A PROPERTY FOR THE FORMULA OF THE SECTIONAL CLASSES OF CLASSICAL SCROLLS

By
Yoshiaki Fukuma

(Received February 23, 2017; Revised August 9, 2017)

Abstract

In this note, we investigate the formula of the sectional class of classical scrolls and we give an answer of a conjecture proposed in a previous paper.

1. Introduction

Let (X, L) be a polarized manifold of dimension n. Assume that L is very ample and let $\varphi: X \hookrightarrow \mathbb{P}^{N}$ be the morphism defined by $|L|$. Then φ is an embedding. In this situation, its dual variety $X^{\vee} \rightarrow\left(\mathbb{P}^{N}\right)^{\vee}$ is a hypersurface of N-dimensional projective space except some special types. Then the class $\operatorname{cl}(X, L)$ of (X, L) is defined by the following.

$$
\operatorname{cl}(X, L)= \begin{cases}\operatorname{deg}\left(X^{\vee}\right), & \text { if } X^{\vee} \text { is a hypersurface in }\left(\mathbb{P}^{N}\right)^{\vee} \\ 0, & \text { otherwise } .\end{cases}
$$

As a generalization of this notion, in [3], we defined the i th sectional class $\mathrm{cl}_{i}(X, L)$ for any ample line bundle L and every integer i with $0 \leq i \leq n$ (see Definition 2.2).

Here we note the following fact: Assume that L is very ample. Then there exists a sequence of smooth subvarieties $X \supset X_{1} \supset \cdots \supset X_{n-i}$ such that $X_{j} \in$ $\left|L_{j-1}\right|$ and $\operatorname{dim} X_{j}=n-j$ for every integer j with $1 \leq j \leq n-i$, where $L_{j}=\left.L\right|_{X_{j}}$ and $L_{0}:=L$. In particular, X_{n-i} is a smooth projective variety of dimension i and L_{n-i} is a very ample line bundle on X_{n-i}. Then $\mathrm{cl}_{i}(X, L)$ is equal to the class of $\left(X_{n-i}, L_{n-i}\right)$. This is the reason why we call this invariant the i th sectional class.

In [4], we calculated the sectional class of special polarized manifolds. For example, we consider the case where (X, L) is a classical scroll over a smooth

[^0]projective variety Y of dimension m such that $n:=\operatorname{dim} X \geq 2 m$. Namely, there exists an ample vector bundle \mathcal{E} on Y of rank $r \geq m+1$ such that $(X, L) \cong$ $\left(\mathbb{P}_{Y}(\mathcal{E}), H(\mathcal{E})\right)$, where $H(\mathcal{E})$ is the tautological line bundle. Here we note that we need the assumption $n \geq 2 m$ in order to define and compare $\mathrm{cl}_{i}(X, L)$ and $\mathrm{cl}_{2 m-i}(X, L)$ for every integer i with $0 \leq i \leq m$. Then we get the following:
(i) If $m=1$, then by [4, Example 2.1 (ix)] we have
\[

\operatorname{cl}_{i}(X, L)= $$
\begin{cases}s_{1}(\mathcal{E}), & \text { if } i=0 \tag{1}\\ 2 g(C)-2+2 c_{1}(\mathcal{E}), & \text { if } i=1 \\ c_{1}(\mathcal{E}), & \text { if } i=2 \\ 0, & \text { if } i \geq 3 \text { and } n \geq 3\end{cases}
$$
\]

(ii) If $m=2$, then by [4, Example $2.1(\mathrm{x})$] we have
(2) $\quad \operatorname{cl}_{i}(X, L)= \begin{cases}s_{2}(\mathcal{E}), & \text { if } i=0, \\ \left(s_{1}(\mathcal{E})+K_{S}\right) s_{1}(\mathcal{E})+2 s_{2}(\mathcal{E}), & \text { if } i=1, \\ c_{2}(S)+3 c_{1}(\mathcal{E})^{2}+2 K_{S} c_{1}(\mathcal{E}), & \text { if } i=2, \\ \left(c_{1}(\mathcal{E})+K_{S}\right) c_{1}(\mathcal{E})+2 c_{2}(\mathcal{E}), & \text { if } i=3, \\ c_{2}(\mathcal{E}), & \text { if } i=4, \\ 0, & \text { if } i \geq 5 \text { and } n \geq 5 .\end{cases}$
(iii) If $m=3$, then by [4, Example 2.1] we have
$(3) \quad \mathrm{cl}_{i}(X, L)= \begin{cases}s_{3}(\mathcal{E}), & \text { if } i=0, \\ 3 s_{3}(\mathcal{E})+\left(s_{1}(\mathcal{E})+K_{Y}\right) s_{2}(\mathcal{E}), & \text { if } i=1, \\ 3 s_{3}(\mathcal{E})+12\left(s_{1}(\mathcal{E})+K_{Y}\right) s_{2}(\mathcal{E}) \\ +\left(s_{1}(\mathcal{E})+K_{Y}\right) s_{1}(\mathcal{E})^{2}+c_{2}(Y) s_{1}(\mathcal{E}), & \text { if } i=2, \\ -c_{3}(Y)+2 c_{3}(\mathcal{E})-2 c_{1}(\mathcal{E}) c_{2}(\mathcal{E}) \\ +4 c_{1}(\mathcal{E})^{3}+3 K_{Y} c_{1}(\mathcal{E})^{2}+2 c_{2}(Y) c_{1}(\mathcal{E}), & \text { if } i=3, \\ 3 c_{3}(\mathcal{E})+12\left(c_{1}(\mathcal{E})+K_{Y}\right) c_{2}(\mathcal{E}) \\ +\left(c_{1}(\mathcal{E})+K_{Y}\right) c_{1}(\mathcal{E})^{2}+c_{2}(Y) c_{1}(\mathcal{E}), \\ 3 c_{3}(\mathcal{E})+\left(c_{1}(\mathcal{E})+K_{Y}\right) c_{2}(\mathcal{E}), & \text { if } i=4, \\ c_{3}(\mathcal{E}), & \text { if } i=5, \\ 0, & \text { if } i=6, \\ 0, & \text { if } i \geq 7 \\ \text { and } n \geq 7 .\end{cases}$

