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Abstract. In this paper we show the existence and uniqueness of solutions of
the Cauchy problem{

Dν
0+u(t) = f(t, u(t)),
lim

t→0+
u(t) = 0, lim

t→0+
u′(t)t2−ν = (ν − 1)λ,

where f is a mapping of [0, 1] × (0,∞) into R, λ ∈ R with λ > 0, ν ∈ R with
1 < ν ≤ 2 and Dν

0+ is the ν-th Riemann-Liouville fractional derivative.

1. Introduction and Preliminaries

In [8], Knežević-Miljanović considered the Cauchy problem for singular dif-

ferential equations {
u′′(t) = p(t)tau(t)σ,

lim
t→0+

u(t) = 0, lim
t→0+

u′(t) = λ,(1.1)

where p is continuous, a, σ, λ ∈ R with σ < 0 and λ > 0. She proved that if p

satisfies
∫ 1

0
|p(t)|ta+σdt < ∞, then the problem has a unique solution. For related

results of the Cauchy problem for singular differential equations (1.1), see [3, 4]

and the references therein.

On the other hand, fractional differential equations have been studied. For

example, in [1] and [10], the authors considered the fractional differential equation

Dν
0+u(t) + f(t, u(t)) = 0

where 1 < ν ≤ 2 and Dν
0+ is the ν-th Riemann-Liouville fractional derivative.

The ν-th Riemann-Liouville fractional derivative of a function u is given by

Dν
0+u(t) =

1

Γ(n− ν)

dn

dtn

∫ t

0

(t− s)n−ν−1u(s)ds
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where n is an integer with n − 1 ≤ ν < n and Γ(·) is the gamma function.

For singular fractional differential equations, see [9, 11, 12]. However in the

obtained results, the Cauchy problem (1.1) cannot be treated. Therefore, in

[5], the authors showed the existence and uniqueness of solutions of the Cauchy

problem {
Dν

0+u(t) = p(t)tau(t)σ,

lim
t→0+

u(t) = 0, lim
t→0+

u′(t)t2−ν = (ν − 1)λ,(1.2)

where p is continuous, a, σ, λ ∈ R with σ < 0 and λ > 0. If ν = 2, then the

Cauchy problem (1.2) is the problem (1.1).

In this paper we consider the Cauchy problem{
Dν

0+u(t) = f(t, u(t)),

lim
t→0+

u(t) = 0, lim
t→0+

u′(t)t2−ν = (ν − 1)λ,(1.3)

where f is a mapping of [0, 1]× (0,∞) into R, λ ∈ R with λ > 0 and ν ∈ R with

1 < ν ≤ 2. If f(t, u) = p(t)tauσ, the Cauchy problem (1.3) is the problem (1.2).

We show the existence and uniqueness of solutions of the problem (1.3).

2. Decreasing cases

In this section, we consider the case that the mapping f(t, u) in the Cauchy

problem (1.3) is decreasing for u. First we derive the integral equation which is

equivalent to the problem (1.3).

We use the following; see, for example, [1, 7]. See [6] also.

LEMMA 2.1. Let ν > 0. Let u be a Lebesgue integrable function of [0, 1] into R
such that Dν

0+u is also Lebesgue integrable. Then

Iν0+D
ν
0+u(t) = u(t) + C1t

ν−1 + C2t
ν−2 + · · ·+ Cnt

ν−n

for some C1, C2, . . . , Cn ∈ R and an integer n with n−1 ≤ ν < n, where the ν-th

Riemann-Liouville fractional integral Iν0+u of a function u is defined by

Iν0+u(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1u(s)ds.

Let f be a mapping of [0, 1]× (0,∞) into R. A mapping f is said to satisfy

the Carathéodory conditions if for each u ∈ (0,∞), t 7−→ f(t, u) is measurable

and for almost every t ∈ [0, 1], u 7−→ f(t, u) is continuous. A function u is said

to be a solution of the Cauchy problem (1.3) if there exists h > 0 such that
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u ∈ C[0, h] and u satisfies the equation Dν
0+u(t) = f(t, u(t)) for almost all t in

[0, h] and the conditions limt→0+ u(t) = 0 and limt→0+ u′(t)t2−ν = (ν−1)λ, where

C[0, h] is the set of all continuous functions of [0, h] to R. It is noted that C[0, h]

is a Banach space by the maximum norm

∥u∥ = max{|u(t)| | t ∈ [0, h]}.

