A PROPERTY FOR THE FORMULA OF THE SECTIONAL CLASSES OF CLASSICAL SCROLLS

By

Yoshiaki Fukuma

(Received February 23, 2017; Revised August 9, 2017)

Abstract. In this note, we investigate the formula of the sectional class of classical scrolls and we give an answer of a conjecture proposed in a previous paper.

1. Introduction

Let (X, L) be a polarized manifold of dimension n. Assume that L is very ample and let $\varphi: X \hookrightarrow \mathbb{P}^N$ be the morphism defined by |L|. Then φ is an embedding. In this situation, its dual variety $X^{\vee} \to (\mathbb{P}^N)^{\vee}$ is a hypersurface of N-dimensional projective space except some special types. Then the *class* $\operatorname{cl}(X, L)$ of (X, L) is defined by the following.

$$\operatorname{cl}(X,L) = \left\{ \begin{array}{ll} \operatorname{deg}(X^{\vee}), & \text{if } X^{\vee} \text{ is a hypersurface in } (\mathbb{P}^{N})^{\vee} \\ 0, & \text{otherwise.} \end{array} \right.$$

As a generalization of this notion, in [3], we defined the *ith sectional class* $\operatorname{cl}_i(X, L)$ for any ample line bundle L and every integer i with $0 \le i \le n$ (see Definition 2.2).

Here we note the following fact: Assume that L is very ample. Then there exists a sequence of smooth subvarieties $X \supset X_1 \supset \cdots \supset X_{n-i}$ such that $X_j \in |L_{j-1}|$ and $\dim X_j = n-j$ for every integer j with $1 \le j \le n-i$, where $L_j = L|_{X_j}$ and $L_0 := L$. In particular, X_{n-i} is a smooth projective variety of dimension i and L_{n-i} is a very ample line bundle on X_{n-i} . Then $\operatorname{cl}_i(X, L)$ is equal to the class of (X_{n-i}, L_{n-i}) . This is the reason why we call this invariant the ith sectional class

In [4], we calculated the sectional class of special polarized manifolds. For example, we consider the case where (X, L) is a classical scroll over a smooth

²⁰¹⁰ Mathematics Subject Classification: Primary 14C20; Secondary 14J30, 14C17 Key words and phrases: Polarized manifold, sectional class, classical scroll

^{*}This research was partially supported by JSPS KAKENHI Grant Number 24540043.

projective variety Y of dimension m such that $n := \dim X \ge 2m$. Namely, there exists an ample vector bundle \mathcal{E} on Y of rank $r \ge m+1$ such that $(X,L) \cong (\mathbb{P}_Y(\mathcal{E}), H(\mathcal{E}))$, where $H(\mathcal{E})$ is the tautological line bundle. Here we note that we need the assumption $n \ge 2m$ in order to define and compare $\operatorname{cl}_i(X, L)$ and $\operatorname{cl}_{2m-i}(X, L)$ for every integer i with $0 \le i \le m$. Then we get the following: (i) If m = 1, then by [4, Example 2.1 (ix)] we have

(1)
$$\operatorname{cl}_{i}(X, L) = \begin{cases} s_{1}(\mathcal{E}), & \text{if } i = 0, \\ 2g(C) - 2 + 2c_{1}(\mathcal{E}), & \text{if } i = 1, \\ c_{1}(\mathcal{E}), & \text{if } i = 2, \\ 0, & \text{if } i \geq 3 \text{ and } n \geq 3. \end{cases}$$

(ii) If m = 2, then by [4, Example 2.1 (x)] we have

(2)
$$\operatorname{cl}_{i}(X, L) = \begin{cases} s_{2}(\mathcal{E}), & \text{if } i = 0, \\ (s_{1}(\mathcal{E}) + K_{S})s_{1}(\mathcal{E}) + 2s_{2}(\mathcal{E}), & \text{if } i = 1, \\ c_{2}(S) + 3c_{1}(\mathcal{E})^{2} + 2K_{S}c_{1}(\mathcal{E}), & \text{if } i = 2, \\ (c_{1}(\mathcal{E}) + K_{S})c_{1}(\mathcal{E}) + 2c_{2}(\mathcal{E}), & \text{if } i = 3, \\ c_{2}(\mathcal{E}), & \text{if } i = 4, \\ 0, & \text{if } i \geq 5 \text{ and } n \geq 5. \end{cases}$$

(iii) If m = 3, then by [4, Example 2.1] we have

$$(3) \quad \operatorname{cl}_{i}(X, L) = \begin{cases} s_{3}(\mathcal{E}), & \text{if } i = 0, \\ 3s_{3}(\mathcal{E}) + (s_{1}(\mathcal{E}) + K_{Y})s_{2}(\mathcal{E}), & \text{if } i = 1, \\ 3s_{3}(\mathcal{E}) + 12(s_{1}(\mathcal{E}) + K_{Y})s_{2}(\mathcal{E}) \\ + (s_{1}(\mathcal{E}) + K_{Y})s_{1}(\mathcal{E})^{2} + c_{2}(Y)s_{1}(\mathcal{E}), & \text{if } i = 2, \end{cases}$$

$$(3) \quad \operatorname{cl}_{i}(X, L) = \begin{cases} -c_{3}(Y) + 2c_{3}(\mathcal{E}) - 2c_{1}(\mathcal{E})c_{2}(\mathcal{E}) \\ + 4c_{1}(\mathcal{E})^{3} + 3K_{Y}c_{1}(\mathcal{E})^{2} + 2c_{2}(Y)c_{1}(\mathcal{E}), & \text{if } i = 3, \end{cases}$$

