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Abstract. In this note, we investigate the formula of the sectional class of
classical scrolls and we give an answer of a conjecture proposed in a previous
paper.

1. Introduction

Let (X,L) be a polarized manifold of dimension n. Assume that L is very

ample and let φ : X ↪→ PN be the morphism defined by |L|. Then φ is an

embedding. In this situation, its dual variety X∨ → (PN)∨ is a hypersurface

of N -dimensional projective space except some special types. Then the class

cl(X,L) of (X,L) is defined by the following.

cl(X,L) =

{
deg(X∨), if X∨ is a hypersurface in (PN)∨

0, otherwise.

As a generalization of this notion, in [3], we defined the ith sectional class

cli(X,L) for any ample line bundle L and every integer i with 0 ≤ i ≤ n (see

Definition 2.2).

Here we note the following fact: Assume that L is very ample. Then there

exists a sequence of smooth subvarieties X ⊃ X1 ⊃ · · · ⊃ Xn−i such that Xj ∈
|Lj−1| and dimXj = n−j for every integer j with 1 ≤ j ≤ n−i, where Lj = L|Xj

and L0 := L. In particular, Xn−i is a smooth projective variety of dimension i

and Ln−i is a very ample line bundle on Xn−i. Then cli(X,L) is equal to the class

of (Xn−i, Ln−i). This is the reason why we call this invariant the ith sectional

class.

In [4], we calculated the sectional class of special polarized manifolds. For

example, we consider the case where (X,L) is a classical scroll over a smooth
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projective variety Y of dimension m such that n := dimX ≥ 2m. Namely, there

exists an ample vector bundle E on Y of rank r ≥ m + 1 such that (X,L) ∼=
(PY (E), H(E)), where H(E) is the tautological line bundle. Here we note that

we need the assumption n ≥ 2m in order to define and compare cli(X,L) and

cl2m−i(X,L) for every integer i with 0 ≤ i ≤ m. Then we get the following:

(i) If m = 1, then by [4, Example 2.1 (ix)] we have

cli(X,L) =


s1(E), if i = 0,

2g(C)− 2 + 2c1(E), if i = 1,

c1(E), if i = 2,

0, if i ≥ 3 and n ≥ 3.

(1)

(ii) If m = 2, then by [4, Example 2.1 (x)] we have

cli(X,L) =



s2(E), if i = 0,

(s1(E) +KS)s1(E) + 2s2(E), if i = 1,

c2(S) + 3c1(E)2 + 2KSc1(E), if i = 2,

(c1(E) +KS)c1(E) + 2c2(E), if i = 3,

c2(E), if i = 4,

0, if i ≥ 5 and n ≥ 5.

(2)

(iii) If m = 3, then by [4, Example 2.1] we have

cli(X,L) =



s3(E), if i = 0,

3s3(E) + (s1(E) +KY )s2(E), if i = 1,

3s3(E) + 12(s1(E) +KY )s2(E)
+(s1(E) +KY )s1(E)2 + c2(Y )s1(E), if i = 2,

−c3(Y ) + 2c3(E)− 2c1(E)c2(E)
+4c1(E)3 + 3KY c1(E)2 + 2c2(Y )c1(E), if i = 3,

3c3(E) + 12(c1(E) +KY )c2(E)
+(c1(E) +KY )c1(E)2 + c2(Y )c1(E), if i = 4,

3c3(E) + (c1(E) +KY )c2(E), if i = 5,

c3(E), if i = 6,

0,
if i ≥ 7

and n ≥ 7.

(3)
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The above equations show that there exists a relation between cli(X,L) and

cl2m−i(X,L). Here we note that for every integer i with 0 ≤ i ≤ m, cli(X,L) can

be written by the Segre classes s1(E), . . . , sm(E).

DEFINITION 1.1. For every integer i with 0 ≤ i ≤ m, we define the polynomial

Fi(t1, . . . , tm) ∈ Z[t1, . . . , tm] such that the following equality holds.

Fi(s1(E), . . . , sm(E)) = cli(X,L).

Then we see from the above that if m = 1, 2 and 3, then

clj(X,L) = F2m−j(c1(E), . . . , cm(E))

for m ≤ j ≤ 2m. In general, we can prove the following theorem, which was

proposed in [4] and is the main result of this paper.