LEMMA 2.2. Let 1 < ν ≤ 2 and λ > 0. Let f be a mapping of [0, 1]×(0,∞) into

R satisfying the Carathéodory conditions. Suppose that the mapping f satisfies

the following:

(a1) There exists h ∈ R with 0 < h ≤ 1 such that |f(t, u1)| ≥ |f(t, u2)| for
almost every t ∈ [0, h] and for any u1, u2 ∈ (0,∞) with u1 ≤ u2.

(b1) There exists α ∈ R with 0 < α < λ such that

lim
t→0+

t

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds = 0.

Then u is a solution of the Cauchy problem (1.3) if and only if u is a solution of

the equation

(2.1) u(t) = λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds

under the assumption αtν−1 ≤ u(t) for any t ∈ (0, h].

Proof. Let u be a solution of the Cauchy problem (1.3) under the assumption

αtν−1 ≤ u(t) for any t ∈ (0, h]. We will show that u is a solution of the equation

(2.1). Since u is a solution of (1.3), u ∈ C[0, h] and u satisfies the equation

Dν
0+u(t) = f(t, u(t)) for almost every t in [0, h] and the conditions limt→0+ u(t) =

0 and limt→0+ u′(t)t2−ν = (ν − 1)λ. Since u ∈ C[0, h], u is Lebesgue integrable.

Moreover, by the condition (b1), there exists 0 < h0 ≤ h such that

h0

∫ 1

0

(1− s)ν−2|f(sh0, α(sh0)
ν−1)|ds < ∞.

Since ∫ h0

0

|f(s, u(s))|ds ≤
∫ h0

0

(
1− s

h0

)ν−2

|f(s, u(s))|ds

≤
∫ h0

0

(
1− s

h0

)ν−2

|f(s, αsν−1)|ds

= h0

∫ 1

0

(1− s)ν−2|f(sh0, α(sh0)
ν−1)|ds < ∞
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and Dν
0+u(t) = f(t, u(t)), Dν

0+u is Lebesgue integrable. By Lemma 2.1, we have

the equation

u(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds+ C1t
ν−1 + C2t

ν−2

for some C1 and C2. The condition limt→0+ u(t) = 0 implies C2 = 0. In fact, by

the conditions (a1) and (b1), we have∣∣∣∣∫ t

0

(t− s)ν−1f(s, u(s))ds

∣∣∣∣ ≤ ∫ t

0

(t− s)ν−1|f(s, u(s))|ds

≤
∫ t

0

(t− s)ν−1|f(s, αsν−1)|ds

= tν
∫ 1

0

(1− s)ν−1|f(st, α(st)ν−1)|ds

≤ t

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds → 0

as t → 0+. Thus we have

u(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds+ C1t
ν−1.

Then we have

u′(t) =
1

Γ(ν − 1)

∫ t

0

(t− s)ν−2f(s, u(s))ds+ (ν − 1)C1t
ν−2.

By the condition (a1), we have

∣∣u′(t)t2−ν − (ν − 1)C1

∣∣ ≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, u(s))|ds

≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, αsν−1)|ds

=
t

Γ(ν − 1)

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds.

By the condition (b1), we have

lim
t→0+

u′(t)t2−ν = (ν − 1)C1.

Thus C1 = λ. Therefore u is a solution on [0, h0] of the equation (2.1).

Let u be a solution of the equation (2.1) under the assumption αtν−1 ≤ u(t)

for any t ∈ (0, h]. We will show that u is a solution of the Cauchy problem
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(1.3). Since u satisfies the equation (2.1), we have Dν
0+u(t) = f(t, u(t)). By the

condition (a1), we have

|u(t)| ≤ λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)ν−1|f(s, u(s))|ds

≤ λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)ν−1|f(s, αsν−1)|ds

= λtν−1 +
tν

Γ(ν)

∫ 1

0

(1− s)ν−1|f(st, α(st)ν−1)|ds

≤ λtν−1 +
t

Γ(ν)

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds.

