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Abstract. In this paper we show the existence and uniqueness of solutions of
the Cauchy problem

{ D u(t) = f(t,u(t)),

: _ : / 2—v __ _
t1_1)151+u(t) =0, t1_1)151+u O™ = (v =1)A,

where f is a mapping of [0,1] x (0,00) into R, A € R with A > 0, v € R with
1 <v <2 and Dg, is the v-th Riemann-Liouville fractional derivative.

1. Introduction and Preliminaries

In [8], Knezevié-Miljanovié considered the Cauchy problem for singular dif-
ferential equations

. { ' (t) = p(Or°u(t)”

. . . / _
lim u(t) =0, tl_lgiu (t) = A,

t—0+
where p is continuous, a,0, A € R with ¢ < 0 and A > 0. She proved that if p
satisfies fol Ip(t)|t*T7dt < oo, then the problem has a unique solution. For related
results of the Cauchy problem for singular differential equations (1.1), see [3, 4]
and the references therein.
On the other hand, fractional differential equations have been studied. For
example, in [1] and [10], the authors considered the fractional differential equation

Dy, ult) + f(t u(t)) = 0

where 1 < v < 2 and Dy, is the v-th Riemann-Liouville fractional derivative.
The v-th Riemann-Liouville fractional derivative of a function w is given by

DY, ult) = ﬁ% /0 (t — 5" Lu(s)ds
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where n is an integer with n — 1 < v < n and I'(-) is the gamma function.
For singular fractional differential equations, see [9, 11, 12]. However in the
obtained results, the Cauchy problem (1.1) cannot be treated. Therefore, in
[5], the authors showed the existence and uniqueness of solutions of the Cauchy

problem

Lo Dy u(t) = p(t)t*u(t)?,

(1.2) lim u(t) =0, lim o/(t)t* " = (v — 1)),
t—0+ t—0+

where p is continuous, a,0,\ € R with ¢ < 0 and A > 0. If v = 2, then the
Cauchy problem (1.2) is the problem (1.1).
In this paper we consider the Cauchy problem

{ D u(t) = f(t,u(t)),

. o . / 2—v __ _
tgr&u(t) =0, thm u(tT = (v — 1)\,

(1.3)

—0+

where f is a mapping of [0, 1] x (0,00) into R, A € R with A > 0 and v € R with
1 <v <2 If f(t,u) = p(t)t°u?, the Cauchy problem (1.3) is the problem (1.2).
We show the existence and uniqueness of solutions of the problem (1.3).

2. Decreasing cases

In this section, we consider the case that the mapping f(¢,u) in the Cauchy
problem (1.3) is decreasing for u. First we derive the integral equation which is
equivalent to the problem (1.3).

We use the following; see, for example, [1, 7]. See [6] also.

LEMMA 2.1. Let v > 0. Let u be a Lebesque integrable function of [0, 1] into R
such that Dy, u is also Lebesgue integrable. Then

I Dy u(t) = u(t) + Ot 4+ Cot" >+ 4+ Cpt” ™"

for some C1,Cs, ..., C, € R and an integer n withn—1 < v < n, where the v-th

Riemann-Liouville fractional integral I5, u of a function u is defined by

12 ult) = ﬁ /0 (t — 5)"u(s)ds.

Let f be a mapping of [0, 1] x (0,00) into R. A mapping f is said to satisfy
the Carathéodory conditions if for each u € (0,00), t — f(¢,u) is measurable
and for almost every ¢ € [0,1], u — f(¢,u) is continuous. A function u is said
to be a solution of the Cauchy problem (1.3) if there exists h > 0 such that
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u € C|0,h] and u satisfies the equation Df, u(t) = f(t,u(t)) for almost all ¢ in
[0, 1] and the conditions limy o, u(t) = 0 and lim;_,, o/ (¢)t*™ = (v — 1)\, where
C10, h] is the set of all continuous functions of [0, k] to R. It is noted that C|0, h]
is a Banach space by the maximum norm

[[ull = max{fu(t)] | ¢ € [0, 2]}

LEMMA 2.2. Let1 <v <2and X > 0. Let f be a mapping of [0, 1] x (0, 00) into
R satisfying the Carathéodory conditions. Suppose that the mapping f satisfies
the following:

(al)  There ezists h € R with 0 < h < 1 such that |f(t,uy)| > |f(t,ua)| for
almost every t € [0, h] and for any uy,us € (0,00) with u; < us.
(bl)  There ezists o € R with 0 < a < A such that

1
lim # / (1= s)"2|f(st, a(st)")|ds = 0.
0

Then u is a solution of the Cauchy problem (1.3) if and only if u is a solution of
the equation

(2.1) u(t) = M1+

1 t
w7 [ =9 st
under the assumption at*~" < u(t) for any t € (0, h).