$$3c_{3}(\mathcal{E}) + 12(c_{1}(\mathcal{E}) + K_{Y})c_{2}(\mathcal{E}) \\ + (c_{1}(\mathcal{E}) + K_{Y})c_{1}(\mathcal{E})^{2} + c_{2}(Y)c_{1}(\mathcal{E}), & \text{if } i = 4, \end{cases}$$

$$3c_{3}(\mathcal{E}) + (c_{1}(\mathcal{E}) + K_{Y})c_{2}(\mathcal{E}), & \text{if } i = 5, \end{cases}$$

$$c_{3}(\mathcal{E}), & \text{if } i = 6, \end{cases}$$

$$0, & \text{if } i \geq 7 \text{ and } n \geq 7.$$

The above equations show that there exists a relation between $\operatorname{cl}_i(X, L)$ and $\operatorname{cl}_{2m-i}(X, L)$. Here we note that for every integer i with $0 \le i \le m$, $\operatorname{cl}_i(X, L)$ can be written by the Segre classes $s_1(\mathcal{E}), \ldots, s_m(\mathcal{E})$.

DEFINITION 1.1. For every integer i with $0 \le i \le m$, we define the polynomial $F_i(t_1, \ldots, t_m) \in \mathbb{Z}[t_1, \ldots, t_m]$ such that the following equality holds.

$$F_i(s_1(\mathcal{E}),\ldots,s_m(\mathcal{E})) = \operatorname{cl}_i(X,L).$$

Then we see from the above that if m = 1, 2 and 3, then

$$\operatorname{cl}_j(X,L) = F_{2m-j}(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E}))$$

for $m \leq j \leq 2m$. In general, we can prove the following theorem, which was proposed in [4] and is the main result of this paper.

THEOREM 1.1. Let a polarized manifold (X, L) be a classical scroll over a smooth projective variety Y with dim X = n and dim Y = m. Let \mathcal{E} be an ample vector bundle on Y such that $X \cong \mathbb{P}_Y(\mathcal{E})$ and $L = H(\mathcal{E})$. Let $F_i(t_1, \ldots, t_m)$ be the polynomial defined in Definition 1.1 for every integer i with $0 \le i \le m$. Assume that $n \ge 2m$. Then for any integer j with $m \le j \le 2m$ we have

$$\operatorname{cl}_{i}(X,L) = F_{2m-i}(c_{1}(\mathcal{E}),\ldots,c_{m}(\mathcal{E})).$$

In particular

$$F_m(s_1(\mathcal{E}),\ldots,s_m(\mathcal{E}))=F_m(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E})).$$

By Theorem 1.1 we can easily calculate $\operatorname{cl}_{2m-i}(X,L)$ (resp. $\operatorname{cl}_i(X,L)$) if we are able to calculate $\operatorname{cl}_i(X,L)$ (resp. $\operatorname{cl}_{2m-i}(X,L)$). By this relation we expect that we can get some useful information about $\operatorname{cl}_{2m-i}(X,L)$ (resp. $\operatorname{cl}_i(X,L)$) from several properties of $\operatorname{cl}_i(X,L)$ (resp. $\operatorname{cl}_{2m-i}(X,L)$). Moreover if i=m, then we have $\operatorname{cl}_m(X,L) = F_m(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E})) = F_m(s_1(\mathcal{E}),\ldots,s_m(\mathcal{E}))$ by Theorem 1.1. So $\operatorname{cl}_m(X,L)$ may have special and interesting properties. We will study these on another occasion.

2. Preliminaries

NOTATION 2.1. For a real number m and a non-negative integer n, let

$$[m]_n := \begin{cases} m(m-1)\cdots(m-n+1) & \text{if } n \ge 1, \\ 1 & \text{if } n = 0. \end{cases}$$

For any non-negative integer n,

$$n! := \begin{cases} [n]_n & \text{if } n \ge 1, \\ 1 & \text{if } n = 0. \end{cases}$$

Assume that m and n are integers. Then we put

$$\binom{m}{n} := \begin{cases} \frac{[m]_n}{n!} & \text{if } n \ge 0, \\ 0 & \text{if } n < 0. \end{cases}$$

We note that $\binom{m}{n} = 0$ if $0 \le m < n$ or n < 0, and $\binom{m}{0} = 1$.

DEFINITION 2.1. (See [1, Definition 3.1].) Let (X, L) be a polarized manifold of dimension n, and i an integer with $0 \le i \le n$. Then the *ith sectional Euler number* $e_i(X, L)$ of (X, L) is defined by the following:

$$e_i(X, L) := \sum_{l=0}^{i} (-1)^l \binom{n-i+l-1}{l} c_{i-l}(X) L^{n-i+l}.$$

DEFINITION 2.2. (See [3, Definitions 2.8 and 2.9]. See also [3, Remark 2.6].) Let (X, L) be a polarized manifold of dimension n and i an integer with $0 \le i \le n$. Then the *ith sectional class* of (X, L) is defined by the following.

$$\operatorname{cl}_{i}(X,L) = \begin{cases} e_{0}(X,L), & \text{if } i = 0, \\ (-1)\{e_{1}(X,L) - 2e_{0}(X,L)\}, & \text{if } i = 1, \\ (-1)^{i}\{e_{i}(X,L) - 2e_{i-1}(X,L) + e_{i-2}(X,L)\}, & \text{if } 2 \leq i \leq n \end{cases}$$

DEFINITION 2.3. Let Y be a smooth projective variety of dimension m and \mathcal{E} a vector bundle of rank r on Y.