By the condition (b1), limt→0+ u(t) = 0. Since

u′(t) =
1

Γ(ν − 1)

∫ t

0

(t− s)ν−2f(s, u(s))ds+ (ν − 1)λtν−2,

we have∣∣u′(t)t2−ν − (ν − 1)λ
∣∣ ≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, u(s))|ds

≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, αsν−1)|ds

=
t

Γ(ν − 1)

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds

by the condition (a1). By the condition (b1), we have limt→0+ u′(t)t2−ν = (ν −
1)λ. Therefore u is a solution on [0, h] of the Cauchy problem (1.3).

THEOREM 2.1. Let 1 < ν ≤ 2 and λ > 0. Let f be a mapping of [0, 1] ×
(0,∞) into R satisfying the Carathéodory conditions. Suppose that the mapping

f satisfies (a1) and (b1). Moreover suppose that the mapping f satisfies the

following:

(c) There exists β ∈ R with β > 0 such that∣∣∣∣∂f∂u (t, u)
∣∣∣∣ ≤ β|f(t, u)|

u

for almost every t ∈ [0, h], where h is in (a1), and for any u ∈ (0,∞).

Then there exist h0 ∈ R with 0 < h0 ≤ h and a unique solution u : (0, h0] → R
of the Cauchy problem (1.3) satisfying αtν−1 ≤ u(t) for any t ∈ (0, h0].
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Proof. By Lemma 2.2, we consider the integral equation (2.1). By the condition

(b1), there exists h0 ∈ R with 0 < h0 ≤ h such that

sup
t∈(0,h0]

t

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds < min

{
λ− α,

α

β

}
Γ(ν).

Let X be a subset of C[0, h0] defined by

X =

u

∣∣∣∣∣∣
u(0) = 0, αtν−1 ≤ u(t) for any t ∈ [0, h0],

u is differentiable on a right-hand neighboorhood of 0,

limt→0+ u′(t)t2−ν = (ν − 1)λ

 .

Since a mapping t 7−→ λtν−1 belongs to X, X ̸= ∅. Let A be an operator of X

defined by

Au(t) = λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds.

Then A(X) ⊂ X. Indeed since f satisfies the Carathéodory conditions, Au ∈
C[0, h0]. By the condition (a1), we have

|Au(t)| =
∣∣∣∣λtν−1 +

1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds

∣∣∣∣
≤ λtν−1 +

1

Γ(ν)

∫ t

0

(t− s)ν−1|f(s, αsν−1)|ds

= λtν−1 +
tν

Γ(ν)

∫ 1

0

(1− s)ν−1|f(st, α(st)ν−1)|ds

≤ λtν−1 +
t

Γ(ν)

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds

and hence by the condition (b1), Au(0) = 0. By the condition (a1), we have

∣∣(Au)′(t)t2−ν − (ν − 1)λ
∣∣ ≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, u(s))|ds

≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, αsν−1)|ds

=
t

Γ(ν − 1)

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds

and hence by the condition (b1), limt→0+(Au)
′(t)t2−ν = (ν − 1)λ. By the condi-
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tion (a1), we have

Au(t) = λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds

≥ λtν−1 − 1

Γ(ν)

∫ t

0

(t− s)ν−1|f(s, αsν−1)|ds

= λtν−1 − tν

Γ(ν)

∫ 1

0

(1− s)ν−1|f(st, α(st)ν−1)|ds

≥ λtν−1 − (λ− α)tν−1

= αtν−1

for any t ∈ [0, h0]. We will find a fixed point of A. Let φ be an operator of X

into C[0, h0] defined by

φ[u](t) =

 u(t)

tν−1
, if t ∈ (0, h0],

λ, if t = 0

and

φ[X] = {φ[u] | u ∈ X}
= {v | v ∈ C[0, h0], v(0) = λ and α ≤ v(t) for any t ∈ [0, h0]}.