THEOREM 1.1. Let a polarized manifold (X,L) be a classical scroll over a

smooth projective variety Y with dimX = n and dimY = m. Let E be an ample

vector bundle on Y such that X ∼= PY (E) and L = H(E). Let Fi(t1, . . . , tm)

be the polynomial defined in Definition 1.1 for every integer i with 0 ≤ i ≤ m.

Assume that n ≥ 2m. Then for any integer j with m ≤ j ≤ 2m we have

clj(X,L) = F2m−j(c1(E), . . . , cm(E)).

In particular

Fm(s1(E), . . . , sm(E)) = Fm(c1(E), . . . , cm(E)).

By Theorem 1.1 we can easily calculate cl2m−i(X,L) (resp. cli(X,L)) if we

are able to calculate cli(X,L) (resp. cl2m−i(X,L)). By this relation we expect

that we can get some useful information about cl2m−i(X,L) (resp. cli(X,L))

from several properties of cli(X,L) (resp. cl2m−i(X,L)). Moreover if i = m, then

we have clm(X,L) = Fm(c1(E), . . . , cm(E)) = Fm(s1(E), . . . , sm(E)) by Theorem

1.1. So clm(X,L) may have special and interesting properties. We will study

these on another occasion.

2. Preliminaries

NOTATION 2.1. For a real number m and a non-negative integer n, let

[m]n :=

{
m(m− 1) · · · (m− n+ 1) if n ≥ 1,

1 if n = 0.
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For any non-negative integer n,

n! :=

{
[n]n if n ≥ 1,

1 if n = 0.

Assume that m and n are integers. Then we put(
m

n

)
:=

{
[m]n
n!

if n ≥ 0,

0 if n < 0.

We note that
(
m
n

)
= 0 if 0 ≤ m < n or n < 0, and

(
m
0

)
= 1.

DEFINITION 2.1. (See [1, Definition 3.1].) Let (X,L) be a polarized manifold

of dimension n, and i an integer with 0 ≤ i ≤ n. Then the ith sectional Euler

number ei(X,L) of (X,L) is defined by the following:

ei(X,L) :=
i∑

l=0

(−1)l
(
n− i+ l − 1

l

)
ci−l(X)Ln−i+l.

DEFINITION 2.2. (See [3, Definitions 2.8 and 2.9]. See also [3, Remark 2.6].)

Let (X,L) be a polarized manifold of dimension n and i an integer with 0 ≤ i ≤ n.

Then the ith sectional class of (X,L) is defined by the following.

cli(X,L) =


e0(X,L), if i = 0,

(−1){e1(X,L)− 2e0(X,L)}, if i = 1,

(−1)i{ei(X,L)− 2ei−1(X,L) + ei−2(X,L)}, if 2 ≤ i ≤ n.

DEFINITION 2.3. Let Y be a smooth projective variety of dimension m and E
a vector bundle of rank r on Y .

(i) The Chern polynomial ct(E) is defined by ct(E) =
∑
i≥0

ci(E)ti.

(ii) For every integer j with j ≥ 0, the jth Segre class sj(F) of F is defined

by the following equation: ct(F∨)st(F) = 1, where ct(F∨) is the Chern

polynomial of F∨ and st(F) =
∑

j≥0 sj(F)tj.

REMARK 2.1.

(i) Let Y be a smooth projective variety and F a vector bundle onX. Let s̃j(F)

be the Segre class which is defined in [5, Chapter 3]. Then sj(F) = s̃j(F∨).

(ii) For every integer i with 1 ≤ i, si(F) can be written by using the Chern

classes cj(F) with 1 ≤ j ≤ i. (For example, s1(F) = c1(F), s2(F) =

c1(F)2 − c2(F), and so on.)
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NOTATION 2.2. Let (X,L) be an n-dimensional classical scroll over a smooth

projective variety Y of dimension m. Let E be an ample vector bundle of rank

r on Y such that X = PY (E) and L = H(E). Let p : X → Y be the projection.

Then n = m+ r − 1. In this paper we assume that r ≥ m+ 1, that is, n ≥ 2m.

PROPOSITION 2.1. Let (X,L) be a classical scroll over a smooth projective

variety Y of dimension m. We use notations in Notation 2.2. Then for every

integer i with 0 ≤ i ≤ n the following holds.

ei(X,L) =
i∑

t=0

i−t∑
k=0

(−1)i−t

(
m− t− 2

i− t− k

)
ck (E) ct (Y ) sm−k−t(E).