Proof. Let u be a solution of the Cauchy problem (1.3) under the assumption
at’~! < wu(t) for any t € (0,h]. We will show that u is a solution of the equation
(2.1). Since u is a solution of (1.3), u € C[0,h] and u satisfies the equation
Dy, u(t) = f(t,u(t)) for almost every ¢ in [0, h] and the conditions limy_,; u(t) =
0 and limy o, v/ (£)t*™ = (v — 1)\. Since u € C0, h], u is Lebesgue integrable.
Moreover, by the condition (bl), there exists 0 < hg < h such that

1
ho/ (1 —5)"2|f(sho, a(she)”™1)|ds < oo.
0

Since

A%ﬂw@M%SA%O—%YQU@MwW
SA%O—%yQU@%”W%

1
= ho/ (1 —5)""2|f(sho, a(shg)" 1)|ds < oo
0
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and Dy, u(t) = f(t,u(t)), Dg,u is Lebesgue integrable. By Lemma 2.1, we have
the equation

u(t) = ﬁ /O (t— 8)" "L (s, u(s))ds + Cyt"~ + Oyt

for some C7 and Cy. The condition lim; 04 u(t) = 0 implies Cy = 0. In fact, by
the conditions (al) and (bl), we have

/0 (t — 5 (s, u(s))ds| < / (= 51 (s, uls))|ds

(t =)' f(s,as"™")|ds
1
v o1 v—1 d
e [ = st oty s
1
<t [ (1—8)"?f(st,a(st)" 1 )|ds — 0

as t — 0+4. Thus we have

u(t) = F(ly) /0 (t—s)" "1 f(s,u(s))ds + Cyt" .

Then we have

u'(t) = F(V;—l)/o (t —8)" 2 f(s,u(s))ds + (v — 1)Cyt" 2.

By the condition (al), we have

o - =06 < s [ (1-2) 7 s utsplas

t ' v—2 v—1
:m/o (1 —s)"%|f(st,a(st)")|ds.

By the condition (bl), we have

. / 2—v __ o
tl_l)IgiLu ()t = (v —1)C}.
Thus Cy = A. Therefore u is a solution on [0, hg] of the equation (2.1).
Let u be a solution of the equation (2.1) under the assumption at~! < u(t)
for any ¢t € (0,h]. We will show that u is a solution of the Cauchy problem
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(1.3). Since u satisfies the equation (2.1), we have Dy u(t) = f(t,u(t)). By the
condition (al), we have

u(t)] < M+ % / (t — )" (s, uls))|ds

v— 1 ' v— v—
<\t 1—1—%/0@—5) Yf(s,as” 1) |ds

_ +F(y)/0 (1= s)"~ 1| f(st, a(st)"~")|ds
v—1 t ' — g v—2 st. als v—1 s
< M +W/0<1 Y2 £ (st, ast) )| ds.

By the condition (b1), lim; o, u(t) = 0. Since

u'(t) = ﬁ/o (t —8)" 2f(s,u(s))ds + (v — A2,

we have

IN

t

t ' V=2 v—1
= m/o (1 —3s)"7%|f(st,a(st)")|ds

o = =0 < po s [ (1) el

by the condition (al). By the condition (bl), we have lim; o, v/ (¢)t*™ = (v —
1)A. Therefore u is a solution on [0, k] of the Cauchy problem (1.3). O

THEOREM 2.1. Let 1 < v < 2 and A\ > 0. Let f be a mapping of [0,1] x
(0,00) into R satisfying the Carathéodory conditions. Suppose that the mapping
[ satisfies (al) and (bl). Moreover suppose that the mapping f satisfies the
following:

(c) There exists f € R with > 0 such that
of BIf(t,w)]

et < 2B B
3u(t’u)‘ - U

for almost every t € [0, h], where h is in (al), and for any u € (0, c0).