- (i) The Chern polynomial $c_t(\mathcal{E})$ is defined by $c_t(\mathcal{E}) = \sum_{i \geq 0} c_i(\mathcal{E}) t^i$.
- (ii) For every integer j with $j \geq 0$, the jth Segre class $s_j(\mathcal{F})$ of \mathcal{F} is defined by the following equation: $c_t(\mathcal{F}^{\vee})s_t(\mathcal{F}) = 1$, where $c_t(\mathcal{F}^{\vee})$ is the Chern polynomial of \mathcal{F}^{\vee} and $s_t(\mathcal{F}) = \sum_{j \geq 0} s_j(\mathcal{F})t^j$.

REMARK 2.1.

- (i) Let Y be a smooth projective variety and \mathcal{F} a vector bundle on X. Let $\tilde{s}_j(\mathcal{F})$ be the Segre class which is defined in [5, Chapter 3]. Then $s_j(\mathcal{F}) = \tilde{s}_j(\mathcal{F}^{\vee})$.
- (ii) For every integer i with $1 \leq i$, $s_i(\mathcal{F})$ can be written by using the Chern classes $c_j(\mathcal{F})$ with $1 \leq j \leq i$. (For example, $s_1(\mathcal{F}) = c_1(\mathcal{F})$, $s_2(\mathcal{F}) = c_1(\mathcal{F})^2 c_2(\mathcal{F})$, and so on.)

NOTATION 2.2. Let (X, L) be an n-dimensional classical scroll over a smooth projective variety Y of dimension m. Let \mathcal{E} be an ample vector bundle of rank r on Y such that $X = \mathbb{P}_Y(\mathcal{E})$ and $L = H(\mathcal{E})$. Let $p: X \to Y$ be the projection. Then n = m + r - 1. In this paper we assume that $r \geq m + 1$, that is, $n \geq 2m$.

PROPOSITION 2.1. Let (X, L) be a classical scroll over a smooth projective variety Y of dimension m. We use notations in Notation 2.2. Then for every integer i with $0 \le i \le n$ the following holds.

$$e_i(X, L) = \sum_{t=0}^{i} \sum_{k=0}^{i-t} (-1)^{i-t} {m-t-2 \choose i-t-k} c_k(\mathcal{E}) c_t(Y) s_{m-k-t}(\mathcal{E}).$$

Proof. See the first part of the proof in [2, Theorem 3.1].

3. Main result

DEFINITION 3.1. Let Y be a smooth projective variety of dimension m and \mathcal{E} a vector bundle on Y. Then for every integer i with $0 \le i \le m$ we define the polynomial $t_i(x_0, \ldots, x_i) \in \mathbb{Z}[x_0, \ldots, x_i]$ which satisfies the following.

$$(4) c_i(\mathcal{E}) = t_i(s_0(\mathcal{E}), \dots, s_i(\mathcal{E})).$$

For example, we see that $t_0(x_0) = 1$, $t_1(x_0, x_1) = x_1$, $t_2(x_0, x_1, x_2) = x_1^2 - x_2$ and so on.

PROPOSITION 3.1. Let Y be a smooth projective variety of dimension m and \mathcal{E} a vector bundle over Y. For every integer i with $0 \le i \le m$, we have $s_i(\mathcal{E}) = t_i(c_0(\mathcal{E}), \ldots, c_i(\mathcal{E}))$.

Proof. We prove this by induction.

- (I) If i = 0, then this is true because $c_0(\mathcal{E}) = s_0(\mathcal{E}) = 1$.
- (II) Assume that the assertion holds for every i with $i \leq k-1$. So we consider the case i = k. Then by Definition 2.3 (ii)

(5)
$$\sum_{\substack{i+j=k\\i\geq 0, j\geq 0}} (-1)^i c_i(\mathcal{E}) s_j(\mathcal{E}) = 0.$$

Hence by (5) we have

$$t_k(s_0(\mathcal{E}), \dots, s_k(\mathcal{E})) = c_k(\mathcal{E})$$

$$= (-1)^{k+1} \sum_{\substack{i+j=k\\j>1}} (-1)^i c_i(\mathcal{E}) s_j(\mathcal{E})$$

$$= (-1)^{k+1} \sum_{\substack{i+j=k\\j\geq 1}} (-1)^i t_i(s_0(\mathcal{E}), \dots, s_i(\mathcal{E})) s_j(\mathcal{E}).$$

In particular, we have

(6)
$$t_k(x_0, \dots, x_k) = (-1)^{k+1} \sum_{\substack{i+j=k\\i>1}} (-1)^i t_i(x_0, \dots, x_i) x_j.$$

On the other hand, we see from the induction hypothesis and (6) that

$$s_k(\mathcal{E}) = -\sum_{\substack{i+j=k\\i\geq 1}} (-1)^i c_i(\mathcal{E}) s_j(\mathcal{E})$$

$$= (-1)^{k+1} \sum_{\substack{i+j=k\\i\geq 1}} (-1)^j c_i(\mathcal{E}) t_j(c_0(\mathcal{E}), \dots, c_j(\mathcal{E}))$$

$$= t_k(c_0(\mathcal{E}), \dots, c_k(\mathcal{E})).$$

So we get the assertion.

The following theorem which is Theorem 1.1 in Introduction is the main result of this note.

