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Abstract. In this note, we investigate the formula of the sectional class of
classical scrolls and we give an answer of a conjecture proposed in a previous

paper.

1. Introduction

Let (X, L) be a polarized manifold of dimension n. Assume that L is very
ample and let ¢ : X < PV be the morphism defined by |L|. Then ¢ is an
embedding. In this situation, its dual variety XV — (PV)Y is a hypersurface
of N-dimensional projective space except some special types. Then the class
cl(X, L) of (X, L) is defined by the following.

(X, L) = { geg(XV), if XV is a hypersurface in (PV)V

otherwise.

As a generalization of this notion, in [3], we defined the ith sectional class
cl;(X, L) for any ample line bundle L and every integer ¢ with 0 < i < n (see
Definition 2.2).

Here we note the following fact: Assume that L is very ample. Then there
exists a sequence of smooth subvarieties X D X; D --- D X,,_; such that X; €
|L;_1| and dim X; = n—j for every integer j with 1 < j < n—i, where L; = L|x;
and Ly := L. In particular, X,,_; is a smooth projective variety of dimension i
and L,_; is a very ample line bundle on X,,_;. Then cl;(X, L) is equal to the class
of (X,—i, L,—;). This is the reason why we call this invariant the ith sectional
class.

In [4], we calculated the sectional class of special polarized manifolds. For
example, we consider the case where (X, L) is a classical scroll over a smooth
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projective variety Y of dimension m such that n := dim X > 2m. Namely, there
exists an ample vector bundle £ on Y of rank » > m + 1 such that (X, L) =
(Py(€),H(E)), where H(E) is the tautological line bundle. Here we note that
we need the assumption n > 2m in order to define and compare cl;(X, L) and
clom—i(X, L) for every integer ¢ with 0 < i < m. Then we get the following:

(i) If m = 1, then by [4, Example 2.1 (ix)] we have

s1(€), if i =0,

) 29(C) —2+2¢(8), ifi=1,

(1) XL =9 o). ifi—2,
0, ifi >3 and n > 3.

(ii) If m = 2, then by [4, Example 2.1 (x)] we have

[ 55(8), if i = 0,
(51(€) + Ks)s1(€) +2s2(€),  ifi=1,
c2(S) + 3¢1(E)? + 2Ksc (E), if 1 = 2,
(c1(&) + Ks)er(€) + 2¢2(E), if i =3,
c2(E), if 1 =4,
0, if i >5and n > 5.

(2) (X, L) =

\

(iii) If m = 3, then by [4, Example 2.1] we have

( Sg(g), le:O,
353(€) + (51(€) + Ky)sa(€), if i =1,

3s3(E) + 12(s1(€) + Ky )s2(E)
+(51(E) + Ky)s1(E)* + co(Y)s1(€),  ifi=2,

—Cg(Y) + 2C3(5) - 201(5)C2(5)

+4c1(E)2 + 3Ky c1(E)? + 2¢5(Y)ey (€), ifi =3,
(3) cl(X.I) =
303(5) + 12(01(5) + Ky)CQ(g)

+(e1(&) + Ky)a(€)? + ca(Y)er(€),  ifi=4,

3¢5(E) + (c1(E) + Ky )ea(E), if i =5,
c3(E), if i = 6,
0, ife>17

N and n > 7.
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The above equations show that there exists a relation between cl;(X, L) and
clom—i(X, L). Here we note that for every integer ¢ with 0 <7 < m, cl;(X, L) can
be written by the Segre classes s1(£),. .., sm(E).

DEFINITION 1.1. For every integer ¢ with 0 < ¢ < m, we define the polynomial
Fi(ti,...,tm) € Zlty, ..., t,) such that the following equality holds.

Fi(s1(€),.. ., sm(€)) = cli(X, L).
Then we see from the above that if m =1, 2 and 3, then
clj(X, L) = Fom—j(c1(E), .. em(E))

for m < 7 < 2m. In general, we can prove the following theorem, which was
proposed in [4] and is the main result of this paper.

