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Abstract

This paper contained three Parts:

Part I, I proposed a statistic test for common volatility process in bivariate time series

model. We considers the problem as to whether financial returns have a common volatility

process in the framework of stochastic volatility models that were suggested by Harvey

et al. [1994]. We propose a stochastic volatility version of the ARCH test proposed by

Engle and Susmel [1993], who investigated whether international equity markets have a

common volatility process. The paper also checks the hypothesis of frictionless cross-

market hedging, which implies perfectly correlated volatility changes, as suggested by

Fleming et al. [1998]. The paper uses the technique of Chesher [1984] in differentiating an

integral that contains a degenerate density function in deriving the Lagrange Multiplier

test statistic.

Part II, I extend this model to more practical situation with stable distribution. Using

normal distribution to model the assets’ return is not appropriate especially considering

the rare events such as financial crisis. I suggest using Stable distribution which is more

persuasively in fundamental generating process of price than other skewness and fat-tailed

distribution. I also use state space model with α−Stable distribution to dynamically mea-

sure the changing of log-price, and catch different performance during different times. To

compare the performance of different distribution, I use the Bayesian information crite-

rion(BIC).

Part III, I learned a fast algorithm called fast Gaussian transform to accelerate the calcu-

lation in filtering and smoothing process. We focus on the description of this algorithm

proposed in Greengard and Strain [1991]. It is one of the fast algorithm called the fast

multipole method (FMM). It use the two asymptotic expansion: the near field expansion

well known as Taylor expansion, and the far field multipole expansion named as Hermite

expansion. There may be potential useful in high dimension particle filter and smoother

, or multi-asset option pricing. It can be significant improvement for calculating the

statistic proposed in Part I.

2



Part I

Testing for a Common Volatility Process and Frictionless Hedging in Bivariate Time Series

Models

1 Introduction

This paper considers the problem as to whether financial returns have a common volatility

process in the framework of stochastic volatility models that were suggested by Harvey et al.

[1994]. We propose a stochastic volatility version of the ARCH test proposed by Engle and

Susmel [1993], who investigated whether international equity markets have a common volatility

process using a multivariate ARCH model. They found groups of countries that showed similar

time-varying volatility.

Fleming et al. [1998] used the multivariate stochastic volatility model of Harvey et al.

[1994], and estimated volatility linkages across stock, bond, and money markets, and found

strong correlation between the markets. Fleming et al. [1998] also suggested that cross-market

hedging in frictionless markets causes perfectly correlated volatility changes, extending the

model of Tauchen et al. [1983]. This linkage is stronger than the presence of a common factor

in volatility changes in that it implies that the idiosyncratic part of stochastic volatility changes

will disappear and have a common volatility process. They also conducted a Wald test, and

rejected the null hypothesis of perfectly correlated volatility to conclude that cross-market

hedging is imperfect.

Contrary to what has been presented, the use of the Wald and likelihood ratio tests, is

inappropriate for the null hypothesis of perfectly correlated volatility, as the asymptotic distri-

bution of the Wald test statistics is different from the conventional chi-squared distribution, as

shown, for example, in Chernoff et al. [1954] . As the null hypothesis is on the boundary of the

parameter space, the correlation estimator cannot be greater than one in absolute value, so that

the distribution is asymmetric, and hence non-normal, when the true correlation coefficient is

unity.

The paper proposes a new Lagrange multiplier test for the hypothesis that the volatility

changes of a bivariate series are perfectly correlated. We use the framework of a multivariate

stochastic volatility model proposed by Harvey et al. [1994], where the log-volatility follows

vector autoregressive (VAR) process of order one with diagonal autoregressive coefficient matrix.

The Lagrange multiplier test principle is the only alternative for this problem in deriving

the test statistics because it uses only the estimator of the unconstrained parameters, which are

asymptotically normally distributed, and does not estimate the parameter on the boundary of
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the parameter space. Then the test statistic will follow the conventional chi-squared asymptotic

distribution under the null hypothesis.

To the best of our knowledge, the Lagrange multiplier test statistic for the perfectly corre-

lated volatility changes has not been proposed in the literature. It follows that the hypothesis

of frictionless cross-market hedging has also not been tested, so that a new test for perfectly

correlated volatility would be useful from a practical perspective.

It is not without reason why an LM test has not been proposed to date as the conventional

method to obtain a score function that is used in constructing the LM test statistic is unworkable

for the multivariate stochastic volatility model.

The derivative of the transition density is intractable in this integral under the null hy-

pothesis, as the transition disturbance has zero variance, and the transition equation density

degenerates. We express the score function analytically with respect to the degenerate pa-

rameter using the ingenious method devised by Chesher [1984], which is the main technical

breakthrough in tackling this problem.

