.4) and assumptions

λ = B
a11

= E
a33

with |λ| = 1, we get

λ

[
ΨL(x)

ΨR(x)

]
=

[
0 ã1
0 0

] [
ΨL(x+ 1)

ΨR(x+ 1)

]
+

[
0 0

ã2 0

] [
ΨL(x− 1)

ΨR(x− 1)

]
=

[
ã1Ψ

R(x+ 1)

ã2Ψ
L(x− 1)

]
.

Then we have

ΨL(x) = λ−1ã1Ψ
R(x+ 1), ΨR(x) = λ−1ã2Ψ

L(x− 1). (5.16)

From Eq. (5.16), we see that this quantum walk (Type 2) must satisfy the

condition λ2 = ã1ã2. Let {φx}x∈Z be arbitrary sequence of complex numbers

except for φ ≡ 0. Put ΨL(x) = φx. Therefore we obtain

Ψ(x) =

 φx

− a11
a12a21

{
a21φx + a23

(
ã−1
1 λ

)
φx−1

}(
ã−1
1 λ

)
φx−1

 (x ∈ Z),

where

ã1 = a13 −
a11a23
a21

, ã2 = a31 −
a21a33
a23

.

The proof of Theorem 5.1 is complete.
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We should remark that Ψ in Theorem 5.1 can be rewritten as

Ψ(x) = φxγ1 + φx−1γ3,

where

γ1 =

 1

−a11
a12

0

 , γ3 =

 0

−a11a23
a12a21

(
ã−1
1 λ

)(
ã−1
1 λ

)
 .

For fixed x∗ ∈ Z, we let

βx∗(x) = δx∗(x)γ1 + δx∗+1(x)γ3,

where δx∗ is the Dirac delta function. Thus we have

βx∗ ∈ ℓ2(Z,C3),

since

supp (βx∗) = {x∗, x∗ + 1} .

Then the ℓ2-element of the eigenspace ⟨βx∗ ;x∗ ∈ Z⟩ spanned by {βx∗ ;x∗ ∈ Z}
causes localization for the three-state quantum walks given by Type 2.

EXAMPLE 5.1. We consider the Grover walk whose coin matrix is determined

by the 3× 3 unitary matrix AG given by the matrix (4.9). When we choose the

value of λ = 1, then ã1 = ã2 = 1 and the reduced matrix becomes

A
(Re)
G =

[
0 1

1 0

]
.

Let {φx}x∈Z be arbitrary sequence of complex numbers except for φ ≡ 0. Then

we get

Ψ(x) =

 φx

1
2

(
φx + φx−1

)
φx−1

 (x ∈ Z). (5.17)

This form was obtained by Cantero et al. [2] via a different approach; i.e., the

CGMV method. From Eq. (5.17), we have

µ(x) =
5

4

(
|φx|2 + |φx−1|2

)
+

1

2
Re(φxφx−1).
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EXAMPLE 5.2. We consider a class of quantum walks determined by the 3× 3

unitary matrix A1(η) given by the matrix (4.14). When we choose the value of

λ = 1, then ã1 = ã2 = 1 and the reduced matrix becomes

A1(η)
(Re) =

[
0 1

1 0

]
.

Let {φx}x∈Z be arbitrary sequence of complex numbers except for φ ≡ 0. Then

we obtain

Ψ(x) =

 φx

1
2

(
φx + φx−1

)
φx−1

 (x ∈ Z).

Therefore we get

µ(x) =
5

4

(
|φx|2 + |φx−1|2

)
+

1

2
Re(φxφx−1).

Interestingly, the stationary measure is independent of the parameter η ∈ [0, 2π).

EXAMPLE 5.3. We consider a class of quantum walks determined by the 3× 3

unitary matrix A2(ρ) given by the matrix (4.15). When we choose the value of

λ = 1, then ã1 = ã2 = 1 and the reduced matrix becomes

A2(ρ)
(Re) =

[
0 1

1 0

]
.

Let {φx}x∈Z be arbitrary sequence of complex numbers except for φ ≡ 0. Then

we get

Ψ(x) =

 φx

ρ√
2(1−ρ2)

(
φx + φx−1

)
φx−1

 (x ∈ Z).

Therefore we obtain

µ(x) =
2− ρ2

2(1− ρ2)

(
|φx|2 + |φx−1|2

)
+

ρ2

1− ρ2
Re(φxφx−1).

In the previous example (Example 5.2), the stationary measure does not depend

on the parameter η ∈ [0, 2π), but the stationary measure in this example depends

on the parameter ρ ∈ (0, 1).
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In the rest of this section, we consider the 3 × 3 Fourier matrix defined by

Eq. (4.11). Then we get

λ = −ω2i, ã1 = ã2 = −e
πi
6 .

Thus we have λ2 ̸= ã1ã2 which does not satisfy the assumption λ2 = ã1ã2 in

Theorem 5.1. So we do not apply Theorem 5.1 to the Fourier walk. In fact, we

get

ΨL(x) = ω2ΨR(x+ 1), ΨL(x) = ωΨR(x+ 1).

Therefore the first equation is contradictory to the second one.

6. Conclusion

In this paper, we obtained the stationary measures for the three-state quan-

tum walks including the Fourier and Grover walks on Z by using the correspond-

ing reduced matrix A(Re). As a special case, we found a stationary measure

with periodicity. Moreover, this periodic stationary measure is also stationary

measure on cycles. Our results are summarized in the following two tables.

Table 1 Results of Type 1

Type 1 Grover matrix Fourier matrix A1(η) A2(ρ)

reduced matrix

[
−1 0

0 −1

] [
e−

πi
6 0

0 i

] [
−1 0

0 −1

] [
−1 0

0 −1

]

eigenvalue of UA −1 i eiξ −1

stationary measure uniform
non-uniform

(with periodicity)
non-uniform uniform

Table 2 Results of Type 2

Type 2 Grover matrix Fourier matrix A1(η) A2(ρ)

reduced matrix

[
0 1

1 0

] [
0 ei

π
6

ei
π
6 0

] [
0 1

1 0

] [
0 1

1 0

]

eigenvalue of UA 1 not applicable 1 1

stationary measure non-uniform not applicable non-uniform non-uniform
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It means that “stationary measure” in the tables is a measure given by the eigen-

function with eigenvalue of the unitary operator UA. We note that the Fourier

walk of Type 1 in Table 1 has a non-trivial stationary measure with periodicity,

while the Fourier walk of Type 2 in Table 2 does not have the stationary measure

given by solving the corresponding eigenvalue problem. Therefore, the meaning

of “not applicable” in Table 2 is that we are not able to apply our new method

based on a reduced matrix to the Fourier walk.

We should remark that localization of the three-state quantum walk with

Type 1 does not occur, but localization with Type 2 occurs. Because amplitude

Ψ in Theorem 4.1 for the three-state quantum walk with Type 1 is not a square

summable function but a bounded function on Z in general. On the other hand,

Ψ in Theorem 5.1 for the three-state quantum walk with Type 2 is a square

summable function.

One of the future interesting problems would be to investigate the station-

ary measure for the general N -state quantum walk by using our new method

introduced here.
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