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Abstract
Driven by the need to mitigate the drag and vibration of the typical cables struc-

tures, the current thesis is dedicated to a numerical investigation of the aerodynamics
associated with the flow around wavy circular cylinders. This is inspired by the suc-
cessful flow control of the span-wise waviness found in several marine mammals and
their biomimicry innovations. Based on the promising flow control efficacy of the wavy
cylinder as has been reported by previous researches, the current work embark upon a
detailed analysis of the wavy cylinder at two more complicated conditions.

Firstly, the stationary wavy cylinder subjected to the inclined incoming flow is consid-
ered. Three inclination angles, 0◦, 30◦ and 45◦, together with 2× 2 combinations of shape
parameters, namely λ/Dm = 2 and 6, a/Dm = 0.1 and 0.15, have been taken into consid-
eration. The aerodynamic force coefficients in terms of both the span-wise averaged and
sectional values are discussed at length. It is revealed that the growing inclination angle
invites not only a surge in their span-wise averaged values, but also an enlargement in the
sectional difference of the force coefficients. The span-wise correlation of the lift force is
found to be enhanced for the wavy cylinders with the increase of inclination angle, while
the opposite is true for the normal cylinders. By examining the mean wake properties, it
is disclosed that the increase in the span-wise averaged drag force coefficients is closely
related to the shrinkage in the vortex formation length and the regression of the base
pressure, whereas the sectional distribution of the drag coefficients is largely affected by
the stagnation pressure. The mean wall shear stress fields are exploited to shed light on
the flow topology of the cylinder surfaces. It is discovered that the wavy cylinders, espe-
cially the short-wavelength one, exhibit significant span-wise variation in the separation
structure in the inclined flow. Besides, the chaotic surface flow in the rear side of the non-
inclined cylinders could be regulated to maintain symmetry by the secondary axial flow
in the near wake of the inclined cylinders. The instantaneous three-dimensional vortical
structures are visualized by the Q isosurfaces at last to collaborate the previous discus-
sions. A preliminary mechanism for the cessation of flow control efficacy for the wavy
cylinders in inclined flow is also presented.

The second contribution of this thesis is that for the first time, the vortex-induced
vibration of the wavy cylinder is systematically studied. To this end, the wavy cylin-
der is mounted flexibly on a spring-damper system and its aeroelastic response to the
normal incident stream is studied over a range of interested reduced velocities. It is dis-
covered that the wavy cylinder, although almost eliminates the Kármán vortices in the
fixed configuration, shows only limited efficacy on the mitigation of the flow induced
vibration in the case of zero structural damping, and the typical initial-upper-lower type
response curve is manifested. The aerodynamic forces of the wavy cylinder also magnify
significantly in the flexibly mounted cases during synchronization. Moreover, the phase
lag between the lift coefficient and the displacement displays a clear change from 0◦ at
the initial branch to 180◦ at the lower branch. The association of the 2S and 2P vortex
shedding modes to the different branches is also similar to that of the normal cylinder,
in which the 2S mode corresponds to the initial branch and the 2P to the lower branch.
In general, despite the absence of the primary shedding frequency in the fixed config-
uration, the flexibly mounted wavy cylinder exhibits many features that is also found
in the normal cylinder. This implies that the vortex induced vibration may not be initi-
ated by the Kármán vortex shedding, and thus may defy the conventional view on the
mechanism of the vortex induced vibrations. Additional simulations are performed with
non-zero structural damping. It is disclosed that with sufficiently high structural damp-
ing, the vibration of the wavy cylinder could be reduced more efficiently than the normal
cylinder.
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The considered two cases clearly indicates that the aerodynamic behavior of the wavy
cylinder is more complicated than what we have expected. Engineering applications of
the wavy cylinder should be considered with caution, since direct implantation of this
morphology to cable structures may not lead to the desired performance. This thesis
should trigger more research topics associated with the wavy cylinders.
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1

Chapter 1

Introduction

1.1 Span-wise waviness as flow control approach

Humpback whale (Megaptera novaeangliae) is known as the only baleen whale that re-
lies on maneuverability to capture preys. The extraordinary mobility of this marine mam-
mal is believed to originate from the elongated pectoral flipper, which varies from 0.25 to
0.33 of the total body length (Edel and Winn, 1978). In addition to its scale, the unique-
ness of the flippers also lies in the large protuberance or tubercles located sinusoidally on
the leading edge, rendering the surface a scalloped appearance (Fish and Battle, 1995).
This particular morphology has been shown to maintain high lift and avoid stall at large
angles of movement, thus contributing to the enhanced maneuverability (Fish and Battle,
1995).

FIGURE 1.1: Bio-mimicry innovations stemmed from the tubercles of the
humpback wale flippers. Middle: A humpback whale breaching out of
the sea. The tubercles on the flippers could be clearly observed. Top left:
Computer fans equipped with tubercles. Top right: Eco-friendly ceiling
fans. Bottom left: Conceptual model of commercial jet airliner with leading
edge tubercles on the wings and stabilizers (Fish and Lauder, 2006). Bot-
tom right: Windmill blade utilizing leading-edge tubercles. Sources of the

photos, except stated, are from the WhalePower Tubercle Technology.

Many bio-mimicry innovations, exploiting the tubercle effect, have emerged since the
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work of Fish and Battle (1995). Some of them are shown in Fig. 1.1. The blades with span-
wise waviness in the leading edges, according to the tests of the WhalePower Tubercle
Technology1, have been proven to exhibit significant aero/hydrodynamic performance
over the normal wings in that they deliver previously impossible high stall angles, more
gradual stall as well as increased lift force in the higher pitch operation. There has also
been persisted efforts in the understanding more of the characteristic associated with the
wavy leading edge wings/turbines (Miklosovic et al., 2004; Yoon et al., 2011; Weber et al.,
2011; Wei, New, and Cui, 2015; Johari et al., 2007; Hansen, Kelso, and Dally, 2011). It is
anticipated that this new kind of hyper-stable flow management device has the potential
to reform millions of products and even the whole industries.

Coincidently, another marine mammal, the harbor seal (Phoca vitulina), has also been
revealed to be blessed with such span-wise waviness in their whiskers, as is shown in
Fig. 1.2. The whisker, which takes the form of an ellipsoidal cross-section with regularly
repeating sequence of wavy profiles along its length, have been demonstrated of high
efficacy in alleviating the hydrodynamic forces and mitigating the self-excited vortex-
induced vibrations (Hanke et al., 2010; Witte et al., 2012). This allows a harbor seal to
detect the velocity magnitude several orders lower than the velocity of the flow in the
wake of swimming fish (Dehnhardt, Mauck, and Bleckmann, 1998; Dehnhardt et al.,
2001). The biomimetic potential of this discovery has already been exploited in some
marine robotics sensory applications (Beem, Hildner, and Triantafyllou, 2012; Kottapalli
et al., 2015).

FIGURE 1.2: The whisker of the harbor seal exhibits waviness in the span-
wise direction. .

source: http://www.whoi.edu/oceanus/feature/seal-whiskers-inspire-marine-
technology

Contrary to the intuitional belief that a smooth, contoured morphology is generally
favored in the engineering applications, the above two examples serve as solid evidence
that well-designed undulations could lead to better hydro-dynamic performance for the
two marine mammals. The extraordinary flow control efficacy of the span-wise waviness
has already spurred several innovative applications, and there should be room for more.

1.2 Motivation for the current thesis

In recent years, there has been a surge in the construction of long-span bridges over the
world. Fig. 1.3 shows an overview of the famous Sutong bridge, which ranks as the
world’s second longest cable-stayed bridge at the time of writing. An essential part of
such bridge, as its name suggests, is the stay cables. Being long and flexible in nature,
such structures are constantly plagued by the excessive aerodynamic forces and various

1https://whalepowercorp.wordpress.com/

https://whalepowercorp.wordpress.com/
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kinds of vibrations. It is estimated that for a typical cable-stayed bridge over 1000 meters,
the wind load on the cables usually exceeds that on the deck and pylon (Hojo, Yamazaki,
and Okada, 2000; Svensson, 2013). Although the static force on the cable is of minor im-
portance to the cable itself, it could present a significant design factor as the drag load
transfers to the main structural elements such as the girder and pylon. A more notorious
problem that concerns the cable engineers is the rain-wind induced vibration (RWIV),
which usually occurs under the combination of moderate wind speed with precipitation.
The generally accepted explanation for the mechanism for RWIV is the formation of the
upper water rivulet, which negatively alters the aerodynamic stability of the cable and
lead to vibrations with large amplitude and low frequency (Matsumoto, Shiraishi, and
Shirato, 1992). Aerodynamic countermeasures to the RWIV usually takes the form of sur-
face profiling to disrupt the continuous formation of the water rivulets, such as the heli-
cal spiral protuberances (Larose et al., 2013), circular rings (Vo et al., 2016), concave fillets
(Burlina et al., 2015; Burlina et al., 2016) etc. However, these surface treatments usually
result in an enlargement of the effective diameter of the cylinder, which indicates larger
drag forces for the stay cables. In view of above, the problem of designing a suitable
cable profile, which exhibits low drag and resistance to various vibration phenomenon,
remains challenging and patenting.

FIGURE 1.3: Left: an overview of the Sutong Bridges, the world’s second
longest cable-stayed bridge, from Changshu city, China. Right: A model
of the Nanhai Shengkai drilling vessel at Naval Architecture and Ocean

Engineering Bldg., Yokohama National University.

A similar problem with the bridge cables is also encountered by the offshore drilling
risers, which, for the need of subsea oil and gas exploration, are often suspended thou-
sands of meters beneath the water surface (right picture in Fig. 1.3). Constantly attacked
by the ocean currents, these long and flexible structures with low mass ratio are vul-
nerable to the hazardous vortex-induced vibrations (VIV), whose detrimental effects to
the risers are two-fold. Firstly, the effective drag coefficient could increase up to twice
the value of a riser that is VIV-free; more importantly, due to the oscillation of the riser,
alternative bending stress could lead to a loss of the fatigue strength. One of the most
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common types of VIV suppression devices for the drilling risers is the helical strakes.
Well-designed strakes could reduce the fatigue damage by over 80%, at the cost of in-
creased drag forces. Fairings have been an effective alternative to strakes without the
drag penalty for the risers. However, they are more expensive due to the cost themselves
as well as the additional rig time required to install during the riser running (Chakrabarti,
2005).

In order to address the problems described above, it is tempting to apply the span-
wise waviness, which has been proven effective in flow control by the humpback whales
and the harbor seals, as well as the bio-mimicry innovations inspired therefrom, to the
stay cables and drilling risers, both of which are long and flexible structures that are
susceptible to fluid induced forces and vibrations. The morphology of the harbor seal
whisker could easily be extended to the cable structures, with the circular cross-section
replacing the ellipse to account for the omni-directionality of the incoming flow in prac-
tical situations. A sketch of the resulted shape, referred to as the wavy circular cylinder,
or wavy cylinder for short, is depicted in Fig. 1.4.

FIGURE 1.4: The wavy circular cylinder

The cross flow past such a geometry has been subjected to extensive researches in the
literature, as will be reviewed in Chapter 2. Most of the works have indicated that such
a cylinder could significantly modify the wake topology and reduce the aero/hydro-
dynamic forces. In spite of the abundant researches, there are still quite a lot to explore
if such a geometry is to be used in engineering applications such as the stay cables, over-
head transmission lines and drilling risers. First of all, there is no general consensus on
the aerodynamic properties of the wavy cylinder placed inclined to the incoming flow,
since under such configuration the additional axial velocity components hits the wavy
tubercles directly and may lead to undesired magnification of the aerodynamic forces.
Secondly, while the flow control efficacy of the wavy cylinder in the static cases is gen-
erally acknowledged, whether or not it could suppress the vortex-induced vibrations
still remains unsolved. Based on the above considerations, we embark upon a curiosity
study on these interesting problems by the means of numerical simulation. It is antic-
ipated that the current thesis could shed some light upon aerodynamic performance of
the wavy cylinder in the inclined and dynamic configuration. Ultimately, it is the hope of
the author that this work should be useful for the potential engineering use of the wavy
cylinders.



1.3. Thesis layout 5

1.3 Thesis layout

The current thesis is organized as follows. After the general introduction to the span-wise
wavy flow control technique in the current chapter, a more detailed literature review is
presented in Chapter 2. This review looks at the general aspects associated with the cylin-
der cross flow, followed by an attempt of new classification of the flow control techniques.
Chapter 3 lays the numerical foundation to the current paper. The following texts discuss
the main work of the current thesis. Firstly, the flow control efficacy of the wavy circular
cylinder in the inclined flow is visited in Chapter 4 by means of large eddy simulation.
Next, Chapter 5 is dedicated to the simulation of free vibration of a wavy cylinder that
totally suppress the Kármán vortex shedding in the fixed configuration. The cylinders
are installed on a spring-damper system, allowing them to vibrate freely in the trans-
verse direction. By comparing the aero-elastic responses of the wavy cylinder with that
of a normal cylinder, the VIV suppression efficacy of the former is assessed. At last, we
conclude the current thesis in Chapter 6. Some prospects for the use of wavy cylinder in
engineering, as well as the prospects for future research, are also outlined.

1.4 Resulted publications

Based on the work described in this thesis, the following archival papers are accom-
plished.

• Zhang, K., Katsuchi, H., Zhou, D., Yamada, H. & Han, Z., Numerical study on the
effect of shape modification to the flow around circular cylinders, Journal of Wind
Engineering and Industrial Aerodynamics, 152(2016), pp. 23-40.

• Zhang, K., Katsuchi, H., Zhou, D., Yamada, H., He, T. & Lu, J., Large eddy simula-
tion of flow over inclined wavy cylinders, Journal of Fluids and Structures, in review.

• Zhang, K., Katsuchi, H., Zhou, D., Yamada, H., Zhang, T. & Han, Z., Numerical
simulation of vortex induced vibrations of a flexibly mounted wavy cylinder at
subcritical Reynolds number, Ocean Engineering, 133(2017), pp. 170-181.

• Zhang, K., Katsuchi, H., Zhou, D. & Yamada, H., A numerical investigation on the
flow around a wavy cylinder under forced vibration. (To be submitted)

• Zhang, K., Katsuchi, H., Zhou, D. & Yamada, H., On the fluid dynamics of flow
past a wavy circular cylinder at low Reynolds numbers. (In preparation)

The work has also been, and will be presented in several international conferences,
which are list below.

• Zhang, K., Katsuchi, H., Zhou, D. & Yamada, H., Numerical investigation of vortex
induced vibration of wavy cylinders, 8th International Colloquium on Bluff Body
Aerodynamics and Applications, Northeastern University, Boston, Massachusetts,
USA, June 7-11, 2016.

• Zhang, K., Zhou, D., Katsuchi, H., & Yamada, H., Numerical study of vortex in-
duced vibration of a cylinder with span-wise waviness, IASS2016 Annual Interna-
tional Symposium, Tokyo University, Tokyo, Japan, September 26-30, 2016.

• Zhang, K., Katsuchi, H., Yamada, H. & Zhou, D., On the fluid dynamics of circu-
lar cylinders with span-wise waviness, 7th European-African Conference on Wind
Engineering, Liége, Belgium, July 4-7, 2017.
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Chapter 2

Background and Literature Review

We present a background tour of the aspects that are associated with our current research
topic by reviewing the related literature. Firstly, the general topics of flow around a circu-
lar cylinder, including a static cylinder, free vibration and forced vibration are introduced.
Next, existing flow control approaches that are applicable to the management of cylinder
cross flow are categorized into three groups based on the location where the method is
applied to. The emphasis is put on the recently emerged 3D forcing technique.

2.1 Flow around a circular cylinder

Cylinder cross flow is among one of the most studied problems in the fluid mechanics.
The meaning of this study is three fold. Firstly, circular cylinder serves as a prototype
for many engineering applications, such as the bridge cable, overhead transmission line,
drilling riser, chimney, high-rise building, etc. For designing purposes, it is imperative
that the aero/hydro-dynamics associated with the circular cylinders be thoroughly un-
derstood. Secondly, it contains a kaleidoscope of fluid phenomenon such as the boundary
layer separation, free shear layers, Kármán vortex shedding, etc. These problems are of
great interest to the fluid dynamics community. Thirdly, owing to its simple configura-
tion, the cylinder cross flow is often used as a benchmark case to validate a new numerical
method. In the light of the abundant literature in this field, we propose to present a gen-
eral overview of the flow around a cylinder in the current section. The discussions are
not limited to the static cylinder, but also the vortex-induced vibration, also known as the
free vibration, and the forced vibration.

2.1.1 Flow around a static cylinder

Flow regimes

The physics of the cylinder cross flow is constituted of three major parts, the boundary
layer, the free shear layer, and the wake (Prasad and Williamson, 1997), the properties of
which are mainly dependent on the Reynolds number

Re =
U∞D

ν
, (2.1)

in which D is the diameter of the cylinder, U∞ is the flow velocity, and ν is the kinematic
viscosity. The flow undergoes fundamental changes as the Reynolds number is varied.
For very small Re values the boundary layer attaches to the cylinder surface and no sep-
aration occurs. In the range of 5 < Re < 47, the boundary layer separates from the
cylinder surface and a fixed pair of stationary vortices forms in the wake of the cylinder.
When the Reynolds number is further increased, the wake becomes unstable, and is gov-
erned by the famous Kármán vortex shedding, in which vortices are shed alternatively
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at either side of the cylinder at the Strouhal frequency. This also give rise to the periodic
lift forces exerted on the cylinder. The vortex shedding maintains two-dimensionality
for Re < 180, followed by a transition to three-dimensional flow owing to the span-wise
instabilities at 200 < Re < 300 (Williamson, 1988). With a further increment inRe, transi-
tion to turbulence occurs in the wake region (Bloor, 1964), where the vortices are shed in
span-wise cells. Despite the turbulent wake forRe > 300, the boundary layer still remain
laminar for a large range of Re, namely 300 < Re < 3× 105. This regime is known as the
subcritical flow regime. As for the free shear layer, the Kelvin-Helmholtz instability com-
mences at around Re ≈ 1000 (Bloor, 1964; Prasad and Williamson, 1997), which further
complicates the flow. The subcritical flow prevails until around Re ≈ 3 × 105, and then
the flow becomes critical, marked by a transition of laminar to turbulence in one side of
the boundary layer. The drag force in the critical regime suffer from a significant drop,
and reaches a minimum at Re ≈ 3.5× 105. This is accompanied by the lose of symmetry,
resulting in non-zero mean lift force on the cylinder (Schewe, 1983; Rodríguez et al., 2015;
Lehmkuhl et al., 2014). The next Reynolds number regime is the named the supercritical
flow regime, at which the drag recovers the wake symmetry is regained. This is because
the laminar-turbulence transition occurs in both sides of the boundary layer. Further
increasing the Re, the boundary layer becomes fully turbulent.