Then there exist hg € R with 0 < hg < h and a unique solution u : (0, ho] — R
of the Cauchy problem (1.3) satisfying at*=* < u(t) for any t € (0, hy).
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Proof. By Lemma 2.2, we consider the integral equation (2.1). By the condition
(bl), there exists hg € R with 0 < hg < h such that

! a
sup t/ (1 —5)"72|f(st,a(st)”"")|ds < min {)\ - a, —} L(v).
te(0,ho] 0 B

Let X be a subset of C[0, ho] defined by

u(0) = 0, at’"! <wu(t) for any ¢ € [0, hl,
X =< u | uis differentiable on a right-hand neighboorhood of 0,
limy 0w/ (O)t>77 = (v — 1)\

Since a mapping t — M\"~! belongs to X, X # (. Let A be an operator of X
defined by

Au(t) = XV +

1 ! v—1
0 /0 (t— )" f(s,u(s))ds.

Then A(X) C X. Indeed since f satisfies the Carathéodory conditions, Au €
C'[0, ho]. By the condition (al), we have

|Au(t)| = 'At”l + ﬁ/o (t—8)" 1 f(s,u(s))ds

1 t
< AT+ —/ (t— )" f(s,as”1)|ds
0

['(v)
=34 /0 (1= )"~ f(st, a(st)"1)|ds
v—1 t ! — g v—2 st. als v—1 s
<t s [t atsn

and hence by the condition (bl), Au(0) = 0. By the condition (al), we have

(= = =) < o [ (1=3)" It utias

t

= m/o (1 —9)"7%|f(st,a(st)""")|ds

and hence by the condition (b1), limy o, (Au) (t)t*”” = (v — 1)\. By the condi-
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tion (al), we have

1

Au(t) = "t + o) /0 (t—8)" 1 f(s,u(s))ds

> MV - ﬁ /Ot(t —5)" 7 f(s,as" ) |ds

w 1 . .
I'(v) /0 (1 —s)" | f(st,a(st)""")|ds
> A = (A= a)t!

=at’"!

=\ —

for any ¢t € [0, ho]. We will find a fixed point of A. Let ¢ be an operator of X
into C|0, hy| defined by

M@){ fu(—t3> if £ € (0, hol,

N ift=0
and
p[X] = {plu] | v e X}
={v|v e C|0,ho),v(0) = X and o < v(¢) for any t € [0, ho]}.

Then ¢[X] is a closed subset of C[0, hy] and hence it is a complete metric space.
Let ®4 be an operator of ¢[X] into ¢[X]| defined by

D aplu] = plAul.

By the mean value theorem, for any wu;,us € X there exists a mapping £ such
that

ft,ua(t)) — St ua(t)) = %(t, (1) (ua(t) — ua(t))

and
at” "t < min{uy (1), ug ()} < €(t) < max{u (t), us(t)}

for any t € [0, ho]. By the conditions (al) and (c), we have

80100 = 180200 = 52060 00) = )
BICED)] 1

< | L0 ) - wato)

< | s t) ~ )
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for almost every ¢ € [0, hp]. In the last inequality, it is noted that at*~' < £(¢)
for any ¢ € [0, hg]. Therefore we have

B aplur] () — D agfusl(t)
1 t v—1 — f(s,us(s S
:‘W [ =57 () = s ua(s))a

< W/O (t — )71 % |ui(s) — ua(s)|ds
6 ! v—1 v—1 _ U
< o7 ([ 6= 1rts.as s ) lolun - el
_ bt 1 —8)" Y f(st,ast)" ) ds u1) — plu
= o ([ = srisstatsn las ) et - oful

6 ! v—2 v—1
s&w)<supt | a=syisetatsn >|ds) Jilur) =l

te(0,h]

for any ¢ € (0, ho]. Then we have

[ aplur] — Paplusl]|

<o ( up ¢ [ <1—s>V21f<st,a<st>“>|ds> liple] = ol

t€(0,ho]

Since %(V) (Supte(o,ho] tfol(l — 5)" 72| f(st, a(st)”_1)|ds> < 1, by the Banach fixed
point theorem, there exists a unique mapping ¢[u] € ¢[X] such that ®4plu] =
¢[u]. Then Au = u. The mapping v is a unique solution of the Cauchy problem

(1.3). O

EXAMPLE 2.1. Consider the Cauchy problem

u’(t) = a(t)u(t)?,
- { i, wlt) =0, Jlim w/t) =,

where a is a mapping of [0, 1] which is continuous on (0, 1], fol la(t)|t7dt < oo
and 0 < 0, A > 0. In this case, f(t,u) = a(t)u” for (t,u) € [0,1] x (0,00).
Then the mapping f satisfies the condition (al). In fact, let ¢ € [0,1] and
uy, us > 0 with ug < uy. Since u§ > ug, we have |a(t)u§| > |a(t)ug|. Moreover
the mapping f satisfies the condition (bl). In fact, since fol la(t)[t7dt < oo, we
have limy o4 [) |a(s)|s”ds = 0. Then we have

