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Abstract. Recently, a research on quantum walks has been developed in various
areas. In this paper we focus on the periodicity of the Grover walk which is one
of the quantum walks on the discrete graphs. Then we find some special graphs
to induce a periodic Grover walk: At some time k, the quantum state φk returns
its initial quantum state φ0. Our purpose is to characterize graphs which induce
a k-periodic Grover walk for a fixed integer k. We do it for k = 2, 3, 4, 5 and gain
a necessary condition for odd k.

1. Introduction

1.1 Background and Notation

Quantum walks (QWs) were introduced as quantizations of random walks

(RWs) [5]. Every QW is determined by a given graph, its induced Hilbert space

H and a unitary time evolution operator on H. The amplitude is obtained

by this unitary iteration to a given initial state. Due to the unitarity of the

time iteration, the norm of the amplitude is preserved, which implies that the

distribution can be defined at each time step. However it is believed that there

are not any trivial representations of the present distribution of QWs by that of

past time like Markov chain [8]. QWs have been applied to various study fields,

for example, a problem of searching marked elements on graphs [22], [2], [17], [18],

fundamental physics [21], [4], the limit theorems for its statistical behaviors [12],

[13], spectral analysis [3], [15], and photon synthesis [19]. In [22], the Szegedy

walk was formulated as a natural quantization of thr reversible Markov chain, and

Szegedy showed that in most cases the quantized walk hits the marked set within

the square root of the classical hitting time. The Grover walk, which is a special

case of the Szegedy walk, is a widely studied quantum walk model. The Grover

walk is related to the analysis of the zeta function and the isomorphic problem
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between two cospectrum strongly regular graphs [9], [14]. In [7], Grover’s search

algorithm was introduced to search marked elements in a database.

In this paper we focus on the periodicity of the Grover walk on graphs. The

periodicity means that the quantum state at some time returns to the initial state.

Recently, periodicities of QWs have been studied. In [16], Konno, Takei and

Shimizu study Hadamard walk on cycle graph Cn, and find that only C2, C4, and

C8 induce periodic Hadamard walks, whose periods are 2, 8, and 24, respectively.

In [11], Higuchi, Konno, Sato and Segawa resarch some QWs on several finite

graphs and find the conditions of these graphs to induce periodic QWs. The

results are as follows:

• (Complete graphs) The Szegedy walks induced by isotropic random walk

with laziness l with l ∈ (0, 1](l ∈ Q) on Kn are periodic if and only if

(n, l) = (2, 0), (3, 0), (n, 1/n), (2, 1/4), or (n, (n + 1)/(2n)), whose periods

are 2, 3, 4, 6 and 6, respectively.

• (Complete bipartite graphs) The Szegedy walks induced by isotropic ran-

dom walk with laziness l with l ∈ (0, 1](l ∈ Q) on Kn,m with m,n > 0 and

m+n ≥ 3 are periodic if and only if l = 0, or 1/2, whose periods are 4 and

12, respectively.

• (Strongly regular graphs) The Grover walks on the strongly regular graphs

SRG(n, k, λ, µ) are periodic if and only if

(n, k, λ, µ) = (2k, k, 0, k), (3λ, 2λ, λ, 2λ), (5, 2, 0, 1),

whose periods are 4, 12 and 5, respectively.

• (Cycle graphs) The Szegedy walks on Cn induced by non-isotropic ran-

dom walk such that a walker jumps around clockwise with a non-reversible

probability p(̸= 1/2) and around counterclockwise with probability 1 − p

are periodic if and only if p = (2−
√
3)/4, (2−

√
2)/4, 1/4 for n = 2, whose

periods are 6, 8 and 12, respectively, or p = (2 −
√
3)/4, (2 −

√
2)/4, 1/4

for n = 4, whose periods are 12, 8 and 12, respectively, or p = (2−
√
2)/4

for n = 8, whose period is 24.

If the underlying graph gives a periodicity to the Grover walk, then the sequence

of the distributions is periodic. So we can say that such graphs are special class of

graphs from the viewpoint of QWs. Our purpose is to characterize such special

classes of graphs. In the previous results, for fixed graphs, the conditions of

graphs to induce periodic QWs are found. On the contrary, we fix an integer k

and characterize graphs to induce k-periodic Grover walks.