THEOREM 1.1. Let a polarized manifold (X, L) be a classical scroll over a
smooth projective variety Y with dim X = n and dimY = m. Let £ be an ample
vector bundle on Y such that X = Py(E) and L = H(E). Let Fi(ty,...,tm)
be the polynomual defined in Definition 1.1 for every integer i with 0 < i < m.
Assume that n > 2m. Then for any integer j with m < j < 2m we have

Clj(X, L) = Fgm_j<61<g), . ,Cm(g))
In particular

Fn(51(E), .-, $m(E)) = Fnl(c1(E), ..., cm(E)).

By Theorem 1.1 we can easily calculate cly,—;(X, L) (resp. cl;(X, L)) if we
are able to calculate cl;(X, L) (resp. cly, (X, L)). By this relation we expect
that we can get some useful information about cly,,—;(X, L) (resp. cl;(X, L))
from several properties of cl;(X, L) (resp. clop,—i(X, L)). Moreover if i = m, then
we have cl,, (X, L) = Fi,(c1(E),...,cm(E)) = Fn(s1(E), ..., 5m(E)) by Theorem
1.1. So cl,,(X, L) may have special and interesting properties. We will study
these on another occasion.

2. Preliminaries

NOTATION 2.1. For a real number m and a non-negative integer n, let

_f mm=1)---(m—n+1) ifn>1,
[M"’{ 1 ifn=0.
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For any non-negative integer n,

ol n], ifn>1,
T 1 ifn=0.

Assume that m and n are integers. Then we put

m\ | e p >0,
n) 0 ifn<0.
We note that (?):Oif0§m<norn<0,and (Tg):l.

DEFINITION 2.1. (See [1, Definition 3.1].) Let (X, L) be a polarized manifold
of dimension n, and ¢ an integer with 0 < ¢ < n. Then the ith sectional Fuler
number e;(X, L) of (X, L) is defined by the following:

i

ei(X, L) =Y (-1) (” o z+ = 1>ci_l(X)L”‘i+’.

=0

DEFINITION 2.2. (See [3, Definitions 2.8 and 2.9]. See also [3, Remark 2.6].)
Let (X, L) be a polarized manifold of dimension n and ¢ an integer with 0 < ¢ < n.
Then the ith sectional class of (X, L) is defined by the following,.

eo(X, L), ifi=0,
ci(X,L) =< (—D{ei(X,L) —2eo(X,L)}, ifi =1,
(—1){ei(X, L) — 26, _1(X, L) +e; (X, L)}, it 2<i<n.

DEFINITION 2.3. Let Y be a smooth projective variety of dimension m and £
a vector bundle of rank r on Y.
(i) The Chern polynomial ¢;(€) is defined by (&) = Z ci(E.
i>0
(ii) For every integer j with j > 0, the jth Segre class s;(F) of F is defined
by the following equation: c;(FY)s;(F) = 1, where ¢;(F") is the Chern
polynomial of FV and s;(F) = -, s;(F)t.

REMARK 2.1.

(i) Let Y be asmooth projective variety and F a vector bundle on X. Let §;(F)
be the Segre class which is defined in [5, Chapter 3]. Then s;(F) = §;(F").

(ii) For every integer ¢ with 1 < i, s;(F) can be written by using the Chern
classes ¢;(F) with 1 < j < 4. (For example, s1(F) = ¢1(F), s2(F) =
c1(F)? — ca(F), and so on.)



THE SECTIONAL CLASSES OF CLASSICAL SCROLLS 29

NOTATION 2.2. Let (X, L) be an n-dimensional classical scroll over a smooth
projective variety Y of dimension m. Let £ be an ample vector bundle of rank
ron Y such that X =Py () and L = H(E). Let p: X — Y be the projection.
Then n = m +r — 1. In this paper we assume that r > m + 1, that is, n > 2m.

PROPOSITION 2.1. Let (X, L) be a classical scroll over a smooth projective
vartety Y of dimension m. We use notations in Notation 2.2. Then for every
integer i with 0 <1 < n the following holds.