The above equations show that there exists a relation between $\mathrm{cl}_{i}(X, L)$ and $\mathrm{cl}_{2 m-i}(X, L)$. Here we note that for every integer i with $0 \leq i \leq m, \mathrm{cl}_{i}(X, L)$ can be written by the Segre classes $s_{1}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})$.

DEFINITION 1.1. For every integer i with $0 \leq i \leq m$, we define the polynomial $F_{i}\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{Z}\left[t_{1}, \ldots, t_{m}\right]$ such that the following equality holds.

$$
F_{i}\left(s_{1}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)=\mathrm{cl}_{i}(X, L)
$$

Then we see from the above that if $m=1,2$ and 3 , then

$$
\operatorname{cl}_{j}(X, L)=F_{2 m-j}\left(c_{1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)
$$

for $m \leq j \leq 2 m$. In general, we can prove the following theorem, which was proposed in [4] and is the main result of this paper.

THEOREM 1.1. Let a polarized manifold (X, L) be a classical scroll over a smooth projective variety Y with $\operatorname{dim} X=n$ and $\operatorname{dim} Y=m$. Let \mathcal{E} be an ample vector bundle on Y such that $X \cong \mathbb{P}_{Y}(\mathcal{E})$ and $L=H(\mathcal{E})$. Let $F_{i}\left(t_{1}, \ldots, t_{m}\right)$ be the polynomial defined in Definition 1.1 for every integer i with $0 \leq i \leq m$. Assume that $n \geq 2 m$. Then for any integer j with $m \leq j \leq 2 m$ we have

$$
\operatorname{cl}_{j}(X, L)=F_{2 m-j}\left(c_{1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)
$$

In particular

$$
F_{m}\left(s_{1}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)=F_{m}\left(c_{1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)
$$

By Theorem 1.1 we can easily calculate $\mathrm{cl}_{2 m-i}(X, L)\left(\right.$ resp. $\left.\mathrm{cl}_{i}(X, L)\right)$ if we are able to calculate $\operatorname{cl}_{i}(X, L)$ (resp. $\left.\operatorname{cl}_{2 m-i}(X, L)\right)$. By this relation we expect that we can get some useful information about $\mathrm{cl}_{2 m-i}(X, L)$ (resp. $\left.\mathrm{cl}_{i}(X, L)\right)$ from several properties of $\mathrm{cl}_{i}(X, L)\left(\right.$ resp. $\left.\mathrm{cl}_{2 m-i}(X, L)\right)$. Moreover if $i=m$, then we have $\operatorname{cl}_{m}(X, L)=F_{m}\left(c_{1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)=F_{m}\left(s_{1}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)$ by Theorem 1.1. $\operatorname{So~}_{\mathrm{cl}_{m}}(X, L)$ may have special and interesting properties. We will study these on another occasion.

2. Preliminaries

NOTATION 2.1. For a real number m and a non-negative integer n, let

$$
[m]_{n}:=\left\{\begin{array}{cl}
m(m-1) \cdots(m-n+1) & \text { if } n \geq 1 \\
1 & \text { if } n=0
\end{array}\right.
$$

For any non-negative integer n,

$$
n!:=\left\{\begin{array}{cl}
{[n]_{n}} & \text { if } n \geq 1 \\
1 & \text { if } n=0
\end{array}\right.
$$

Assume that m and n are integers. Then we put

$$
\binom{m}{n}:=\left\{\begin{array}{cc}
\frac{[m]_{n}}{n!} & \text { if } n \geq 0 \\
0 & \text { if } n<0
\end{array}\right.
$$

We note that $\binom{m}{n}=0$ if $0 \leq m<n$ or $n<0$, and $\binom{m}{0}=1$.
DEFINITION 2.1. (See [1, Definition 3.1].) Let (X, L) be a polarized manifold of dimension n, and i an integer with $0 \leq i \leq n$. Then the i th sectional Euler number $e_{i}(X, L)$ of (X, L) is defined by the following:

$$
e_{i}(X, L):=\sum_{l=0}^{i}(-1)^{l}\binom{n-i+l-1}{l} c_{i-l}(X) L^{n-i+l} .
$$

DEFINITION 2.2. (See [3, Definitions 2.8 and 2.9]. See also [3, Remark 2.6].) Let (X, L) be a polarized manifold of dimension n and i an integer with $0 \leq i \leq n$. Then the ith sectional class of (X, L) is defined by the following.

$$
\operatorname{cl}_{i}(X, L)= \begin{cases}e_{0}(X, L), & \text { if } i=0 \\ (-1)\left\{e_{1}(X, L)-2 e_{0}(X, L)\right\}, & \text { if } i=1 \\ (-1)^{i}\left\{e_{i}(X, L)-2 e_{i-1}(X, L)+e_{i-2}(X, L)\right\}, & \text { if } 2 \leq i \leq n\end{cases}
$$

DEFINITION 2.3. Let Y be a smooth projective variety of dimension m and \mathcal{E} a vector bundle of rank r on Y.
(i) The Chern polynomial $c_{t}(\mathcal{E})$ is defined by $c_{t}(\mathcal{E})=\sum_{i \geq 0} c_{i}(\mathcal{E}) t^{i}$.
(ii) For every integer j with $j \geq 0$, the j th Segre class $s_{j}(\mathcal{F})$ of \mathcal{F} is defined by the following equation: $c_{t}\left(\mathcal{F}^{\vee}\right) s_{t}(\mathcal{F})=1$, where $c_{t}\left(\mathcal{F}^{\vee}\right)$ is the Chern polynomial of \mathcal{F}^{\vee} and $s_{t}(\mathcal{F})=\sum_{j \geq 0} s_{j}(\mathcal{F}) t^{j}$.