For a given finite graph G, we denote C|D(G)| byH, and give a |D(G)|×|D(G)|
unitary operator U , where D(G) is the set of symmetric arcs of G, that is,

D(G) = {(u, v), (v, u)|uv ∈ E(G)}. A walker of the Grover walk on G transfers
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on arcs. The motion of the quantum walker is interpreted as a dynamics of plane

wave on the metric graphs [10].

First, we introduce the notations and QWs on graphs. All graphs considered

in this paper are finite and simple graphs without loops and multiple edges. Let

V (G), E(G) be a set of vertices and edges of G and set n = |V (G)|,m = |E(G)|,
respectively. The matrix T = (Tu,v) (u, v ∈ V (G)) is the n× n transition matrix

of isotropic RWs, that is,

Tu,v =

{
1/deg(u) if u ∼ v,

0 otherwise.

For uv ∈ E(G), let e = (u, v) be an arc from u to v, and its inverse arc

(v, u) is denoted by e−1. The origin and terminus of e are denoted by o(e), t(e),

respectively. For a square matrix A, if we write

Spec(A) =

(
λ1 λ2 · · · λr

m1 m2 · · · mr

)
,

it implies that the multiplicity of the eigenvalue λi of A is mi for 1 ≤ i ≤ r. In

this paper we denote λ ∈ Spec(A), if λ is an eigenvalue of A.

Throughout this paper, a path graph and a complete graph with l vertices

are denoted by Pl and Kl, respectively. The graph Cl is a cycle graph with l

vertices and we call it an even-cycle if l is even, otherwise an odd-cycle. The

tree graphs are defined as graphs without cycles. In this paper, we say that a

graph G is a unicycle graph if it contains exactly one cycle C and the subgraph

G\C is a non-empty forest graph, where the forest graph is a disjoint union of

tree graphs. So we do not call cycle graphs unicycle graphs in this paper. In

addition, we call a unicycle graph even-unicycle graph if the length of the cycle

is even, otherwise odd-unicycle graph. In this paper the graphs in Figures 1, 2

are unicycle graphs, but the graph in Figure 3 is not a unicycle graph. Let Kr,s

be a complete bipartite graph with two partitions with r and s vertices. The

girth of G is denoted by g(G), which is the length of the minimum cycle in G.

Figure 1 Figure 2 Figure 3
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Furthermore, we assign vectors x⃗e to every e ∈ D(G), where x⃗e s are the

standard basis of the Hilbert space C2m , that is, (x⃗e)f = δe,f for every e, f ∈
D(G). We construct the quantum state at time t, φt ∈ C2m as

φt = Σe∈D(G)α
t
ex⃗e,

where αt
e ∈ C, and set Σe∈D(G)| αt

e |
2
= 1. Then the finding probability of the

walker on an arc e at time t is |αt
e|
2
. Giving a 2m × 2m unitary matrix U , we

determine φt+1 as

φt+1 = Uφt.

Hence, we can denote φt as

φt = U tφ0

using the initial state φ0.

Next, we introduce the Grover walk. The evolution operator of the Grover

walk is the following 2m× 2m unitary matrix U = U(G) = (Ue,f ) (e, f ∈ D(G)):

Ue,f =


2/deg(t(f)) if t(f) = o(e) and f ̸= e−1,

2/deg(t(f))− 1 if f = e−1,

0 otherwise.

The quantum waves on an arc f transmits to an arc e with t(f) = o(e) and

f ̸= e with a rate of 2/deg(t(f)), and reflects to the arc f−1 with a rate of

2/deg(t(f)) − 1. This U is called the Grover transfer matrix. We shall give an

example of the Grover walk and consider the periodicity. We will provide an

example of graphs which induces periodic Grover walks.

Example: G = K1,3.

Figure 4 K1,3



CHARACTERIZATIONS OF GRAPHS TO INDUCE PERIODIC GROVER WALK 13

U = U(K1,3) =



0 0 0 −1/3 2/3 2/3

0 0 0 2/3 −1/3 2/3

0 0 0 2/3 2/3 −1/3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


.