THEOREM 3.1. Let (X, L) be an n-dimensional classical scroll over a smooth projective variety Y of dimension m such that $n \geq 2m$. Let $F_i(t_1, \ldots, t_m)$ be the polynomial defined in Definition 1.1 for every integer i with $0 \leq i \leq m$. We use notations in Notation 2.2. Then for any integer j with m < j < 2m we have

$$\operatorname{cl}_j(X,L) = F_{2m-j}(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E})).$$

In particular

$$F_m(s_1(\mathcal{E}),\ldots,s_m(\mathcal{E})) = F_m(c_1(\mathcal{E}),\ldots,c_m(\mathcal{E})).$$

Proof. First we prove the following.

CLAIM 3.1 For any integer i with $0 \le i \le m$, we have

$$\begin{split} &e_{2m-2-i}(X,L)\\ &=\sum_{t=0}^{i}\sum_{l=0}^{i-t}(-1)^{i-t}\binom{m-t-2}{i-t-l}c_{m-t-l}(\mathcal{E}^{\vee})c_{t}(Y)s_{l}(\mathcal{E})+(m-i-1)c_{m}(Y),\\ &e_{2m-1-i}(X,L)\\ &=\sum_{t=0}^{i-1}\sum_{l=0}^{i-1-t}(-1)^{i-1-t}\binom{m-t-2}{i-1-t-l}c_{m-t-l}(\mathcal{E}^{\vee})c_{t}(Y)s_{l}(\mathcal{E})+(m-i)c_{m}(Y), \end{split}$$

$$e_{2m-i}(X,L) = \sum_{t=0}^{i-2} \sum_{l=0}^{i-2-t} (-1)^{i-2-t} {m-t-2 \choose i-2-t-l} c_{m-t-l}(\mathcal{E}^{\vee}) c_t(Y) s_l(\mathcal{E}) + (m-i+1) c_m(Y).$$

(We note that if
$$i = 0$$
 (resp. $i = 0, 1$), then $\sum_{t=0}^{i-1} \sum_{l=0}^{i-1-t} (-1)^{i-1-t} {m-t-2 \choose i-1-t-l}$
 $c_{m-t-l}(\mathcal{E}^{\vee})c_t(Y)s_l(\mathcal{E}) = 0$ (resp. $\sum_{t=0}^{i-2} \sum_{l=0}^{i-2-t} (-1)^{i-2-t} {m-t-2 \choose i-2-t-l}$
 $c_{m-t-l}(\mathcal{E}^{\vee})c_t(Y)s_l(\mathcal{E}) = 0$).)

Proof. (A) First we treat $e_{2m-2-i}(X,L)$. Then by Proposition 2.1

$$e_{2m-2-i}(X,L) = \sum_{t=0}^{2m-2-i} \left(\sum_{k=0}^{2m-2-i-t} (-1)^{2m-2-i-t-k} {m-t-2 \choose 2m-2-i-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E}) \right).$$

Here we note that

$$(7) 2m - 2 - i - t \ge k.$$

We set

$$E(i,k,t) = (-1)^{2m-2-i-t-k} \binom{m-t-2}{2m-2-i-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E}).$$

If $E(i, k, t) \neq 0$, then the following two conditions hold by noting (7).

$$(8) 0 \le k \le m.$$

(9)
$$0 < t < m$$
.

$$(10) k+t \le \min\{m, 2m-2-i\}.$$

If m-t-2>0 and m-t-2<2m-2-i-t-k, then $\binom{m-t-2}{2m-2-i-t-k}=0$. Hence if $E(i,k,t)\neq 0$, then $m-t-2\leq 0$ or $m-t-2\geq 2m-2-i-t-k$, that is,

(11)
$$t \ge m - 2 \quad \text{or} \quad k \ge m - i.$$

(A.1) The case where $0 \le i \le m-3$.

We see from (8), (9), (10) and (11) that $e_{2m-2-i}(X, L)$ is the sum of E(i, k, t) in the range of the following (k, t).

$$(A.1.1) \begin{cases} k = 0, 1, 2, & t = m - 2, \\ k = 0, 1, & t = m - 1, \\ k = 0, & t = m. \end{cases}$$
 (A.1.2)
$$\begin{cases} k = m - i, & t = i, i - 1, \dots, 1, 0 \\ k = m - i + 1, & t = i - 1, \dots, 1, 0 \\ \vdots \\ k = m, & t = 0. \end{cases}$$

The sum of E(i, k, t) in the range of the case (A.1.1) is the following.

$$(12) \sum_{t=m-2}^{m} \sum_{k=0}^{m-t} E(i, k, t)$$

$$= (-1)^{2m-2-i-m+2-0} \binom{m - (m-2) - 2}{2m - 2 - i - (m-2) - 0} c_{m-2}(Y) s_{2}(\mathcal{E})$$

$$+ (-1)^{2m-2-i-m+2-1} \binom{m - (m-2) - 2}{2m - 2 - i - (m-2) - 1} c_{1}(\mathcal{E}^{\vee}) c_{m-2}(Y) s_{1}(\mathcal{E})$$

$$+ (-1)^{2m-2-i-m+2-2} \binom{m - (m-2) - 2}{2m - 2 - i - (m-2) - 2} c_{2}(\mathcal{E}^{\vee}) c_{m-2}(Y)$$

$$+ (-1)^{2m-2-i-m+1-0} \binom{m - (m-1) - 2}{2m - 2 - i - (m-1) - 0} c_{m-1}(Y) s_{1}(\mathcal{E})$$

$$+ (-1)^{2m-2-i-m+1-1} \binom{m - (m-1) - 2}{2m - 2 - i - (m-1) - 1} c_{1}(\mathcal{E}^{\vee}) c_{m-1}(Y)$$