Vortex shedding

The most interesting feature associated the cylinder cross flow is the vortex shedding
phenomenon, which occurs extensively over a large range of Reynolds numbers. Vortex
shedding occurs as a result of the Hopf bifurcation of the absolute instability in the wake
region (Monkewitz, 1988; Zebib, 1987; Jackson, 1987). A detailed description of the vortex
shedding process has been put forward by Gerrard, 1966 and is briefly revisited here. As
a result of the absolute instability, one of the vortex loop grows larger than the other for
Re > 47. The smaller vortex, which is of the opposite sign of the larger vortex, constantly
gets fed by vorticity from the free shear layers. It is drawn to the larger vortex, and at
some point cuts off the vorticity supply from the free shear layer to the larger vortex,
which is then shed as a free vortex. Then, the same process takes place in the other side
and completes one vortex shedding cycle.

Aerodynamic responses

There are some important aerodynamic parameter in the cylinder cross flow, namely, the
drag, lift and the vortex shedding frequency. Usually they are expressed in their non-
dimensional forms as

Cd =
2Fd

ρDU2
∞L

, (2.2)

Cl =
2Fl

ρDU2
∞L

, (2.3)

St =
fD

U∞
, (2.4)

in which Cd, Cl are the drag and lift coefficients, Fd and Fl are the drag and lift forces.
L denotes the span-wise length of the cylinder. St is the famous Strouhal number which
is a normalized representation of the vortex shedding frequency. The drag force acts in
the streamwise direction on the cylinder and is a primary design concern for engineer-
ing applications as has been mentioned in section 1.2. In the subcritical regime the drag
coefficient maintains a value of around 1 (Zdravkovich, 2003; Sumer and Fredsøe, 2006),
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indicating that the drag force scales with the square of the velocity magnitude. On the
other hand, there is no general consensus on the value of the lift coefficient (Norberg,
2003), since it is related to the vortex shedding along the span-wise direction, and the
imperfect correlation of which may alter the lift force to a great extent. However, the
frequency of the lift force, expressed by the Strouhal number, is quite stable and assumes
a nearly constant value of around 0.2 in the subcritical regime. The Strouhal number is
an important parameter since it allows us to assess the possibility of the related conse-
quences of the vortex shedding, such as vortex induced vibration, noise, wake induced
forces, and so on.

Cylinder inclined to incident stream

It is common occurrence that the natural flow attacks the structures from all possible an-
gles. For a circular cylinder, the Cosine Rule, also known as the Independence Principle,
has long been established to evaluate the aerodynamics when the flow is inclined to the
cylinder axis at small angles. By considering the order of magnitude of terms for small
viscosity, Sears (1948) showed that the axial dimension is uncoupled to the other two
dimensions and could be safely removed from the laminar boundary layer equations,
indicating that the flow maintains the same physics with that at zero yaw. Chiu et al.
(1967) confirmed this theory by further developing Sear’s method to resolve the equa-
tions for both the boundary layer and potential flow in the wake. The flow around a
yawed cylinder has been subjected to extensive experimental researches (Hoerner, 1965;
Hanson, 1966; Surry and Surry, 1967; Ramberg, 1983; Kozakiewicz, Fredsee, and Sumer,
1995; Zhou et al., 2009; Van Atta, 1968) ever since. It is now generally acknowledged that
the validity of the Independence Principle could be expected as long as the inclination
angle α is smaller than 40◦ ∼ 50◦, where α is defined as the angle between the velocity
vector itself and its component perpendicular to the cylinder axis. For larger α, deviation
from the Cosine Rule commences. Worthy of mentioning is that the work of Ramberg
(1983) noted that flow behind the inclined cylinder is very sensitive to the upstream end
condition, since the flow generated by the end plate may contaminate the entire wake
owing to the strong axial flow. The effect of the span-wise boundary conditions have
also been studied numerically by Yeo and Jones (2008), in which the slip wall condition
is revealed to affect the wake flow significantly while such effect is not observable in the
case of periodic wall condition. To mimic an infinite cylinder that is free of end effect, the
periodic boundary condition has been employed universally in the numerical researches
(Zhao, Cheng, and Zhou, 2009; Zhao et al., 2013; Bourguet, Karniadakis, and Triantafyl-
lou, 2015; Bourguet and Triantafyllou, 2016; Lucor and Karniadakis, 2003). In general
these computational efforts have come to the similar conclusions as the experimental
works regarding the validity of the Cosine Rule. Besides, they have provided further
insights into the flow physics and enhanced our understanding to the flow around an
inclined cylinder.

2.1.2 Vortex-induced vibration

The phenomenon

Vortex-induced vibrations of circular cylinders involve quite a number factors such as
mass ratio, damping, stiffness, Reynolds number, incoming turbulence intensity, etc., the
study of which has fostered voluminous publications that are based on various methods.
Comprehensive reviews on theses subjects could be found in Sarpkaya (2004), Gabbai
and Benaroya (2005), and Williamson and Govardhan (2004) and son on. The VIV phe-
nomenon is generally featured by self-excited and self-limited oscillations over a range of



10 Chapter 2. Background and Literature Review

reduced velocities in which the vibration frequency locks to natural frequency of the sys-
tem. The variation of vibration amplitude with respect to the reduced velocity could be
fit into Feng’s two branch (initial-lower) curve (Feng, 2011), or the three branch (initial-
upper-lower) curve of (Khalak and Williamson, 1999) for lower mass-damping. Further
more, Govardhan and Williamson (2000) and Govardhan and Williamson (2002) identi-
fied a critical mass ratio of around 0.54, below which the vortex induced vibration might
occur for all the reduced velocities larger than 5. If the cylinder is allowed to vibrate
in both the transverse and in-line directions, the "super-upper" branch, characterized by
massive amplitude of 3 diameters peak-to-peak, is unveiled by Jauvtis and Williamson,
2004. These findings have important indications on the practical applications, especially
the ocean engineering for which the mass ratio of the structure is usually small.

Intuitively, VIV would not be expected at the Reynolds numbers smaller than 47, at
which the Kármán vortex shedding has yet to be triggered for a fixed cylinder. However,
flow-induced vibrations has been reported to exist extensively at the subcritical condi-
tions (Mittal and Singh, 2005; Étienne and Pelletier, 2012; Cossu and Morino, 2000). Free
vibrations at the subcritical condition occurs over a specific range of reduced velocities, at
which the frequency lock-in takes place for all cases. Outside this range, vibration does
not develop and the flow remains static as with the case of a fixed cylinder. However,
there do exist a lower threshold at Re ≈ 20 (Mittal and Singh, 2005; Étienne and Pelletier,
2012), below which the VIV phenomenon does not appear. Recently, Kou et al. (2017) ap-
plied the dynamic mode decomposition technique to a initially perturbed cylinder wake
field and found that the Kármán mode (we will explain this deeper in the next para-
graph) vanishes at Reynolds numbers below 18, which precludes the interaction with the
structural mode. This is though to be the lowest Reynolds number for the onset of VIV.

The mechanism

Despite the large body of literature on the free vibration of a cylinder in cross flow, there
has been much less work on its mechanism. The way we name this vibration: vortex-
induced vibration, leads us to believe that the mechanism is similar to the case of an
oscillator of natural frequency fN being forced by the periodic Kármán vortices fst. As
the natural frequency of the oscillator approaches the Strouhal frequency, i.e., fN ∼ fst,
resonance occurs and large amplitude oscillations take place.

However, as has been mentioned previously, free vibration of the circular cylinder are
observed even at Reynolds number inferior to 47. This case resembles the classical causal-
ity dilemma of the chicken or the egg: does the vibration cause the vortex shedding? or
vice versa?

Recently, linear stability analysis (Theofilis, 2011) was extended to the coupled fluid-
structure system to shed light upon the mechanism of frequency lock-in phenomenon in
vortex-induced vibration. Such kind of researches was firstly conducted by Cossu and
Morino (2000), who identified two modes that may be responsible for the onset of in-
stability in the fluid-structure system and referred to them as the nearly structural and
von Kármán modes. The former mode corresponds, in the limit of very large mass ratio,
to the eigenvalue of the cylinder-only system, and the latter mode is similar to leading
eigenvalue that can be computed from the fixed cylinder cross flow. It was demonstrated
that the critical Reynolds number for mass ratio smaller than 70 is less than half that of
the stationary cylinder. De Langre (2006) employed the wake oscillator model to study
the mechanism of the frequency lock-in phenomenon. By discarding the nonlinear terms
in the van der pol equation and the damping term in the structural equation, he showed
that the solution to this simplified wake oscillator model displays the merging of two
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neutral modes, which resembles the coupled-mode flutter of the plunge-torsion insta-
bility of airfoils (Blevins, 1990). He further reasoned that the flutter in the current case
occurs by coupling between the transverse displacement and the rotation of the position
of the separation points on the cylinder. This novel interpretation has been substantiated
by Zhang et al. (2015). They approached the linear stability eigenvalues by the construc-
tion of the ARX-based reduced order model for the wake, which is then coupled to the
structural equation. It was shown that, depending on the eigenvalues of the two modes of
interest, the mechanism of frequency lock-in at low Reynolds numbers could be divided
into two categories, the ’resonance-induced’ and the ’flutter-induced’. More recently,
Navrose and Mittal (2016) solved the linearized coupled fluid-structure equations in the
finite-element method. In addition to the very similar results obtained by the reduced
order model of Zhang et al. (2015), mode shapes corresponding to the different stability
regimes were given, owing to the FEM framework. Further, from the energy consider-
ation they showed that only those unstable eigenmodes whose energy ratio (defined as
the fraction of total energy of the eigenmode that is contained in the structure as kinetic
and potential energy) is above a certain threshold value result in lock-in in the saturated
state.

2.1.3 Forced vibration

Forced vibration tests has been useful in understanding the effect of body motion on the
flow behavior. The most common configuration investigated so far is a circular cylin-
der being forced to oscillate harmonically in the cross-flow direction, although the effect
of non-harmonic forcing (Konstantinidis and Bouris, 2016; Konstantinidis and Bouris,
2009), and in-line forcing (Konstantinidis, Balabani, and Yianneskis, 2003; Feymark et al.,
2013) have also seen noticed. Such configurations allow to study the relative effects of
amplitude and frequency of body motion on the flow, such as the wake synchroniza-
tion, vortex patterns, fluid forces, etc. The result of the forced vibration has sometimes
been used to predict the free vibration, usually through the consideration of energy trans-
ferred between the fluid and the structure (Kumar, Navrose, and Mittal, 2016; Morse and
Williamson, 2009). In the current section, we will main go through the main aspects of
the harmonic forcing in the cross-flow direction.

One of the most significant phenomenon found in the flow past an oscillating cylin-
der is the lock-in/synchronization, which occurs as the external forcing is applied in
the vortex shedding frequency of a stationary cylinder. Similar to that in the free vibra-
tion, the lock-in region is featured by the vortex shedding frequency diverging from that
corresponding to a fixed cylinder and becomes equal to the frequency of the cylinder
oscillation. The extent of the frequency lock-in region has been demonstrated to be pos-
itively dependent on the vibration amplitude (Koopmann, 1967; Morse and Williamson,
2009; Kumar, Navrose, and Mittal, 2016; Anagnostopoulos, 2000). Outside the synchro-
nization, i.e., the forcing frequency is away from the natural shedding frequency, the lift
spectrum is characterized by two distinctive peaks, one at the forcing frequency, and the
other near, but not necessarily equal to the vortex shedding frequency of a fixed cylinder.
Another celebrated topic in the forced vibration is the determination of the various vor-
tex shedding patterns. Williamson and Roshko (1988) experimentally investigated the
flow over an oscillating cylinder with the Reynolds numbers ranging from 300 to 1000
and put forward the famous map in the wavelength-amplitude plane. Several shedding
modes, such as the 2S (a single vortex is formed in each half oscillation cycle), 2P (two
vortex pairs are shed per cycle), P+S (a vortex pair and a single vortex are shed in a vi-
bration cycle), etc., have been identified. This shedding modes have also been observed
in the free vibrations of circular cylinders. In addition, the aero/hydro-dynamic forces
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undergo a magnification when the excitation frequency is close to the natural shedding
frequency, and a sudden change in the phase angle between the lift force and cylinder
displacement when the oscillation frequency is varied around the shedding frequency
(Bishop and Hassan, 1964; Carberry, Sheridan, and Rockwell, 2001; Carberry, Sheridan,
and Rockwell, 2005).

It is interesting to note that the forced oscillation at the lower Re front has also been
visited by some researchers (Buffoni, 2003; Chen, Yen, and Wang, 2011; Jiang and Zheng,
2017). It has been shown that vortex shedding could be triggered at some specific combi-
nations of the frequency and amplitude. Particularly, Jiang and Zheng (2017) noted that
at such regime, the frequency of the lift force fluctuation always conforms to the external
forcing. This differ significantly from that at higher Reynolds numbers, where there is
usually two peaks in the lift force spectrum outside the lock-in region.

Another point worthy of noting is that with small-amplitude transverse cylinder
oscillation and harmonic forcing frequency around 1.8 times the natural shedding fre-
quency, the forced vibration could be used as a flow control method (Berger, 1967; Berger
and Wille, 1972; Wehrmann, 1965; Schumm, Berger, and Monkewitz, 1994). For the sake
of brevity this aspect will not be reviewed in detailed in the current thesis. Interested
readers could refer to the publications cited herein.

2.2 Control of flow around bluff body

Flow control has been a discipline lying at the junction of several fields, such as civil,
automobile, aeronautical, ocean, biology engineering. More often than not, flow con-
trol aims at the suppression of the undesired flow instabilities and the correlated forces,
vibrations, noises, etc. However, recent innovative ideas has emerged to maximize the
vibrations for the extraction of green energy such as VIVACE 1 (Park, Kumar, and Bernit-
sas, 2013; Kim, Bernitsas, and Kumar, 2013; Lee and Bernitsas, 2011) and vortex bladeless2

(El-Shahat, 2016; Cajas et al., 2016). Previous investigations in this discipline have been
fruitful in that not only a variety of methods have been proposed, but also some of the
basic flow control mechanisms explained. A comprehensive summary was presented in
the annual review by Choi, Jeon, and Kim (2008). Conventionally, the control methods
could be classified into the passive, active open-loop and active closed-loop controls, in
the sense that there is no power input, actuators with power input but no sensor, and sen-
sors combined with actuators with power input, respectively. As we have mentioned in
section 2.1.1, the flow around a circular cylinder is constituted from three essential parts,
namely, the boundary layer, the free shear layer, and the wake. Flow control techniques
of any possible form are applied directly, or indirectly, to either of these three regions to
achieve desired goal. It is based on this idea that we propose to classify the flow con-
trol approaches into three main categories, which are the boundary layer control, the free
shear layer control and the direct wake control. We will go through a detailed tour of
these three classes in the following texts.

2.2.1 Boundary layer control

As far as a smooth circular cylinder is concerned, a laminar-to-turbulence transition takes
place in the boundary layer at the critical Reynolds number (Re ≈ 3 ∼ 5 × 105) and em-
powers the boundary layer with more momentum against the adverse pressure gradient,
which delays the separation and ultimately engenders the drag crisis. The idea of making

1http://www.vortexhydroenergy.com/
2http://www.vortexbladeless.com/

http://www.vortexhydroenergy.com/
http://www.vortexbladeless.com/
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the boundary layer turbulent to delay separation has bred several kinds of control meth-
ods such as surface roughness, dimples, axial grooves and ridges, polygon, etc. We put
all these methods into the category of boundary layer control.

The effect of surface roughness to the aerodynamic forces has been investigated by
a number of researches. Achenbach (1971) concluded from his wind tunnel experiments
that the rougher the cylinder surface, the lower the value of the critical Reynolds number,
but the smaller the fall in drag coefficient through the critical regime. He also showed that
in the post-critical regime a cylinder with rough surface exhibits higher drag coefficient
than the one whose surface is smooth. This statement is supported by Nakamura and
Tomonari, 1982.

The role of the surface roughness is to disturb the original laminar flow in the smooth
surface and make it turbulent. Within a certain range, the larger the roughness, the easier
the transition takes place, and the earlier the drag crisis appears. However, for the rough-
ness to be effective, high enough Reynolds number needs to be achieved. Besides, in the
postcritical regime, the drag force recovers to a value that is higher than the smooth cylin-
der. In view of the above, surface roughness is only effective for a short range of Reynolds
numbers. It is debatable whether it is of economical use to apply surface roughness to
practical applications.

Golf ball travels far in the air, owing to its aerodynamically beneficial surface geom-
etry, the dimples (Bearman, 1976). For the circular cylinder, dimples could also bring
about favorable effects such as drag reduction. Actually, it is reported by Bearman and
Harvey, 1993 that dimples are superior to the sand roughness since it produces smaller
drag coefficient in the postcritical regime.

In a similar fashion, the axially carved grooves also help to reduce the drag force at
certain Reynolds numbers. Kimura and Tsutahara (1991) employed both flow visualiza-
tion and computational methods to study the effect of one groove or cavity placed at
around θ ≈ 80◦. This modification was proved to be effective in reducing the drag force.
Similar investigation was conducted by Seo et al. (2013), who found out that 28.2% of
drag force is reduced if 3 consecutive grooves were placed at certain orientation in the
upwind side of cylinder. However, in practical applications arranging for the groove at
the right angle is not easily accomplished, thus regular distribution of this kind groove
should be engraved into the cylinder surface. This idea was materialized by Eguchi et al.
(2002) in his water tunnel experiment on the newly developed overhead electric wire.
In his paper, flow visualization was made to reveal that the shift of the separation point
originates from an oscillatory phenomenon of a free shear layer in a groove opening on
the wire surface around 70◦ from the stagnation point. The drag crisis of this kind of
grooved cylinder commences at around Re = 3 × 104 and in the post-critical regime Cd
remained lower than the conventional transmission line. Ridged cylinders are also re-
ported to have mitigated the drag force. Ridges as they may seem, they could also be
regarded as grooves only the curvature inside is opposite. With this in mind, it is not
difficult to conclude that the mechanism of drag reduction could also be categorized into
the turbulent boundary layer generated by local separation. Matsumura et al. (2002) in-
vestigated the effect of numbers of ridges on the drag reduction and found out that the
cylinder with 24 and 30 ridges promoted the drag crisis to a lower Reynolds number than
the one with 16 ridges and 15% of drag was reduced.