In fact, this U satisfies U4 = I6, that is, φ4 = U4φ0 = φ0 for an arbitrary initial

state φ0. We say that G = K1,3 is a graph to induce a 4-periodic Grover walk.

The other examples are given in Figures 5, 6, 7.

Figure 5 Figure 6 Figure 7

These graphs induce 5, 6, 4-periodic Grover walks, respectively.

1.2 Main Results

For a positive integer k, inducing a k-periodic Grover walk implies that Uk =

I2m, while U j ̸= I2m for every j with j < k for the Grover transfer matrix U .

These conditions can be regarded as the following spectral problem.

PROPOSITION 1.1. A graph G induces a k-periodic Grover walk if and only if

λk
U = 1 for every λU ∈ Spec(U), and there exists λU ∈ Spec(U) such that λj

U ̸= 1

for every j with j < k.

So what we have to do is checking whether all the eigenvalues of U satisfy the

condition of the above Proposition. In order to consider it, we need the following

Theorem.

THEOREM 1.2. (Emms, Hancock, Severini and Wilson [3], [4]) For the Grover

transfer matrix U and the transition matrix T on a graph G, it holds

det(λUI2m − U) = (λ2
U − 1)m−n((λ2

U + 1)In − 2λUT )

for every λU ∈ C.
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So U has 2n eigenvalues of the following form

λU = λT ± i
√

1− λ2
T ,

where λT ∈ Spec(T ). The remaining 2(m − n) eigenvalues are −1, 1, which

have the same multiplicities. Therefore if these two kinds of eigenvalues satisfy

the condition of Proposition 1.1, then G induces a k-periodic Grover walk. We

characterize such graphs for k = 2, 3, 4, 5 and obtain a necessary condition for

odd k.

THEOREM 1.3. The graph P2 is the only graph to induce the 2-periodic Grover

walk.

THEOREM 1.4. If G induces an odd-periodic Grover walk, then G is an odd-

cycle or an odd-unicycle graph.

THEOREM 1.5. The graphs C3, C5 are the only graphs to induce the 3, 5-

periodic Grover walks, respectively.

THEOREM 1.6. The graphKr,s is the only graph to induce the 4-periodic Grover

walk for every r, s ∈ N.

This paper is organized as follows: In section 2, we mention the 2-periodic

case and prove Theorem 1.3. In section 3, we first give a necessary condition

for graphs to induce an odd-periodic Grover walk and prove Theorems 1.4, 1.5

with several Lemmas. In section 4, we prove Theorem 1.6 by using a property of

bipartite graphs. At the end of this paper, we summarize our results and make

some discussions in section 5.

2. Proof of Theorem 1.3

Here we explain the graph to induce the 2-periodic Grover walk, and prove

Theorem 1.3 with some Lemmas.

LEMMA 2.1. For any λT ∈ Spec(T ), it holds that |λT | ≤ 1 and 1 ∈ Spec(T ).

LEMMA 2.2. (Perron-Frobenius) If A is a non-negative matrix, that is, all en-

tries are non-negative, then the eigenvector of the maximum eigenvalue of A is

a non-negative vector and its multiplicity is 1.

Proof of Theorem 1.3. Obviously P2 induces the 2-periodic Grover walk. Hence,

we prove that if G induces a 2-periodic Grover walk, then G is P2. By Proposition
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1.1, for any λU ∈ Spec(U), it should hold that λ2
U = 1. According to Theorem

1.2, U has eigenvalues of the form λT ± i
√

1− λ2
T , and the remaining 2(m− n)

eigenvalues are ±1. The latter values satisfy the condition of Proposition 1.1,

then the former values should satisfy it, which implies λT ±i
√
1− λ2

T = ±1, that

is, λT = ±1. Since T is a non-negative matrix and 1 is the maximum eigenvalue

of T , then its multiplicity is 1 by Lemmas 2.1, 2.2. Moreover the multiplicity of

−1 is also 1 because of Tr(T ) = 0. So we can obtain

Spec(T ) =

(
−1 1

1 1

)
. (1)

Considering the connectivity of G and the summation of their multiplicities, we

can obtain that P2 is the only graph which leads (1) as a spectrum of its transition

matrix. Indeed,

U(P2) =

(
0 1

1 0

)
.