/Ot la(s)]s7ds = /01 la(ts)|(ts) tds

1
(2.3) = t"“/ la(ts)|s"ds — 0
0
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as t — 0+. Then we have

1 1
t/ la(st) (ast)?| ds = oz”t"“/ la(st)|s?ds — 0
0 0
as t — 0+ by (2.3). Hence the mapping f satisfies the condition (b1). Since

0 t
‘a_i(t7u>‘ — |a(t)0uo_1| _ |O-||f£ :u>|7
the mapping f satisfies the condition (c¢). By Theorem 2.1, the Cauchy problem

(2.2) has a unique solution.

EXAMPLE 2.2. In [8], Knezevié¢-Miljanovi¢ considered the Cauchy problem
(1.1), where p is a continuous function satisfying fol lp(t)|t*T7dt < 00, a,0,A € R
with 0 < 0 and A > 0. In the case that a(t) = p(¢)t* in Example 2.1, the problem
(1.1) has a unique solution.

3. Increasing cases

In this section, we consider the case that f(¢,u) in the Cauchy problem (1.3)
is increasing for u. First we show the following lemma. The proof is similar to
that of Lemma 2.2. But, for the sake of completeness, we show the proof.

LEMMA 3.1. Let1 <v <2and X > 0. Let f be a mapping of [0, 1] x (0, 00) into
R satisfying the Carathéodory conditions. Suppose that the mapping f satisfies
the following:

(a2)  There ezists h € R with 0 < h < 1 such that |f(t,u1)| < |f(t,ua)| for
almost every t € [0, h] and for any uy,us € (0,00) with u; < us.
(b2)  There exists « € R with 0 < o < X\ such that

t—0+

lim t/o (1= )2 f(st, (27 — a)(st)*~1)|ds = 0.

Then u is a solution of the Cauchy problem (1.83) if and only if u is a solution
of the equation (2.1) under the assumption ot~ < u(t) < (2A — o)t for any
t € (0,h].

Proof. Let u be a solution of the Cauchy problem (1.3) under the assumption
at'"t < u(t) < 2\ — a)t* ! for any t € (0,h]. We will show that u is a
solution of the equation (2.1). Then u € C0,h] and u satisfies the equation
Dy u(t) = f(t,u(t)) for almost every ¢ in [0, h] and the conditions lim,_,o4 u(t) =
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0 and limy o, w/(£)t*™” = (v — 1)\. Since u € C|[0, h], u is Lebesgue integrable.
Moreover, by the condition (b2), there exists 0 < hg < h such that

ho/o (1 —5)" 72| f(sho, (2X — a)(shg)"™Y)|ds < oco.

Since

/ |/ (s, u(s))lds < / (1 - h_) el

<[ - (1- h—) £ (5, (20 — a)s)ds
= o [ (1= 515 o (22— @) (sho)* s < ox

and Dy, u(t) = f(t,u(t)), Df,u is Lebesgue integrable. By Lemma 2.1, we have
the integral equation

u(t) = F_) /0 (t —s)" "L f(s,u(s))ds + Cit"t + Oyt” 2

(v

for some C7 and Cy. The condition lim; 0y u(t) = 0 implies Co = 0. In fact, by
the conditions (a2) and (b2), we have

< / (t — 57| (s. u(s))|ds

/0 (t — 51 f (s, u(s))ds

< /0 (t— )"V (s, (2\ — a)s"D)|ds
= t”/o (1 —8)" " f(st, (2A — a)(st)")|ds
< t/o (1= )2 F(st, (2\ — a)(st)")|ds — 0

as t — 0. Thus we have

t
ult) = / (t = 8)" " f(s, uls))ds + Cut"L.
0
Then we have

W (t) = m/o (t— )2 f(s, u(s))ds + (v — 1)C.
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By the condition (a2), we have

e e / (1=2)" 7t uls))las

t
< ﬁ /Ot (1 - ;)”_2 £ (s, 2\ — a)s"~1)|ds

t ! v—2 —a)s v—1 s
:m/g (1= )72 (st, (20 — ) (1)) ds.

By the condition (b2), we have

: / 2—v
tlir[ﬁru )t = (v —1)Ch.
Thus C; = A. Therefore u is a solution on [0, hy| of the equation (2.1).