2.2.2 Free shear layer control

According to Gerrard (1966), the Kármán vortex shedding is sustained by the concen-
trated vorticity in the free shear layers. It follows that flow control could be achieved
if this vorticity supplement mechanism could be inhibited or disturbed. From what we
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have learned in the literature, there are at least three sub-classifications which fit the
essence of this category, which are detailed below.

Obstacles in the shear layer regions

The technique, proposed by Strykowski and Sreenivasan (1990), involves introducing a
smaller control rod within a defined region in the downstream of the cylinder. The most
effective region for the suppression of the vortex shedding locates at the shear layer bor-
dering the mean recirculation bubble. In this way, the development of the free shear
layer and its access to supplying the primary vortices are obstructed. From a more the-
oretical perspective, the same authors have shown numerically that the experimentally
observes suppression of vortex shedding corresponds to a globally damped wake. It is
likely that it is primarily the breaking of the mean flow symmetry which is responsible
for the reduction of absolute instability.

A similar approach is adopted by Shao and Wang (2007) and Shao and Wei (2008) to a
rectangular cylinder at higher Reynolds numbers. They’ve shown that vortex shedding
from both sides of the cylinder could be suppressed if the element size is greater than
a critical value. Besides, a phenomenon of monoside vortex shedding is observed that
could not be readily explained by Gerrard (1966)’s model of vortex generation. This
observation presents an interest to the fluid mechanics community and is worth deeper
investigations.

Stabilization of the free shear layers

The 3D forcing technique has recently gain popularity among the fluid control commu-
nity owing to its extraordinary efficiency. This approach aims to enhance the resilience of
the free shear layers against the rolling-up of the Kármán vortices by introducing three
dimensional modifications onto the originally two dimensional base flow.

Perhaps the mostly well-known approach pertaining to this category is the distributed
span-wise forcing proposed by Kim and Choi (2005). In this effort, distributed blowing
and suction from two slots located at the upper and lower surface is applied to the circu-
lar cylinder in axial direction. It was revealed that the in-phase forcing could produce the
phase mismatch along the span-wise direction in vortex shedding, weakens the strength
of vortical structures in the wake and thus reduces the drag. At the optimal forcing
wavelength of λz = 5D (where D is the diameter of the cylinder), maximum drag re-
duction, accompanied by total suppression of the vortex shedding at Re = 100 could be
obtained with the forcing amplitude Φ ≥ 0.08u∞ (u∞ is the free-stream velocity), which
is much smaller than the other forcing method such as the base bleed (Schumm, Berger,
and Monkewitz, 1994). Hwang, Kim, and Choi (2013) shed light upon the mechanism
of this method by the use of linear stability analysis to a simplified wake model. In the
phenomenological sense, it is explained that the stabilization by the span-wise waviness
is due to the formation of the streamwise vortices and its interaction with the tilted Kár-
mán vortex street. From a more theoretical perspective, the span-wise waviness is shown
to result in enhanced stability than the two dimensional wake.

The above mechanism could also be achieved in a passive fashion by introducing geo-
metrical span-wise wavy module into the two dimensional bodies. Examples include the
wavy trailing edge on a blunt-base model (Tombazis and Bearman, 1997), wavy frontal
stagnation face of a rectangular cylinder (Bearman and OWen, 1998), cylinder with wavy
axis (Owen, Bearman, and Szewczyk, 2001), and, the cylinder with sinusoidally vary-
ing diameter (Ahmed and Bays-Muchmore, 1992; Ahmed, Khan, and Bays-Muchmore,
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1993; Lam and Lin, 2009), as is shown in Fig. 1.4. The cross flow of the wavy circu-
lar cylinder has been subjected to intensive investigations for the past three decades.
Early experimental investigations by Ahmed and Bays-Muchmore (1992) identified the
significant span-wise pressure gradient on the cylinder surface, which results in greater
sectional drag coefficients at the geometric nodes than the saddles. Ahmed, Khan, and
Bays-Muchmore (1993) further looked into the turbulent wake behind a wavy cylinder.
The separation line of the boundary layer was found to be span-wisely undulated, which
subsequently leads to the three-dimensional development of the turbulent wake. Lam
et al. (2004) started to focus on the aerodynamic force reduction of the wavy cylinders.
They found out that significant drag and lift force reduction can be obtained in the sub-
critical Reynolds numbers range of 20000 ∼ 50000 provided that the wavelength ratio lies
between 1.45 and 2.27. Furthermore, Lam, Wang, and So (2004) experimentally studied
the velocity field and flow patterns in the near wake of a wavy cylinder. It was found
out that the vortex formation length of the wavy cylinder is longer than that of the cir-
cular cylinder, and at the nodal and saddle planes, the stream-wise velocity distributions
are very different compared with those of the circular cylinder. Zhang and Lee (2005)
used the PIV technique to investigate the flow structures in the near wake of wavy cylin-
der and demonstrated well-organized stream-wise vortices in the span-wise direction,
and these stream-wise vortices are believed to suppress the formation of the large-scale
span-wise vortices and decrease the turbulent kinetic energy in the wavy cylinder wake.
Lee and Nguyen (2007) measured the forces on wavy cylinders with different geometric
parameters and found the maximum drag reduction of up to 22% compared with the
normal circular cylinder. They also showed that the drag reduction seems to be related
to the longer vortex formation region. Numerical simulations have also been helpful in
interpreting the experimental observations about the wavy cylinder aerodynamics. By
large eddy simulation, the cross flow around wavy cylinders of wavelength from 1.136
to 3.333 was studied by Lam and Lin (2008) at Re = 3000. Various aspects, such as drag
and lift force reduction, longer vortex formation length, three-dimensional wake flow
structures, etc., were confirmed. Lam and Lin (2009) subsequently conducted a system-
atic study on the effect of wavelength and amplitude of a wavy cylinder in the cross
flow at low Reynolds numbers. It was revealed that the wavelength plays the domi-
nant role in determining whether a wavy cylinder is capable of drag mitigation while the
wave amplitude decides the extent of the reduction. Two values of optimal wavelength
were detected, i.e., λ/Dm ≈ 2 and 6, and at the optimized wavelength, the Kármán vor-
tices could be completely annihilated given appropriate wave amplitude. Besides, the
Reynolds number was also found to be important in the effectiveness of the flow control.
The control efficacy of the wavy cylinder with large wavelengths (λ/Dm ' 6) at the tur-
bulent regime has been further justified by numerical investigations of Lam et al. (2010)
and more recently by Lin et al. (2016).

More recently, the twisted cylinder, which is designed by rotating the elliptic cross-
section along the span-wise direction, has been studied by Jung and Yoon (2014) with
numerical simulations. It has been revealed that the separated free shear layers are rel-
atively more stable, and then roll up into vortices further downstream. As a result, the
twisted cylinder is able to achieve reductions in the mean drag of approximately 13 and
5% compared with the results for smooth and wavy cylinders, respectively. A paramet-
ric study on the aspect ratio and wavelength of the twisted cylinder was conducted at
Re = 100 by Kim, Lee, and Choi (2016), revealing not only the optimal geometry for drag
reduction, but also a detailed classification of the wake modes. It was concluded that the
twisted cylinder produces alternating vortex shedding in the span-wise direction, which
weakens the strength of the Kármán vortices and reduces the mean drag and lift fluc-
tuations. These two investigations show that the twisted cylinder controls the flow in a
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similar fashion with the span-wise waviness as described above. However, we suggest
that its resemblance with the straked cylinder, which will be reviewed in the next section,
might be overlooked.

The geometric modification by O-rings attached on the cylinder, as has been proposed
by Nakamura and Igarashi, 2008; Nakamura, 2011, should also be classified as a method
that stabilizes the free shear layer. In this case, the span-wise protrusion by the large
O-rings induces significant transverse vortices in the near wake, which obstruct the for-
mation of the axial Kármán vortex shedding. This mechanism is very similar to that of
the wavy cylinder, in which the obstruction of the span-wise vortices is achieved by the
streamwise vortices.

Disruption of span-wise coherence

Different from the span-wise periodic waviness that stabilizes the free shear layers and
the wake, another kind of 3D forcing methods aims at interrupting the span-wise cor-
relation of the vortex shedding, which produces out-of-phase sectional lift forces that
partially cancel each other.

Zhou et al. (2011) investigated a rigid circular cylinder with three-dimensional helical
strakes of 10D in pitch and 0.12D in height at Re = 10000 ∼ 40000 and found a 98%
suppression of the vortex-induced vibration. It was observed in this experiment that the
smaller-scale vortices in the free shear layer behind the straked cylinder decay quickly in
the stream-wise direction and do not roll up to form the well-organized Kármán vortex.
Also, a study of the span-wise correlation in the above paper showed that the correlation
length of the vortical structures in the straked cylinder is only about 1/8 of the bare one.
Numerically, Constantinides and Oakley (2006) conducted a DES study on the flow past
a straked cylinder (0.25D in height and 15D in pitch) at Reynolds number of 6×105. Flow
visualization showed that the strakes could control the separation of the flow effectively.
The separation point was found to be at the tip of the strakes for most of the coverage
of the surface and this observation is responsible for the three dimensional flow that
breaks the vortex coherence. One drawback of such method is that the strakes usually
lead to significant drag increase, which cause detrimental effect to the performance of the
deepwater risers.

Helical wires are smaller in height but when attached to the cylinder, they could also
serve to control the wake flow. Nebres and Batill (1992) experimentally performed inves-
tigations on a circular cylinders helically wrapped with 4 wires. By plotting the surface
pressure distribution at various span-wise locations it was revealed that the helical pro-
trusions established a periodic span-wise variation in the separation of the boundary
layer, which consequently resulted in an elongated vortex formation length.

2.2.3 Wake modification

One of the most famous direct wake control methods is the wake splitter plate. Early ex-
perimentally studies conducted by Roshko, 1954a; Roshko, 1955 showed that an attached
plate in the cylinder wake could modify the vortical structures and delay the interaction
of the free shear layers. As a result, the base pressure increases and the reduction of the
drag is achieved. More detailed investigations of such a configuration have explored the
effect of the length , attachment/detachment, Reynolds numbers, etc. (Bearman, 1965;
Gerrard, 1966; Apelt, West, and Szewczyk, 1973; Apelt and West, 1975; Nakamura, 1996;
Kwon and Choi, 1996; Anderson and Szewczyk, 1997; Ozono, 1999; Bao and Tao, 2013a;
Bao and Tao, 2013b). In a study of the dry galloping of the bridge cable, Matsumoto et al.
(2010) used the perforated splitter plates to mimic the suppression effect of the axial flow
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to the Kármán vortex shedding. It was revealed that while the vortex shedding in the
stationary case could be mitigated, the placement of the splitter plate could lead to the
divergent-type galloping. Such a mechanism could also be achieved through the active
control such as the base bleed, in which flow is blown out from the cylinder base into the
wake region (Wood, 1964; Bearman, 1967). From the perspective of local stability prop-
erties, Schumm, Berger, and Monkewitz (1994) explained that the absolute instability in
the near wake is reduced very effectively by reducing or eliminating the reverse flow.
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Chapter 3

Methods

Computational Fluid Dynamics, abbreviated as CFD, is leveraged to unveil the aerody-
namics associated with the cross flow of the wavy cylinders. Since we are looking for the
detailed mechanisms of the flow mechanisms at a relatively high Reynolds number, large
eddy simulation is adopted for the current work. The governing equations, discretization
schemes, the solution algorithms will be briefly introduced in this chapter.

3.1 The governing equations for fluids

The LES equations are derived from the classical time-dependent filtered incompressible
Navier-Stokes equation:

∂ui
∂xi

= 0 (3.1)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)
+ τij

]
(3.2)

τij = uiuj − uiuj (3.3)

where ν is the kinematic viscosity, u and p are the filtered velocity and pressure respec-
tively. Eq. 3.3 is termed the sub-grid scale(SGS) stress which requires modeling. The SGS
stress τij is expressed according to the Boussinesq approximation with the introduction
of a turbulent eddy viscosity νt:

τij −
2

3
ktδij = −2νtSij (3.4)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.5)

in which kt = τkk/2 is the SGS turbulent kinetic energy and Sij is the rate of strain tensor
computed directly from the resolved scales.

Methods differ in the modeling of the turbulent eddy viscosity νt (Fureby et al.,
1997). Lysenko, Ertesvåg, and Rian (2012) compared the performance of the Smagorin-
sky SGS model with the dynamic k-equation model in the open-source CFD software
OpenFOAM. Although the results of both models had experimental data backed on, we
found that the results obtained by the latter more convincing. In the current work the
dynamic k-equation model is adopted. Instead of assuming the local equilibrium of the
production and dissipation of the sub-grid turbulent energy, as is done in the Smagorin-
sky model (Smagorinsky, 1963), in dynamic k-equation model (Fureby et al., 1997) an
exact balance equation for kt is derived:

∂kt
∂t

+
∂

∂xj
(ujkt) = P +

∂

∂xj

[
(ν + νt)

∂kt
∂xj

]
− ε (3.6)
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P = 2νtSijSij , ε = Cεk
1.5
t ∆−1 (3.7)

where the SGS viscosity is given by νt = Ck∆k
0.5
t . The model coefficients Cε and Ck are

dynamically computed as part of the solution based on the Germano identity (Germano
et al., 1991) with test filter ∆̂ = 2∆ by the least square minimization procedure proposed
by Lilly (1992).

3.2 Discretization

The aim of discretization is to transform the continuous governing equations to a set
of discrete algebraic expression that is solvable by certain direct or iterative methods.
Two parts constitutes this procedure: the discretization of the solution domain and the
equations.

For the spatial domain discretization, OpenFOAM adopts the methodology of Finite
Volume Method (FVM). In this approach the solution domain is divided into a finite
number of regions called control volumes (CV). The control volumes do not overlap and
completely fill the computational domain. In the case of transient problems, time should
also be discretized. Usually a prescribed size of time-step is specified throughout the
calculation.

As for the equation discretization, the generalized form Gauss theorem is used. Con-
sider a generic form of transport equation for a scalar property φ,

∂φ

∂t
+∇ · (Uφ)−∇ · (γ∇φ) = S (φ) . (3.8)

Integration of Equation 3.8 over a certain control volume VP and time-step ∆t gives∫
∆t

[
∂

∂t

∫
VP

φdV +

∫
VP

∇ · (Uφ) dV −
∫
VP

∇ · (γ∇φ) dV

]
dt =

∫
∆t

∫
VP

S (φ) dV dt, (3.9)

in which U indicates the velocity vector and S (φ) is the source term. The convection term
is discretized by Equation 3.10.∫

Vp

∇ · (Uφ) dV =
∑
f

S · (Uφ)f

=
∑
f

F · φf ,
(3.10)

where S is the surface area vector, F is the mass flux through each of the surface sur-
rounding the CV and this value requires special treatment, as will be elaborated in the
next chapter. φf is the variable value on the surface center, which is obtained using cer-
tain convection differencing scheme. In current simulations, Gauss limitedLiner, one of the
TVD(Total Variation Diminishing) schemes is employed for the convection differencing.
The details of this scheme will not be presented here, interested reader are asked to refer
to related literatures (Versteeg and Malalasekera, 2007).

The diffusion term is treated in a similar way as the convection, specifically,∫
Vp

∇ · (Γ∇φ) dV =
∑
f

S · (Γ∇φ)f

=
∑
f

ΓS · (∇φ)f .
(3.11)
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(∇φ)f is obtained by the gradient scheme specified in the fvschemes file and in the current
case it is selected to be Gauss linear. What’s worth attention here is the orthogonality
between S and (∇φ)f , which originates from the orthogonality of the mesh. Special care
should be taken to account for this problem. Some correction approaches are provided in
Jasak (1996).

The source term is discretized in Equation 3.12.∫
Vp

S (φ) dV = SPVP . (3.12)

Equation 3.10 to 3.12 could be substituted into Equation ?? to obtain the semi-discretized
form of transport equationHirsch (1990).

The last discretization is performed for the time. In this thesis backward scheme, which
is of second-order and implicit, is used. It takes the form as Equation 3.13.

∂φ

∂t
=

3
2φ

n − 2φo + 1
2φ

oo

∆t
, (3.13)

where φn is the variable value at new time, φo and φoo are the old and second old" times,
respectively.

Up to now, the whole discretization process is finished, resulting in the fully dis-
cretized transport equation as shown in Equation 3.14

3
2φ

n − 2φo + 1
2φ

oo

∆t
VP +

∑
f

Fφnf −
∑
f

ΓS · (∇φ)nf = SPVP . (3.14)

3.3 The Solution Procedure

In the absence of other source term, the flow is driven by the pressure gradient as is
shown in Equation 3.2, for which no independent evolution exists. This, together with
the non-linearity and the couple of the mass and momentum conservation equations,
complicates the solution of the N-S equation.

Substitute φ with U in Equation 3.10 gives the non-linear term∇· (UU), which means
velocity being transported by itself. Prohibited by the complexity of and large computa-
tional resource required by the non-linear solver, this term is conventionally linearized to
facilitate computation.

The non-linear term is discretized in Equation 3.15.∫
VP

∇ · (UU) dV =
∑
f

S ·UfUf

=
∑
f

FUf

= aPUP +
∑
N

aNUN .

(3.15)

where the subscript N denotes the neighboring CV center. aP and aNs are a function of
U. Linearisation of the convection term implies that an existing velocity(flux) field that
satisfies the continuity Equation 3.2 will be used to calculate aP and aNs.

Equation 3.14 could be reconstructed to take the following form:

aPUP = H (U)−∇p, (3.16)
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where H (U) consists of the source part of the transient term and the contribution of the
convection and diffusion from the neighboring CVs, i.e.,

H (U) = −
∑
N

aNUN +
Uo

∆t
. (3.17)

Take the divergence of Equation 3.16 and noting the continuity Equation ?? we obtain

∇ ·
(

1

aP
∇p
)

= ∇ ·
(

H (U)

aP

)
. (3.18)

Integration of the above equation over a CV gives

∑
f

S ·

[(
1

aP

)
f

(∇p)f

]
=
∑
f

S ·
(

H (U)

aP

)
f

. (3.19)

Equation 3.19 together with 3.16 are the final form of the discretised incompressible
Navier-Stokes system.

Besides, the surface flux we have mentioned in the previous section is calculated us-
ing Equation 3.20.