Obviously it induces the 2-periodic Grover walk. Then such a graph is only P2.

3. Proofs of Theorems 1.4, 1.5

In this section we show that the graphs inducing an odd-periodic Grover walk

should satisfy some conditions. Then we prove Theorems 1.4, 1.5.

3.1 Proof of Theorem 1.4

LEMMA 3.1. A graph G is a bipartite graph if and only if it holds that (λT )min =

−(λT )max for the eigenvalues of its transition matrix T .

Furthermore using Lemmas 2.1, 2.2, we can gain the following corollary:

COROLLARY 3.2. A graph G is a bipartite graph if and only if −1 ∈ Spec(T ).

Proof of Theorem 1.4. Let k be an odd integer. We assume that m − n > 0.

For all of the eigenvalues of U , λU should satisfy λk
U = 1. If m − n > 0, then

at least one −1 is an eigenvalue of U by Theorem 1.2. Since k is odd, −1 does

not satisfy the condition. Thus, it should hold that m − n ≤ 0. It follows that

m = n− 1,m = n from the connectivity of G. Then such graphs must be trees,

which satisfy m = n− 1, or cycles, unicycle graphs, which satisfy m = n. From

Corollary 3.2 and Theorem 1.2, trees, even-cycles, and even-unicycle graphs are
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improper graphs since these are bipartite. Hence, an odd-cycle and an odd-

unicycle graph can induce a k-periodic Grover walk for an odd k.

3.2 Proof of Theorem 1.5

First, we introduce an easy Lemma and obtain a restriction for unicycle

graphs which induce an odd-periodic Grover walk. We prove Theorem 1.5 with

them.

LEMMA 3.3. The graph Ck induces a k-periodic Grover walk.

Proof. Let A be an adjacent matrix of Ck, and λA be an eigenvalue of A. For

every j with 0 ≤ j ≤ k,

λA = 2 cos
2π

k
j.

Since Ck is 2-regular graph, it holds that

T =
1

2
A.

Then λT = cos (2πj/k) for 0 ≤ j ≤ k. Hence, the eigenvalues of U are

λT ± i
√
1− λ2

T = e±
2πi
k

j.

Thus, Ck induces a k-periodic Grover walk.

PROPOSITION 3.4. Let G be an odd-unicycle graph. If G induces a k-periodic

Grover walk, then it should hold that g(G) ≤ k − 4.

Proof. Let k be an odd integer and g(G) = t. We assume that an odd-unicycle

graph G induces a k-periodic Grover walk. Since G is a unicycle graph, G

contains the graph on Figure 8 as its subgraph. Let the vertices of the cycle Ct

be v1, · · · , vt. Also we define arcs ei ∈ D(G) such as

ei =

{
(vi, vi+1) if 1 ≤ i ≤ t− 1,

(vt, v1) if i = t.

Let e be the arc (v, v1). For the Grover transfer matrix U , Uk
e,f can be written

by

Uk
e,f =

∑
Ue,hk−1

Uhk−1,hk−2
· · ·Uh2,h1Uh1,f ,

where h1, h2, · · · , hk−1 ∈ D(G) run over the arcs which make the walk f → h1 →
h2 → · · · → hk−1 → e with the length k in G. From its periodicity, it should
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vt

v1 v2

v3

v4

Ct
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et

e1

e2

e3

Figure 8

hold that Uk
e,e = 1. We consider two cases (i) t ≥ k, (ii) t = k − 2 and then we

show Uk
e,e ̸= 1 in the both of cases.

(i) t ≥ k. In order to obtain Uk
e,e, we consider the walks with length k from

e to e. Since the distance between e and e is even and G is a unicycle graph, we

have to traverse Ct to go from e to e with odd steps. This walk has the length at

least t+2. So there are no walks from e to e with length k since t ≥ k. Therefore

we can conclude that Uk
e,e = 0, and it gives us a contradiction.

(ii) t = k − 2. From the observation of (i), the walks should run through Ct

at once. Since t = k − 2, there are only two walks such as

e → e−1→ e1 → e2 → · · · → et︸ ︷︷ ︸
k−2 steps

→ e,

e → e−1→ e−1
t → · · · → e−1

2 → e−1
1︸ ︷︷ ︸

k−2 steps

→ e.