REMARK 2.1.

(i) Let Y be a smooth projective variety and \mathcal{F} a vector bundle on X. Let $\tilde{s}_{j}(\mathcal{F})$ be the Segre class which is defined in [5, Chapter 3]. Then $s_{j}(\mathcal{F})=\tilde{s}_{j}\left(\mathcal{F}^{\vee}\right)$.
(ii) For every integer i with $1 \leq i, s_{i}(\mathcal{F})$ can be written by using the Chern classes $c_{j}(\mathcal{F})$ with $1 \leq j \leq i$. (For example, $s_{1}(\mathcal{F})=c_{1}(\mathcal{F}), s_{2}(\mathcal{F})=$ $c_{1}(\mathcal{F})^{2}-c_{2}(\mathcal{F})$, and so on.)

NOTATION 2.2. Let (X, L) be an n-dimensional classical scroll over a smooth projective variety Y of dimension m. Let \mathcal{E} be an ample vector bundle of rank r on Y such that $X=\mathbb{P}_{Y}(\mathcal{E})$ and $L=H(\mathcal{E})$. Let $p: X \rightarrow Y$ be the projection. Then $n=m+r-1$. In this paper we assume that $r \geq m+1$, that is, $n \geq 2 m$.

Proposition 2.1. Let (X, L) be a classical scroll over a smooth projective variety Y of dimension m. We use notations in Notation 2.2. Then for every integer i with $0 \leq i \leq n$ the following holds.

$$
e_{i}(X, L)=\sum_{t=0}^{i} \sum_{k=0}^{i-t}(-1)^{i-t}\binom{m-t-2}{i-t-k} c_{k}(\mathcal{E}) c_{t}(Y) s_{m-k-t}(\mathcal{E})
$$

Proof. See the first part of the proof in [2, Theorem 3.1].

3. Main result

DEFINITION 3.1. Let Y be a smooth projective variety of dimension m and \mathcal{E} a vector bundle on Y. Then for every integer i with $0 \leq i \leq m$ we define the polynomial $t_{i}\left(x_{0}, \ldots, x_{i}\right) \in \mathbb{Z}\left[x_{0}, \ldots, x_{i}\right]$ which satisfies the following.

$$
\begin{equation*}
c_{i}(\mathcal{E})=t_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E})\right) \tag{4}
\end{equation*}
$$

For example, we see that $t_{0}\left(x_{0}\right)=1, t_{1}\left(x_{0}, x_{1}\right)=x_{1}, t_{2}\left(x_{0}, x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}$ and so on.

Proposition 3.1. Let Y be a smooth projective variety of dimension m and \mathcal{E} a vector bundle over Y. For every integer i with $0 \leq i \leq m$, we have $s_{i}(\mathcal{E})=$ $t_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E})\right)$.

Proof. We prove this by induction.
(I) If $i=0$, then this is true because $c_{0}(\mathcal{E})=s_{0}(\mathcal{E})=1$.
(II) Assume that the assertion holds for every i with $i \leq k-1$. So we consider the case $i=k$. Then by Definition 2.3 (ii)

$$
\begin{equation*}
\sum_{\substack{i+j=k \\ i \geq 0, j \geq 0}}(-1)^{i} c_{i}(\mathcal{E}) s_{j}(\mathcal{E})=0 . \tag{5}
\end{equation*}
$$

Hence by (5) we have

$$
\begin{aligned}
t_{k}\left(s_{0}(\mathcal{E}), \ldots, s_{k}(\mathcal{E})\right) & =c_{k}(\mathcal{E}) \\
& =(-1)^{k+1} \sum_{\substack{i+j=k \\
j \geq 1}}(-1)^{i} c_{i}(\mathcal{E}) s_{j}(\mathcal{E})
\end{aligned}
$$

$$
=(-1)^{k+1} \sum_{\substack{i+j=k \\ j \geq 1}}(-1)^{i} t_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E})\right) s_{j}(\mathcal{E})
$$

In particular, we have

$$
\begin{equation*}
t_{k}\left(x_{0}, \ldots, x_{k}\right)=(-1)^{k+1} \sum_{\substack{i+j=k \\ j \geq 1}}(-1)^{i} t_{i}\left(x_{0}, \ldots, x_{i}\right) x_{j} . \tag{6}
\end{equation*}
$$

On the other hand, we see from the induction hypothesis and (6) that

$$
\begin{aligned}
s_{k}(\mathcal{E}) & =-\sum_{\substack{i+j=k \\
i \geq 1}}(-1)^{i} c_{i}(\mathcal{E}) s_{j}(\mathcal{E}) \\
& =(-1)^{k+1} \sum_{\substack{i+j=k \\
i \geq 1}}(-1)^{j} c_{i}(\mathcal{E}) t_{j}\left(c_{0}(\mathcal{E}), \ldots, c_{j}(\mathcal{E})\right) \\
& =t_{k}\left(c_{0}(\mathcal{E}), \ldots, c_{k}(\mathcal{E})\right)
\end{aligned}
$$

So we get the assertion.
The following theorem which is Theorem 1.1 in Introduction is the main result of this note.