Then φ[X] is a closed subset of C[0, h0] and hence it is a complete metric space.

Let ΦA be an operator of φ[X] into φ[X] defined by

ΦAφ[u] = φ[Au].

By the mean value theorem, for any u1, u2 ∈ X there exists a mapping ξ such

that

f(t, u1(t))− f(t, u2(t)) =
∂f

∂u
(t, ξ(t))(u1(t)− u2(t))

and

αtν−1 ≤ min{u1(t), u2(t)} ≤ ξ(t) ≤ max{u1(t), u2(t)}

for any t ∈ [0, h0]. By the conditions (a1) and (c), we have

|f(t, u1(t))− f(t, u2(t))| =
∣∣∣∣∂f∂u (t, ξ(t))(u1(t)− u2(t))

∣∣∣∣
≤
∣∣∣∣βf(t, ξ(t))ξ(t)

∣∣∣∣ |u1(t)− u2(t)|

≤
∣∣∣∣βf(t, αtν−1)

αtν−1

∣∣∣∣ |u1(t)− u2(t)|
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for almost every t ∈ [0, h0]. In the last inequality, it is noted that αtν−1 ≤ ξ(t)

for any t ∈ [0, h0]. Therefore we have

|ΦAφ[u1](t)− ΦAφ[u2](t)|

=

∣∣∣∣ 1

Γ(ν)tν−1

∫ t

0

(t− s)ν−1(f(s, u1(s))− f(s, u2(s)))ds

∣∣∣∣
≤ 1

Γ(ν)tν−1

∫ t

0

(t− s)ν−1

∣∣∣∣βf(s, αsν−1)

αsν−1

∣∣∣∣ |u1(s)− u2(s)|ds

≤ β

αΓ(ν)

(∫ t

0

(t− s)ν−1|f(s, αsν−1)|ds
)
∥φ[u1]− φ[u2]∥

=
βt

αΓ(ν)

(∫ 1

0

(1− s)ν−1|f(st, α(st)ν−1)|ds
)
∥φ[u1]− φ[u2]∥

≤ β

αΓ(ν)

(
sup

t∈(0,h]
t

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds

)
∥φ[u1]− φ[u2]∥

for any t ∈ (0, h0]. Then we have

∥ΦAφ[u1]− ΦAφ[u2]∥

≤ β

αΓ(ν)

(
sup

t∈(0,h0]

t

∫ 1

0

(1− s)ν−2|f(st, α(st)ν−1)|ds

)
∥φ[u1]− φ[u2]∥.

Since β
αΓ(ν)

(
supt∈(0,h0] t

∫ 1

0
(1− s)ν−2|f(st, α(st)ν−1)|ds

)
< 1, by the Banach fixed

point theorem, there exists a unique mapping φ[u] ∈ φ[X] such that ΦAφ[u] =

φ[u]. Then Au = u. The mapping u is a unique solution of the Cauchy problem

(1.3).

EXAMPLE 2.1. Consider the Cauchy problem{
u′′(t) = a(t)u(t)σ,

lim
t→0+

u(t) = 0, lim
t→0+

u′(t) = λ,(2.2)

where a is a mapping of [0, 1] which is continuous on (0, 1],
∫ 1

0
|a(t)|tσdt < ∞

and σ < 0, λ > 0. In this case, f(t, u) = a(t)uσ for (t, u) ∈ [0, 1] × (0,∞).