F = S ·Uf = S ·

[(
H (U)

aP

)
f

−
(

1

aP

)
f

(∇p)f

]
(3.20)

We are now in position to move to the solution procedure of the discretized N-S equa-
tions. The solver used in this thesis is pimpleFoam, which is a variant of the famous
PISO(Pressure Implicit with Splitting of Operator) algorithm. The main procedure of
the PISO algorithm could be summed up as follows Jasak (1996):

1. Set up the boundary conditions;

2. Solve the discretized momentum Equation 3.16 to compute an intermediate velocity
field;

3. Compute the mass fluxes at the cell faces using Equation 3.20;

4. Solve the pressure Equation 3.19;

5. Correct the mass fluxes at the cell faces using Equation 3.20;

6. Correct the velocities on the basis of the new pressure field;

7. Update the boundary conditions;

8. Increase the time-step and repeat from 1.

The PIMPLE algorithm differs from the conventional PISO in the number of the pre-
scribed iterations of the above PISO procedure. The main part of the source code in the
pimpleFoam.C reads

Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "UEqn.H"
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// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}

Two parameters control the above algorithm, nOuterCorrectors specifies the number of
the outer-iteration, i.e., the PISO algorithm. nCorrectors specifies the number of pressure
corrections inside the PISO algorithm. These two parameters are specified in the fvSolu-
tion. Here we set nOuterCorrectors to be 3 and nCorrectors to be 2. This setting is proved
to yield stable and accurate results when a larger time-step is used, as will be discussed
in Appendix A.

3.4 Matrix Solvers

The N-S equations are discretized by the procedures described in the previous section, re-
sulting in a system of algebraic system. While the direct methods like Gauss elimination,
LU decomposition are theoretically applicable to any matrix, in most CFD applications
iterative methods are employed since they are more efficient.

In the present thesis, the GAMG solver, abbreviated for generalised geometric-algebraic
multi-grid solver, together with Gauss-Seidel smoother is used for the pressure equation,
and PBiCG, preconditioned bi-conjugate gradient solver for asymmetric matrices was
used to solve velocity and k equations. A detailed elaboration of these methods would
be lengthy and beyond the scope of the current thesis, thus only brief introduction will
be presented here.

3.4.1 Multi-grid Methods

Iterative methods such as Gauss-Seidel produce errors that fails to be reduced after a
few number of iterations. This problem is more prominent in the refined mesh. A close
inspection of this behavior reveals that the convergence rate is a function of the wave-
length of the error. While smaller wave-lengths counterparts are smoothed using the fine
mesh, the longer ones are left behind. It is these long wave-length components that are
retarding a fast convergence.

The multi-grid algorithm is designed to solve all wave-length components of the er-
ror and provides rapid convergence rate. The multi-grid strategy combines two com-
plementary schemes. The high-frequency components of the error are reduced apply-
ing the Gauss-Seidel methods at fine grid level. For this reason this method is called
smoother. On the other hand, low-frequency error components are effectively reduced
by a coarse-grid correction procedure. Because the action of a smoothing iteration leaves
only smooth error components, it is possible to represent them as the solution of an ap-
propriate coarser system. Once this coarser problem is solved, its solution is interpolated
back to the fine grid to correct the fine grid approximation for its low-frequency errors.
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3.4.2 Conjugated Gradient Methods

The conjugated gradient method is one of the most popular iterative techniques for solv-
ing sparse symmetric positive definite systems of linear equations. Shewchuk (1994)’s
textbook gives comprehensive explanation to this method, which we will summarize be-
low.

Noticing that a linear system of equations Ax = b could be transformed into a min-
imization problem of the quadratic function φ (x) = 1

2x
TAx − xT b. By linear search

methods as an iterative approach the solution at each iteration could be expressed as

xk+1 = xk + αkpk.

One way to construct the αk and pk is the steepest descent method, which, however, is
slow in convergence because of its zigzag movement. The other way, as is the main topic
of this subsection, is the conjugated gradient method.

For a matrix A that is symmetric and positive definite, the set of nonzero vectors

{p0, p1, . . . , pn−1}

is termed to possess A-conjugacy if it satisfies

pTi Apj = 0 ∀i 6= j.

Such vectors are linearly independent and hence form the basis of the space R defined
by the matrix A. Thus we can express the difference between the exact solution x∗ and
the first guess x0 as a linear combination of the conjugate vectors:

x∗ − x0 = α0p0 + α1p1 + . . .+ αn−1pn−1.

These vectors are reduced each at an iteration, i.e., at step k, xk is the exact solution of x∗

projected into the solution space spanned by the k vectors. After n steps, the error initial
error vector diminishes and the the exact solution is sought.

Work remains is to find the conjugated vectors pk and their corresponding αk. It is
found that the new conjugate vector pk could be obtained using only the previous vector
pk−1 and the negative residual −rk, i.e.,

pk = −rk + βkpk−1,

where βk is given as

βk =
rTk rk

rTk−1rk−1
.

3.5 Equation of motion for the structure and FSI algorithm

The motion of the rigid cylinder body is governed by:

m
d2Y

dt2
+ c

dY

dt
+ kY = FY , (3.21)

where Y denotes the transverse displacement of the cylinder,m, c and k are the structural
mass, damping and stiffness, respectively. FY represents the lift force in the cross-flow di-
rection and is calculated by integrating the pressure and wall shear forces over the whole
cylinder surface. The sixDoFRigidBodyMotion, an OpenFOAM built-in solver developed



3.5. Equation of motion for the structure and FSI algorithm 25

in the spirit of Dullweber, Leimkuhler, and McLachlan (1997), is employed to integrate
Eq. 3.21. The coupled fluid-structural problem are solved through a partitioned, weakly-
coupled algorithm in which the two subsystems advance in a staggered fashion, as is
depicted in Fig. 3.1. The structure solver is invoked at the beginning of each time step,
the output of which drives the motion of the mesh and serves as the boundary condition
for the fluid solver. As has been discussed by He, Zhou, and Bao (2012), He et al. (2014),
and He (2015), in contrast to the strong coupling scheme, the weak coupling technique
has the advantage of being less computational intensive. However, it does not assure
the exact satisfaction of the equilibrium on the fluid-structure interface so that the cumu-
lated errors may lead to a spurious solution or even a failure. This problem is frequently
encountered in the case of small mass ratio and strong added mass effect. However, con-
sidering that for the current problem, the weakly-coupled algorithm has been reported to
yield robust FSI results (Bao, Zhou, and Tu, 2011; Placzek, Sigrist, and Hamdouni, 2009;
Tu et al., 2014), we decided to stick with the current scheme. In order to alleviate the nu-
merical instability initiated from the time-lag effect, we choose a small enough time-step
based on the mesh dependency test, which will be presented in Appendix A.
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FIGURE 3.1: Algorithm of the solution procedure
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Chapter 4

Inclined Wavy Cylinder in the Fixed
Configuration

4.1 Case setup

As has been reviewed in section 2.2, the cross flow around a fixed wavy cylinder has
been subjected to intensive researches. Also, the flow around an inclined normal cylin-
der is also generally understood. However, when it comes to the inclined flow over a
wavy cylinder, much less information has been acquired so far. The only reference on
this aspect is the work of Lam et al. (2010). It was found out that although the mean
drag and the fluctuating lift coefficients of a yawed wavy cylinder are less than those
of a correspondingly yawed circular cylinder at the same flow condition, the indepen-
dence principle is not no longer suitable for the inclined wavy cylinders, and with the
increase of the yaw angle, the advantageous effect of wavy cylinder on force mitigation
becomes insignificant. However, their discussion was limited to only one wavy shape,
which makes it difficult to form a conclusive view on the current topic. It is based on this
consideration that we embark upon a detailed investigation on the aerodynamics of the
inclined flow around a wavy cylinder.
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FIGURE 4.1: Schematic of the wavy cylinder subjected to inclined incident
stream

A schematic view of the current problem is sketched in Fig. 4.1. The diameter of
the wavy cylinder is corrugated by the wavelength λ and the amplitude a through the
following relationship:

D(z) = Dm + 2a cos (2πz/λ) , (4.1)
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in which Dm is the averaged diameter. The axial locations at which the diameter maxi-
mizes (Dmax) and minimizes (Dmin) are referred to as ’node’ and ’saddle’, respectively.
Based on the literature survey in Chapter 2, two wavelengths, λ/Dm = 2 and 6, each
with amplitude a/Dm = 0.1 and 0.15, are considered in this work. To facilitate our dis-
cussion, abbreviations like 2_0.1, which stand for the wavy cylinder with λ/Dm = 2 and
a/Dm = 0.1, are used throughout the following text. In order to accommodate more of
the three-dimensional flow features, the length of the cylinders are designed to be rela-
tively long: L = 18Dm and 16Dm for the λ/Dm = 6 and 2 cases respectively. The cylinder
is subjected the flow with uniform velocity U = (Ux, 0, Uz). In the current work, the
stream-wise velocity Ux is kept fixed while the span-wise velocity Uz is varied to yield
three different values of inclined angle α = 0◦, 30◦ and 45◦. The Reynolds number is
defined based on the characteristic diameter Dm, the stream-wise velocity component Ux
and the kinematic viscosity µ, i.e., Re = DmUx/µ, and is kept constant at 5000. Simu-
lations with the same setup and parameters are also conducted for the normal circular
cylinder to serve as the basis based on which the aerodynamic performance of the wavy
cylinders could be evaluated. The length of the normal circular cylinder is also taken to
be 16D.

The cylinder is placed in the center of a circular computation domain, which has a
radial extension of 20Dm. The curvilinear O-type mesh is used with Nc×Nr = 180× 180
grids in the cross section (Nc and Nr refer to the number of grids in the circumferential
and radial directions, respectively). The radial grid points are clustered in the vicinity
of the cylinder with an expansion factor of 1.035 in avoidance of abrupt change of the
grid size, and the first grid is placed at around 1.4× 10−3D away from the cylinder wall.
250 and 280 grids are prescribed in the span-wise direction for the L = 16Dm and 18Dm

cases, respectively. The total number of control volumes thusly mounts up to around
9 × 106. The non-dimensional time-step is fixed at 0.01. The current mesh resolution is
chosen after the mesh dependency test, as will be presented in the next section. The inlet
boundary is assigned with a constant velocity U = (Ux, 0, Uz). Periodicity is enforced
in the span-wise direction of the cylinder. At the outlet boundary the reference pressure
p∞ = 0 is specified. The cylinder wall is set to be no-slip.

4.2 Force coefficients

A summary of the mean drag, rms lift force coefficients and the Strouhal numbers as a
function of α is presented in Fig. 4.2. The results from Lam et al. (2010) at Re∞ = 3900
(Re∞ indicates that the velocity magnitude U∞ is used rather than the normal com-
ponent) for the inclined normal and 6_0.15 wavy cylinders, and Aljure et al. (2017) at
Re = 5000 for the normal cylinder only are also included for comparison. For the normal
cylinder at α = 0◦, Aljure et al. (2017) obtained C

′
l = 0.156, while in the current paper

a much smaller value of 0.073 is achieved. It should be noted that in our previous work
(Zhang et al., 2016), where the same numerical setup as this work has been employed to
studied a circular cylinder with spanwise length of Lz = 6.28D, the rms lift coefficient is
around 0.147, which is closer to the work of Aljure et al. (2017). According to Norberg
(2003), since the lift force on the circular cylinder is not perfectly correlated in the axial
direction, the sectional rms lift coefficient is always greater than or equal to the finite sec-
tion rms lift coefficient. In the current paper we have studied a much longer cylinder, in
which the deteriorated spanwise correlation results in a much smaller C

′
l . The same phe-

nomenon has also been mentioned in the work of Lee, Campbell, and Hambric (2014). As
for the wavy cylinders examined here, great drag and lift mitigation has been achieved
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at α = 0◦. The Strouhal numbers of the wavy cylinders also suffer certain decrease com-
pared with the normal cylinder. The results obtained in our study agree qualitatively
with that of Lam et al. (2010) at Re = 3900. Worthy of noting is that the 2_0.15 case, the
primary frequency of the lift force coefficient becomes so weak that could not be detected,
suggesting the complete suppression of the Kármán vortex shedding.

Situations are quite divided for the normal and wavy cylinders as the inclination an-
gle increases. For the normal cylinder, an increase of the inclination angle up to 45◦

induces no drastic changes in the Cd, C
′
l and St. This confirms the validity of the in-

dependence principle. As for the wavy cylinders, there is a discernible rise in both the
Cd and C

′
l as α grows to 30◦. Further increasing to 45◦, while the growth for the long-

wavelength cylinders is moderate, both the drag and lift undergo a surge in the cases of
λ/Dm = 2. The drag coefficient reaches around 1.2 and the lift becomes 60 ∼ 80 times
of that of the normal cylinder. This implies a major deviation from the cosine rule. Since
in the current paper Cd is defined based on the streamwise velocity Ux only, the surge in
the mean drag coefficient could intuitively understood as being induced by the action of
the additional spanwise velocity Uz on the tubercles: the steeper the waviness, the more
pronounced this effect is, and the larger the Cd becomes. Another cause for the increase
in the drag, as well as the lift, lies in the intensification or the resurrection of the Kár-
mán vortex shedding with the increase of inclination angle (Roshko, 1954b). This also
results in the increase in the lift coefficients. Frequency-wise, the wake instability in the
2_0.15 case revives as the inclination angle increases, and the Strouhal numbers for the
short-wavelength cases are maintained at around 0.19. The long-wavelength cylinders,
however, exhibit a relatively large variation in the St-α relationship: the shedding fre-
quency ascents to around 0.21 at α = 30◦, and then drops to around 0.18 at α = 45◦.
This phenomenon is also qualitatively manifested in the work of Lam et al. (2010). The
detailed mechanism of the variations in the St with α, however, remains unclear and
warrants further investigations.

Owing to the three-dimensional nature of the wavy geometry, it is also interesting
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(A) Cd at α = 0◦ (B) Cl at α = 0◦

(C) Cd at α = 30◦ (D) Cl at α = 30◦

(E) Cd at α = 45◦ (F) Cl at α = 45◦

FIGURE 4.3: Spatial-temporal distribution of the force coefficients of the
normal cylinder

to examine the spanwise distributions of the force coefficients. Figs. 4.3, 4.4 and 4.5
present such results for the circular cylinder, 2_0.15 and 6_0.15 wavy cylinders. In each
of the plots, the horizontal axis represents the non-dimensional time and the vertical
axis is the cylinder’s axial coordinate. Note that the vertical axis of the normal cylinder is
normalized by the cylinder diameterD and that of the wavy cylinders by the wavelength
λ. Efforts are made to unify the legends however they are adjusted where necessary
for better visualization of the patterns. The lift coefficient plots of the normal cylinder
(Fig. 4.3) are generally consisted of repeated filaments parallel to the z-axis, with their
regularity gradually obscured by the increasing yaw angle. Specifically, the filaments are
somewhat obliquely stretched in the inclined cases, indicating that the local peak force
is traveling along the cylinder in the direction of Uz . This kind of stretching pattern has
also been identified by Yeo and Jones (2008) in their detached eddy simulations of yawed
circular cylinders at Re = 1.4 × 105, and they further related this phenomenon with the
low-frequency vibrations of the inclined cables such as dry galloping of bridge cables. As
for the drag coefficient plots, at α = 0◦, local maxima and minima that are induced by
the random turbulence effect scatter the plot and no obvious patterns could be noticed.
However, with the increase of the inclination angle, the stretching pattern takes place
and appears to be more persistent than the lift coefficients. It could be imagined that in
the inclined cases, the random turbulence that engenders the local maxima and minima
are being transported by the spanwise velocity component, resulting in the stretched
patterns. It should be noted that the spanwise flow acting on the cylinder surface is not
only induced by the incoming freestream flow, but also the secondary axial velocity in
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(A) Cd at α = 0◦ (B) Cl at α = 0◦

(C) Cd at α = 30◦ (D) Cl at α = 30◦

(E) Cd at α = 45◦ (F) Cl at α = 45◦

FIGURE 4.4: Spatial-temporal distribution of the force coefficients of the
wavy cylinder with λ/Dm = 2 and a/Dm = 0.15

the near wake. This aspect will be given a closer inspection in section 4.5.
Interestingly, while the lift coefficients of the 2_0.15 wavy cylinder (Fig. 4.4) are ren-

dered with irregularity both temporally and spatially, a spanwisely periodic, temporally
steady pattern prevails the Cd plot. This attests to our previous notion of the total sup-
pression of the Kármán vortex shedding by this particular wavy cylinder. However, as
the additional axial velocity intervenes, the temporal repeated pattern similar to the case
of the normal cylinder appears, suggesting the resurrection of the Kármán instability in
the wake. As for the drag coefficients in the inclined cases, the spanwise periodicity is
well preserved, yet with less temporal steadiness. The position of the maximum sectional
drag coefficient, however, shifts slightly to the lower part of the nodes, at which the flow
attacks the local surface perpendicularly.

As for the 6_0.15 wavy cylinder (Fig. 4.5), while the drag coefficients share the same
features with the 2_0.15 case, the spanwisely periodic pattern is also clearly manifested
by the Cl in both inclined and non-inclined cases. Particularly, the temporal variation of
the lift coefficients at the saddle plane appears much smaller compared with that at the
node. To further shed light on this matter, FFT analysis are conducted for the sectional
lift coefficients and the results are presented in Fig. 4.6, with the legend representing the
absolute magnitude of the Fourier transform. The normal and the 2_0.15 cylinders are
also included for the sake of completeness. Compared with the normal cylinder, in which
the vortices shed with uniform intensity along the axial direction, the energy content at
the St frequency differs between the nodes and saddles for the wavy cylinders. Strong
fluctuation of the Cl is associated with the node and weak with the saddle. Notably, for
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(A) Cd at α = 0◦ (B) Cl at α = 0◦

(C) Cd at α = 30◦ (D) Cl at α = 30◦

(E) Cd at α = 45◦ (F) Cl at α = 45◦

FIGURE 4.5: Spatial-temporal distribution of the force coefficients of the
wavy cylinder with λ/Dm = 6 and a/Dm = 0.15

the 6_0.15 wavy cylinder at zero incidence, the lift coefficient is mitigated so significantly
that it remains almost dormant for a large portion in the vicinity of the saddle plane.
This spanwise intermittency also persists for the α = 30◦ and 45◦ cases to some extent.
Another feature in the these plots is that as the inclination angle increases, the energy
content in the lift force tend to be dispersed into multiple frequencies. This should be a
result of the irregularity of the force coefficients over the cylinder with time.