THEOREM 3.1. Let (X, L) be an n-dimensional classical scroll over a smooth projective variety Y of dimension m such that $n \geq 2 m$. Let $F_{i}\left(t_{1}, \ldots, t_{m}\right)$ be the polynomial defined in Definition 1.1 for every integer i with $0 \leq i \leq m$. We use notations in Notation 2.2. Then for any integer j with $m \leq j \leq 2 m$ we have

$$
\mathrm{cl}_{j}(X, L)=F_{2 m-j}\left(c_{1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)
$$

In particular

$$
F_{m}\left(s_{1}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)=F_{m}\left(c_{1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right) .
$$

Proof. First we prove the following.
CLAIM 3.1 For any integer i with $0 \leq i \leq m$, we have

$$
\begin{aligned}
& e_{2 m-2-i}(X, L) \\
& =\sum_{t=0}^{i} \sum_{l=0}^{i-t}(-1)^{i-t}\binom{m-t-2}{i-t-l} c_{m-t-l}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{l}(\mathcal{E})+(m-i-1) c_{m}(Y), \\
& e_{2 m-1-i}(X, L) \\
& =\sum_{t=0}^{i-1} \sum_{l=0}^{i-1-t}(-1)^{i-1-t}\binom{m-t-2}{i-1-t-l} c_{m-t-l}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{l}(\mathcal{E})+(m-i) c_{m}(Y),
\end{aligned}
$$

$$
\begin{aligned}
& e_{2 m-i}(X, L) \\
& =\sum_{t=0}^{i-2} \sum_{l=0}^{i-2-t}(-1)^{i-2-t}\binom{m-t-2}{i-2-t-l} c_{m-t-l}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{l}(\mathcal{E})+(m-i+1) c_{m}(Y) .
\end{aligned}
$$

(We note that if $i=0$ (resp. $i=0,1$), then $\sum_{t=0}^{i-1} \sum_{l=0}^{i-1-t}(-1)^{i-1-t}\binom{m-t-2}{i-1-t-l}$
$c_{m-t-l}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{l}(\mathcal{E})=0\left(\right.$ resp. $\sum_{t=0}^{i-2} \sum_{l=0}^{i-2-t}(-1)^{i-2-t}\binom{m-t-2}{i-2-t-l}$
$\left.c_{m-t-l}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{l}(\mathcal{E})=0\right)$.)
Proof. (A) First we treat $e_{2 m-2-i}(X, L)$. Then by Proposition 2.1

$$
\begin{aligned}
& e_{2 m-2-i}(X, L) \\
& =\sum_{t=0}^{2 m-2-i}\left(\sum_{k=0}^{2 m-2-i-t}(-1)^{2 m-2-i-t-k}\binom{m-t-2}{2 m-2-i-t-k} c_{k}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-k-t}(\mathcal{E})\right) .
\end{aligned}
$$

Here we note that

$$
\begin{equation*}
2 m-2-i-t \geq k \tag{7}
\end{equation*}
$$

We set

$$
E(i, k, t)=(-1)^{2 m-2-i-t-k}\binom{m-t-2}{2 m-2-i-t-k} c_{k}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-k-t}(\mathcal{E})
$$

If $E(i, k, t) \neq 0$, then the following two conditions hold by noting (7).

$$
\begin{align*}
& 0 \leq k \leq m \tag{8}\\
& 0 \leq t \leq m
\end{align*}
$$

$$
\begin{equation*}
k+t \leq \min \{m, 2 m-2-i\} \tag{10}
\end{equation*}
$$

If $m-t-2>0$ and $m-t-2<2 m-2-i-t-k$, then $\binom{m-t-2}{2 m-2-i-t-k}=0$. Hence if $E(i, k, t) \neq 0$, then $m-t-2 \leq 0$ or $m-t-2 \geq 2 m-2-i-t-k$, that is,

$$
\begin{equation*}
t \geq m-2 \quad \text { or } \quad k \geq m-i \tag{11}
\end{equation*}
$$

(A.1) The case where $0 \leq i \leq m-3$.

We see from (8), (9), (10) and (11) that $e_{2 m-2-i}(X, L)$ is the sum of $E(i, k, t)$ in the range of the following (k, t).
(A.1.1) $\left\{\begin{array}{l}k=0,1,2, \quad t=m-2, \\ k=0,1, \quad t=m-1, \\ k=0, \quad t=m .\end{array} \quad\left(\right.\right.$ A.1.2) $\quad\left\{\begin{array}{l}k=m-i, \quad t=i, i-1, \ldots, 1,0 \\ k=m-i+1, \quad t=i-1, \ldots, 1,0 \\ \vdots \\ k=m, \quad t=0 .\end{array}\right.$