$$+ (-1)^{2m-2-i-m} \binom{m - m - 2}{2m - 2 - i - m - 0} c_{m}(Y)$$

$$= (-1)^{m-i} \binom{0}{m - i} c_{m-2}(Y) s_{2}(\mathcal{E})$$

$$+ (-1)^{m-i-1} \binom{0}{m - i} c_{m-2}(Y) s_{2}(\mathcal{E})$$

$$+ (-1)^{m-i-2} \binom{0}{m - i - 2} c_{2}(\mathcal{E}^{\vee}) c_{m-2}(Y)$$

$$+ (-1)^{m-i-2} \binom{-1}{m - 1 - i} c_{m-1}(Y) s_{1}(\mathcal{E})$$

$$+ (-1)^{m-i-2} \binom{-1}{m - 2 - i} c_{1}(\mathcal{E}^{\vee}) c_{m-1}(Y)$$

$$+ (-1)^{m-i-2} \binom{-2}{m - i - 2} c_{m}(Y)$$

$$= c_{m-1}(Y) s_{1}(\mathcal{E}) + c_{1}(\mathcal{E}^{\vee}) c_{m-1}(Y) + (m - i - 1) c_{m}(Y)$$

$$= (m - 1 - i) c_{m}(Y).$$

On the other hand, the sum of E(i, k, t) in the range of the case (A.1.2) is the following.

$$\sum_{k=m-i}^{m} \sum_{t=0}^{m-k} (-1)^{2m-2-i-t-k} {m-t-2 \choose 2m-2-i-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E})$$

$$= \sum_{t=0}^{i} \sum_{k=m-i}^{m-t} (-1)^{2m-2-i-t-k} {m-t-2 \choose 2m-2-i-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E}).$$

Here we put j := k - (m - i). Then by $t \le i \le m - 3$ we have

$$\sum_{t=0}^{i} \sum_{k=m-i}^{m-t} (-1)^{2m-2-i-t-k} \binom{m-t-2}{2m-2-i-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E})$$

$$= \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} \binom{m-t-2}{m-2-t-j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E})$$

$$= \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} \binom{m-t-2}{j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}).$$

Hence we have

(13)
$$e_{2m-2-i}(X, L) = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) + (m-1-i) c_m(Y).$$

(A.2) The case where i = m - 2.

We see from (8), (9), (10) and (11) that $e_{2m-2-i}(X, L)$ is the sum of E(m-2, k, t) in the range of the following (k, t).

(A.2.1)
$$\begin{cases} k = 0, 1, & t = m - 2, \\ k = 0, 1, & t = m - 1, \\ k = 0, & t = m. \end{cases}$$
 (A.2.2)
$$\begin{cases} k = 2, & t = m - 2, m - 3, \dots, 1, 0 \\ k = 3, & t = m - 3, \dots, 1, 0 \\ \vdots \\ k = m, & t = 0. \end{cases}$$

First we calculate the sum of E(m-2,k,t) in the range of the case (A.2.1).

$$\begin{split} &\sum_{k=0}^{1} E(m-2,k,m-2) + \sum_{t=m-1}^{m} \sum_{k=0}^{m-t} E(m-2,k,t) \\ &= (-1)^{2m-2-(m-2)-m+2-0} \binom{m-(m-2)-2}{2m-2-(m-2)-(m-2)-0} c_{m-2}(Y) s_{2}(\mathcal{E}) \\ &+ (-1)^{2m-2-(m-2)-m+2-1} \binom{m-(m-2)-2}{2m-2-(m-2)-(m-2)-1} c_{1}(\mathcal{E}^{\vee}) c_{m-2}(Y) s_{1}(\mathcal{E}) \\ &+ (-1)^{2m-2-(m-2)-m+1-0} \binom{m-(m-1)-2}{2m-2-(m-2)-(m-1)-0} c_{m-1}(Y) s_{1}(\mathcal{E}) \end{split}$$

$$\begin{split} &+ (-1)^{2m-2-(m-2)-m+1-1} \binom{m-(m-1)-2}{2m-2-(m-2)-(m-1)-1} c_1(\mathcal{E}^{\vee}) c_{m-1}(Y) \\ &+ (-1)^{2m-2-(m-2)-m} \binom{m-m-2}{2m-2-(m-2)-m-0} c_m(Y) \\ &= (-1)^2 \binom{0}{2} c_{m-2}(Y) s_2(\mathcal{E}) + (-1)^1 \binom{0}{1} c_1(\mathcal{E}^{\vee}) c_{m-2}(Y) s_1(\mathcal{E}) \\ &+ (-1)^1 \binom{-1}{1} c_{m-1}(Y) s_1(\mathcal{E}) + (-1)^0 \binom{-1}{0} c_1(\mathcal{E}^{\vee}) c_{m-1}(Y) + (-1)^0 \binom{-2}{0} c_m(Y) \\ &= c_{m-1}(Y) s_1(\mathcal{E}) + c_1(\mathcal{E}^{\vee}) c_{m-1}(Y) + c_m(Y) \\ &= c_m(Y). \end{split}$$

Next we calculate the sum of E(m-2,k,t) in the range of the case (A.2.2).

$$(15) \sum_{k=2}^{m} \sum_{t=0}^{m-k} E(m-2,k,t)$$

$$= \sum_{t=0}^{m-2} \sum_{k=2}^{m-t} (-1)^{2m-2-i-t-k} {m-t-2 \choose 2m-2-i-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E})$$

$$= \sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+2}(\mathcal{E}^{\vee}) c_t(Y) s_{(m-2)-j-t}(\mathcal{E})$$

$$= \sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+2}(\mathcal{E}^{\vee}) c_t(Y) s_{(m-2)-j-t}(\mathcal{E}).$$

(Here we set j := k - 2 in the above equations.) Since i = m - 2, we see from (14) and (15) that

(16)
$$e_{2m-2-i}(X, L) = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) + (m-1-i) c_m(Y).$$

(A.3) The case where i = m - 1.