4.3 Span-wise correlation of the lift force coefficients

With the spatial-temporal force coefficients at hand, the spanwise correlation of the lift
coefficients, which quantitatively indicates the three-dimensionality of the cross-cylinder
flows, could be obtained. The cross-correlation coefficient between forces at different
spanwise locations is calculated as

ρ (zi, zj) =

∑
t=0

{[
Cl (zi, t)− Cl (zi)

] [
Cl (zj , t)− Cl (zj)

]}
√∑
t=0

[
Cl (zi, t)− Cl (zi)

]2
√∑
t=0

[
Cl (zj , t)− Cl (zj)

]2
, (4.2)

in which Cl (z, t) is the lift force coefficient at spanwise location z and time t, the over-
line of which is its time-averaged value. The related correlation length is defined as
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(A) normal cylinder at α = 0◦ (B) normal cylinder at α = 30◦ (C) normal cylinder at α = 45◦

(D) 2_0.15 wavy cylinder at α =
0◦

(E) 2_0.15 wavy cylinder at α =
30◦

(F) 2_0.15 wavy cylinder at α =
45◦

(G) 6_0.15 wavy cylinder at α =
0◦

(H) 6_0.15 wavy cylinder at α =
30◦

(I) 6_0.15 wavy cylinder at α =
45◦

FIGURE 4.6: Magnitude spectrum of the Fourier transform of the sectional
lift coefficients

Λ =
∫∞

0 ρ (z) dz. Since the sectional lift coefficients as shown in Fig. 4.3, 4.4 and 4.5 are
calculated based on the axial mesh cells, for each set of data Equation 4.2 would gener-
ate a symmetric Nz × Nz matrix, where Nz is the number of the grids in the spanwise
direction. Such matrices for the cases of 2_0.15 and 6_0.15 wavy cylinders are visual-
ized in Fig. 4.7. In these plots, the main diagonal represents the self-correlation and thus
features the largest value of unity. High value is also maintained in the vicinity of the
top left (as well as bottom right, because of the symmetry) corner, which stands for the
correlation of the periodic spanwise ends. An important pattern to notice with the in-
creasing inclination angle is that the dependence of the spanwise reference location on
the cross-correlation gradually becomes clear. To be more specific, the correlation curve
drops slower if the reference point is selected at the node than at the saddle. Thus, the
conventional point-to-point representation of the cross-correlation is not appropriate here
because the ambiguity in the choice of the reference point.

In order to circumvent this problem, the procedure described by Blackburn and Mel-
bourne (1996) is employed here to condense the cross correlation information. Since in
these matrices, the elements in each diagonal parallel to the main diagonal represent the
cross-correlations of two locations separated by the same distance, each diagonal is av-
eraged to obtain the mean values of cross correlations ρ as a function of the spanwise
separation s. The results of such an procedure is given in Fig. 4.8. Only half of the total
length is shown here because of the cyclic boundary condition we have enforced in the
spanwise ends. There has been quite a scatter in the literature on the lift correlation of
a circular cylinder, particularly at Re = 5000. While from the research of Leehey and
Hanson (1970) and Iida et al. (1997) a correlation length of around Λ ≈ 6 ∼ 7D was ob-
tained, Norberg (2003) identified a locally maximum value of Λ/D ≈ 10.5 at Re = 5000,
with which, as he reasoned, the spanwise resonance in between the vortical structures
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(A) 2_0.15 at α = 0◦ (B) 2_0.15 at α = 30◦ (C) 2_0.15 at α = 45◦

(D) 6_0.15 at α = 0◦ (E) 6_0.15 at α = 30◦ (F) 6_0.15 at α = 45◦

FIGURE 4.7: Cross correlation matrices of the lift force coefficients for the
2_0.15 and 6_0.15 wavy cylinders

of mode B (Williamson, 1996) and shear layer vortices (Bloor, 1964) is associated. Re-
cently, Lee and Nguyen (2007) conducted a detached eddy simulation of flow around
circular cylinders at the same Reynolds number. The correlation curve in their research
converged to zero at 8D, and the resulted correlation length Λ should be smaller than
5D. We have simulated the cylinder cross flow of the same spanwise extent with Lee
et al. Lee, Campbell, and Hambric, 2014’s research. However, in our case the lift force
of normal cylinder at zero incidence is far better correlated than that in their work. In
view of this, the current work does not fully accommodate the three-dimensionality in
the wake of the normal cylinder, for which a spanwise length of more than 21D is re-
quired based on the result of Norberg (2003). However, we argue that with the same
numerical setup and schemes, the flow characteristics of different cases could be studied
on the comparative basis. This being said, we proceed our discussion on the spanwise
correlations of the various cases in the current work.

In the case of α = 0◦, while the shedding of the vortices in the normal cylinder wake
exhibits quite high spanwise uniformity, the introduction of the axial waviness greatly
reduces the correlation length of the sectional lift force. However, the role the axial veloc-
ity component Uz plays in the spanwise correlations seems to differ between the normal
and wavy cylinders. For the former, there is a monotonic decrease of the correlation
coefficients with the increase of α. This is also reflected in the sectional lift coefficients
in Fig. 4.3 as the obliquely stretched pattern gradually obscure the plots. On the other
hand, the shedding uniformity in the wake of the wavy cylinders appears to be enhanced
with the existence of Uz for the wavy cylinders. Take the 2_0.15 cylinder for example. At
α = 0◦, because of the annihilation of the Kármán vortices, the lift forces are generated
by the chaotic turbulence effect and thus are poorly correlated. The vortex shedding re-
vives and further strengthens with the increasing inclination angle, and the lift forces
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FIGURE 4.8: The averaged spanwise correlations of the lift force coeffi-
cients

are largely governed by the well-organized and periodic vortices, which, albeit highly
three-dimensional, still takes certain spanwise distance to decorrelate. One exception is
made by the 6_0.15 cylinder, in which the lift correlation remains low regardless of the
inclination angle. This will be further discussed in section 4.6 by the visualization of the
wake vortical structures.

4.4 Sectional force, vortex formation length and pressure
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FIGURE 4.9: Span-wise distribution of the mean drag and rms lift coeffi-
cients

As has been elucidated in the section 4.2, great variation of the force coefficients are
observed in the spanwise direction. Meanwhile, it has also been pointed out in previous
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researches that the wake of the wavy cylinders presents inherently three-dimensional
flow structures. It is generally acknowledged that the reduced drag is signaled by the
elongated vortex formation length as well as the increased base pressure (Zdravkovich,
1997). However, the inter-relationship between the sectional forces and these wake prop-
erties, especially in the inclined cases, are less studied. In the current section, we intend
to present a detailed analysis to this aspect.

Firstly, the spatial-temporal distributions of the force coefficients, as have been illus-
trated in Fig. 4.3, 4.4 and 4.5, are condensed by taking the temporally averaged (for Cd)
or rms values (for Cl) for each span-wise section. The results are presented in Fig. 4.9. A
general trend to notice, in addition to the surge in the overall values of Cd and C

′
l , is the

enlarged variation in their sectional values as the inclination angle increases. For exam-
ple, in the extreme case of 2_0.15 cylinder at α = 45◦, the minima in the drag coefficient
is around 0.75 while the maxima reaches as high as 2. Judging from the same figure, it
could be appreciated that the increase in the total drag is largely contributed by the surge
at the location slightly to the bottom of the node plane, where the inclined flow attacks
the surface perpendicularly. It is also worthwhile to point out that since in the current
figure the rms lift coefficients are calculated sectionally, their spanwise averaged values
judged from Fig. 4.9b tend to be larger than that is shown in Fig. 4.2, in which the Cl is
firstly axially averaged and then be applied the rms operator.
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FIGURE 4.10: Span-wise variation of the vortex formation length Lf .
z/λ = 0 and 1 represent the node plane and z/λ = 0.5 is the saddle plane.

Fig. 4.10 compiles the sectional vortex formation length Lf of the wavy cylinders. In
the current context, Lf is simply defined by the intersection of the contour umeanx = 0
and the plane y = 0, where umeanx is the mean stream-wise velocity. Since the variation
of the vortex formation lengths of the normal cylinder at different inclination angles is
negligibly small, they are indicated by a single dot-dashed line in each figure for com-
parison. As has been shown in Fig. 4.9a, at zero inclination angle, for the short and long-
wavelength cylinders alike, the drag coefficient maximizes at the node and minimizes
at the saddle. However, the vortex formation lengths for the long and short-wavelength
cylinders present an inverse fashion regarding their spanwise distributions: Lf is shorter
at the node and longer at the saddle for the wavy cylinders with λ/Dm = 2 and the oppo-
site is true for the ones with λ/Dm = 6. Similar phenomenon has also been identified by
Lin et al. (2016) and Lam and Lin (2009), and they have ascribed it to the flow separation
features and the wake vortical structures for the different wavelengths. A nice schematic
explanation for this phenomenon could be found in Fig. 10 of Lin et al. (2016). Specifi-
cally, for λ/Dm < 6, the separation occurs earlier at the saddle and later at the node, thus,
the separated free shear layers at the node appear convergent toward each other and at
the saddle the trend is divergent. This difference leads to the larger vortex formation
length at the saddle and smaller at the node. Whereas for λ/Dm > 6, the separation is
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delayed at the saddle and forwarded at the node, thus an inverse fashion could be ob-
served in the Lf . We will also cover the separation topology in the next section. Despite
these sectional differences, the Lf even at its smallest sectional value of the four wavy
cylinders is still larger than that of the normal cylinder, exemplifying their flow control
efficacy at α = 0◦.

Things are quite different in the inclined cases. For the short-wavelength cylinders,
the vortex formation length shrinks significantly to be inferior to that of the normal cylin-
der, collaborating the increase in the drag, as well as the decrease in the base pressure, as
will be discussed next. The sectional difference in Lf fades with the increase of α. As for
the long-wavelength cylinder, the shrinkage in the Lf as α increases is somewhat smaller.
However, great sectional variation is observed at α = 30◦, in which the curved shape ap-
pears to be flipped, i.e., Lf becomes longer at the saddle and shorter at the node. Further
increasing α to 45◦, the sectional variation becomes trivial again. Not much resemblance
could be noticed in the between the shapes in Lf and Cd. Thus, the common belief that
larger Lf is associated with smaller Cd does not hold true in the sectional sense.
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FIGURE 4.11: The sectional pressure coefficients at the stagnation and base
lines. z/λ = 0 and 1 represent the node plane and z/λ = 0.5 is the saddle

plane.

In Fig. 4.11, the pressure coefficients at both the stagnation and base lines are plotted
for the various cases as a function of the normalized wavelength. The pressure coefficient
is calculated as Cp = (p− p∞) /(ρU2

x/2), in which p∞ refers to the pressure at the outlet
boundary. In the zero-angle cases, while the spanwise variation of the base pressure
seems negligible, there is discernible variation to observe for the stagnation pressure, es-
pecially in the 2_0.15 wavy cylinder. Cp undergoes a smooth peak-valley-peak transition
from the node to saddle, making two waves in one geometric wavelength. The pressure
difference between the cylinder’s stagnation and base, at which the local pressure forces
act in the same direction of the drag, is often used as an indicator of the effectiveness of
the drag mitigation (Zdravkovich, 1997). Since at both the base and stagnation lines Cp
does not exhibit much variation between the nodes and saddles, the big sectional differ-
ence of the drag coefficients, as is shown in Fig. 4.9a, seems difficult to comprehend. As a
matter of fact, by considering the azimuthal contribution of the local pressure to the total
drag, we have explained in our previous work that the difference of the sectional drag
between the node and saddle planes mainly originates from the pressure distribution in
the range of θ ≈ 30◦ ∼ 70◦ (θ being calculated from the stagnation point), where the Cp
at the saddle plane contribute more negatively to the total drag than that at the node (see
Fig. 18 of Zhang et al. (2016)). Nevertheless, the base pressure of the wavy cylinders at
zero incidence is significantly larger than the normal cylinder. This serves as the main
cause for the large reduction in Cd of the wavy cylinders.
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In the inclined cases, the pressure coefficients at the stagnation line exhibits drastic
variation as α increases. The maxima and minima Cps shift to the region in between the
node and saddle planes. This is a direct result of the inclined flow hitting on and separat-
ing from the wavy tubercles. The sectional variation in the base pressure is less drastic,
and it is not until α reaches 45◦ that the spanwise difference begins to be significant. From
an axially-averaged sense, the stagnation pressure coefficients, however drastically they
fluctuate in the spanwise direction, remains at a mean value of 1, while a consistent drop
in the base Cp is observed as α increases. Thus, the correspondence of the larger Cd with
smaller base pressure Zdravkovich (1997) is still valid for the inclined wavy cylinders.
On the other hand, by comparing the undulated shape of Cp in the current figure and the
drag coefficients in Fig. 4.9a, it is not difficult to find certain similarity between the stag-
nation Cp and the Cd. Thus, from a sectional point of view, it is reasonable to concluded
that the sectional drag in the inclined wavy cylinder is more influenced by the pressure
at the stagnation line rather than the base.

4.5 Surface flow topology

(A) α = 0◦

(B) α = 45◦

FIGURE 4.12: Averaged wall shear stress fields visualized by LIC method
for the normal cylinder. The upwind, side and rear views are taken in the
x, y and −x directions, respectively. The arrows indicate the local flow
direction. The dashed lines in the side views depict the boundary layer

separation lines.

The time-averaged wall shear stress fields are visualized by the line integral convo-
lution (LIC) technique (Cabral and Leedom, 1993) in this section to give an overview of
the surface flow topology on the cylinder walls. Fig. 4.12 depicts the surface flow struc-
ture for the normal cylinder at α = 0◦ and 45◦. For the former angle, the surface flow
topology could be categorized into three major regions: the boundary layer region that
emanates from the upwind stagnation line and ends at the separation line in the side
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view, the well-organized reverse flow region, and the chaotic wake region with no clear
pattern to notice. When it comes to α = 45◦, all the three regions could still be recog-
nized. The boundary layer travels downstream with a consistent spanwise motion, and
is met by the tilted reverse flow at the separation line. The separation occurs at almost
the same location with that in the zero angle case, validating Sear’s theory (Sears, 1948)
of the independence principle on the boundary layer. In place of the chaotic wake region,
the rear view of the inclined cylinder is rendered by the strong spanwise motion. This
indicates the existence of the secondary axial flow in the near wake of the cylinder, as has
been reported in Matsumoto et al. (1990).

(A) α = 0◦

(B) α = 45◦

FIGURE 4.13: Averaged wall shear stress fields visualized by LIC method
for the 2_0.15 cylinder. Please refer to Fig. 4.12 for the specifications.

The surface flow topology of the 2_0.15 wavy cylinder, as is depicted in Fig. 4.13, is
more complicated than the normal cylinder. At α = 0◦, the boundary layer flow diverges
from the stagnation point at the node plane and then converges to the node again as the
flow is about to separate. This trend gradually weakens until at the saddle plane such
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(A) α = 0◦

(B) α = 45◦

FIGURE 4.14: Averaged wall shear stress fields visualized by LIC method
for the 6_0.15 cylinder. Please refer to Fig. 4.12 for the specifications.
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curved motion dies out and the boundary layer flows straightly from the stagnation until
separation. Unlike uniform separation line in the normal cylinder case, the wavy cylinder
poses an undulated separation structures, in which the separation angle is delayed at
the node and forwarded at the saddle. This collaborates the discussion on the vortex
formation length in Fig. 4.10. The reverse flow region does not hold symmetry to the
node plane. This might be caused by the insufficient averaging time. Nevertheless, the
reverse flow also appears to maintain a convergent trend to the node. The rear view
of the wavy cylinder remains chaotic. The situation is even more intricate at α = 45◦.
Since the inclined flow attacks the wavy cylinder perpendicularly at the lower side of the
tubercle, the local boundary layer there is featured by strongly tilted streamlines in the
same direction of the incoming velocity. However, once the streamlines travel over the
tubercle to its upper side, the axial velocity is blocked and the spanwise momentum of
the surface flow is largely weakened. Owing to this highly three dimensional boundary
layer structure in the upwind side, the wavy cylinder at α = 45◦ engenders a complex
separation line, as is indicated by the dashed line in the side view. The reverse flow
appears to be emanated from the the source points located slightly lower to the each
saddle planes. Thus, as could be observed in the side view, the upper side of the tubercle
features the reverse flow with downward motion and the lower part with the upward
motion. These two opposite streams collide near the node plane and converge to the sink
point at further downstream. The rear side of the inclined wavy cylinder poses great
symmetry with respect to the x-z plane. The streamlines in the base region of the node is
featured by strong spanwise motion, signaling the presence of the axial flow as has been
introduced in the inclined normal cylinder. This axial flow even causes local separation
at the upper side of the tubercle. From the node’s upper side to the saddle’s lower side,
the flow field is less affected by the axial flow since this region is resided at the leeward
side (in terms of the wake axial flow) of the node.

As for the 6_0.15 cylinder (Fig. 4.14), the situation in the α = 0◦ case largely resembles
the normal cylinder. Owing to the mild geometric steepness, the curved motion of the
boundary layer near the node is much weaker than that in the 2_0.15 case. The separation
features an almost straight line over the spanwise direction just like the normal cylinder.
The reverse flow is well-formed and could be easily be recognized. The flow field in the
rear side still remain patternless as the other two cylinders. In the case of α = 45◦, as
the blocking effect of the node to the spanwise velocity component becomes weak, con-
sistent axial motion in the boundary layer flow is observed at both the node and saddle.
The separation line is slightly undulated. The base flow structure is reorganized by the
secondary axial flow and poses symmetry to the x-y plane. Much more diluted patterns,
compared to the 2_0.15 cylinder, could still be recognized in the rear view. However, the
local separation does not occur in the rear side for the current case.

4.6 Three-dimensional vortical structures

An important discovery of the current work is the cessation of the flow control effective-
ness as the wavy cylinders are placed inclined to the flow. This is manifested by the surge
in the drag and lift coefficients, shrinkage of the vortex formation length as well as the de-
crease in the base pressure. Particularly, in the case of 2_0.15 wavy cylinder, the Kármán
instability that is dormant in the zero incidence case is brought alive by the axial velocity
Uz . In this section, an attempt is made to shed light upon this matter by visualizing the
three-dimensional vortical structures in the wakes of the wavy cylinders.
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(A) α = 0◦

(B) α = 45◦

FIGURE 4.15: Iso-surfaces of Q = 0.5 for the flow around the normal cylin-
der at four successive instants with an interval of 2 non-dimensional sec-

onds.

Fig. 4.15 shows the instantaneous vortex flow in the wake of the normal cylinder at
four successive instants intervaled by 2 non-dimensional seconds. The vortices are de-
scribed by the iso-surface of Q = 0.5, where Q is the second invariant of the velocity
gradient tensor (Hunt, Wray, and Moin, 1988). The surfaces are colored by the span-
wise vorticity ωz in order to roughly distinguish the vortices that shed from the one
side from another. Yellow dashed lines are created to indicate the development of the
vortex shedding process. At α = 0◦, although the integrity of the shear layer sheets
gets constantly disrupted by the Kelvin-Helmholtz instability (Bloor, 1964; Prasad and
Williamson, 1997), the development of the mature Kármán vortex tubes appears quite
uniform throughout the spanwise direction. Besides, the fine scale streamwise vortices
in the shape of Mode B (Williamson, 1996) could also be clearly observed. When it comes
to α = 45◦, significant spanwise variation in the Kármán vortex tubes could be noticed.
Particularly, in the four frames shown in Fig. 4.15b, the oblique development (first two
frames), breakdown (third frame) and misalignment (last frame) of the vortex shedding
have been captured. This kind of phenomenon collaborates the deteriorated lift correla-
tion at 45◦ as is shown in Fig. 4.8. However, such phenomenon only occurs sporadically,
thus it is not of the same nature with the double-mode shedding reported by Ramberg
(1983).