6.0 =2 S0 (" e a 0)se)

t=0 k=0 i—t—k

Proof. See the first part of the proof in [2, Theorem 3.1]. O

3. Main result

DEFINITION 3.1. Let Y be a smooth projective variety of dimension m and £
a vector bundle on Y. Then for every integer ¢« with 0 < ¢ < m we define the
polynomial ¢;(zo, ..., x;) € Z[xy, ..., x;] which satisfies the following,.

(4) Cl(g) :tl(So((g),,Sz(g))

For example, we see that to(zg) = 1, t1(xg, 11) = 21, t2(x0, 11, 72) = 23 — x5 and
SO on.

PROPOSITION 3.1. Let Y be a smooth projective variety of dimension m and
E a vector bundle over Y. For every integer i with 0 < i < m, we have s;(€) =

ti(Co(g), Ce ,Cz(g))

Proof. We prove this by induction.

(I) If ¢ = 0, then this is true because ¢o(€) = s0(€) = 1.

(IT) Assume that the assertion holds for every i with i < k — 1. So we consider
the case i = k. Then by Definition 2.3 (ii)

) 3 al@)sE) <o

Hence by (5) we have

te(50(E), .- 55(E)) = cx(E)
= (=" D (=1 a(€)s;(€)

it+j=k
j=1
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= (=DM Y (FD)'tlso(E), - 5i(E))s5 ().
i+j=Fk
21
In particular, we have
(6) te(wo, . k) = (=1 > (=) 'ti(xo, .. ).
i+j=k
Jj=1
On the other hand, we see from the induction hypothesis and (6) that
si(€) == Y (~1)'c(€)s;(€)
i+j=k
i>1
= (DM Y (C1PaE (@), i (€))

i+j=k
i>1

=tr(co(E),...,ck(E)).

So we get the assertion. O

The following theorem which is Theorem 1.1 in Introduction is the main result
of this note.

THEOREM 3.1. Let (X, L) be an n-dimensional classical scroll over a smooth
projective variety Y of dimension m such that n > 2m. Let F;(ty,...,t,) be the
polynomial defined in Definition 1.1 for every integer i with 0 < i < m. We use
notations in Notation 2.2. Then for any integer j with m < j < 2m we have

Clj(X, L) = F2m7j<C1(g), .. ,Cm(g))
In particular
Fr(s1(&)y. . 8m(E)) = Frnlc1(E), ... em(E)).
Proof. First we prove the following.

CLAIM 3.1 For any integer i with 0 <1 < m, we have

eom—2-i(X, L)
=S () D€V )sE) + i = e ),
€2m—_1—i (X, L)

S 0 ([ T €)Y )s(€) + (= (),

L . i—1—t—1
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€2m—i(X7 L)
i—2 -2t ot 9
=> }:(—ay-%i(, 0 l)cmtAgvﬁgﬂﬁsxg)+(nz—i%—DcmOﬂ.
t=0 1=0 tTem b
(We note that if i = 0 (resp. i = 0, 1) ther; S S (= ()
% t i— m—t—
Cm-i-1(EV)er(Y)si(E€) = 0 (resp. 323753575 (=1 ([5572)
et 1(E)ei(Y)si(€) = 0).)
Proof. (A) First we treat es,, o ;(X, L). Then by Proposition 2.1
eam—2-i(X, L)
2m—2—1i /2m—2—i—t m + 9
_ 2m—2—i—t—k —l= v
=> ( > -1 (o oy )t >ct<Y>sm_k_t<s>) .
t=0 k=0
Here we note that
(7) Im—2—i—t>k
We set

B(i k1) = (—1)2m-2-ith (2m me k) (E)(Y )i 1(E).

If E(i, k,t) # 0, then the following two conditions hold by noting (7).

(8) 0<k<m.

(9) 0<t<m.

(10) k+t < min{m,2m — 2 — i}.
Ifm—t—2>0andm—t—2<2m—2—1—1t—k, then (er_”;_t;i_k):().

Hence if E(i,k,t) #0,then m —t—2<0orm—t—2>2m—2—i—t—k,
that is,

(11) t>m—2 or k>m—i.