Proof. See the first part of the proof in [2, Theorem 3.1].

3. Main result

DEFINITION 3.1. Let Y be a smooth projective variety of dimension m and E
a vector bundle on Y . Then for every integer i with 0 ≤ i ≤ m we define the

polynomial ti(x0, . . . , xi) ∈ Z[x0, . . . , xi] which satisfies the following.

ci(E) = ti(s0(E), . . . , si(E)).(4)

For example, we see that t0(x0) = 1, t1(x0, x1) = x1, t2(x0, x1, x2) = x2
1 − x2 and

so on.

PROPOSITION 3.1. Let Y be a smooth projective variety of dimension m and

E a vector bundle over Y . For every integer i with 0 ≤ i ≤ m, we have si(E) =
ti(c0(E), . . . , ci(E)).

Proof. We prove this by induction.

(I) If i = 0, then this is true because c0(E) = s0(E) = 1.

(II) Assume that the assertion holds for every i with i ≤ k − 1. So we consider

the case i = k. Then by Definition 2.3 (ii)∑
i+j=k
i≥0,j≥0

(−1)ici(E)sj(E) = 0.(5)

Hence by (5) we have

tk(s0(E), . . . , sk(E)) = ck(E)
= (−1)k+1

∑
i+j=k
j≥1

(−1)ici(E)sj(E)
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= (−1)k+1
∑
i+j=k
j≥1

(−1)iti(s0(E), . . . , si(E))sj(E).

In particular, we have

tk(x0, . . . , xk) = (−1)k+1
∑
i+j=k
j≥1

(−1)iti(x0, . . . , xi)xj.(6)

On the other hand, we see from the induction hypothesis and (6) that

sk(E) = −
∑
i+j=k
i≥1

(−1)ici(E)sj(E)

= (−1)k+1
∑
i+j=k
i≥1

(−1)jci(E)tj(c0(E), . . . , cj(E))

= tk(c0(E), . . . , ck(E)).

So we get the assertion.

The following theorem which is Theorem 1.1 in Introduction is the main result

of this note.

THEOREM 3.1. Let (X,L) be an n-dimensional classical scroll over a smooth

projective variety Y of dimension m such that n ≥ 2m. Let Fi(t1, . . . , tm) be the

polynomial defined in Definition 1.1 for every integer i with 0 ≤ i ≤ m. We use

notations in Notation 2.2. Then for any integer j with m ≤ j ≤ 2m we have

clj(X,L) = F2m−j(c1(E), . . . , cm(E)).

In particular

Fm(s1(E), . . . , sm(E)) = Fm(c1(E), . . . , cm(E)).

Proof. First we prove the following.

CLAIM 3.1 For any integer i with 0 ≤ i ≤ m, we have

e2m−2−i(X,L)

=
i∑

t=0

i−t∑
l=0

(−1)i−t

(
m− t− 2

i− t− l

)
cm−t−l(E∨)ct(Y )sl(E) + (m− i− 1)cm(Y ),

e2m−1−i(X,L)

=
i−1∑
t=0

i−1−t∑
l=0

(−1)i−1−t

(
m− t− 2

i− 1− t− l

)
cm−t−l(E∨)ct(Y )sl(E) + (m− i)cm(Y ),
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e2m−i(X,L)

=
i−2∑
t=0

i−2−t∑
l=0

(−1)i−2−t

(
m− t− 2

i− 2− t− l

)
cm−t−l(E∨)ct(Y )sl(E) + (m− i+ 1)cm(Y ).

(We note that if i = 0 (resp. i = 0, 1), then
∑i−1

t=0

∑i−1−t
l=0 (−1)i−1−t

(
m−t−2
i−1−t−l

)
cm−t−l(E∨)ct(Y )sl(E) = 0 (resp.

∑i−2
t=0

∑i−2−t
l=0 (−1)i−2−t

(
m−t−2
i−2−t−l

)
cm−t−l(E∨)ct(Y )sl(E) = 0).)

Proof. (A) First we treat e2m−2−i(X,L). Then by Proposition 2.1

e2m−2−i(X,L)

=
2m−2−i∑

t=0

(
2m−2−i−t∑

k=0

(−1)2m−2−i−t−k

(
m− t− 2

2m− 2− i− t− k

)
ck(E∨)ct(Y )sm−k−t(E)

)
.