Hence,

Uk
e,e = Ue,et · · ·Ue2,e1Ue1,e−1Ue−1,e

+Ue,e−1
1

· · ·Ue−1
t−1,e

−1
t
Ue−1

t ,e−1Ue−1,e

=
2

deg(v1)
· · · 2

deg(v2)

2

deg(v1)

(
2

deg(v)
− 1

)
+

2

deg(v1)
· · · 2

deg(vt)

2

deg(v1)

(
2

deg(v)
− 1

)
=

(
2

deg(v)
− 1

)
8

{deg(v1)}2
2

deg(v2)
· · · 2

deg(vt)
. (2)
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It follows 2
deg(v)

− 1 > 0 and deg(v) = 1 from Uk
e,e = 1. Therefore

Uk
e,e =

8

{deg(v1)}2
2

deg(v2)
· · · 2

deg(vt)
.

However it holds that deg(v1) ≥ 3, deg(v2), · · · , deg(vt) ≥ 2 from the choice of

the subgraph. Thus, it follows that Uk
e,e ̸= 1.

Proof of Theorem 1.5. From the previous arguments, the graphs inducing the

3, 5-periodic Grover walks are C3, C5 or the other unicycle graphs, respectively.

Proposition 3.4 leads the fact that the girth g(G) of such unicycle graphs should

be less than or equal to 1 for k = 3, and 5. However g(G) is greater than 2

from the definition of unicycle graphs. Thus, no unicycle graphs induce 3, and

5-periodic Grover walks. Therefore C3, C5 are the only graphs to induce the 3,

5-periodic Grover walks, respectively.

4. Proof of Theorem 1.6

In this section we prove Theorem 1.6 by using a property of the bipartite

graphs. Similar to the previous sections, we introduce some Lemmas to prove

Theorem 1.6.

LEMMA 4.1. A graph G induces a 4-periodic Grover walk if and only if the

spectrum of its transition matrix T is of the form

Spec(T ) =

(
−1 0 1

1 n− 2 1

)
. (3)

Proof. First, we show its necessity. In other words, we show that if G induces

4-periodic Grover walk, then spectrum of T is of the form (3). Similar to Proof

of Theorem 1.3, for any λU ∈ Spec(U), it should hold that λ4
U = 1. Then it

follows that

λT ± i
√
1− λ2

T = ±1,±i.

Thus, λT = ±1, 0. Therefore we can obtain

Spec(T ) =

(
−1 0 1

1 n− 2 1

)
.

Immediately, their multiplicities are determined by Lemma 2.1 and Lemma 2.2.
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Next, we show its sufficiency. If the spectrum of T of G is of the form (3),

then the spectrum of U is of the form

Spec(U) =

(
−1 −i i 1

m− n+ 2 n− 2 n− 2 m− n+ 2

)
.

From Proposition 1.1, G induces a 4-periodic Grover walk.

In fact this spectrum induces the complete bipartite graphs immediately.

LEMMA 4.2. A graph G is a complete bipartite graph if and only if the spectrum

of its transition matrix T is of the form

Spec(T ) =

(
−1 0 1

1 n− 2 1

)
. (4)

Proof. First, we show its necessity. If G is a complete bipartite graph, then its

transition matrix T can be written by

T =

(
Or,r

1
s
Jr,s

1
r
Js,r Os,s

)
,

where Oi,j, Ji,j denote the i×j matrix with all 0 entries, and the i×j matrix with

all 1 entries, respectively. Then it follows that rank(T ) = 2, and dim(ker(T )) =

n− 2. It implies that the multiplicity of the eigenvalue 0 of T is n− 2 since T is

a diagonalizable matrix. Furthermore 1 is an eigenvalue of T with multiplicity

1, and so is −1 from Corollary 3.2. Therefore we can obtain (4) as the spectrum

of the transition matrix of G.