(A.1) The case where 0 <i < m — 3.
We see from (8), (9), (10) and (11) that eg,—o—;(X, L) is the sum of E(i, k,t) in
the range of the following (k,t).

k=m—i, t=ii—1,...,1,0

k=0,1,2, t=m-2, k=m—i+1, t—i—1,....1,0
ALDL k=01, t=m—1, (A12)
k=0, t=m
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The sum of E(i, k,t) in the range of the case (A.1.1) is the following.

12 i mZtE (i, k,t)
= (aprzmao (MO A TR Yo

+ (—1)pmE <2m 1712__(:'1__( 2)__22) 1) (€ )em—a(Y)s1(E)

—2) -2
2m 2—i—m+2-2 \%
<2m—2—l— )—2)02(5 Jem-2(Y)
—(m—1)—2
2m 2—i—m+1-0
<2m—2—l— —1)- 0)0’" 1¥)s1(8)
—(m—1)—2
2m 2—i—m+1-—1 Y
<2m—2—l— 1) - 1)01(5 Jem-1(Y)

:(—1)””( 0 Z,)Cm_z(Y)Sz(g)

et (0 Jateenamse)
w0 Yl e
et (T e
(T Jate e )
(7 o)

= 1(Y)s1(E) + c1(EV)em1(Y) + (m —i — 1) (V)
=(m—1—=19)c,(Y).

On the other hand, the sum of E(i, k,t) in the range of the case (A.1.2) is

the following.

m

2m 2—i—t—k m—t—2 V
Z (2m—2—z’—t—k:)ck(£ Jee(Y)smk-t(€)

k=m—i t=0

i m—t
)2m— 2—i—t—k m—t—2 ,
Z Z (Qm_Q—i—t_k>6k(5 )Ct(Y)Sm_k_t(g).
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Here we put j := k — (m —4). Then by t <i < m — 3 we have

_ 1\2m—2—i—t—k m—t—2 y
t=0 km_i( b (Qm 9 it k> ck(EV) e (Y)Sm_r—t(E)
i i—t
— _1\m—2—t—j m—1t—2 ‘ v N
t—0 JZ:;( 1> (m -2 —t— ]) Cj+mfz(5 )Ct(Y)Sl,jft(g)
i i—t

0 (T eV sy,

Hence we have
(13) Com—2—i X, L)

= i i(—l)m”j (m T 2) Cjrm—i(E7)ee(Y)si—j-t(€)

t=0 j=0 J
+(m—1—1d)en(Y).

(A.2) The case where i = m — 2.
We see from (8), (9), (10) and (11) that ea,—o—;(X, L) is the sum of E(m—2, k, t)
in the range of the following (k,t).

k=2, t=m-—2m-—3,...,1,0
k=01 t=m-2, k=3 t=m—3,....1,0
(A21){ k=0,1, t=m—1, (A.2.2) _
k=0, t=m.
k=m, t=0

First we calculate the sum of E(m — 2, k,t) in the range of the case (A.2.1).

(14)

zl:E(m—Z,k,m—Q)—f— zm: gE(m—Q,k,t)

__ 2m—2—(m—2)—m+2—0 - T;L - (m - 2) -2

= =y (2m—2— m—z)—(m—z)—o)CmQ(Y)32(5>

+ (_1)2m727(m72)7m+271 ( ;” —(m—2

+ (_ 1)2m727(m72)7m+170 (
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m—(m—1)—2
2m—2—(m—2)—(m—1)—1

(e g)enl)

T (1) miie ( )clwcm_m

0

= (17 (§)ema)sa(®) + (1) () er€penat)si(€)

-2

(e )+ 18 e denms 1)+ (10 (et

= Cm_l(Y)81<g) + cl(gv)cm_l(Y) + Cm(Y>
=cn(Y).
Next we calculate the sum of E(m — 2, k,t) in the range of the case (A.2.2).

(15) i E(m —2,k,1)

t=0 j=0

(Here we set j := k — 2 in the above equations.)
Since i = m — 2, we see from (14) and (15) that

(16) 62m_2_i(X, L)

= i ii(—l)m_Q_t_j (m —h 2) Cjem—i(E")e(Y)si—j—i(E)

(A.3) The case where i =m — 1.
We see from (8), (9), (10) and (11) that ea,—o—;(X, L) is the sum of E(m—1, k, t)
in the range of the following (k,t).
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The sum of E(m — 1,k,t) in the range of the case (A.3.1) is obtained as
follows.