Here we note that

2m− 2− i− t ≥ k.(7)

We set

E(i, k, t) = (−1)2m−2−i−t−k

(
m− t− 2

2m− 2− i− t− k

)
ck(E∨)ct(Y )sm−k−t(E).

If E(i, k, t) ̸= 0, then the following two conditions hold by noting (7).

0 ≤ k ≤ m.(8)

0 ≤ t ≤ m.(9)

k + t ≤ min{m, 2m− 2− i}.(10)

If m− t− 2 > 0 and m− t− 2 < 2m− 2− i− t− k, then
(

m−t−2
2m−2−i−t−k

)
= 0.

Hence if E(i, k, t) ̸= 0, then m − t − 2 ≤ 0 or m − t − 2 ≥ 2m − 2 − i − t − k,

that is,

t ≥ m− 2 or k ≥ m− i.(11)

(A.1) The case where 0 ≤ i ≤ m− 3.

We see from (8), (9), (10) and (11) that e2m−2−i(X,L) is the sum of E(i, k, t) in

the range of the following (k, t).

(A.1.1)


k = 0, 1, 2, t = m− 2,

k = 0, 1, t = m− 1,

k = 0, t = m.

(A.1.2)


k = m− i, t = i, i− 1, . . . , 1, 0

k = m− i+ 1, t = i− 1, . . . , 1, 0
...

k = m, t = 0.
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The sum of E(i, k, t) in the range of the case (A.1.1) is the following.

m∑
t=m−2

m−t∑
k=0

E(i, k, t)(12)

= (−1)2m−2−i−m+2−0

(
m− (m− 2)− 2

2m− 2− i− (m− 2)− 0

)
cm−2(Y )s2(E)

+ (−1)2m−2−i−m+2−1

(
m− (m− 2)− 2

2m− 2− i− (m− 2)− 1

)
c1(E∨)cm−2(Y )s1(E)

+ (−1)2m−2−i−m+2−2

(
m− (m− 2)− 2

2m− 2− i− (m− 2)− 2

)
c2(E∨)cm−2(Y )

+ (−1)2m−2−i−m+1−0

(
m− (m− 1)− 2

2m− 2− i− (m− 1)− 0

)
cm−1(Y )s1(E)

+ (−1)2m−2−i−m+1−1

(
m− (m− 1)− 2

2m− 2− i− (m− 1)− 1

)
c1(E∨)cm−1(Y )

+ (−1)2m−2−i−m

(
m−m− 2

2m− 2− i−m− 0

)
cm(Y )

= (−1)m−i

(
0

m− i

)
cm−2(Y )s2(E)

+ (−1)m−i−1

(
0

m− i− 1

)
c1(E∨)cm−2(Y )s1(E)

+ (−1)m−i−2

(
0

m− i− 2

)
c2(E∨)cm−2(Y )

+ (−1)m−i−1

(
−1

m− 1− i

)
cm−1(Y )s1(E)

+ (−1)m−i−2

(
−1

m− 2− i

)
c1(E∨)cm−1(Y )

+ (−1)m−i−2

(
−2

m− i− 2

)
cm(Y )

= cm−1(Y )s1(E) + c1(E∨)cm−1(Y ) + (m− i− 1)cm(Y )

= (m− 1− i)cm(Y ).

On the other hand, the sum of E(i, k, t) in the range of the case (A.1.2) is

the following.

m∑
k=m−i

m−k∑
t=0

(−1)2m−2−i−t−k

(
m− t− 2

2m− 2− i− t− k

)
ck(E∨)ct(Y )sm−k−t(E)

=
i∑

t=0

m−t∑
k=m−i

(−1)2m−2−i−t−k

(
m− t− 2

2m− 2− i− t− k

)
ck(E∨)ct(Y )sm−k−t(E).
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Here we put j := k − (m− i). Then by t ≤ i ≤ m− 3 we have

i∑
t=0

m−t∑
k=m−i

(−1)2m−2−i−t−k

(
m− t− 2

2m− 2− i− t− k

)
ck(E∨)ct(Y )sm−k−t(E)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

m− 2− t− j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E).

Hence we have

e2m−2−i(X,L)(13)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

+ (m− 1− i)cm(Y ).

(A.2) The case where i = m− 2.

We see from (8), (9), (10) and (11) that e2m−2−i(X,L) is the sum of E(m−2, k, t)

in the range of the following (k, t).