The Q iso-surface for the wake of the 2_0.15 wavy cylinder is presented in Fig. 4.16.
At α = 0◦, instead of the intact Kármán vortex tubes found in then normal cylinder,
the near wake of the wavy cylinder is mainly characterized by break down of the free
shear layer owing to the mechanism of the KH instability. This process appears to occur
independently by blocks in between each wavelength, as is nicely shown in the second
frame. While the generated KH vortices are convected downstream, they are deformed
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(A) α = 0◦

(B) α = 45◦

FIGURE 4.16: Iso-surfaces of Q = 0.5 for the flow around the 2_0.15 wavy
cylinder at four successive instants with an interval of 2 non-dimensional

seconds.

by the uneven velocity distribution at the node and saddle and form the riblike vortices
as indicated in the third frame. Such a vortical structure has also been visualized by
Lam and Lin (2009) at Re = 100. These small scale vortices grows weaker and weaker
until they disappear in the further downstream. In contrast, even though the breakdown
of the free shear layer in the α = 45◦ case shows great irregularity, the wake is able to
reorganize itself to form the clear Kármán vortex tubes, as are shown in Fig. 4.16b. The
four successive frames clearly depicts the formation, development and diminish of the
vortex shedding process. However, although the Kármán vortex tubes remain intact, they
vary greatly in the spanwise direction. This has led to the low lift correlation reported in
Fig. 4.8. Still, no sign of the inclined shedding phenomenon has been observed in this
case.

For the 6_0.15 wavy cylinder (Fig. 4.17), Kármán vortex shedding does not manifest
itself clearly in the case of α = 0◦. The wake is rendered orderless by small-scale stream-
wise vortices and the riblike vortices. These vortical structures decay very quickly as
they move downstream. Interestingly, the four snapshots in Fig. 4.17a capture the trans-
formation of the spanwise vortices into the streamwise ones. As is indicated by the black
dashed circles, in the first frame the vortex of interest inherits strong spanwise vorticity
from the free shear layer region. As it convects downstream, the ωz intensity gradually
weakens and at last it deforms into the streamwise vortex. Such kind of phenomenon
could also be observed in many other locations. Different from the 2_0.15 case, Kármán
vortex shedding does not recur, at least not intact, in the wake of the 6_0.15 wavy cylin-
der at 45◦. Instead, large and small scale vortices intermingle with each other, rendering
the wake even more chaotic than the zero angle case. The absence of the organized Kár-
mán vortices in the current case also corresponds to the smaller increase in the total Cd
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(A) α = 0◦

(B) α = 45◦

FIGURE 4.17: Iso-surfaces of Q = 0.5 for the flow around the 6_0.15 wavy
cylinder at four successive instants with an interval of 2 non-dimensional

seconds.

(A) normal, 0◦ (B) 2_0.15, 0◦ (C) 6_0.15, 0◦ (D) normal, 45◦ (E) 2_0.15, 45◦ (F) 6_0.15, 45◦

FIGURE 4.18: Contour of time averaged stream-wise vorticity ωx = ±0.5
for the normal, 2_0.15 and 6_0.15 cylinders at α = 0◦ and α = 45◦. Red

color indicates the positive vorticity and blue color negative vorticity.

and Cl as shown in Fig. 4.2. Occasionally, inclined alignment of the vortices, as indicated
by the yellow arrows in the first and third frames, could be observed to be transported
by the inclined flow at a 45◦ angle. Overall, the Kármán vortex shedding could be better
suppressed by this long-wavelength cylinder even in the inclined cases.

Previous researches have attributed the flow control effectiveness of the wavy cylin-
ders to the additional streamwise vortices (ωx) that adhere to the near wake (Lam and
Lin, 2009; Lin et al., 2016). It is surmised that the spanwise periodic positive and negative
streamwise vortices ωx could stabilize the shear layers to a great extent and thus retard
their rolling up into the mature Kármán vortices. Fig. 4.18 presents the stream-wise vor-
ticity calculated from the time-averaged velocity fields for selected cases. In the α = 0◦

cases, the spanwise periodic arrangement of the positive and negative vortices are clearly
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depicted for the wavy cylinders, while for the normal cylinder such vortical structures
could hardly be observed owing to the canceling effect in the time-averaging process.
However, when it comes to the inclined cases, the strong zig-zag arrangement of ωx no
longer exists in near wakes of the wavy cylinders. Instead, the wake of the 2_0.15 wavy
cylinder have come to be dominated overwhelmingly by the streamwise vortices of the
same sign, which seem to smooth out the spanwise undulation of the geometry. Thus,
the vortex suppression efficacy of the wavy cylinders is lessened and they shed Kármán
vortices just like the normal cylinder does. The wake of the 6_0.15 cylinder, however, is
still decorated with some opposite-signed vortices at further downstream. This may help
to disrupt the formation of the Kármán vortex shedding even in the inclined situation.

4.7 Summary

Large eddy simulations have been conducted to study the flow over the inclined wavy
cylinders at Re = 5000. Three angles, 0◦, 30◦ and 45◦, together with 2 × 2 combinations
of geometry parameters, namely λ/Dm = 2 and 6, a/Dm = 0.1 and 0.15, have been
taken into consideration. In addition, the normal cylinder has also been included for the
comparison purpose. The simulation results are interpreted from various aspects such
as the spatial-temporal force distribution, span-wise correlation, mean wake properties,
surface flow topology, three dimensional vortical structures, etc. The main conclusions
in the current research are summarized as follows.

1. The wavy cylinders are confirmed to exhibit satisfactory flow control efficacy com-
pared with the normal cylinder. However, as the additional span-wise velocity sets in,
the beneficial effect is lessened. This is reflected in the significant surge in the drag and
lift coefficients, shrinkage of the vortex formation length as well as the decrease in the
base pressure coefficients. Particularly, in the case of the 2_0.15 wavy cylinder, the Kár-
mán instability that is totally suppressed at α = 0◦ recurs in the inclined cases. Generally
speaking, the flow control performance of the long-wavelength cylinders is better than
the short-wavelength ones in the presence of Uz .

2. Along with the surge in the averaged Cd and Cl, the differences between the sec-
tional values in the vicinity of the node and saddle planes also grow larger with α. The
maximum drag coefficient, which occurs at the node plane in the zero incidence case,
shifts slightly to the lower part of the node at which the inclined incoming flow attacks
the local surface normally. While the increase in the mean drag is attributed to the de-
creased base pressure, the variation in the sectional drag coefficient is found to be largely
affected by the stagnation pressure.

3. A quantitative evaluation of the lift correlation has been realized by plotting the av-
eraged correlation coefficients against the spanwise separation. A monotonic decrease in
the span-wise uniformity is observed for the normal cylinder subjected to the increasing
α, whereas the correlation is generally enhanced for the wavy cylinders in the inclined
cases. This is owing to the intensified vortex shedding process in the inclined wavy cylin-
ders taking over the effect of the random turbulence on the lift coefficients.

4. The mean surface flow topology reveals intricate boundary layer separation struc-
ture in the 2_0.15 wavy cylinder. Such structure is milder in the 6_0.15 case. The chaotic
rear surface flow in the zero angle cases could be regulated by the secondary axial flow
to maintain symmetry with respect to the x-z plane. Instantaneous vortical structures are
visualized by the Q criterion. Clear recurrence of the Kármán vortex shedding is found
in the 2_0.15 case as α increase from 0◦ to 45◦. The wake remains orderless in the 6_0.15
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cylinder regardless of the inclination angle. The disappearance of the zig-zag arrange-
ment of the positive and negative ωz is believed to result in the cessation of the flow
control efficacy in the inclined cases.
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Chapter 5

Flow-induced Vibration of Wavy
Cylinders

5.1 Case setup

In this chapter, we carry out numerical simulations to study the aero-elastic properties of
the wavy cylinder. As is shown in Fig. 5.1, the wavy cylinder of mass m is mounted on
a spring-damping system with stiffness k and damping c in the transverse (y) direction.
The geometric parameter for the current wavy cylinder is λ/Dm = 2 and a/Dm = 0.175.
The Reynolds number is kept at 5000. The reduced velocity, defined asUr = U∞/ (fnDm),
is considered as the only varying parameter in most of this chapter. Unlike the scenario
in the experiments, where the freestream velocity U∞ is usually varied, we modify the
reduced velocity by change the stiffness k of the spring, which consequently set the value
of the natural frequency of the cylinder via the relationship fn =

√
k/m/ (2π). The mass

ratio of the cylinder,m∗ = 4m/
(
ρπD2

M

)
is fixed at 2.55. In this way, the effect of Reynolds

number and mass ratio to the VIV response could be eliminated. Unless otherwise speci-
fied, the structural damping c is set to zero to encourage maximum vibration amplitude.
The performance of the wavy cylinder is evaluated based on the comparison with the nor-
mal cylinder with identical fluid and structural parameters. In this regard, the present
work also contributes to the database of numerical prediction of the normal cylinder’s
VIV at moderate Reynolds number.

The aspect ratio, i.e., length-to-diameter ratio, L/D = 4 is chosen for the normal and
wavy cylinder. Although higher values of aspect ratio is preferred in predicting the flow
properties especially the span-wise correlation, as we have adopted in Chapter 4, for cur-
rent case it would resulted enormous increase in the consumption of the computational
resources. Actually, according to Lei, Cheng, and Kavanagh (2001), good agreement of
force coefficients and Strouhal number with experimental data could be achieved with
span-wise length above twice the cylinder diameter. As for the wavy cylinder, L/D = 4
accommodates two wavelengths. It was revealed that one wavelength height is sufficient
for the simulations regardless of whether the flow is laminar (Lam and Lin, 2009) or tur-
bulent (Lam and Lin, 2008). Based on the above statements, the currently chosen aspect
ratio should ensure fairly accurate results of the force coefficients and the VIV responses.
The mesh resolution employed in this work is similar to what we have introduced in
section 4.1. An independent mesh dependency test, as will be shown in section ??, have
been conducted to confirm the adequacy of the mesh to the dynamic cases.

5.2 Force mitigation of the static wavy cylinder

Before we proceed to present
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FIGURE 5.1: Schematic of the setup for vortex-induced vibration

TABLE 5.1: Drag, lift force coefficients and Strouhal number at different
Reynolds number in the static configuration

Re
Cd Cl St

normal wavy normal wavy normal wavy
1000 1.06 0.85 0.18 0.010 0.21 -
3000 0.97 0.82 0.093 0.011 0.21 -
5000 0.95 0.80 0.075 0.013 0.21 -
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FIGURE 5.2: Power spectrum of lift force coefficients of normal and wavy
cylinders at Re = 5000

The drag, lift force coefficients and the Strouhal number of both the normal and
wavy cylinders are summarized in Table 5.1 at three subcritical Reynolds numbers, i.e.,
Re = 1000, 3000 and 5000. The same mesh as Re = 5000 case is used for the simula-
tions with the other two Reynolds numbers. Compared with the normal cylinder, the
wavy cylinder presents around 15% to 20% reduction in the drag force coefficients. The
mitigation in the lift coefficient is even more pronounced, ranging from 83% to 95%. In
addition, the shedding frequency of the Kármán vortices behind the wavy cylinders at
the tested three Res could not be detected. This is manifested in Fig. 5.2, where the PSD
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of the lift coefficients of the normal and wavy cylinders at Re = 5000 are presented. The
other two Reynolds numbers are not shown here since the behavior of the lift spectrum
is similar. It could be observed that the PSD of the normal cylinder is characterized by a
sharp peak at the vortex shedding frequency fcl = 0.21. However, such a well-marked
vortex shedding frequency is not recognizable for the wavy cylinder, rather, its frequency
distribution resembles white noise for fcl < 0.2. The absence of the primary frequency in
the PSD of Cl indicates that the vortex shedding has been massively suppressed. This is
further supported by the two snapshots of axial vorticity ωz contour, as are presented in
Fig. 5.3. For the normal cylinder, well-formed Kármán vortex loops are clearly displayed.
However, in the case of wavy cylinder, the free shear layers are distorted and roll up at
much further wake than the normal one, and the developed vortices appear rather ir-
regular. The detected small-amplitude lift force might be attributed to the 3-dimensional
turbulence effect that is inherent in the cylinder wake at Re = 5000.

(A) Normal cylinder (B) Wavy cylinder

FIGURE 5.3: Contour of ωz = ±0.5 of the static normal and wavy cylinders
at Re = 5000

5.3 Dynamic response

The vortex induced vibration responses in terms of both maximum amplitude and pri-
mary frequency of the current study are plotted against the reduced velocity in Fig. 5.4,
together with the data from the experimental works of Khalak and Williamson (1996) and
Khalak and Williamson (1997) (m∗ = 2.4,Re = 2000 ∼ 12000), Stappenbelt, Lalji, and Tan
(2007) (m∗ = 2.36, subcritical Re) and the numerical investigation from Zhao et al. (2014)
(m∗ = 2, Re = 1000). Efforts are made to convert some of the cited data that are based
on the natural frequency in water fnw to fn. Although the resolution of reduced veloci-
ties in the current study is not fine enough to delineate the detailed boundaries between
different response regions, the vibration amplitude variation obtained from our numer-
ical simulation fits aptly to the classical initial-upper-lower branch type curve (Khalak
and Williamson, 1999), and as far as the normal cylinder is concerned, good agreement
is achieved between our simulation with the literature. The maximum displacement pre-
dicted by the current work occurs at Ur = 5 and is around 0.98, which is close to the
experiment of Khalak and Williamson (1996) and much larger than the DNS of Zhao et
al. (2014) at Re = 1000. This proves VIV’s dependency on the Reynolds number. The
lower branch is characterized by a plateau with almost constant amplitude of around 0.6
persisting within Ur = 7 ∼ 10. At the same range the reduced frequency f/fn locks to
a value slightly larger than 1, indicating that rather than following the Strouhal law as
in the lower reduced velocity regimes, the vibration has come to be dominated by the
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structural frequency. The slight deviation from unity of the frequency ratio is a result of
the added mass effect (Khalak and Williamson, 1999).
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FIGURE 5.4: VIV response of normal and wavy cylinders, with data from
literature

The wavy cylinder exhibits a similar response curve as the normal cylinder, with
noticeably smaller vibration amplitude at most of the simulated reduced velocities. At
Ur = 5, where the maximum oscillation occurs, a 15% reduction in amplitude compared
with the normal cylinder could be discerned. Compared to the largely suppressed lift
force when it’s fixed, wavy cylinder’s performance in alleviating vortex induced vibra-
tion could be concluded disappointing. Large amplitude vibrations still occur within
quite a lrage range of reduced velocities. Frequency-wise, the reduced frequency of the
wavy cylinder almost overlap with the normal cylinder at the synchronization range. It is
surprising to find such coincidence in the response curves of the wavy and normal cylin-
ders, since the former does not have a leading shedding frequency, as is revealed in Fig.
5.2. Thus, it might experience vigorous VIV at some reduced velocities other than 5. We
believe that the occurrence of this coincidence might not be fortuitous. As a matter of fact,
it has been revealed by previous studies (Lam et al., 2004; Zhang et al., 2016) that even
though the vortex shedding intensity is reduced by the wavy cylinder, the frequency of
the mitigated lift force remains nearly the same with the normal cylinder. In the current
case, the primary shedding frequency of the wavy cylinder has been suppressed to such a
level that is not able to be detected. It seems that flexible mounting unveils the concealed
primary frequency, which then plays its role in determining the vibration response.

To further check the Reynolds number dependence of the wavy cylinders’ dynamic
characteristics, the maximum vibration amplitude and the normalized frequency atRe =
1000 and 3000 are also included in Fig. 5.4 at Ur = 3, 4, 5 and 7. Except that at Re = 1000
the largest vibration of the normal cylinder occurs at Ur = 4 rather than 5, the responses
of both the normal and wavy cylinders resemble each other with minor difference in
the values, and the initial, upper and lower branches could also be vaguely discerned
from the amplitude plot. The frequency responses of the normal and wavy cylinders
at the said two Res are also very close to each other. No significant difference could
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be observed in the vibration amplitude at the said two Reynolds numbers compared to
Re = 5000, although the largest vibration amplitude occurring at Ur = 5 or 4 decreases as
the Reynolds number decreases, which is in accordance with the result of Lucor, Foo, and
Karniadakis (2005). This fact suggests that the different flow control behavior of the wavy
cylinder at fixed and flexibly mounted configurations is associated with a large range of
Reynolds numbers. Since at the three test Reynolds numbers the vibration responses
appear qualitatively similar, in the texts that follow, only the results of case Re = 5000
will be presented.

5.4 Force coefficients
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FIGURE 5.5: Mean drag, rms drag and lift coefficients

The span-wise averaged mean drag and rms lift coefficients are summarized in Fig.
5.5. Experimental data from Stappenbelt et al. Stappenbelt, Lalji, and Tan, 2007, Kha-
lak and Williamson Khalak and Williamson, 1999 and numerical study from Zhao et al.
Zhao et al., 2014 are also included in the figure for comparison. Although the motion
of the cylinder mainly couples with the lift force, a significant amplification of drag is
seen in both the mean value and its fluctuation during the lock-in range. The mean Cd
predicted by our simulations is in considerably good agreement with the experiment of
Stappenbelt et al. Stappenbelt, Lalji, and Tan, 2007. For the normal cylinder, the mean
Cd reaches a peak of around 2.4 at Ur = 5, at which its fluctuation also maximizes. This
corresponds to maximum instantaneous Cd of around 4, which is four times larger than
a fixed cylinder. The mean and fluctuation Cd of the wavy cylinder are generally smaller
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than that of the normal cylinder. The maximum instantaneous Cd occurring at Ur = 5
of the wavy cylinder is around 3, which is also approximately four times larger than the
fixed configuration.

As far as the rms lift coefficients are concerned, the discrepancy between the wavy
and normal cylinders at each reduced velocity is minor. Both Clrms go through massive
magnification during the synchronization. Our numerically predicted maximum rms Cl,
which occurs at Ur = 4, agrees well with the DNS of Zhao et al. Zhao et al., 2014, but
falls far short of the experimental investigation by Khalak and Williamson Khalak and
Williamson, 1999 occurring at Ur = 4.4. It is highly likely that, as noted by Zhao et al.
Zhao et al., 2014, the rms lift coefficient may reach a peak between Ur = 4 ∼ 5 if the
simulation in the said range were conducted with smaller reduced velocity intervals.