(17)
Y E(m —1,0,1)
N 2m—2—(m—1)—m+2—0 m—(m—2)—2 v
= (-1 <2m—2—(m—1)—(m—2)—2)c2(8 Jem-2(Y)
2m—2—(m—1)—m+1-0 m—(m—1)—2
(e <2m—2— (m—1)— (m—1) —0)0m_1<y)81(5)

0 ()€ enatse)
(e €)
=cm-1(Y)s1(E).

On the other hand, we get the sum of E(m — 1, k,t) in the range of the case
(A.3.2) as follows.

(18)
m—1m—1—k
E(m —1,k,t)
k=1 t=0
m—2m—1—t m ¢ 9
_ 1 2m—2—(m—1)—t—k -t v Y)s ni(E
> > (1)t ) AV E)
m—2m—2—t
= Lyt (U2 ey (&
- (-1) oD e Eal)sm )
t=0 j5=0
m—1m—1—t m—1t—9
- ()€l s (6).
t=0 ;=0
We note that in the final step of the above equalities we use (mT;t_i]) = 0 for
(t,7) =(0,m—1),(1,m—2),...,(m —1,0). Moreover
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We also note that in the final step of the above equalities

m—t-2 7\ | ("7 ift <m—2,
m—2—t—j) | (") -1 ift=m-1

(Here we note that if t = m — 1, then j = 0 in this case.)
Hence we see from (17), (18) and (19) that for i = m — 1

(20) 62m—2—i(X7 L)

i it

S (M € s dE)

t=0 j=0 J
+(m—1—i)en(Y).

(A.4) The case where i = m.
We see from (8), (9), (10) and (11) that egy—2—;(X, L) is the sum of E(m, k,t)
in the range of the following (k,t).

k=0, t=m-—2m-—3,...,1,0
k=1, t=m—3,...,1,0,
=m-2, t=0

gt M —1—2
- ] PR PICITISRES
m—t—2
m—2—t—j

e )oY sy,

We note that in the final step of the above equalities we use (mTSt:tE]) =0

for (t,7) = (0,m),(1,m —1),...,(m,0),(0,m —1),(L,m—2),...,(m — 1,0).
On the other hand

(22) < m—t—2 ):{ ng) Cift<m-2,

m—2—t—j )= (1) ift=m—1,m.
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(Here we note that if ¢t = m — 1 (resp. t = m), then j = 0,1 (resp. 7 = 0) in this
case.)
Hence we see from (21) and (22) that for i = m

(23)  eom_o- i(X L)

v L m—1t—2
_ Z Z o2t <m o4 j) Cipm—i(EV)er(Y)si—j4(E)
0 j=0

= 3 (—nm== (m o 2) Cjrm—i(E7)er(Y)si—jt(€)

t=0 j=0 J

—|—' C@—1(Y)81(5) + c1(EV)em1(Y) — en(Y)

=X 3 G <m - 2) Cjim—i(EV)e(Y)si—j—4(E)

=0 j=0 J
+(m—1i—1)cu(Y).
By (13), (16), (20) and (23) for any ¢ with 0 < i < m we have

o s(X.0) = 33 (1) ("7 7)o €5 t€)

t=0 5=0 J
+(m—1—1)c,(Y).
Furthermore we set [ := ¢ —t — j. Then

i: i(—nm—?—t—j (m —i- 2) Cimai(EV)e(Y)si_;_4(E)

J

- m—g—ipl (M — 1 =2 v
=3 (T e a0
_ ; ;(—1)’” (”Z__tt__ ZQ) et 1 (E)r(V)si(E).