We see from (8), (9), (10) and (11) that $e_{2m-2-i}(X, L)$ is the sum of E(m-1, k, t) in the range of the following (k, t).

(A.3.1)
$$\begin{cases} k = 0, & t = m - 2, \\ k = 0, & t = m - 1. \end{cases}$$
 (A.3.2)
$$\begin{cases} k = 1, & t = m - 2, m - 3, \dots, 1, 0 \\ k = 2, & t = m - 3, \dots, 1, 0 \\ \vdots \\ k = m - 1, & t = 0. \end{cases}$$

The sum of E(m-1,k,t) in the range of the case (A.3.1) is obtained as follows.

$$\sum_{t=m-2}^{m-1} E(m-1,0,t)
= (-1)^{2m-2-(m-1)-m+2-0} {m-(m-2)-2 \choose 2m-2-(m-1)-(m-2)-2} c_2(\mathcal{E}^{\vee}) c_{m-2}(Y)
+ (-1)^{2m-2-(m-1)-m+1-0} {m-(m-1)-2 \choose 2m-2-(m-1)-(m-1)-0} c_{m-1}(Y) s_1(\mathcal{E})
= (-1)^1 {0 \choose -1} c_1(\mathcal{E}^{\vee}) c_{m-2}(Y) s_1(\mathcal{E})
+ (-1)^0 {-1 \choose 0} c_{m-1}(Y) s_1(\mathcal{E})
= c_{m-1}(Y) s_1(\mathcal{E}).$$

On the other hand, we get the sum of E(m-1,k,t) in the range of the case (A.3.2) as follows.

$$(18)$$

$$\sum_{k=1}^{m-1} \sum_{t=0}^{m-1-k} E(m-1,k,t)$$

$$= \sum_{t=0}^{m-2} \sum_{k=1}^{m-1-t} (-1)^{2m-2-(m-1)-t-k} {m-t-2 \choose 2m-2-(m-1)-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E})$$

$$= \sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+1}(\mathcal{E}^{\vee}) c_t(Y) s_{(m-1)-j-t}(\mathcal{E})$$

$$= \sum_{t=0}^{m-1} \sum_{j=0}^{m-1-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+1}(\mathcal{E}^{\vee}) c_t(Y) s_{(m-1)-j-t}(\mathcal{E}).$$

We note that in the final step of the above equalities we use $\binom{m-t-2}{m-2-t-j} = 0$ for $(t,j) = (0,m-1), (1,m-2), \dots, (m-1,0)$. Moreover

(19)
$$\sum_{t=0}^{m-1} \sum_{j=0}^{m-1-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+1}(\mathcal{E}^{\vee}) c_t(Y) s_{(m-1)-j-t}(\mathcal{E})$$

$$= \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) - c_1(\mathcal{E}) c_{m-1}(Y).$$

We also note that in the final step of the above equalities

$$\binom{m-t-2}{m-2-t-j} = \begin{cases} \binom{m-t-2}{j} & \text{if } t \le m-2, \\ \binom{m-t-2}{j} - 1 & \text{if } t = m-1. \end{cases}$$

(Here we note that if t = m - 1, then j = 0 in this case.)

Hence we see from (17), (18) and (19) that for i = m - 1

(20)
$$e_{2m-2-i}(X, L) = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) + (m-1-i) c_m(Y).$$

(A.4) The case where i = m.

We see from (8), (9), (10) and (11) that $e_{2m-2-i}(X,L)$ is the sum of E(m,k,t) in the range of the following (k,t).

$$\begin{cases} k = 0, & t = m - 2, m - 3, \dots, 1, 0, \\ k = 1, & t = m - 3, \dots, 1, 0, \\ \vdots & \vdots & \vdots \\ k = m - 2, & t = 0. \end{cases}$$

By the same argument as above we get

$$(21) \quad e_{2m-2-i}(X,L)$$

$$= \sum_{k=0}^{m-2} \sum_{t=0}^{m-2-k} (-1)^{2m-2-m-t-k} \binom{m-t-2}{2m-2-m-t-k} c_k(\mathcal{E}^{\vee}) c_t(Y) s_{m-k-t}(\mathcal{E})$$

$$= \sum_{t=0}^{m-2} \sum_{j=0}^{m-2-t} (-1)^{m-2-t-j} \binom{m-t-2}{m-2-t-j} c_j(\mathcal{E}^{\vee}) c_t(Y) s_{m-j-t}(\mathcal{E})$$

$$= \sum_{t=0}^{m} \sum_{j=0}^{m-t} (-1)^{m-2-t-j} \binom{m-t-2}{m-2-t-j} c_j(\mathcal{E}^{\vee}) c_t(Y) s_{m-j-t}(\mathcal{E}).$$

We note that in the final step of the above equalities we use $\binom{m-t-2}{m-2-t-j} = 0$ for $(t,j) = (0,m), (1,m-1), \ldots, (m,0), (0,m-1), (1,m-2), \ldots, (m-1,0)$. On the other hand

(22)
$$\binom{m-t-2}{m-2-t-j} = \begin{cases} \binom{m-t-2}{j} & \text{if } t \leq m-2, \\ \binom{m-t-2}{j} - (-1)^j & \text{if } t = m-1, m. \end{cases}$$

(Here we note that if t = m - 1 (resp. t = m), then j = 0, 1 (resp. j = 0) in this case.)