Moreover, the span-wise distributions of the sectional temporally averaged drag and
the rms lift force coefficients are presented in Fig. 5.6. The sectional coefficients are de-
fined based on the local diameters, i.e., by replacing the average diameter Dm. Previous
studies have shown that in the static configuration, the sectional drag force coefficient
Cd at the geometric nodes is greater than that at the geometric saddle, while there is not
much variation in the sectional lift force coefficient Cl in the span-wise direction Ahmed
and Bays-Muchmore, 1992; Zhang et al., 2016. These conclusions are generally true for
the current work when the wavy cylinder is static, except that the Cd reaches the min-
imum in between the node and saddle section. This could be attributed to the large
geometric gradient at the middle sections (where D (z) = Dm). The force coefficients
are actually calculated as Ci = ΣCp · ni · A, where i = x, y or z denotes the Cartesian
coordinate, ni is the i component of the surface normal unit vector, for which the identity
n2
x+n2

y +n2
z = 1 holds, Cp is the pressure coefficient defined as Cp = 2 (p− p∞) /ρU2 and

A is the surface area that is proportional to the local radius of the cylinder. In the middle
section, the span-wise geometric gradient is as large as nz = 0.5 × dD (z) /dz|0.5 = 0.55.
It consumes quite a portion of the unit vector, yielding smaller values of nx and ny. Al-
though the integration area A at the middle section is greater than the saddle, this effect
is offset by the massive decreases in the values of nx and ny, the minimum values of the
force coefficients at the middle section are thus engendered.

The motions of the wavy cylinders influence the sectional forces differently depend-
ing on the Ur. Apart from the increased values, the undulations in the span-wise distri-
butions of the sectional force coefficients are slightly exaggerated at most of the reduced
velocities. This is particularly true for the lift coefficients as span-wise variations, with
maximum at the node and minimum at the saddle, has come to be noticeable in Fig. 5.6b.
However, compared to the Cdmean , these span-wise fluctuations in the lift coefficients are
still insignificant. Glaring exceptions are observed at Ur = 4 and 5, at which the drag co-
efficients at the saddle exceed that at the node. The same conclusion also holds for the lift
coefficients, although their minimum values are found at the middle sections at the said
two reduced velocities. As is recorded in Fig. 5.4, both reduced velocities correspond to
the top two maximum vibration amplitude, which is thought to be responsible for the
observed abnormality. This is confirmed by an additional case with structural damping
c = 4.8 at Ur = 5, denoted as Ur5_c4.8 in Fig. 5.6. In this case, the vibration amplitude
has been suppressed to 0.3D. It could be observed in the damped case that the force
coefficients at the saddle has been suppressed to be lower than that at the node. More
detailed results about the cases with non-zero damping will be presented in Section 5.6.

The span-wise correlation of the lift force serves as an accurate measurement of the
three dimensionality in the near wake of the body. Bearman (1984) noted that the corre-
lation length experiences a significant increase when the oscillation magnitude exceeds
Ymax/D = 0.05. However, more recent studies indicated that there exists certain ranges
in the lock-in region where the span-wise correlation suffers severe drop (Lucor, Foo,



5.4. Force coefficients 53

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

0 1 2 3 4

Cdmean

z/D

Ur2
Ur3
Ur4
Ur5
Ur6
Ur7
Ur8
Ur9

Ur10
Ur11
Ur12
static

Ur5_c4.8

(A) Time-averaged sectional drag force coefficient Cdmean
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FIGURE 5.6: Span-wise distribution of the mean drag and the rms lift force
coefficients

and Karniadakis, 2005; Zhao et al., 2014; Hover, Techet, and Triantafyllou, 1998; Hover,
Davis, and Triantafyllou, 2004). In the current work, we define the correlation coefficient
of the lift force coefficients as follows:

r (0, z) =

∑
t=0

{[
Cl (0, t)− Cl (0)

] [
Cl (z, t)− Cl (z)

]}
√∑
t=0

[
Cl (0, t)− Cl (0)

]2
√∑
t=0

[
Cl (z, t)− Cl (z)

]2
, (5.1)

in which Cl (z, t) is the lift force coefficient at span-wise location z and time t, the over-
line of which is its time-averaged value. Figure 5.7 presents the span-wise correlations at
different reduced velocities of both the normal and wavy cylinders. It could be seen in
Fig. 5.7a that the lift force of the normal cylinder at Ur = 3 and 4, which are in the initial
branch, are almost fully correlated. The correlation stays stably high before it drops to mi-
nus again at the end of the synchronization range. The above descriptions are generally
consistent with the findings of the previous publications that the correlations deteriorate
at the ends of the upper and lower branches.

The correlation curves for the wavy cylinder are complicated by the span-wise wavi-
ness, as could be observed in Fig. 5.7b. By comparing the static cases of the wavy and
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FIGURE 5.7: Span-wise correlation of lift force coefficients of normal and
wavy cylinder

normal cylinders, it is revealed that the geometric waviness substantially decreases the
span-wise correlation length. However, it is greatly enhanced once the wavy cylinder is
excited to vibrate. Another remarked feature is that for most of the reduced velocities,
and inclined undulated pattern that conforms to the wavy geometry is displayed. Since
we calculate the correlation based on a fixed end node location, a recovery of the coeffi-
cient is observed at the other two geometric nodes after the dip at the saddle locations.
This is significantly contrasted to the exceptions made at Ur = 2, 12 and the static case,
in which such undulated patterns are not found. We could infer from this discrepancy
that, when the wavy cylinder is static or undergoing small amplitude vibrations, the
near wake flow presents high three dimensionality because of the span-wisely protruded
shape. When large amplitude oscillation occur, the control of the near wake is taken over
by the motion of the structure, as is reflected by the coherence between the geometry and
the correlation curves. The poorly correlated region at the end of the upper branch found
in the normal cylinder is not detected for the wavy one. Again, we attribute this to the
coarse resolution of the reduced velocity.

The decreased span-wise correlation length has been considered to contribute favor-
ably to the suppression of the vortex induced vibrations of the straked cylinder (Zhou
et al., 2011; Constantinides and Oakley, 2006; Korkischko et al., 2007), which are used
widely in the engineering applications (Kumar, Sohn, and Gowda, 2008). In our study



5.5. Phase and vortex modes 55

of the wavy cylinders, the deteriorated correlation is also manifested in the static case,
although it clearly fails to suppress the oscillations as the reduced velocity enters the
lock-in region. Thus, it seems to be problematic to universally regard the decreased axial
correlation as an indicator of a successful attempt of VIV mitigation. As a matter of fact,
the reduced correlations are resulted from different mechanisms in the two cases. In the
straked cylinder, the helical add-ons chop up the flow and the vortex dislocations occur
along the cylinder. This leads to irregular shedding of the shear layers and consequently
annihilation of the conventional Kármán vortices. While for the wavy cylinder, the lift
force is quite small and its primary frequency is missing. As mentioned in Section ??, it
is likely that the deteriorated lift coefficient correlation is a result of the unsteady turbu-
lence effect. Albeit contorted in a 3-dimensional fashion, the shear layers emanated from
the wavy cylinder are well-organized. As the initial disturbance in the cylinder motion
is introduced, the efficacy of the 3-dimensional shear layer in stabilizing the wake is lost.
Rather, the shear layers interact with each other in a way that is similar to the normal
cylinder, large amplitude of vibration is thus engendered.

5.5 Phase and vortex modes

-1

-0.5

0

0.5

1

Y/D

Normal U
r
=4 U

r
=5 U

r
=6 U

r
=7

-1

-0.5

0

0.5

1

-2 -1 0 1 2

Y/D

C
l

Wavy U
r
=4

-2 -1 0 1 2
C

l

U
r
=5

-2 -1 0 1 2
C

l

U
r
=6

-2 -1 0 1 2
C

l

U
r
=7

FIGURE 5.8: Variation in the phase portrait of the lift force coefficient, Cl,
relative to the transverse vibration amplitude, Y/D of the normal (first

row) and wavy (second row) cylinders.

The Lissajous plots of the lift force coefficient and transverse vibration amplitude at
Ur = 4 ∼ 7 are presented in Fig. 5.8 to identify the relative phase lags in different
branches. Judging from the shapes of these phase portraits, a clear change of relative
phase angle from nearly 0 o nearly 180 ould be noticed between the initial branch of
Ur = 4 and the lower branch of Ur = 7, in both the normal and wavy cylinders. The
phase diagrams of the normal cylinder at the Ur = 5 and 6 are characterized by signifi-
cantly larger vibration amplitude and appear less organized than the other two branches.
This chaotic behavior suggests that different states reside in this regime and intermingle
with each other. The phase portrait of the wavy cylinder at Ur = 5, however, does not
exhibit such phenomenon. It is revealed by Khalak and Williamson (1999) that while the
initial-upper transition is hysteric, the upper-lower transition is associated with intermit-
tent switches between the upper and lower branches. Navrose and Mittal (2013) also
confirmed this unstable phenomenon via CFD simulations. A deeper knowledge of this
behavior is provided by the instantaneous phase lag between the lift and displacement as
well as the frequency, which could be obtained by performing the Hilbert transformation



56 Chapter 5. Flow-induced Vibration of Wavy Cylinders

to the recorded time histories of the lift force and displacement. For a signal s (t), given
its Hilbert transform ŝ (t), the analytic signal is defined as:

sA (t) = s (t) + jŝ (t) = A (t) ejφ(t), (5.2)

in which φ (t) is the instantaneous phase. The instantaneous frequency could be obtained
as

f (t) =
1

2π

dφ (t)

dt
. (5.3)

One may refer to the work of Khalak and Williamson (1999) for further details on this
technique. Fig. 5.9 shows the time histories of the lift coefficient, displacement, phase
angle and frequency. At Ur = 5 (Fig. 5.9a), most of the time is spent with the upper
branch, as is evidenced by the in-phase lift and displacement. Phase jump is only ob-
served at very small portion of time, e.g., t ≈ 50 and 160. The instantaneous frequency at
this Ur is quite stable, even in the presence of the phase jump. The variation of the phase
angle φ (t) becomes quite drastic when it comes to Ur = 6. Phase jumps are discerned all
along the time span. The time spent on the upper branch is comparable with that of on
the lower branch. Moreover, together with the jump in φ (t), the instantaneous frequency
also undergo a sudden shift. The upper branch is associated with lower frequency and
at the lower branch the frequency is higher.

-2
-1
 0
 1
 2

-2
-1
 0
 1
 2

Cl Y/D

Y/D
Cl

 0.59
 0.8

 1.01
 1.22
 1.43

40 60 80 100 120 140 160 180

-90
0
90
180
270

f / fn φ

t

f / fn
φ

(A) Ur = 5

-2
-1
 0
 1
 2

-2
-1
 0
 1
 2

Cl Y/D

Y/D
Cl

 0.59
 0.8

 1.01
 1.22
 1.43

40 60 80 100 120 140 160 180

-90
0
90
180
270

f / fn φ

t

f / fn
φ

(B) Ur = 6

FIGURE 5.9: Instantaneous lift force coefficient, displacement, frequency
and phase angle of the normal cylinder at Ur = 5 and 6.

It is generally known that the different response branches are associated with different
vortex shedding patterns (Govardhan and Williamson, 2000). While the initial branch
corresponds to the 2S mode (two single vortices per cycle), in the lower branch two pairs
of vortices shed in each cycle, forming the 2P mode. The shedding mode for the upper
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branch seems to be dependent on the Reynolds number. Govardhan and Williamson
(2000) identified the 2P mode at Re ≈ 3100. However, 2S mode is found at Re = 1000 in
the numerical study by Navrose and Mittal (2013). Moreover, Zhao et al. (2014) observed
at Re = 1000 that the two modes coexist in the span-wise direction. In the current study,
the axial component of the vorticity fields ωz are plotted in Fig. 5.10 and 5.11 in an attempt
to confirm the vortex shedding patterns. As expected, the vortices behind the the normal
cylinder shed in the 2S mode in the initial branch (Ur = 4) and 2P mode in the lower
branch (Ur = 7). The upper branch (Ur = 5) is observed to be dominated by the 2P mode
at Re = 5000. This is in agreement with the work of Govardhan and Williamson (2000) at
higherRe and at variance with Navrose and Mittal (2013) at lowerRe. In the upper-lower
transition regime (Ur = 6), there exists significant span-wise variation in the shape of the
vorticity contour, which undermines the clear inspection of the shedding mode. This
also corroborates the deteriorated correlation of the lift forces, as is shown in Fig. 5.7a.
As for the wavy cylinder, the vortex shedding patterns are in general consistent with the
normal cylinder. The 2S and 2P modes could be clearly observed at the initial (Ur = 4)
and lower branch (Ur = 6 and 7). However, at the upper branch (Ur = 5), in contrast
to the well-organized vortex loops that are observed at the other reduced velocities, the
wake is dominated by many small-scale irregular vortices, and the shedding mode can
not be clearly identified.

5.6 The effect of structural damping

TABLE 5.2: VIV responses with additional structural damping

m∗ζ Case Ymax/D Cdmean Clrms

0 normal 0.98 2.45 0.89
0 wavy 0.83 2.26 0.76
0.61 normal 0.39 1.74 0.80
0.61 wavy 0.30 1.64 0.63
0.91 normal 0.25 1.39 0.64
0.91 wavy 0.012 0.86 0.030

Additional simulations are conducted with non-zero structural damping, i.e., c 6= 0,
at Ur = 5, at which the maximum vibration amplitude is observed for both the nor-
mal and wavy cylinders without damping. The damping coefficient is defined as ζ =

c/
(

2π
√
mk
)

. The results are shown in Table 5.2. Although only the damping is varied,
the combined mass-damping parameter m∗ζ is used since it has been proven useful in
collapsing the peak vibration amplitudes (Khalak and Williamson, 1999; Griffin, 1980;
Bahmani and Akbari, 2010). It could be seen that as the damping reaches a medium level
at m∗ζ = 0.61, although the three indicators (Ymax/D,Cdmean and Clrms) of wavy cylin-
der are smaller than the normal cylinder, the extent of reduction remains at the same
level as the zero-damping case. However, with further increase of the damping ratio
(m∗ζ = 0.91), the vortex induced vibration of the wavy cylinder has shown to be almost
eliminated, together with massively mitigated drag and lift force coefficients. At the
same value of damping, the normal cylinder still experiences oscillations with consider-
able amplitude. This is in agreement with the finding of Owen, Bearman, and Szewczyk
(2001), who devised the cylinders with wavy axis and with helical bumps in attempt to
reduce the hydrodynamic forces as well as VIV. In their work, a significant decrease in the
vibration amplitude was observed as the mass-damping parameter reaches around 0.8.
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(A) Ur = 4

(B) Ur = 5

(C) Ur = 6

(D) Ur = 7

FIGURE 5.10: Contours of span-wise component of vorticity ωz = ±0.5
for the normal cylinder. The four time instants the each Ur correspond
to the cylinder at positive maximum position, the middle position with
downward motion, the negative maximum position, the middle position
with upward motion. For Ur = 5 and 6, the snapshots are selected in
the time periods that the displacement is in and out of phase with the lift
forces, respectively. The blue color represents the minus value of ωz and

the orange color represents the positive value.

Although only Ur = 5, rather than the whole reduced velocity spectrum is investigated,
we cautiously conclude that the wavy cylinder could be used as a low VIV-responsive de-
vice if sufficient damping is supplied. Additionally, it is surmised, based on the validity
of the mass-damping parameter in predicting the maximum response amplitude, that the
wavy cylinders with larger mass ration, such as the case of the cable in air, might show
better performance in mitigation of the VIV than the normal cylinder. Further researches
are under consideration to verify this conjecture.

5.7 A perspective from the forced vibration test

Forced vibration tests have been useful in predicting and interpreting the free vibrations,
as have been introduced in section 2.1.3. For the normal cylinder under forced vibration,
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(A) Ur = 4

(B) Ur = 5

(C) Ur = 6

(D) Ur = 7

FIGURE 5.11: Contours of span-wise component of vorticity ωz = ±0.5 for
the wavy cylinder. The four time instants are the same with Fig. 5.10.

the interaction of between the external forcing frequency and the inherent vortex shed-
ding frequency could lead to complicated phenomenon such as frequency modulation,
lock-in, etc. However, in the case of the wavy cylinder, the vortex shedding has been
completely suppressed, leaving only the external frequency in the system. It intrigues us
to know how would the wake of the wavy cylinder respond to the external forcing with
different frequencies.

In this section, the cylinders are given a prescribed sinusoidal motion in the transverse
direction, i.e.,

y (t) = Aex sin (2πfext) , (5.4)

in which Aex and fex denote the forcing amplitude and the frequency. In this section, we
investigate Aex = 0.2Dm and fexDm/U∞ = 0.1 ∼ 0.3 with an interval of 0.05. Consid-
ering that the Strouhal number for the normal cylinder at Re = 5000 is around 0.2, the
investigated frequency range should be enough for the lock-in phenomenon to occur.

Fig. 5.12 presents an FFT analysis of the lift coefficients of the forced vibration test
for the normal and wavy cylinder. In the case of the normal cylinder, the when the ex-
citation frequency is either too small or too large, the spectrum is characterized by two
distinctive peaks, representing the excitation frequency and the inherent vortex shedding
frequency. As fex approaches the Strouhal frequency of 0.2, the peak corresponding to
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FIGURE 5.12: The FFT analysis of the lift force coefficients from the forced
vibration test with Aex = 0.2Dm.

the Strouhal frequency becomes insignificant and the lift force is dominated by a single
frequency at fex, reproducing the famous lock-in phenomenon in the forced vibration
test. As for the wavy cylinder, although the inherent shedding frequency has been ef-
fectively suppressed in the fixed configuration as is shown in section 5.2, the two-peak
response could still be observed at the two ends of the tested frequencies. Different from
the normal cylinder, in which the synchronization region occurs at fex = 0.2 ∼ 0.25, the
lock-in region shifts to fex = 0.15 ∼ 0.2 in the wavy cylinder case. Another point to no-
tice is that in the case of fex = 0.1, an reverse in the relative strength of the Strouhal and
excitation frequencies could be observed between the normal and wavy cylinder. This is
because at such low frequency the flow control efficacy is less disturbed by the external
forcing.