Then the mapping f satisfies the condition (a1). In fact, let t ∈ [0, 1] and

u1, u2 > 0 with u2 ≤ u1. Since uσ
1 ≥ uσ

2 , we have |a(t)uσ
1 | ≥ |a(t)uσ

2 |. Moreover

the mapping f satisfies the condition (b1). In fact, since
∫ 1

0
|a(t)|tσdt < ∞, we

have limt→0+

∫ t

0
|a(s)|sσds = 0. Then we have∫ t

0

|a(s)|sσds =
∫ 1

0

|a(ts)|(ts)σtds

= tσ+1

∫ 1

0

|a(ts)|sσds → 0(2.3)
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as t → 0+. Then we have

t

∫ 1

0

|a(st) (αst)σ| ds = ασtσ+1

∫ 1

0

|a(st)|sσds → 0

as t → 0+ by (2.3). Hence the mapping f satisfies the condition (b1). Since∣∣∣∣∂f∂u (t, u)
∣∣∣∣ = |a(t)σuσ−1| = |σ||f(t, u)|

u
,

the mapping f satisfies the condition (c). By Theorem 2.1, the Cauchy problem

(2.2) has a unique solution.

EXAMPLE 2.2. In [8], Knežević-Miljanović considered the Cauchy problem

(1.1), where p is a continuous function satisfying
∫ 1

0
|p(t)|ta+σdt < ∞, a, σ, λ ∈ R

with σ < 0 and λ > 0. In the case that a(t) = p(t)ta in Example 2.1, the problem

(1.1) has a unique solution.

3. Increasing cases

In this section, we consider the case that f(t, u) in the Cauchy problem (1.3)

is increasing for u. First we show the following lemma. The proof is similar to

that of Lemma 2.2. But, for the sake of completeness, we show the proof.

LEMMA 3.1. Let 1 < ν ≤ 2 and λ > 0. Let f be a mapping of [0, 1]×(0,∞) into

R satisfying the Carathéodory conditions. Suppose that the mapping f satisfies

the following:

(a2) There exists h ∈ R with 0 < h ≤ 1 such that |f(t, u1)| ≤ |f(t, u2)| for
almost every t ∈ [0, h] and for any u1, u2 ∈ (0,∞) with u1 ≤ u2.

(b2) There exists α ∈ R with 0 < α < λ such that

lim
t→0+

t

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds = 0.

Then u is a solution of the Cauchy problem (1.3) if and only if u is a solution

of the equation (2.1) under the assumption αtν−1 ≤ u(t) ≤ (2λ− α)tν−1 for any

t ∈ (0, h].

Proof. Let u be a solution of the Cauchy problem (1.3) under the assumption

αtν−1 ≤ u(t) ≤ (2λ − α)tν−1 for any t ∈ (0, h]. We will show that u is a

solution of the equation (2.1). Then u ∈ C[0, h] and u satisfies the equation

Dν
0+u(t) = f(t, u(t)) for almost every t in [0, h] and the conditions limt→0+ u(t) =
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0 and limt→0+ u′(t)t2−ν = (ν − 1)λ. Since u ∈ C[0, h], u is Lebesgue integrable.

Moreover, by the condition (b2), there exists 0 < h0 ≤ h such that

h0

∫ 1

0

(1− s)ν−2|f(sh0, (2λ− α)(sh0)
ν−1)|ds < ∞.

Since∫ h0

0

|f(s, u(s))|ds ≤
∫ h0

0

(
1− s

h0

)ν−2

|f(s, u(s))|ds

≤
∫ h0

0

(
1− s

h0

)ν−2

|f(s, (2λ− α)sν−1)|ds

= h0

∫ 1

0

(1− s)ν−2|f(sh0, (2λ− α)(sh0)
ν−1)|ds < ∞

and Dν
0+u(t) = f(t, u(t)), Dν

0+u is Lebesgue integrable. By Lemma 2.1, we have

the integral equation

u(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds+ C1t
ν−1 + C2t

ν−2

for some C1 and C2. The condition limt→0+ u(t) = 0 implies C2 = 0. In fact, by

the conditions (a2) and (b2), we have∣∣∣∣∫ t

0

(t− s)ν−1f(s, u(s))ds

∣∣∣∣ ≤ ∫ t

0

(t− s)ν−1|f(s, u(s))|ds

≤
∫ t

0

(t− s)ν−1|f(s, (2λ− α)sν−1)|ds

= tν
∫ 1

0

(1− s)ν−1|f(st, (2λ− α)(st)ν−1)|ds

≤ t

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds → 0

as t → 0. Thus we have

u(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds+ C1t
ν−1.