(A.2.1)


k = 0, 1, t = m− 2,

k = 0, 1, t = m− 1,

k = 0, t = m.

(A.2.2)


k = 2, t = m− 2,m− 3, . . . , 1, 0

k = 3, t = m− 3, . . . , 1, 0
...

k = m, t = 0.

First we calculate the sum of E(m− 2, k, t) in the range of the case (A.2.1).

(14)
1∑

k=0

E(m− 2, k,m− 2) +
m∑

t=m−1

m−t∑
k=0

E(m− 2, k, t)

= (−1)2m−2−(m−2)−m+2−0

(
m− (m− 2)− 2

2m−2−(m−2)−(m−2)−0

)
cm−2(Y )s2(E)

+ (−1)2m−2−(m−2)−m+2−1

(
m− (m− 2)− 2

2m−2−(m−2)−(m−2)−1

)
c1(E∨)cm−2(Y )s1(E)

+ (−1)2m−2−(m−2)−m+1−0

(
m− (m− 1)− 2

2m−2−(m−2)−(m−1)−0

)
cm−1(Y )s1(E)
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+ (−1)2m−2−(m−2)−m+1−1

(
m− (m− 1)− 2

2m−2−(m−2)−(m−1)−1

)
c1(E∨)cm−1(Y )

+ (−1)2m−2−(m−2)−m

(
m−m− 2

2m−2−(m−2)−m−0

)
cm(Y )

= (−1)2
(
0

2

)
cm−2(Y )s2(E) + (−1)1

(
0

1

)
c1(E∨)cm−2(Y )s1(E)

+ (−1)1
(
−1

1

)
cm−1(Y )s1(E) + (−1)0

(
−1

0

)
c1(E∨)cm−1(Y ) + (−1)0

(
−2

0

)
cm(Y )

= cm−1(Y )s1(E) + c1(E∨)cm−1(Y ) + cm(Y )

= cm(Y ).

Next we calculate the sum of E(m− 2, k, t) in the range of the case (A.2.2).

m∑
k=2

m−k∑
t=0

E(m− 2, k, t)(15)

=
m−2∑
t=0

m−t∑
k=2

(−1)2m−2−i−t−k

(
m− t− 2

2m− 2− i− t− k

)
ck(E∨)ct(Y )sm−k−t(E)

=
m−2∑
t=0

m−2−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

m− 2− t− j

)
cj+2(E∨)ct(Y )s(m−2)−j−t(E)

=
m−2∑
t=0

m−2−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+2(E∨)ct(Y )s(m−2)−j−t(E).

(Here we set j := k − 2 in the above equations.)

Since i = m− 2, we see from (14) and (15) that

e2m−2−i(X,L)(16)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

+ (m− 1− i)cm(Y ).

(A.3) The case where i = m− 1.

We see from (8), (9), (10) and (11) that e2m−2−i(X,L) is the sum of E(m−1, k, t)

in the range of the following (k, t).

(A.3.1)

{
k = 0, t = m− 2,

k = 0, t = m− 1.
(A.3.2)


k = 1, t = m− 2,m− 3, . . . , 1, 0

k = 2, t = m− 3, . . . , 1, 0
...

k = m− 1, t = 0.
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The sum of E(m − 1, k, t) in the range of the case (A.3.1) is obtained as

follows.

(17)
m−1∑

t=m−2

E(m− 1, 0, t)

= (−1)2m−2−(m−1)−m+2−0

(
m− (m− 2)− 2

2m− 2− (m− 1)− (m− 2)− 2

)
c2(E∨)cm−2(Y )

+(−1)2m−2−(m−1)−m+1−0

(
m− (m− 1)− 2

2m− 2− (m− 1)− (m− 1)− 0

)
cm−1(Y )s1(E)

= (−1)1
(

0

−1

)
c1(E∨)cm−2(Y )s1(E)

+(−1)0
(
−1

0

)
cm−1(Y )s1(E)

= cm−1(Y )s1(E).
On the other hand, we get the sum of E(m− 1, k, t) in the range of the case

(A.3.2) as follows.