Hence we see from (21) and (22) that for i = m

$$(23) e_{2m-2-i}(X,L)$$

$$= \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose m-2-t-j} c_{j+m-i}(\mathcal{E}^{\vee}) c_{t}(Y) s_{i-j-t}(\mathcal{E})$$

$$= \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_{t}(Y) s_{i-j-t}(\mathcal{E})$$

$$+ c_{m-1}(Y) s_{1}(\mathcal{E}) + c_{1}(\mathcal{E}^{\vee}) c_{m-1}(Y) - c_{m}(Y)$$

$$= \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_{t}(Y) s_{i-j-t}(\mathcal{E})$$

$$+ (m-i-1) c_{m}(Y).$$

By (13), (16), (20) and (23) for any i with $0 \le i \le m$ we have

$$e_{2m-2-i}(X,L) = \sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_t(Y) s_{i-j-t}(\mathcal{E}) + (m-i-1)c_m(Y).$$

Furthermore we set l := i - t - j. Then

$$\sum_{t=0}^{i} \sum_{j=0}^{i-t} (-1)^{m-2-t-j} {m-t-2 \choose j} c_{j+m-i}(\mathcal{E}^{\vee}) c_{t}(Y) s_{i-j-t}(\mathcal{E})$$

$$= \sum_{t=0}^{i} \sum_{l=0}^{i-t} (-1)^{m-2-i+l} {m-t-2 \choose i-t-l} c_{m-t-l}(\mathcal{E}^{\vee}) c_{t}(Y) s_{l}(\mathcal{E})$$

$$= \sum_{t=0}^{i} \sum_{l=0}^{i-t} (-1)^{i-t} {m-t-2 \choose i-t-l} c_{m-t-l}(\mathcal{E}) c_{t}(Y) s_{l}(\mathcal{E}).$$

Hence for every integer i with $0 \le i \le m$

$$(24) e_{2m-2-i}(X,L) = \sum_{t=0}^{i} \sum_{l=0}^{i-t} (-1)^{i-t} {m-t-2 \choose i-t-l} c_{m-t-l}(\mathcal{E}) c_t(Y) s_l(\mathcal{E}) + (m-i-1) c_m(Y).$$

(B) Next we consider $e_{2m-1}(X, L)$ and $e_{2m}(X, L)$. Then by [2, Theorem 3.1 (3.1.1)] we have

(25)
$$e_{2m-1}(X, L) = mc_m(Y),$$

(26)
$$e_{2m}(X,L) = (m+1)c_m(Y).$$

(C) By (24), (25) and (26), we get the assertion of Claim 3.1.

Here we set

$$E_{i}(c_{0}(\mathcal{E}), \dots, c_{i}(\mathcal{E}); s_{m-i}(\mathcal{E}), \dots, s_{m}(\mathcal{E}))$$

$$:= \sum_{t=0}^{i} \sum_{k=0}^{i-t} (-1)^{i-t} {m-t-2 \choose i-t-k} c_{k}(\mathcal{E}) c_{t}(Y) s_{m-k-t}(\mathcal{E}).$$

Then by Proposition 2.1 we have

(27)
$$E_i(c_0(\mathcal{E}), \dots, c_i(\mathcal{E}); s_{m-i}(\mathcal{E}), \dots, s_m(\mathcal{E})) = e_i(X, L).$$

Moreover by Claim 3.1 we have

(28)
$$e_{2m-2-i}(X, L)$$

= $E_i(s_0(\mathcal{E}), \dots, s_i(\mathcal{E}); c_{m-i}(\mathcal{E}), \dots, c_m(\mathcal{E})) + (m-i-1)c_m(Y),$

(29)
$$e_{2m-1-i}(X, L)$$

= $E_{i-1}(s_0(\mathcal{E}), \dots, s_{i-1}(\mathcal{E}); c_{m-i+1}(\mathcal{E}), \dots, c_m(\mathcal{E})) + (m-i)c_m(Y),$

(30)
$$e_{2m-i}(X, L)$$

= $E_{i-2}(s_0(\mathcal{E}), \dots, s_{i-2}(\mathcal{E}); c_{m-i+2}(\mathcal{E}), \dots, c_m(\mathcal{E})) + (m-i+1)c_m(Y)$

for every integer i with $0 \le i \le m$. By (27) and Definitions 1.1 and 2.2 we get

(31)
$$F_{i}(s_{1}(\mathcal{E}), \dots, s_{m}(\mathcal{E}))$$

$$= \operatorname{cl}_{i}(X, L)$$

$$= (-1)^{i} \{ E_{i}(c_{0}(\mathcal{E}), \dots, c_{i}(\mathcal{E}); s_{m-i}(\mathcal{E}), \dots, s_{m}(\mathcal{E}))$$

$$- 2E_{i-1}(c_{0}(\mathcal{E}), \dots, c_{i-1}(\mathcal{E}); s_{m-i+1}(\mathcal{E}), \dots, s_{m}(\mathcal{E}))$$

$$+ E_{i-2}(c_{0}(\mathcal{E}), \dots, c_{i-2}(\mathcal{E}); s_{m-i+2}(\mathcal{E}), \dots, s_{m}(\mathcal{E})) \}$$

$$= (-1)^{i} \{ E_{i}(t_{0}(s_{0}(\mathcal{E})), \dots, t_{i}(s_{0}(\mathcal{E}), \dots, s_{i}(\mathcal{E})); s_{m-i}(\mathcal{E}), \dots, s_{m}(\mathcal{E}))$$