Then we have

u′(t) =
1

Γ(ν − 1)

∫ t

0

(t− s)ν−2f(s, u(s))ds+ (ν − 1)C1.
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By the condition (a2), we have∣∣u′(t)t2−ν − (ν − 1)C1

∣∣ ≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, u(s))|ds

≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, (2λ− α)sν−1)|ds

=
t

Γ(ν − 1)

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds.

By the condition (b2), we have

lim
t→0+

u′(t)t2−ν = (ν − 1)C1.

Thus C1 = λ. Therefore u is a solution on [0, h0] of the equation (2.1).

Let u be a solution of the equation (2.1) under the assumption αtν−1 ≤ u(t) ≤
(2λ− α)tν−1 for any t ∈ (0, h]. We will show that u is a solution of the Cauchy

problem (1.3). Since u satisfies the equation (2.1), we have Dν
0+u(t) = f(t, u(t)).

By (a2), we have

|u(t)| ≤ λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)α−1|f(s, u(s))|ds

≤ λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)α−1|f(s, (2λ− α)sν−1)|ds

= λtν−1 +
tν

Γ(ν)

∫ 1

0

(1− s)ν−1|f(st, (2λ− α)(st)ν−1)|ds

≤ λtν−1 +
t

Γ(ν)

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds.

By the condition (b2), limt→0+ u(t) = 0. Since

u′(t) =
1

Γ(ν − 1)

∫ t

0

(t− s)ν−2f(s, u(s))ds+ (ν − 1)λtν−2,

we have∣∣u′(t)t2−ν − (ν − 1)λ
∣∣ ≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, u(s))|ds

≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, (2λ− α)sν−1)|ds

=
t

Γ(ν − 1)

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds.

By the condition (b2), we have limt→0+ u′(t)t2−ν = (α − 1)λ. Therefore u is a

solution on [0, h] of the Cauchy problem (1.3).



52 T. KAWASAKI AND M. TOYODA

THEOREM 3.1. Let 1 < ν ≤ 2 and λ > 0. Let f be a mapping of [0, 1] ×
(0,∞) into R satisfying the Carathéodory conditions. Suppose that the mapping

f satisfies the conditions (a2), (b2) and (c). Then there exist h0 ∈ R with

0 < h0 ≤ h and a unique solution u : (0, h0] → R of the Cauchy problem (1.3)

satisfying αtν−1 ≤ u(t) ≤ (2λ− α)tν−1 for any t ∈ (0, h0].

Proof. By the condition (b2), there exists h0 ∈ R with 0 < h0 ≤ h such that

sup
t∈(0,h0]

t

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds < min

{
λ− α,

α

β

}
Γ(ν).

Let X be a subset of C[0, h0] defined by

X =

u

∣∣∣∣∣∣∣
u(0) = 0, αtν−1 ≤ u(t) ≤ (2λ− α)tν−1 for any t ∈ [0, h0]

u is differentiable on a right-hand neighboorhood of 0,

lim
t→0+

u′(t)t2−ν = (ν − 1)λ

 .

Since a mapping t 7−→ λtν−1 belongs to X, X ̸= ∅. Let A be an operator of X

defined by

Au(t) = λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds.

Then A(X) ⊂ X. Indeed since f satisfies the Carathéodory conditions, Au ∈
C[0, h0]. By the condition (a2), we have

|Au(t)| =
∣∣∣∣λtν−1 +

1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds

∣∣∣∣
≤ λtν−1 +

1

Γ(ν)

∫ t

0

(t− s)ν−1|f(s, (2λ− α)sν−1)|ds

= λtν−1 +
tν

Γ(ν)

∫ 1

0

(1− s)ν−1|f(st, (2λ− α)(st)ν−1)|ds

≤ λtν−1 +
t

Γ(ν)

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds

and hence by the condition (b2), Au(0) = 0. By the condition (a2), we have∣∣(Au)′(t)t2−ν − λ(ν − 1)
∣∣ ≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, u(s))|ds