Hence for every integer ¢ with 0 < i <m

(24) €om—2—3 (X, L)

=> i(—ni—t (”7 —i 2) Cm1-1(E)c(Y)s1(E) + (m —i — 1)en(Y).

t=0 1=0 i—t—1

B) Next we consider eg,,—1(X, L) and eg,,(X,L). Then by [2, Theorem 3.1
3.1.1)] we have

25 eam—1(X, L) = mecy,(Y),

(
(
(25)
(26) eam (X, L) = (m+ 1), (V).
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(C) By (24), (25) and (26), we get the assertion of Claim 3.1. O

Here we set

Ei(CQ(E vy Ci(E)i Sm—i(E)y . 5m(E))
o (m—t—2
=33 (7720 )a©@am)sm e,
Then by Proposition 2.1 we have
(27) Ei(co(E)y...,ci(E);8mi(E)y. ., 8m(E)) = e;( X, L).
Moreover by Claim 3.1 we have
(28) eas i(X, L)
= FEi(50(E),...,8(E);emi(E)y. o yem(E)) + (m —i—1)e,(Y),
(29) egm_1-4(X, L)
= Ei1(s0(&), -, 5i-1(E); emit1(E), -, cm(E)) + (m = i)em(Y),
(30) e2m—i(X, L)
=FE; 5(50(E), ..., 8-2(E); em_ira(&), .- yem(E)) + (m —i+ 1)e,(Y)
for every integer ¢ with 0 < i < m. By (27) and Definitions 1.1 and 2.2 we get
(31) Fi(s1(E),...,sm(E))
=cly(X, L)
= (—1)"4Ei(co(E),...,ci(E); Smi(E), ..., 5m(E))
—2E; 1(co(E), .. ci1(E); Sm—iz1(E), .. 5m(E))
+ Ei2(co(E), .-, cim2(E); Sm-ir2(E), ..., sm(E))}
= (=) Ei(to(s0(&)), ..., t:(50(E), ..., 8:/(E)); SmilE), ..., 8m(E))
= 2E;1(to(50(€)), - - - tima(50(E)s - - 8i-1(E); Sm—i41(E), - - 5m(E))
+ Eio(to(s0(E)), .-y tia(s0(E), ..y 8i-2(€)); Sm—i2(E), ...y sm(E))}

for every integer i with 0 < ¢ < m. Here t;(zo, ..., x;) denotes the polynomial
which was defined in Definition 3.1.

On the other hand we see from Proposition 3.1, (28), (29), (30) and (31) that
for every integer ¢ with 0 <i <m

Clgm_l‘ (X, L)

= (=) {epni(X, L) — 2eam_i1(X,L) + eomi_a(X,L)}
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() Esa(50(E), -1 51-2(E): miin(€)s 1 em(E))
OB A(30(E)r 5 1(E)i i (E), - enlE))
+ Ei(s0(E), ..., 8:(E);cm—i(E),...,cm(E))
+(m—i+1)e,(Y)=2(m—d)en(Y)+ (m—i—1)e,(Y)}
= (=D Ei(s0(E);s .., 5(E); emi(E), ... em(E))
—2E; 1(50(E), -8 1(E); Cm—iz1(E), .., em(E))
+ Ei2(50(E), -1 8im2(E); em—it2(E), ... am(E))}
= (=D{Ei(to(co(E)), - - tilco(E), - - il €)); cmi(E), -, cm(E))
—2E; 1(to(co(€)), -+ - s tica(co(E), - - -5 cima(€)); emaita(€), -, em(E))
+ Ei—a(to(co(£)), - .- ti- 2(00(5) 1 €2(E))i emeina(E), - em(E))}
= Fi(i(€), . 7Cm(5))

Therefore we get the assertion of Theorem 3.1. O

Finally we note the following.

PROPOSITION 3.2. Let (X, L) be an n-dimensional classical scroll over a
smooth projective variety Y of dimension m such that n > 2m + 1. Then
cly(X, L) =0 for every integer i with 2m + 1 <i <mn.

Proof. By [2, Theorem 3.1 (3.1.1)], we see that e;(X, L) = (j —m+1)c,,(Y) for
every integer j with 7 > 2m — 1. Hence

(X, L) = (—1)(ei(X, L) — 2,1 (X, L) + e;_o(X, L)) = 0.

This completes the proof. O
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