$$- 2E_{i-1}(t_{0}(s_{0}(\mathcal{E})), \dots, t_{i-1}(s_{0}(\mathcal{E}), \dots, s_{i-1}(\mathcal{E})); s_{m-i+1}(\mathcal{E}), \dots, s_{m}(\mathcal{E}))$$

$$+ E_{i-2}(t_{0}(s_{0}(\mathcal{E})), \dots, t_{i-2}(s_{0}(\mathcal{E}), \dots, s_{i-2}(\mathcal{E})); s_{m-i+2}(\mathcal{E}), \dots, s_{m}(\mathcal{E})) \}$$

for every integer i with $0 \le i \le m$. Here $t_i(x_0, ..., x_i)$ denotes the polynomial which was defined in Definition 3.1.

On the other hand we see from Proposition 3.1, (28), (29), (30) and (31) that for every integer i with $0 \le i \le m$

$$cl_{2m-i}(X, L)$$

$$= (-1)^{2m-i} \{ e_{2m-i}(X, L) - 2e_{2m-i-1}(X, L) + e_{2m-i-2}(X, L) \}$$

$$= (-1)^{i} \{ E_{i-2}(s_{0}(\mathcal{E}), \dots, s_{i-2}(\mathcal{E}); c_{m-i+2}(\mathcal{E}), \dots, c_{m}(\mathcal{E}))$$

$$- 2E_{i-1}(s_{0}(\mathcal{E}), \dots, s_{i-1}(\mathcal{E}); c_{m-i+1}(\mathcal{E}), \dots, c_{m}(\mathcal{E}))$$

$$+ E_{i}(s_{0}(\mathcal{E}), \dots, s_{i}(\mathcal{E}); c_{m-i}(\mathcal{E}), \dots, c_{m}(\mathcal{E}))$$

$$+ (m - i + 1)c_{m}(Y) - 2(m - i)c_{m}(Y) + (m - i - 1)c_{m}(Y) \}$$

$$= (-1)^{i} \{ E_{i}(s_{0}(\mathcal{E}), \dots, s_{i}(\mathcal{E}); c_{m-i}(\mathcal{E}), \dots, c_{m}(\mathcal{E}))$$

$$- 2E_{i-1}(s_{0}(\mathcal{E}), \dots, s_{i-1}(\mathcal{E}); c_{m-i+1}(\mathcal{E}), \dots, c_{m}(\mathcal{E}))$$

$$+ E_{i-2}(s_{0}(\mathcal{E}), \dots, s_{i-2}(\mathcal{E}); c_{m-i+2}(\mathcal{E}), \dots, c_{m}(\mathcal{E})) \}$$

$$= (-1)^{i} \{ E_{i}(t_{0}(c_{0}(\mathcal{E})), \dots, t_{i}(c_{0}(\mathcal{E}), \dots, c_{i-1}(\mathcal{E})); c_{m-i}(\mathcal{E}), \dots, c_{m}(\mathcal{E}))$$

$$- 2E_{i-1}(t_{0}(c_{0}(\mathcal{E})), \dots, t_{i-1}(c_{0}(\mathcal{E}), \dots, c_{i-1}(\mathcal{E})); c_{m-i+1}(\mathcal{E}), \dots, c_{m}(\mathcal{E}))$$

$$+ E_{i-2}(t_{0}(c_{0}(\mathcal{E})), \dots, t_{i-2}(c_{0}(\mathcal{E}), \dots, c_{i-2}(\mathcal{E})); c_{m-i+2}(\mathcal{E}), \dots, c_{m}(\mathcal{E})) \}$$

$$= F_{i}(c_{1}(\mathcal{E}), \dots, c_{m}(\mathcal{E})).$$

Therefore we get the assertion of Theorem 3.1.

Finally we note the following.

PROPOSITION 3.2. Let (X, L) be an n-dimensional classical scroll over a smooth projective variety Y of dimension m such that $n \geq 2m + 1$. Then $\operatorname{cl}_i(X, L) = 0$ for every integer i with $2m + 1 \leq i \leq n$.

Proof. By [2, Theorem 3.1 (3.1.1)], we see that $e_j(X, L) = (j - m + 1)c_m(Y)$ for every integer j with $j \ge 2m - 1$. Hence

$$\operatorname{cl}_{i}(X,L) = (-1)^{i}(e_{i}(X,L) - 2e_{i-1}(X,L) + e_{i-2}(X,L)) = 0.$$

This completes the proof.

Acknowledgement. The author would like to thank the referee for some useful comments and suggestions.

References

- [1] Y. Fukuma, On the sectional invariants of polarized manifolds, *J. Pure Appl. Algebra*, **209** (2007), 99–117.
- Y. Fukuma, Sectional invariants of scroll over a smooth projective variety, Rend. Sem. Mat. Univ. Padova, 121 (2009), 93-119.
- [3] Y. Fukuma, Sectional class of ample line bundles on smooth projective varieties, *Riv. Mat. Univ. Parma (N.S.)*, **6** (2015), 215–240.

- [4] Y. Fukuma, Calculations of sectional classes of special polarized manifolds, preprint, http://www.math.kochi-u.ac.jp/fukuma/Cal-SC.html
- [5] W. Fulton, *Intersection Theory*, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2. Springer-Verlag, Berlin, 1998.

Department of Mathematics and Physics, Faculty of Science and Technology, Kochi University, Akebono-cho, Kochi 780-8520, Japan

E-mail: fukuma@kochi-u.ac.jp