Let u be a solution of the equation (2.1) under the assumption o’ < u(t) <
(2\ — a)t*~! for any t € (0,h]. We will show that u is a solution of the Cauchy
problem (1.3). Since u satisfies the equation (2.1), we have D, u(t) = f(t, u(t)).
By (a2), we have

v—1 1 ! a—1
lu(t)] < A7 + m/o (t =) [f (s u(s))|ds
v—1 L ' —g a—1 s — Sl/—l s

< At +F(1/)/0(t ) S (s, (2A — a)s” ) |d

v

="+ I /0 (L= 98)""|f(st,(2A — a)(st)")|ds
vt [ _ V2 f(s o (s N ds
<Nt s [ (23 = ) st s
By the condition (b2), lim; o, u(t) = 0. Since
u'(t) = ﬁ/o (t —5)" 2 f(s,u(s))ds + (v — 1)\t 2,
we have
WO =0 =0 < s [ (1=3) 7 st
<momp ) (1= e las

t ! v—2 —a)(s v—1 s
:m/o(l_s) [F(st, (21— a)(st)" )| ds.

By the condition (b2), we have lim; o, u/(t)t>™” = (o — 1)A. Therefore u is a
solution on [0, k] of the Cauchy problem (1.3). O
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THEOREM 3.1. Let 1 < v < 2 and A\ > 0. Let f be a mapping of [0,1] x
(0,00) into R satisfying the Carathéodory conditions. Suppose that the mapping
| satisfies the conditions (a2), (b2) and (c). Then there exist hg € R with
0 < hg < h and a unique solution u : (0, ho] — R of the Cauchy problem (1.3)
satisfying at*™t < wu(t) < 2\ — )t*"! for any t € (0, hg).

Proof. By the condition (b2), there exists hy € R with 0 < hg < h such that

sup t/l(l — 5)" 72| f(st, 2\ — a)(st)" " 1)|ds < min {)\ - a, g} L(v).
te(0,ho] Jo B

Let X be a subset of C[0, ho| defined by

w(0) =0, at* ! <u(t) < (2\ — )t for any ¢ € [0, hy]
X = { ¢ | wis differentiable on a right-hand neighboorhood of 0,
. / 2—v __ o
tl_1>ror£ru (Ot =(v—-1)A
Since a mapping t — M\*~! belongs to X, X # (. Let A be an operator of X
defined by

Au(t) = M1+ F(ly) /0 (t —s)" "L f(s,u(s))ds.

Then A(X) C X. Indeed since f satisfies the Carathéodory conditions, Au €
C'[0, ho]. By the condition (a2), we have

|Au(t)| = ‘/\t”1 + L/0 (t—8)" 1 f(s,u(s))ds

() Jy
<0t s [ 22 - @) s

=t [ ot 2 )t s
< a4 ﬁ /0 (1= 872 f (st (20 — a)(st)")|ds

and hence by the condition (b2), Au(0) = 0. By the condition (a2), we have

= =3 =] < o [ (1=3) I ulas

< ﬁ /Ot (1 - ;)”_2 £ (s, 2\ — a)s”~1)|ds

t

_ m/o (1= 8)"2|f(st, (2) — a)(st)*~Y)|ds
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and hence by the condition (b2), lim;_,o, (Au) (¢)t*™ = (v — 1)A. By the condi-
tion (a2), we have

Au(t) = M+ F(ly) /0 (t— )" f(s,u(s))ds

Y B /t(t S (s, (20 — a)s )| ds
0

['(v)
— Fi’/) /0 (1= s)" 1 f(st, (2) — ) (st)"1)|ds
>MT (A —a)t!
=o't
and
Au(t) = M1 + ﬁ/o (t—8)" " f(s,u(s))ds
<\ ﬁ/o (£ = 8)" £ (s, (2\ — a)s”Y)|ds
=M+ Fiyy) /0 (1 —s)" 7 f(st, 2\ — ) (st)"1)|ds

<A TP+ (A=)t
=2\ —a)t" !

for any ¢ € [0, hg]. We will find a fixed point of A. Let ¢ be an operator of X
into C[0, ho] defined by

u(t) :
—Z f

@[U](t) = tu—l’ irte (0’ h(]],
A, ift=0

and
p[X] = {plu] | v e X}
={v|veC0,h,v(0) =Xand a < v(t) < 2\ — « for any ¢ € [0, ho|}.
Then ¢[X] is a closed subset of C[0, hy] and hence it is a complete metric space.
Let ®4 be an operator of ¢[X] into ¢[X] defined by
Paplu] = plAu].