The sum of $E(i, k, t)$ in the range of the case (A.1.1) is the following.
(12) $\sum_{t=m-2}^{m} \sum_{k=0}^{m-t} E(i, k, t)$

$$
\begin{aligned}
= & (-1)^{2 m-2-i-m+2-0}\binom{m-(m-2)-2}{2 m-2-i-(m-2)-0} c_{m-2}(Y) s_{2}(\mathcal{E}) \\
& +(-1)^{2 m-2-i-m+2-1}\binom{m-(m-2)-2}{2 m-2-i-(m-2)-1} c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-2}(Y) s_{1}(\mathcal{E}) \\
& +(-1)^{2 m-2-i-m+2-2}\binom{m-(m-2)-2}{2 m-2-i-(m-2)-2} c_{2}\left(\mathcal{E}^{\vee}\right) c_{m-2}(Y) \\
& +(-1)^{2 m-2-i-m+1-0}\binom{m-(m-1)-2}{2 m-2-i-(m-1)-0} c_{m-1}(Y) s_{1}(\mathcal{E}) \\
& +(-1)^{2 m-2-i-m+1-1}\binom{m-(m-1)-2}{2 m-2-i-(m-1)-1} c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-1}(Y) \\
& +(-1)^{2 m-2-i-m}\binom{m-m-2}{2 m-2-i-m-0} c_{m}(Y) \\
= & (-1)^{m-i}\binom{0}{m-i} c_{m-2}(Y) s_{2}(\mathcal{E}) \\
& +(-1)^{m-i-1}\binom{0}{m-i-1} c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-2}(Y) s_{1}(\mathcal{E}) \\
& +(-1)^{m-i-2}\binom{0}{m-i-2} c_{2}\left(\mathcal{E}^{\vee}\right) c_{m-2}(Y) \\
& +(-1)^{m-i-1}\binom{-1}{m-1-i} c_{m-1}(Y) s_{1}(\mathcal{E}) \\
& +(-1)^{m-i-2}\binom{-1}{m-2-i} c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-1}(Y) \\
& +(-1)^{m-i-2}\binom{-2}{m-i-2} c_{m}(Y) \\
= & c_{m-1}(Y) s_{1}(\mathcal{E})+c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-1}(Y)+(m-i-1) c_{m}(Y) \\
= & (m-1-i) c_{m}(Y) .
\end{aligned}
$$

On the other hand, the sum of $E(i, k, t)$ in the range of the case (A.1.2) is the following.

$$
\begin{aligned}
& \sum_{k=m-i}^{m} \sum_{t=0}^{m-k}(-1)^{2 m-2-i-t-k}\binom{m-t-2}{2 m-2-i-t-k} c_{k}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-k-t}(\mathcal{E}) \\
& =\sum_{t=0}^{i} \sum_{k=m-i}^{m-t}(-1)^{2 m-2-i-t-k}\binom{m-t-2}{2 m-2-i-t-k} c_{k}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-k-t}(\mathcal{E}) .
\end{aligned}
$$

Here we put $j:=k-(m-i)$. Then by $t \leq i \leq m-3$ we have

$$
\begin{aligned}
& \sum_{t=0}^{i} \sum_{k=m-i}^{m-t}(-1)^{2 m-2-i-t-k}\binom{m-t-2}{2 m-2-i-t-k} c_{k}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-k-t}(\mathcal{E}) \\
& =\sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{m-2-t-j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\
& =\sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) .
\end{aligned}
$$

Hence we have

$$
\begin{align*}
& e_{2 m-2-i}(X, L) \tag{13}\\
& =\sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\
& \quad+(m-1-i) c_{m}(Y) .
\end{align*}
$$

(A.2) The case where $i=m-2$.

We see from (8), (9), (10) and (11) that $e_{2 m-2-i}(X, L)$ is the sum of $E(m-2, k, t)$ in the range of the following (k, t).
(A.2.1) $\left\{\begin{array}{l}k=0,1, \quad t=m-2, \\ k=0,1, \quad t=m-1, \quad(A .2 .2) \\ k=0, \quad t=m .\end{array} \quad \begin{array}{c}k=2, \quad t=m-2, m-3, \ldots, 1,0 \\ k=3, \quad t=m-3, \ldots, 1,0 \\ \vdots \\ k=m, \quad t=0 .\end{array}\right.$

First we calculate the sum of $E(m-2, k, t)$ in the range of the case (A.2.1).

$$
\begin{align*}
& \sum_{k=0}^{1} E(m-2, k, m-2)+\sum_{t=m-1}^{m} \sum_{k=0}^{m-t} E(m-2, k, t) \tag{14}\\
& =(-1)^{2 m-2-(m-2)-m+2-0}\binom{m-(m-2)-2}{2 m-2-(m-2)-(m-2)-0} c_{m-2}(Y) s_{2}(\mathcal{E}) \\
& +(-1)^{2 m-2-(m-2)-m+2-1}\binom{m-(m-2)-2}{2 m-2-(m-2)-(m-2)-1} c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-2}(Y) s_{1}(\mathcal{E}) \\
& +(-1)^{2 m-2-(m-2)-m+1-0}\binom{m-(m-1)-2}{2 m-2-(m-2)-(m-1)-0} c_{m-1}(Y) s_{1}(\mathcal{E})
\end{align*}
$$

$$
\begin{aligned}
& +(-1)^{2 m-2-(m-2)-m+1-1}\binom{m-(m-1)-2}{2 m-2-(m-2)-(m-1)-1} c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-1}(Y) \\
& +(-1)^{2 m-2-(m-2)-m}\binom{m-m-2}{2 m-2-(m-2)-m-0} c_{m}(Y) \\
& =(-1)^{2}\binom{0}{2} c_{m-2}(Y) s_{2}(\mathcal{E})+(-1)^{1}\binom{0}{1} c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-2}(Y) s_{1}(\mathcal{E}) \\
& +(-1)^{1}\binom{-1}{1} c_{m-1}(Y) s_{1}(\mathcal{E})+(-1)^{0}\binom{-1}{0} c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-1}(Y)+(-1)^{0}\binom{-2}{0} c_{m}(Y) \\
& =c_{m-1}(Y) s_{1}(\mathcal{E})+c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-1}(Y)+c_{m}(Y) \\
& =c_{m}(Y) .
\end{aligned}
$$