Next, we show its sufficiency. If the spectrum of T is of the form (4), then

−1 is an eigenvalue of T . Thus, G is a bipartite graph by Corollary 3.2. Then

its transition matrix T can be represented by

T =

(
Or,r Vr,s

Ws,r Os,s

)
with some r × s matrix Vr,s, and s × r matrix Ws,r. These matrices are the

transition matrices from a partition R to another partition S, and from S to

R, respectively, where R,S are the bipartition of G with r = |R|, s = |S|. In

addition each summations over the row of T are 1. We show that all of the

entries of Vr,s, and Ws,r are not 0. From the assumption of dim(ker(T )) = n− 2,

we can see that rank(T ) = 2. Therefore Vr,s and Ws,r can be represented by

Vr,s =

 c1a⃗
...

cra⃗

 ,
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Ws,r =

 d1⃗b
...

ds⃗b

 ,

where a⃗ is a 1× r rational vector and b⃗ is a 1× s rational vector, and ci, dj are

rational numbers for 1 ≤ i ≤ r, 1 ≤ j ≤ s. We can obtain ci = 1, dj = 1 for

1 ≤ i ≤ r, 1 ≤ j ≤ s since the summations over the row of T are 1. If there

exists i such that the i-th entry of a⃗ is 0, then the i-th column vector of T is the

zero vector. It contradicts the connectivity of G. Thus, Vr,s does not contain 0

as its entries. Similarly Ws,r also does not contain 0 as its entries. Therefore any

vertices in R are adjacent to the vertices in S, and so are the vertices in S. We

can conclude that G is a complete bipartite graph.

Proof of Theorem 1.6. From Lemma 4.1, G induces a 4-periodic Grover walk if

and only if the spectrum of its transition matrix is of the form (4). Having such a

spectrum of T means that G is a complete bipartite graph by Lemma 4.2. Then

we can show that the complete bipartite graph Kr,s is the only graph to induce

the 4-periodic Grover walk for r, s ∈ N.

5. Summary and Discussions

In this paper, we have given some characterizations of the graphs to induce a

k-periodic Grover walk for k = 2, 3, 4, 5. We proved that P2, C3, Kr,s, C5 are the

only graphs to induce 2, 3, 4, 5-periodic Grover walks, respectively. One of what

we want to do is to determine such graphs for an integer k with k ≥ 6. The main

method used in this paper to characterize such graphs is to analyze the spectrum

of its transition matrix, that is, to find graphs whose spectrum of its transition

matrix is occupied by the real part of the k-th root of 1 and have an eigenvalue

that is not the real part of j-th root of 1 for every j with j < k. Generally

speaking, it is difficult to characterize graphs with any given spectrum. For the

cases of k ≥ 6, we might take another method to solve it.

Next, we will provide some examples to induce a k-periodic Grover walk for

k ≥ 6 and a special operator between graphs.

LEMMA 5.1. The graph Pk induces a 2(k − 1)-periodic Grover walk.

Using this Lemma and Lemma 3.3, we can conclude that P4 and C6 induce 6-

periodic Grover walks. In addition both of the graphs on Figure 9, 10 also induce

6-periodic Grover walks. These graphs are made by identifying two endpoints of
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some P4 s. These graphs include P4 and C6. Furthermore both of the graphs

Figure 9 Figure 10

Figure 11 Figure 12

on Figures 11, 12 induce 8-periodic Grover walks. These graphs include P5, C8.

Then the graphs to induce an even-periodic Grover walk contain these graphs,

and we must find any other graphs. For an odd k, it is thought that Ck is the

only graph which induce a k-periodic Grover walk. So we have to eliminate the

possibility of the unicycle graphs. Moreover we got the following Proposition.

PROPOSITION 5.2. If G induces a k-periodic Grover walk then its subdivision

graph S(G) induces a 2k-periodic Grover walk.

Figure 13 Graph G Figure 14 Graph S(G)

The graphs G,S(G) induce 4, 8-periodic Grover walks, respectively. We can

regard the subdivision as an operator which conserves the periodicity of the

Grover walk between graphs. To find such operators between graphs is also our
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interest. The Grover walk on the graphs are determined by the Grover transfer

matrix. So we are also interesting in investigating the periodicity of another

QWs on the graphs determined by a unitary matrix except the Grover transfer

matrix.
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