(18)
m−1∑
k=1

m−1−k∑
t=0

E(m− 1, k, t)

=
m−2∑
t=0

m−1−t∑
k=1

(−1)2m−2−(m−1)−t−k

(
m− t− 2

2m−2−(m−1)−t−k

)
ck(E∨)ct(Y )sm−k−t(E)

=
m−2∑
t=0

m−2−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

m− 2− t− j

)
cj+1(E∨)ct(Y )s(m−1)−j−t(E)

=
m−1∑
t=0

m−1−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

m− 2− t− j

)
cj+1(E∨)ct(Y )s(m−1)−j−t(E).

We note that in the final step of the above equalities we use
(

m−t−2
m−2−t−j

)
= 0 for

(t, j) = (0,m− 1), (1,m− 2), . . . , (m− 1, 0). Moreover

(19)
m−1∑
t=0

m−1−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

m− 2− t− j

)
cj+1(E∨)ct(Y )s(m−1)−j−t(E)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)− c1(E)cm−1(Y ).
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We also note that in the final step of the above equalities(
m− t− 2

m− 2− t− j

)
=

{ (
m−t−2

j

)
if t ≤ m− 2,(

m−t−2
j

)
− 1 if t = m− 1.

(Here we note that if t = m− 1, then j = 0 in this case.)

Hence we see from (17), (18) and (19) that for i = m− 1

e2m−2−i(X,L)(20)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

+ (m− 1− i)cm(Y ).

(A.4) The case where i = m.

We see from (8), (9), (10) and (11) that e2m−2−i(X,L) is the sum of E(m, k, t)

in the range of the following (k, t).
k = 0, t = m− 2,m− 3, . . . , 1, 0,

k = 1, t = m− 3, . . . , 1, 0,
...

k = m− 2, t = 0.

By the same argument as above we get

e2m−2−i(X,L)(21)

=
m−2∑
k=0

m−2−k∑
t=0

(−1)2m−2−m−t−k

(
m− t− 2

2m− 2−m− t− k

)
ck(E∨)ct(Y )sm−k−t(E)

=
m−2∑
t=0

m−2−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

m− 2− t− j

)
cj(E∨)ct(Y )sm−j−t(E)

=
m∑
t=0

m−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

m− 2− t− j

)
cj(E∨)ct(Y )sm−j−t(E).

We note that in the final step of the above equalities we use
(

m−t−2
m−2−t−j

)
= 0

for (t, j) = (0,m), (1,m− 1), . . . , (m, 0), (0,m− 1), (1,m− 2), . . . , (m− 1, 0).

On the other hand(
m− t− 2

m− 2− t− j

)
=

{ (
m−t−2

j

)
if t ≤ m− 2,(

m−t−2
j

)
− (−1)j if t = m− 1,m.

(22)
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(Here we note that if t = m− 1 (resp. t = m), then j = 0, 1 (resp. j = 0) in this

case.)

Hence we see from (21) and (22) that for i = m

e2m−2−i(X,L)(23)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

m− 2− t− j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

+ cm−1(Y )s1(E) + c1(E∨)cm−1(Y )− cm(Y )

=
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

+ (m− i− 1)cm(Y ).

By (13), (16), (20) and (23) for any i with 0 ≤ i ≤ m we have

e2m−2−i(X,L) =
i∑

t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

+ (m− i− 1)cm(Y ).

Furthermore we set l := i− t− j. Then

i∑
t=0

i−t∑
j=0

(−1)m−2−t−j

(
m− t− 2

j

)
cj+m−i(E∨)ct(Y )si−j−t(E)

=
i∑

t=0

i−t∑
l=0

(−1)m−2−i+l

(
m− t− 2

i− t− l

)
cm−t−l(E∨)ct(Y )sl(E)

=
i∑

t=0

i−t∑
l=0

(−1)i−t

(
m− t− 2

i− t− l

)
cm−t−l(E)ct(Y )sl(E).

Hence for every integer i with 0 ≤ i ≤ m

e2m−2−i(X,L)(24)

=
i∑

t=0

i−t∑
l=0

(−1)i−t

(
m− t− 2

i− t− l

)
cm−t−l(E)ct(Y )sl(E) + (m− i− 1)cm(Y ).

(B) Next we consider e2m−1(X,L) and e2m(X,L). Then by [2, Theorem 3.1

(3.1.1)] we have

e2m−1(X,L) = mcm(Y ),(25)

e2m(X,L) = (m+ 1)cm(Y ).(26)
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(C) By (24), (25) and (26), we get the assertion of Claim 3.1.