Next we calculate the sum of $E(m-2, k, t)$ in the range of the case (A.2.2).
(15) $\sum_{k=2}^{m} \sum_{t=0}^{m-k} E(m-2, k, t)$

$$
\begin{aligned}
& =\sum_{t=0}^{m-2} \sum_{k=2}^{m-t}(-1)^{2 m-2-i-t-k}\binom{m-t-2}{2 m-2-i-t-k} c_{k}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-k-t}(\mathcal{E}) \\
& =\sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t}(-1)^{m-2-t-j}\binom{m-t-2}{m-2-t-j} c_{j+2}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{(m-2)-j-t}(\mathcal{E}) \\
& =\sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+2}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{(m-2)-j-t}(\mathcal{E}) .
\end{aligned}
$$

(Here we set $j:=k-2$ in the above equations.)
Since $i=m-2$, we see from (14) and (15) that

$$
\begin{align*}
& e_{2 m-2-i}(X, L) \tag{16}\\
& =\sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\
& \quad+(m-1-i) c_{m}(Y) .
\end{align*}
$$

(A.3) The case where $i=m-1$.

We see from (8), (9), (10) and (11) that $e_{2 m-2-i}(X, L)$ is the sum of $E(m-1, k, t)$ in the range of the following (k, t).

$$
\left\{\begin{array} { c }
{ k = 0 , \quad t = m - 2 , \quad (\mathrm { A } . 3 . 2) } \tag{A.3.1}\\
{ k = 0 , \quad t = m - 1 . }
\end{array} \left\{\begin{array}{c}
k=1, \quad t=m-2, m-3, \ldots, 1,0 \\
k=2, \quad t=m-3, \ldots, 1,0 \\
\vdots \\
k=m-1, \quad t=0 .
\end{array}\right.\right.
$$

The sum of $E(m-1, k, t)$ in the range of the case (A.3.1) is obtained as follows.

$$
\begin{align*}
& \sum_{t=m-2}^{m-1} E(m-1,0, t) \tag{17}\\
&=(-1)^{2 m-2-(m-1)-m+2-0}\binom{m-(m-2)-2}{2 m-2-(m-1)-(m-2)-2} c_{2}\left(\mathcal{E}^{\vee}\right) c_{m-2}(Y) \\
&+(-1)^{2 m-2-(m-1)-m+1-0}\binom{m-(m-1)-2}{2 m-2-(m-1)-(m-1)-0} c_{m-1}(Y) s_{1}(\mathcal{E}) \\
&=(-1)^{1}\binom{0}{-1} c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-2}(Y) s_{1}(\mathcal{E}) \\
&+(-1)^{0}\binom{-1}{0} c_{m-1}(Y) s_{1}(\mathcal{E}) \\
&= c_{m-1}(Y) s_{1}(\mathcal{E}) .
\end{align*}
$$

On the other hand, we get the sum of $E(m-1, k, t)$ in the range of the case (A.3.2) as follows.

$$
\begin{align*}
& \sum_{k=1}^{m-1} \sum_{t=0}^{m-1-k} E(m-1, k, t) \tag{18}\\
& =\sum_{t=0}^{m-2} \sum_{k=1}^{m-1-t}(-1)^{2 m-2-(m-1)-t-k}\binom{m-t-2}{2 m-2-(m-1)-t-k} c_{k}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-k-t}(\mathcal{E}) \\
& =\sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t}(-1)^{m-2-t-j}\binom{m-t-2}{m-2-t-j} c_{j+1}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{(m-1)-j-t}(\mathcal{E}) \\
& =\sum_{t=0}^{m-1} \sum_{j=0}^{m-1-t}(-1)^{m-2-t-j}\binom{m-t-2}{m-2-t-j} c_{j+1}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{(m-1)-j-t}(\mathcal{E}) .
\end{align*}
$$

We note that in the final step of the above equalities we use $\binom{m-t-2}{m-2-t-j}=0$ for $(t, j)=(0, m-1),(1, m-2), \ldots,(m-1,0)$. Moreover

$$
\begin{align*}
& \sum_{t=0}^{m-1} \sum_{j=0}^{m-1-t}(-1)^{m-2-t-j}\binom{m-t-2}{m-2-t-j} c_{j+1}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{(m-1)-j-t}(\mathcal{E}) \tag{19}\\
& =\sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E})-c_{1}(\mathcal{E}) c_{m-1}(Y)
\end{align*}
$$

We also note that in the final step of the above equalities

$$
\binom{m-t-2}{m-2-t-j}= \begin{cases}\binom{m-t-2}{j} & \text { if } t \leq m-2, \\ \binom{m-t-2}{j}-1 & \text { if } t=m-1\end{cases}
$$

(Here we note that if $t=m-1$, then $j=0$ in this case.)
Hence we see from (17), (18) and (19) that for $i=m-1$

$$
\begin{align*}
& e_{2 m-2-i}(X, L) \tag{20}\\
& =\sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\
& \quad+(m-1-i) c_{m}(Y) .
\end{align*}
$$

(A.4) The case where $i=m$.