≤ 1

Γ(ν − 1)

∫ t

0

(
1− s

t

)ν−2

|f(s, (2λ− α)sν−1)|ds

=
t

Γ(ν − 1)

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds
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and hence by the condition (b2), limt→0+(Au)
′(t)t2−ν = (ν − 1)λ. By the condi-

tion (a2), we have

Au(t) = λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds

≥ λtν−1 − 1

Γ(ν)

∫ t

0

(t− s)ν−1|f(s, (2λ− α)sν−1)|ds

= λtν−1 − tν

Γ(ν)

∫ 1

0

(1− s)ν−1|f(st, (2λ− α)(st)ν−1)|ds

≥ λtν−1 − (λ− α)tν−1

= αtν−1

and

Au(t) = λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s, u(s))ds

≤ λtν−1 +
1

Γ(ν)

∫ t

0

(t− s)ν−1|f(s, (2λ− α)sν−1)|ds

= λtν−1 +
tν

Γ(ν)

∫ 1

0

(1− s)ν−1|f(st, (2λ− α)(st)ν−1)|ds

≤ λtν−1 + (λ− α)tν−1

= (2λ− α)tν−1

for any t ∈ [0, h0]. We will find a fixed point of A. Let φ be an operator of X

into C[0, h0] defined by

φ[u](t) =

 u(t)

tν−1
, if t ∈ (0, h0],

λ, if t = 0

and

φ[X] = {φ[u] | u ∈ X}
= {v | v ∈ C[0, h0], v(0) = λ and α ≤ v(t) ≤ 2λ− α for any t ∈ [0, h0]}.

Then φ[X] is a closed subset of C[0, h0] and hence it is a complete metric space.

Let ΦA be an operator of φ[X] into φ[X] defined by

ΦAφ[u] = φ[Au].

By the mean value theorem, for any u1, u2 ∈ X there exists a mapping ξ such

that

f(t, u1(t))− f(t, u2(t)) =
∂f

∂u
(t, ξ(t))(u1(t)− u2(t))
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and

αtν−1 ≤ min{u1(t), u2(t)} ≤ ξ(t) ≤ max{u1(t), u2(t)} ≤ (2λ− α)tν−1

for any t ∈ [0, h0]. By the conditions (a2) and (c)

|f(t, u1(t))− f(t, u2(t))| =
∣∣∣∣∂f∂u (t, ξ(t))(u1(t)− u2(t))

∣∣∣∣
≤
∣∣∣∣βf(t, ξ(t))ξ(t)

∣∣∣∣ |u1(t)− u2(t)|

≤
∣∣∣∣βf(t, (2λ− α)tν−1)

αtν−1

∣∣∣∣ |u1(t)− u2(t)|

for almost every t ∈ [0, h0]. In the last inequality, it is noted that αtν−1 ≤ ξ(t) ≤
(2λ− α)tν−1 for any t ∈ [0, h0]. Therefore

|ΦAφ[u1](t)− ΦAφ[u2](t)|

=

∣∣∣∣ 1

Γ(ν)tν−1

∫ t

0

(t− s)ν−1(f(s, u1(s))− f(s, u2(s)))ds

∣∣∣∣
≤ 1

Γ(ν)tν−1

∫ t

0

(t− s)ν−1

∣∣∣∣βf(s, (2λ− α)sν−1)

αsν−1

∣∣∣∣ |u1(s)− u2(s)|ds

≤ β

αΓ(ν)

(∫ t

0

(t− s)ν−1|f(s, (2λ− α)sν−1)|ds
)
∥φ[u1]− φ[u2]∥

=
βt

αΓ(ν)

(∫ 1

0

(1− s)ν−1|f(st, (2λ− α)(st)ν−1)|ds
)
∥φ[u1]− φ[u2]∥

≤ β

αΓ(ν)

(
sup

t∈(0,h]
t

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds

)
∥φ[u1]− φ[u2]∥

for any t ∈ (0, h0]. Therefore we have

∥ΦAφ[u1]− ΦAφ[u2]∥

≤ β

αΓ(ν)

(
sup

t∈(0,h0]

t

∫ 1

0

(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds

)
∥φ[u1]− φ[u2]∥.