The recurrence of the Strouhal frequency in the oscillating wavy cylinder could be
understood further by the coherence of the span-wise lift force coefficients, as are plotted
in Fig. 5.13. The magnitude-squared coherence is defined as

Cohαβ (f) =
|Pαβ|2

Pαα (f)Pββ (f)
, (5.5)

in which Pαβ is the cross power spectral density of two signals and Pαα and Pββ are
the power spectrum densities of the respective signals. The spectral coherence could be
regarded as a measurement of the span-wise correlation of the lift coefficients in the fre-
quency space. At fex = 0.1 and 0.15, high spatial coherence could be observed at the
forcing frequency. Another illuminated region, located at around fCl ≈ 0.2, could also be
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FIGURE 5.13: Spectral coherence of the lift force coefficients of the wavy
cylinders undergoing forced oscillation at various forcing frequencies

vaguely recognized. This clearly depicts the resurrection of the Strouhal frequency in the
oscillating wavy cylinders. As the forcing frequency increases to 0.17 ∼ 0.2, only a single
band possesses high coherence, indicating the occurrence of the frequency lock-in. Fur-
ther increasing the forcing frequency induces the bifurcation of the two frequencies, with
the coherence of the Strouhal frequency strengthened compared with that in the smaller
fex cases. Based on the above observations, it is clear that the Strouhal frequency in the
wavy cylinder could be revealed by appropriate external forcing. In the free vibrations,
the ’concealed’ Strouhal frequency revives and play its role in determining the dynamic
responses of the wavy cylinders.

5.8 Summary

A series of numerical simulations have been carried out to study the flow past a spring-
mounted wavy cylinder. The aim is to clarify whether this hydrodynamically beneficial
geometry is capable of alleviating the flow induced vibrations. We study mainly the
Reynolds number of 5000. The stiffness k of the spring is varied to yield Ur = 2 ∼ 12, at
an interval of 1. Another set of computations are carried out for the normal cylinder in
order to validate our computational model and serve as the basis upon which the perfor-
mance of the wavy cylinder could be evaluated. The wavy cylinder studied in the current
work exhibits impressive flow control efficacy in the static configuration. The mean drag
and the r.m.s lift forces are reduced by 17% and 83% respectively in comparison with
the normal cylinder at Re = 5000. In addition, no primary frequency is detected in the
lift force of the wavy cylinder. This indicates that the Kármán vortices that prevails the
wakes of bluff bodies have been almost eliminated by the span-wise waviness. Neverthe-
less, when the wavy cylinder is allowed to move in the transverse direction, the typical
’lock-in’ phenomenon still occurs. Specifically, the main findings of the current work are
summarized as follows.
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• The vibration amplitude of the wavy cylinder is mitigated compared to the normal
one, however, the extent of the mitigation falls far short of that of the lift coeffi-
cients in the fixed configuration. The amplitude response (Ymax/D vs Ur plot) of
both cylinders exhibit the three-branch curve that is typical for low mass-damping
cases. The vibration frequency of the wavy and normal cylinders alike locks to
the natural frequency of the cylinder in the synchronization range. Similar to the
normal cylinder, the maximum vibration amplitude of the wavy cylinder increases
with the Reynolds number. However, we observe no qualitative change in the dy-
namic behavior of the wavy cylinder as the Reynolds number varies from 1000 to
5000.

• For the wavy cylinder, the magnification of the drag and lift forces during the lock-
in is comparable with the normal cylinder. The span-wise correlation of the lift force
for the wavy cylinder is greatly enhanced once it is excited to vibrate. An undulated
pattern, which conforms to the wavy cylinder shape, is found in the Cl correlation
curves, in contrast to the monotonic decrease in the correlation of normal cylinder
case. The poorly correlated regimes at the end of the upper branch is detected for
the normal cylinder, but not for the wavy cylinder.

• Similar with the normal cylinder, the phase between the lift force and the displace-
ment of the wavy cylinder undergoes a change from 0 n the initial and upper
branches to 180 n the lower branch. The hysteric regime in between the upper
and lower branches in not detected in the wavy cylinder. Different vortex shedding
modes are associated with the branches. The initial branch is found to correspond
to the 2S mode while the upper and lower branches to the 2P mode.

• The performance of the normal and wavy cylinders are comparable in the case of
small structural damping. However, as enough damping (m∗ζ ≈ 0.9) is supplied,
the vortex induced vibration could be reduced more efficiently than the normal
cylinder.

• The forced vibration test shows that the Strouhal-type frequency in the wavy cylin-
der could be revealed by selecting proper external forcing frequency. This should
serve as an primary explanation for the destabilization of the wavy cylinder in the
free vibrations.
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Chapter 6

Final Remarks

6.1 Conclusions

By the means of large eddy simulation, the current thesis presented a detailed inves-
tigation of flow around wavy circular cylinders, with the aim to clarify whether such
a morphology could still be control-effective in more complicated configurations. Two
situations, i.e., static wavy cylinder placed inclined to the incoming flow, and flexibly
mounted wavy cylinder freely oscillating in the transverse direction, have been consid-
ered.

When the wavy cylinder is inclined to the incoming flow, aerodynamic performance
differs depending on the geometrics of the waviness. Small wavelength cylinder with
the wavelength λ/Dm = 2 could completely suppress the Kármán vortex shedding in
the non-inclined cases, however, at α = 30◦ ∼ 45◦, the vortex shedding resurrects, and
the resulted drag and lift coefficients becomes much larger than that for a normal cylin-
der, rendering this wavy cylinder impractical for the bridge cables. On the other hand,
the long wavelength cylinders with λ/Dm = 6 exhibit much smaller increase in the force
coefficients when they are inclined to the incoming flow. In addition, from the aesthetic
point of view, the cylinders with longer wavelength generally presents elegant appear-
ances to the users because of its slenderness. Thus, the long-wavelength cylinder presents
a better choice for engineering applications where drag reduction is needed.

As for the vibrational characteristics of the wavy cylinder, it is revealed that the aero-
elastic behavior of the wavy cylinder features that are also found in the normal cylinder,
although the former presents glaring difference in the fixed configuration. This reminds
us the discovery by Pastò (2008), in which the vortex induced vibration persists even at
the critical Reynold number characterized by a cessation of coherent vortex shedding in
steady configuration. Both cases imply that the vortex induced vibrations may not be
initiated by the Kármán vortex shedding, and thus may defy the conventional view on
the mechanism of vortex induced vibration that VIV is a resonance effect with nonlinear
feedback (De Langre, 2006). We further suspect that the different behavior of the wavy
cylinder at fixed and flexibly mounted configurations may be of similar mechanism with
the finding that VIV of a circular cylinders could occur at Reynolds numbers inferior to
47, below which the lift force is strictly zero (Buffoni, 2003; Mittal and Singh, 2005; Leoniti
and Thompson, 2010). In view of the above, the wavy cylinder does not lend itself to a
perfect device for vibration suppression, at least for vortex induced vibration for marine
structures where the mass ratio is usually small.

In spite of the overwhelmingly positive attitudes towards the aerodynamics of the
wavy cylinders reported by the prior researches, the current thesis points out that such
beneficial aerodynamic performance is not well preserved in the considered two aspects.
It seems that the wavy cylinders need a delicate environment for them to be control-
effective, that is non-inclined and stationary. For engineering applications, in which the
operating condition is far more complicated than the cases considered here, the wavy
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cylinders should be used with caution. The current thesis could also trigger more re-
search interests into the fluid mechanics of the wavy cylinders, which are listed in section
6.2.

6.2 Prospects for future researches

While the wavy cylinders have been studied a lot in the past 30 years, and its flow control
suppression capacity has been widely recognized, the current thesis clearly points out
that there are still a lot to be discovered. We put forward some ideas that might be worth
research effort in this section.

• The mechanism of the stabilization of the wavy cylinder in the static configura-
tion is still not clear. Three dimensional global analysis must be helpful in un-
derstanding this phenomenon. However, the resolution of the tri-global modes is
extremely computationally expensive. Alternatively, the dynamic mode decompo-
sition based global stability analysis could be a possible way to resolve this problem
(Stankiewicz et al., 2015; Ferrer, Vicente, and Valero, 2014). This topic is now un-
dergoing by us.

• The destabilization of the wavy cylinder in the dynamic cases warrants deeper in-
vestigations. In future studies, linear stability analysis in the line of Zhang et al.
(2015) and Mittal (2016) will be carried out further explore the mechanism of the
hydro-elastic behavior of the wavy cylinders and the role of structural damping.
Besides, in the current thesis, harmonic forcing in the form of structural motion has
been applied. Other forms of forcing, such as temporally periodic flux injection,
might facilitate the resolvent analysis (Taira et al., 2017), which is believed to be
helpful in understanding the revival of the Strouhal-like frequency exhibited by the
wavy cylinder better.

• It is interesting to know whether the combined passive and active flow control, in
the current case, wavy cylinder with span-wise distributed forcing as in Kim and
Choi (2005), could work to enhance the flow control efficacy of the wavy cylinder,
or in another word, could the passive geometry further alleviate the energy con-
sumption required in the distributed forcing method.

• Up to now, all the investigations on the wavy cylinders have been conducted at
sub-critical Reynolds numbers. There is no information about the aerodynamic
performance of the wavy cylinder at critical, or post-critical Reynolds numbers.
This is one of the key issue of whether the wavy cylinder could be manufactured
for the real bridge cables, for which the post-critical Reynolds numbers are of the
greatest interest.

• In applying to the wavy cylinders to the cable-stayed bridges, the rain-wind in-
duced vibration is expected to be mitigated since the undulation of the geometry
could prevent the water rivulets from forming. However, we still do not know
whether such a cylinder could be effective against the dry galloping.

• Conventionally, in order to reduce riser top tensile stresses and floating vessel con-
nection loads, buoyancy in the form of added concentric circles are connected to
the risers. This greatly increases the drag-to-weight ratio, and in turn affects the
riser dynamic response (O’Brien and O’Sullivan, 1999). Instead of the concentric
circles, the wavy coating could be used. In this case, the drag force could be largely
reduced.
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Appendix A

Validation and mesh dependency test

CFD simulations are carried out on computation domains that are properly meshed.
The mesh resolution should be delicately chosen so that it could yield satisfactory result
without posing excessive burden on the computational resources. The current appendix
presents the mesh dependency test for both the static and dynamic cases in order to de-
termine an appropriate set of mesh resolution of the simulations undertaken herein.

TABLE A.1: Mesh dependency test for a static circular cylinder at Re =
5000

NO. Domain Mesh maxCo Cd Cl r.m.s.
A1 40D × 6.28D 160× 160× 96 2 1.005 0.149
A2 40D × 6.28D 180× 180× 96 2 0.985 0.121
B1 40D × 3.14D 160× 160× 48 1 0.996 0.143
B2 40D × 3.14D 160× 160× 48 2 1.021 0.153
B3 40D × 3.14D 200× 200× 48 2 0.977 0.123

Table A.1 presents the five cases that are used in the mesh dependency test for the
x − y cross-section of the static circular cylinder at Re = 5000. Case A1 and A2 have a
span-wise length of 6.28D, while the cases titled B are performed with half of the span-
wise length of case A to save computation time. It was revealed by Kravchenko and
Moin (2000) and Breuer (1998) that doubling the cylinder span from πD to 2πD while
maintaining the same axial resolution would yield similar results in terms of aerody-
namic forces and mean wake properties. This conclusion grants us the rightful reason
to make direct comparisons between Case As and Bs. With the same resolution in the
span-wise direction, case A1, A2 and B3 are distinguished by their increasing grid points
in the cross-section. The effect of time-step is compared by B1 and B2, in which the time-
steps in each of the cases are decided by setting the maximum Courant number to be
1 and 2. The statistics of each case are gathered for 200 non-dimensional seconds after
a 100 non-dimensional seconds pre-run to eliminate the initial transients. Three papers
taken as reference in this section are the experimental work by Norberg (1998) and two
LES works by Kim (2006) and Doolan (2010). Note that the last paper is dedicated to a
slightly larger Reynolds number of 5600.

While the drag force coefficients are found to decrease as the cross-sectional mesh is
refined, the difference between case A1 and B3 is only 3%. The effect of span-wise length
is again proved of minor significance, based on case A1 and B2. From case B1 and B2
it is concluded that the effect of time-step is also trivial. The resulted time-step for case
A1 is ∆t = 0.013. It is noted that a time-step of around ∆t = 0.01 was used in several
cross cylinder flow studies at similar Reynolds numbers (e.g., ∆t = 0.01 for Lee et al. Lee,
Campbell, and Hambric, 2014’s DES at Re = 5000, ∆t = 0.0172 for Doolan (2010)’s LES
at Re = 5600).
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FIGURE A.1: Mean stream-wise velocity and r.m.s. fluctuating velocity
along wake center line
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FIGURE A.2: Mean stream-wise velocity and r.m.s. fluctuating velocity at
x/D = 1
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FIGURE A.3: Mean stream-wise velocity and r.m.s. fluctuating velocity at
x/D = 2

The mean stream-wise velocity profiles are shown in Fig. A.1 to Fig. A.3. It could be
observed from these figures that case A1, although possessing the relatively coarse mesh
resolution, produces fare agreement with the existing literature. The results from the finer
meshed cases deviate only slightly from that of A1, and this deviation does not improve
the results to better agreement with the literature. Less satisfying result is obtained for
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the r.m.s. fluctuating velocity. Although the general trend has been reproduced, its value
is smaller compared to that in the literature. The relatively lower value of urms may
have its origin in the turbulence model we used. Lysenko, Ertesvåg, and Rian (2012)
employed high spatial resolution (300×300 in the cross-section plane) for his LES of flow
around circular cylinder at Re = 3900 with the dynamic k-equation turbulence model,
the value of urms was also under-predicted. It would seem that the prediction of urms is
more challenging than umean by this turbulence model.

Based on the above statements, it could be inferred that the case A1 is not perfectly
converged; however, the discrepancy of A1 compared with other refined cases is small.
Particularly, case A1 qualifies an accurate prediction of flow variables such as mean ve-
locity, aerodynamic forces, etc.
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FIGURE A.4: Time histories of the force coefficients of the 2_0.15 wavy
cylinder at α = 45◦ from three different meshes.

TABLE A.2: Summary of drag, lift coefficients and the Strouhal number for
the 2_0.15 wavy cylinder at α = 45◦. The span-wise length of the cylinder

is 8Dm.

Nz Cd C
′
d C

′
l St

100 1.246 0.0527 0.426 0.1831
125 1.267 0.0491 0.471 0.1892
180 1.207 0.0539 0.407 0.1892

In the case of inclined flow around wavy cylinders, the wake aerodynamics are com-
plicated by the involvement of the axial velocity over the wavy tubercles, making the
mesh dependency test for the axial grid resolution indispensable. For the inclined cylin-
der cases, the 2_0.15 wavy cylinder at α = 45◦ is selected for the axial mesh dependency
test since this particular case presents the most critical situation: the steepest geomet-
ric gradient with the largest span-wise velocity. We fix the planar mesh resolution to
Nr×Nc = 180×180 and vary the span-wise grids Nz to see if there is qualitative changes
in the flow variables such as the drag and lift coefficients. To save computational effort,
a total length of L = 8Dm, which encompasses 4 waves, is investigated with three levels
of span-wise grids number: Nz = 100, 125 and 180. The time histories of the span-wise
averaged drag and lift coefficients are presented in Fig. A.2. Owing to the turbulence
effect, the time histories of the drag and lift coefficients of the three meshes are very ir-
regular. However, the mean and fluctuating values appear to be statistically close. Table
?? presents the comparison of the mean dragCd, the rms drag and liftC

′
d,C

′
l as well as the
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Strouhal number St of the three meshes. The fair agreement between the three levels of
grids indicates that the results have converged at Nz = 125. In view of this, the medium
mesh, which has 125 grids for a span-wise length of 8Dm (∆z = 0.064Dm) is selected for
the current work.

Another set of mesh dependency test has been conducted for the dynamic mesh cases,
which will be employed for the simulation of free and forced vibration in Chapter 5. The
results of this mesh dependency test is shown in Table A.3. Regarding the case naming
conventions, the first letter N or W indicates the normal or wavy cylinder. The next
word points out the reduced velocity. The last letter A,B,C or D indicates the mesh and
temporal resolution. Specifically, compared with the caseA, the time-step is halved in the
cases denoted B, and the cases denoted C are associated with the refined mesh in the x-y
plane. For the wavy cylinder, the D cases, in which the span-wise meshes are refined, are
performed to account for the span-wise waviness. Nc, Nr and Nz denote the grids in the
circumferential, radial and span-wise direction. Ymax is defined as the average of the top
10% peak amplitude. f is the primary frequency that contains the highest energy content
from the spectrum of the vibration response and fn is the natural frequency in vacuum.
The averaged values as well as the root mean squared (rms) values of Cd and Cl are
included in the table for comparison. We compare the results based on the cases denoted
A, which has spatial resolution of 160×160×80 and time-step ∆t = 0.01. It could be seen
that the results in terms of maximum amplitude, primary frequency, fluid-induced forces
are in reasonable agreement when the spatial ro temporal resolutions are refined. Further
more, as will be shown in the next chapter, the current results of the normal cylinder in
terms of maximum vibration amplitude, primary frequency, drag and lift forces, etc., are
in excellent agreement with the literature. Since the current work is the first study on the
VIV of the wavy cylinder, its results could not be validated through previous literature.
However, we have employed the same numerical model and the calculation method for
the wavy and normal cylinders, and the results of the latter have shown to be of high
fidelity. Thus, it is reasonable to believe that the results of the wavy cylinder is also of
enough accuracy and trustworthy.

TABLE A.3: Mesh dependency test for the dynamic mesh cases

Case Nc ×Nr ×Nz ∆t Ymax/D f/fn Cdmean Cdrms Clrms

N_Ur5_A 160× 160× 80 0.01 0.98 0.88 2.45 0.71 0.89
N_Ur5_B 160× 160× 80 0.005 0.94 0.93 2.53 0.69 0.81
N_Ur5_C 200× 200× 80 0.01 0.92 0.94 2.48 0.59 0.73
N_Ur7_A 160× 160× 80 0.01 0.62 1.09 1.51 0.24 0.29
N_Ur7_B 160× 160× 80 0.005 0.60 1.09 1.51 0.25 0.32
N_Ur7_C 200× 200× 80 0.01 0.60 1.07 1.49 0.22 0.26

W_Static_A 160× 160× 80 0.01 - - 0.80 0.023 0.013
W_Static_D 160× 160× 100 0.01 - - 0.80 0.017 0.014
W_Ur5_A 160× 160× 80 0.01 0.83 0.90 2.26 0.45 0.76
W_Ur5_D 160× 160× 100 0.01 0.79 0.91 2.26 0.45 0.69
W_Ur7_A 160× 160× 80 0.01 0.55 1.06 1.40 0.16 0.22
W_Ur7_D 160× 160× 100 0.01 0.56 1.09 1.42 0.17 0.20
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