We see from (8), (9), (10) and (11) that $e_{2 m-2-i}(X, L)$ is the sum of $E(m, k, t)$ in the range of the following (k, t).

$$
\left\{\begin{array}{c}
k=0, \quad t=m-2, m-3, \ldots, 1,0 \\
k=1, \quad t=m-3, \ldots, 1,0 \\
\vdots \\
k=m-2, \quad t=0
\end{array}\right.
$$

By the same argument as above we get
(21) $e_{2 m-2-i}(X, L)$

$$
\begin{aligned}
& =\sum_{k=0}^{m-2} \sum_{t=0}^{m-2-k}(-1)^{2 m-2-m-t-k}\binom{m-t-2}{2 m-2-m-t-k} c_{k}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-k-t}(\mathcal{E}) \\
& =\sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t}(-1)^{m-2-t-j}\binom{m-t-2}{m-2-t-j} c_{j}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-j-t}(\mathcal{E}) \\
& =\sum_{t=0}^{m} \sum_{j=0}^{m-t}(-1)^{m-2-t-j}\binom{m-t-2}{m-2-t-j} c_{j}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{m-j-t}(\mathcal{E}) .
\end{aligned}
$$

We note that in the final step of the above equalities we use $\binom{m-t-2}{m-2-t-j}=0$ for $(t, j)=(0, m),(1, m-1), \ldots,(m, 0),(0, m-1),(1, m-2), \ldots,(m-1,0)$.

On the other hand

$$
\binom{m-t-2}{m-2-t-j}= \begin{cases}\binom{m-t-2}{j} & \text { if } t \leq m-2 \tag{22}\\ \binom{m-t-2}{j}-(-1)^{j} & \text { if } t=m-1, m\end{cases}
$$

(Here we note that if $t=m-1$ (resp. $t=m$), then $j=0,1$ (resp. $j=0$) in this case.)

Hence we see from (21) and (22) that for $i=m$

$$
\begin{align*}
& e_{2 m-2-i}(X, L) \tag{23}\\
& =\sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{m-2-t-j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\
& =\sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\
& \quad+c_{m-1}(Y) s_{1}(\mathcal{E})+c_{1}\left(\mathcal{E}^{\vee}\right) c_{m-1}(Y)-c_{m}(Y) \\
& =\sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\
& \quad+(m-i-1) c_{m}(Y) .
\end{align*}
$$

By (13), (16), (20) and (23) for any i with $0 \leq i \leq m$ we have

$$
\begin{aligned}
e_{2 m-2-i}(X, L)= & \sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\
& +(m-i-1) c_{m}(Y)
\end{aligned}
$$

Furthermore we set $l:=i-t-j$. Then

$$
\begin{aligned}
& \sum_{t=0}^{i} \sum_{j=0}^{i-t}(-1)^{m-2-t-j}\binom{m-t-2}{j} c_{j+m-i}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{i-j-t}(\mathcal{E}) \\
& =\sum_{t=0}^{i} \sum_{l=0}^{i-t}(-1)^{m-2-i+l}\binom{m-t-2}{i-t-l} c_{m-t-l}\left(\mathcal{E}^{\vee}\right) c_{t}(Y) s_{l}(\mathcal{E}) \\
& =\sum_{t=0}^{i} \sum_{l=0}^{i-t}(-1)^{i-t}\binom{m-t-2}{i-t-l} c_{m-t-l}(\mathcal{E}) c_{t}(Y) s_{l}(\mathcal{E}) .
\end{aligned}
$$

Hence for every integer i with $0 \leq i \leq m$
(24) $e_{2 m-2-i}(X, L)$

$$
=\sum_{t=0}^{i} \sum_{l=0}^{i-t}(-1)^{i-t}\binom{m-t-2}{i-t-l} c_{m-t-l}(\mathcal{E}) c_{t}(Y) s_{l}(\mathcal{E})+(m-i-1) c_{m}(Y)
$$

(B) Next we consider $e_{2 m-1}(X, L)$ and $e_{2 m}(X, L)$. Then by [2, Theorem 3.1 (3.1.1)] we have

$$
\begin{align*}
e_{2 m-1}(X, L) & =m c_{m}(Y) \tag{25}\\
e_{2 m}(X, L) & =(m+1) c_{m}(Y) \tag{26}
\end{align*}
$$

(C) By (24), (25) and (26), we get the assertion of Claim 3.1.

Here we set

$$
\begin{aligned}
& E_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E}) ; s_{m-i}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right) \\
& :=\sum_{t=0}^{i} \sum_{k=0}^{i-t}(-1)^{i-t}\binom{m-t-2}{i-t-k} c_{k}(\mathcal{E}) c_{t}(Y) s_{m-k-t}(\mathcal{E}) .
\end{aligned}
$$

Then by Proposition 2.1 we have

$$
\begin{equation*}
E_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E}) ; s_{m-i}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)=e_{i}(X, L) \tag{27}
\end{equation*}
$$

Moreover by Claim 3.1 we have

$$
\begin{align*}
& e_{2 m-2-i}(X, L) \tag{28}\\
& =E_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E}) ; c_{m-i}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)+(m-i-1) c_{m}(Y),
\end{align*}
$$

(29) $e_{2 m-1-i}(X, L)$

$$
=E_{i-1}\left(s_{0}(\mathcal{E}), \ldots, s_{i-1}(\mathcal{E}) ; c_{m-i+1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)+(m-i) c_{m}(Y),
$$