Since β
αΓ(ν)

(
supt∈(0,h0] t

∫ 1

0
(1− s)ν−2|f(st, (2λ− α)(st)ν−1)|ds

)
< 1, by the Ba-

nach fixed point theorem, there exists a unique mapping φ[u] ∈ φ[X] such that

ΦAφ[u] = φ[u]. Then Au = u. The mapping u is a unique solution of the Cauchy

problem (1.3).

EXAMPLE 3.1. Consider the Cauchy problem (2.2) in the case that σ ≥ 0. In

this case, f(t, u) = a(t)uσ for (t, u) ∈ [0, 1] × R. Then the mapping f satisfies
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(a2). In fact, let t ∈ [0, 1] and u1, u2 > 0 with u2 ≤ u1. Since uσ
1 ≤ uσ

2 , we

have |a(t)uσ
1 | ≤ |a(t)uσ

2 |. Moreover the mapping f satisfies (b2). In fact, since∫ 1

0
|a(t)|tσdt < ∞, we have limt→0+

∫ t

0
|a(s)|sσds = 0. Then we have (2.3). Since

t

∫ 1

0

|a(st) ((2λ− α)st)σ| ds = (2λ− α)σtσ+1

∫ 1

0

|a(st)|sσds → 0

as t → 0+, the mapping f satisfies the condition (b2). Since∣∣∣∣∂f∂u (t, u)
∣∣∣∣ =

{
|a(t)σuσ−1| (u > 0)

0 (u = 0)

=
|σ||f(t, u)|

u
,

the mapping f satisfies the condition (c). By Theorem 3.1, the Cauchy problem

(2.2) has a unique solution.

EXAMPLE 3.2. Consider the Cauchy problem u′′(t) =
l(t2 + 1) tan−1(u(t))√

t
,

lim
t→0+

u(t) = 0, lim
t→0+

u′(t) = λ,
(3.1)

where l > 0 and λ > 0. In this case, f(t, u) = l(t2+1) tan−1 u√
t

for (t, u) ∈ (0, 1] ×
[0,∞). The equation of (3.1) is considered in [2]. Then the mapping f satisfies

the condition (a2). Moreover the mapping f satisfies the condition (b2). In fact,

let α ∈ (0, λ). Then we have

∫ 1

0

((st)2 + 1) tan−1((2λ− α)(st))√
s

ds ≤ π

2

∫ 1

0

(st)2 + 1√
s

ds

=
π

2

∫ 1

0

(
t2s

3
2 +

1√
s

)
ds

=
π

5
(t2 + 1) ≤ 2π

5
.

Therefore we have

t

∫ 1

0

|f(st, (2λ− α)(st))|ds = t

∫ 1

0

l((st)2 + 1) tan−1((2λ− α)(st))√
st

ds → 0

as t → 0+. Hence the mapping f satisfies the condition (b2). Let β > 0. We

have

β|f(t, u)|
u

−
∣∣∣∣∂f∂u (t, u)

∣∣∣∣ = l(t2 + 1)√
t

(
β
tan−1 u

u
− 1

1 + u2

)
=

l(t2 + 1)√
t

· β(1 + u2) tan−1 u− u

u(1 + u2)
.
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Let g(u) = β(1 + u2) tan−1 u − u. Then g(0) = 0. Moreover we have g′(u) =

β + 2βu tan−1 u − 1. So if β ≥ 1, then g′(u) > 0 for u > 0. Thus for β ≥ 1, we

have

β|f(t, u)|
u

−
∣∣∣∣∂f∂u (t, u)

∣∣∣∣ ≥ 0.

Therefore the mapping f satisfies the condition (c). By Theorem 3.1, the Cauchy

problem (3.1) has a unique solution.
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Japanese)

[ 7 ] A.A. Kilbas, H.M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional

Differential Equations, In North-Holland Mathematics Studies 204, Elsevier, Amster-

dam, 2006.
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