Here we set

Ei(c0(E), . . . , ci(E); sm−i(E), . . . , sm(E))

:=
i∑

t=0

i−t∑
k=0

(−1)i−t

(
m− t− 2

i− t− k

)
ck (E) ct (Y ) sm−k−t(E).

Then by Proposition 2.1 we have

Ei(c0(E), . . . , ci(E); sm−i(E), . . . , sm(E)) = ei(X,L).(27)

Moreover by Claim 3.1 we have

e2m−2−i(X,L)(28)

= Ei(s0(E), . . . , si(E); cm−i(E), . . . , cm(E)) + (m− i− 1)cm(Y ),

e2m−1−i(X,L)(29)

= Ei−1(s0(E), . . . , si−1(E); cm−i+1(E), . . . , cm(E)) + (m− i)cm(Y ),

e2m−i(X,L)(30)

= Ei−2(s0(E), . . . , si−2(E); cm−i+2(E), . . . , cm(E)) + (m− i+ 1)cm(Y )

for every integer i with 0 ≤ i ≤ m. By (27) and Definitions 1.1 and 2.2 we get

Fi(s1(E), . . . , sm(E))(31)

= cli(X,L)

= (−1)i{Ei(c0(E), . . . , ci(E); sm−i(E), . . . , sm(E))

− 2Ei−1(c0(E), . . . , ci−1(E); sm−i+1(E), . . . , sm(E))

+ Ei−2(c0(E), . . . , ci−2(E); sm−i+2(E), . . . , sm(E))}

= (−1)i{Ei(t0(s0(E)), . . . , ti(s0(E), . . . , si(E)); sm−i(E), . . . , sm(E))

− 2Ei−1(t0(s0(E)), . . . , ti−1(s0(E), . . . , si−1(E)); sm−i+1(E), . . . , sm(E))

+ Ei−2(t0(s0(E)), . . . , ti−2(s0(E), . . . , si−2(E)); sm−i+2(E), . . . , sm(E))}

for every integer i with 0 ≤ i ≤ m. Here ti(x0, . . . , xi) denotes the polynomial

which was defined in Definition 3.1.

On the other hand we see from Proposition 3.1, (28), (29), (30) and (31) that

for every integer i with 0 ≤ i ≤ m

cl2m−i(X,L)

= (−1)2m−i{e2m−i(X,L)− 2e2m−i−1(X,L) + e2m−i−2(X,L)}
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= (−1)i{Ei−2(s0(E), . . . , si−2(E); cm−i+2(E), . . . , cm(E))

− 2Ei−1(s0(E), . . . , si−1(E); cm−i+1(E), . . . , cm(E))

+ Ei(s0(E), . . . , si(E); cm−i(E), . . . , cm(E))

+ (m− i+ 1)cm(Y )− 2(m− i)cm(Y ) + (m− i− 1)cm(Y )}

= (−1)i{Ei(s0(E), . . . , si(E); cm−i(E), . . . , cm(E))

− 2Ei−1(s0(E), . . . , si−1(E); cm−i+1(E), . . . , cm(E))

+ Ei−2(s0(E), . . . , si−2(E); cm−i+2(E), . . . , cm(E))}

= (−1)i{Ei(t0(c0(E)), . . . , ti(c0(E), . . . , ci(E)); cm−i(E), . . . , cm(E))

− 2Ei−1(t0(c0(E)), . . . , ti−1(c0(E), . . . , ci−1(E)); cm−i+1(E), . . . , cm(E))

+ Ei−2(t0(c0(E)), . . . , ti−2(c0(E), . . . , ci−2(E)); cm−i+2(E), . . . , cm(E))}

= Fi(c1(E), . . . , cm(E)).

Therefore we get the assertion of Theorem 3.1.

Finally we note the following.

PROPOSITION 3.2. Let (X,L) be an n-dimensional classical scroll over a

smooth projective variety Y of dimension m such that n ≥ 2m + 1. Then

cli(X,L) = 0 for every integer i with 2m+ 1 ≤ i ≤ n.

Proof. By [2, Theorem 3.1 (3.1.1)], we see that ej(X,L) = (j−m+1)cm(Y ) for

every integer j with j ≥ 2m− 1. Hence

cli(X,L) = (−1)i(ei(X,L)− 2ei−1(X,L) + ei−2(X,L)) = 0.

This completes the proof.
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