(30) $e_{2 m-i}(X, L)$

$$
=E_{i-2}\left(s_{0}(\mathcal{E}), \ldots, s_{i-2}(\mathcal{E}) ; c_{m-i+2}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)+(m-i+1) c_{m}(Y)
$$

for every integer i with $0 \leq i \leq m$. By (27) and Definitions 1.1 and 2.2 we get
(31) $\quad F_{i}\left(s_{1}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)$

$$
=\operatorname{cl}_{i}(X, L)
$$

$$
=(-1)^{i}\left\{E_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E}) ; s_{m-i}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)\right.
$$

$$
-2 E_{i-1}\left(c_{0}(\mathcal{E}), \ldots, c_{i-1}(\mathcal{E}) ; s_{m-i+1}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)
$$

$$
\left.+E_{i-2}\left(c_{0}(\mathcal{E}), \ldots, c_{i-2}(\mathcal{E}) ; s_{m-i+2}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)\right\}
$$

$$
=(-1)^{i}\left\{E_{i}\left(t_{0}\left(s_{0}(\mathcal{E})\right), \ldots, t_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E})\right) ; s_{m-i}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)\right.
$$

$$
-2 E_{i-1}\left(t_{0}\left(s_{0}(\mathcal{E})\right), \ldots, t_{i-1}\left(s_{0}(\mathcal{E}), \ldots, s_{i-1}(\mathcal{E})\right) ; s_{m-i+1}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)
$$

$$
\left.+E_{i-2}\left(t_{0}\left(s_{0}(\mathcal{E})\right), \ldots, t_{i-2}\left(s_{0}(\mathcal{E}), \ldots, s_{i-2}(\mathcal{E})\right) ; s_{m-i+2}(\mathcal{E}), \ldots, s_{m}(\mathcal{E})\right)\right\}
$$

for every integer i with $0 \leq i \leq m$. Here $t_{i}\left(x_{0}, \ldots, x_{i}\right)$ denotes the polynomial which was defined in Definition 3.1.

On the other hand we see from Proposition 3.1, (28), (29), (30) and (31) that for every integer i with $0 \leq i \leq m$

$$
\begin{aligned}
& \mathrm{cl}_{2 m-i}(X, L) \\
& =(-1)^{2 m-i}\left\{e_{2 m-i}(X, L)-2 e_{2 m-i-1}(X, L)+e_{2 m-i-2}(X, L)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & (-1)^{i}\left\{E_{i-2}\left(s_{0}(\mathcal{E}), \ldots, s_{i-2}(\mathcal{E}) ; c_{m-i+2}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)\right. \\
& -2 E_{i-1}\left(s_{0}(\mathcal{E}), \ldots, s_{i-1}(\mathcal{E}) ; c_{m-i+1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right) \\
& +E_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E}) ; c_{m-i}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right) \\
& \left.+(m-i+1) c_{m}(Y)-2(m-i) c_{m}(Y)+(m-i-1) c_{m}(Y)\right\} \\
= & (-1)^{i}\left\{E_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E}) ; c_{m-i}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)\right. \\
& -2 E_{i-1}\left(s_{0}(\mathcal{E}), \ldots, s_{i-1}(\mathcal{E}) ; c_{m-i+1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right) \\
& \left.+E_{i-2}\left(s_{0}(\mathcal{E}), \ldots, s_{i-2}(\mathcal{E}) ; c_{m-i+2}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)\right\} \\
= & (-1)^{i}\left\{E_{i}\left(t_{0}\left(c_{0}(\mathcal{E})\right), \ldots, t_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E})\right) ; c_{m-i}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)\right. \\
& -2 E_{i-1}\left(t_{0}\left(c_{0}(\mathcal{E})\right), \ldots, t_{i-1}\left(c_{0}(\mathcal{E}), \ldots, c_{i-1}(\mathcal{E})\right) ; c_{m-i+1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right) \\
& \left.+E_{i-2}\left(t_{0}\left(c_{0}(\mathcal{E})\right), \ldots, t_{i-2}\left(c_{0}(\mathcal{E}), \ldots, c_{i-2}(\mathcal{E})\right) ; c_{m-i+2}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right)\right\} \\
= & F_{i}\left(c_{1}(\mathcal{E}), \ldots, c_{m}(\mathcal{E})\right) .
\end{aligned}
$$

Therefore we get the assertion of Theorem 3.1.
Finally we note the following.
Proposition 3.2. Let (X, L) be an n-dimensional classical scroll over a smooth projective variety Y of dimension m such that $n \geq 2 m+1$. Then $\mathrm{cl}_{i}(X, L)=0$ for every integer i with $2 m+1 \leq i \leq n$.

Proof. By [2, Theorem 3.1 (3.1.1)], we see that $e_{j}(X, L)=(j-m+1) c_{m}(Y)$ for every integer j with $j \geq 2 m-1$. Hence

$$
\mathrm{cl}_{i}(X, L)=(-1)^{i}\left(e_{i}(X, L)-2 e_{i-1}(X, L)+e_{i-2}(X, L)\right)=0
$$

This completes the proof.

Acknowledgement. The author would like to thank the referee for some useful comments and suggestions.

References

[1] Y. Fukuma, On the sectional invariants of polarized manifolds, J. Pure Appl. Algebra, 209 (2007), 99-117.
[2] Y. Fukuma, Sectional invariants of scroll over a smooth projective variety, Rend. Sem. Mat. Univ. Padova, 121 (2009), 93-119.
[3] Y. Fukuma, Sectional class of ample line bundles on smooth projective varieties, Riv. Mat. Univ. Parma (N.S.), 6 (2015), 215-240.
[4] Y. Fukuma, Calculations of sectional classes of special polarized manifolds, preprint, http://www.math.kochi-u.ac.jp/fukuma/Cal-SC.html
[5] W. Fulton, Intersection Theory, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2. Springer-Verlag, Berlin, 1998.

Department of Mathematics and Physics, Faculty of Science and Technology,
Kochi University,
Akebono-cho, Kochi 780-8520,
Japan
E-mail: fukuma@kochi-u.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 14C20; Secondary 14J30, 14C17
 Key words and phrases: Polarized manifold, sectional class, classical scroll

 * This research was partially supported by JSPS KAKENHI Grant Number 24540043.