By the mean value theorem, for any uq,us € X there exists a mapping & such
that
of

Ftua(t)) = f(t,uz(t) = 5o (8 () (ua(t) — u2(t))
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and
at’t < min{uy (t), up ()} < €() < max{ug (1), us(t)} < (2X — )tV

for any ¢ € [0, hy]. By the conditions (a2) and (c)

|f(tun(t)) — f(tua(t))] = %(t»f(t))(ul(t) - Uz(t))‘
BIGED) |y
< ) lua (t) — ua(t)]
= . (Qcy)z\fu_la)t ) ur (t) — uz ()]

for almost every ¢ € [0, hg]. In the last inequality, it is noted that at”~! < £(t) <
(2\ — )t~ for any t € [0, hg|. Therefore

|‘I’A<P[U1]( — ®4¢p[us] )\
(s,u1(s)) — f(s,ua(s)))ds

o ¢
b / EI <a8u S| A
< 5( ([ 1= 150502A = @) s ) i) = ol
=a” [ =9 stst @ = st it ) iet] = ol
<0 (s / (1= )21t <2A—a><st>”—1>|ds) Jot] — ol

aF(y) te(0,h]

for any ¢ € (0, ho]. Therefore we have
[@ap[u] = Paglus]|

< ( sup ¢ [ (1= 97| fst, (22 a)(sw“)rds) liler] — elual]

t€(0,ho]

Since %(V) (supte(oﬁo] tfol(l —8)" 2| f(st, (2X\ — a)(st)”*l)|ds> < 1, by the Ba-
nach fixed point theorem, there exists a unique mapping ¢[u] € ¢[X]| such that
D 40lu] = ¢[u]. Then Au = u. The mapping wu is a unique solution of the Cauchy

problem (1.3). O

EXAMPLE 3.1. Consider the Cauchy problem (2.2) in the case that ¢ > 0. In
this case, f(t,u) = a(t)u” for (t,u) € [0,1] x R. Then the mapping f satisfies
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(a2). In fact, let t € [0,1] and uy,uy > 0 with uy < uy. Since uf < ug, we
hzlwe la(t)ug| < |a(t)ug|. Moreover t}ﬂe mapping f satisfies (b2). In fact, since
Jy la(t)|t7dt < oo, we have limy_o4 [ a(s)|s”ds = 0. Then we have (2.3). Since

t/o la(st) ((2A — a)st)?|ds = (2X — a)”t““/o la(st)|s”ds — 0

as t — 0+, the mapping f satisfies the condition (b2). Since

of la(t)ou"t  (u>0)
_(tvu) =
du 0 (u=0)
_Jollf(tw)
U )
the mapping f satisfies the condition (c¢). By Theorem 3.1, the Cauchy problem

(2.2) has a unique solution.

EXAMPLE 3.2. Consider the Cauchy problem

(1) = [(t* 4+ 1) tan™ (u(t))7

(3.1) Vi
lim u(t) =0, lim /() = A,
t—0+ t—0+
where [ > 0 and A > 0. In this case, f(t,u) = W for (t,u) € (0,1] x

[0,00). The equation of (3.1) is considered in [2]. Then the mapping f satisfies
the condition (a2). Moreover the mapping f satisfies the condition (b2). In fact,
let @ € (0, A). Then we have

Y ((st)? + 1) tan~ ((2X\ — a)(st)) [t (st)2+1
/0 \/g ds S /0 ~ - s

™

1)<
5(+)_

|

Therefore we have

! / (st (20 — a)(st)|ds =t / (s) +1>tar;‘s_t<<%—a><st>> e

as t — 0+. Hence the mapping f satisfies the condition (b2). Let 5 > 0. We
have

Blft.w| |of (P +1) (L tan Tt w 1
. ‘%(t,U)‘ =T (5 - 1+u2>
I(t*4+1) B +u?)tantu—u

Vi u(l+ )
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Let g(u) = B(1 +v?)tan"'u — u. Then g(0) = 0. Moreover we have ¢'(u) =
B+ 2Butan~tu — 1. So if § > 1, then ¢’(u) > 0 for u > 0. Thus for § > 1, we
have

PII(E u)l

u

of
ou
Therefore the mapping f satisfies the condition (¢). By Theorem 3.1, the Cauchy
problem (3.1) has a unique solution.

e
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