The new test is a stochastic volatility version of the ARCH test proposed by Engle and

Susmel [1993] to investigate whether international equity markets have a common volatility

process. The test can be regarded as a test for the number of stochastic volatility factors, in

line with the definition of Harvey et al. [1994] and Cipollini and Kapetanios [2008], when the

number of factors is one under the null hypothesis. Cipollini and Kapetanios [2008] used a

linearized model for the log of squared returns, and used the principal component methodology

of Stock and Watson [2002] in deciding the number of factors. Their method has the advantage

in that it is applicable when the number of variables is large, even though it is not a statistical

test. The new test developed in this paper is a unique statistical test for the null hypothesis of

the number of stochastic volatility factors.

Although theoretically straightforward, a generalization to multi-factor models is left to for

further research, as numerical calculation of the test statistic is extremely time consuming, even

in the simple case given here. The bottleneck lies in the calculation of score functions by the

conventional smoothing algorithm. Maximum likelihood estimation by means of the quadrature

method proposed by Watanabe [1999] is efficient when the state variable is univariate. More-

over, Monte Carlo simulation methods would work well for the estimation of multivariate state

space models, with some difficulty, as the filtering algorithm, which is required for estimation,

is far faster than the smoothing algorithm. It should be possible to generalize the results in the

paper to the multi-factor model by improving the smoothing algorithm, as well as by hardware

advancement.

The remainder of the paper is as follows. Section 2 presents the model, Section 3 develops

the LM test statistic, Monte Carlo experiments are presented in Section 4, the empirical analysis
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is given in Section 5, and some concluding remarks are in Section 6, followed by the Appendices.

2 Model

Under the alternative hypothesis, the observation vector yt = (y1t, y2t)
′ can be expressed as:(

y1t

y2t

)
=

(
exp(h1

2
) 0

0 exp(h2
2

)

)(
a1 0

a2 a3

)(
e1t

e2t

)
, t = 1, · · · , T, (1)

where the log-volatility, (h1t, h2t)
′, follows a stationary bivariate autoregressive process of order

one, defined by:(
h1t

h2t

)
=

(
ρ 0

0 ψ

)(
h1t−1

h2t−1

)
+

(
b1 0

b2
√
c

)(
u1t

u2t

)
, t = 1, · · · , T, (2)

and (
h11

h21

)
=

(
b1/
√

(1− ρ2) 0

b2/
√

(1− ψ2)
√
c/(1− ψ2)

)(
u11

u21

)
,

(e1t, e2t, u1t, u2t)
′ ∼ NID (0, I4) .

The disturbance term of the measurement equation (1) is assumed to be contemporaneously

uncorrelated, and the transition equation (2) is assumed to be contemporaneously correlated.

This model was originally suggested by Harvey et al. [1994], and was examined in detail in

Danıelsson [1998] and Asai et al. [2006].

It is easy to see that, under the null hypothesis defined by:

H0 :
√
c→ 0, ψ = ρ, b2 = b1,

we have:

h1t ≡ h2t, for any t.

This is the stochastic volatility factor model discussed in Harvey et al. [1994] and Cipollini and

Kapetanios [2008] in the simple case when the number of factors is one, that is , h1t = h2t.

3 LM Test statistic

We propose the LM test for the null hypothesis for the observation series y1t and y2t. For the

sake of computational simplicity and parameter parsimony, we set a1 = a2 = 1 by standardizing

the returns variance. Define the unrestricted parameter vector as θ1 = (c, ψ, b2, ρ, b1), and the

restricted parameter vector as θ0 = (0, ψ, b2, ψ, b2) .
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First, I obtain the maximum likelihood estimator of the constrained parameter, θ0, of the

state space system, (1) and (2), at time t. Denote y1 = (y11, y12, . . . , y1t)
′
,y2 = (y21, y22, . . . , y2t)

′
,

h1 = (h11, h12, . . . , h1t)
′
, and h2 = (h21, h22, . . . , h2t)

′
. The likelihood function is expressed as:

f(y) =

∫
f(h,y)dh =

∫
f(y1,y2|h1,h2)f(h2|h1)f(h1)dh1dh2,

where the specified densities f(y1|h1), f(y2|y1,h1,h2), f(h2|h1), and f(h1) are given in the

Appendix.

Second, I derive the score function under the alternative hypothesis, and evaluate it under

the null hypothesis. Denote:

y1:t = (y11, y12, . . . , y1t, y21, y22, . . . , y2t)
′
, yt = (y1,y2), ft = f(yt),

and the score function as:

∂ log ft
∂θ1

=

(
∂ log ft
∂c

,
∂ log ft
∂ψ

,
∂ log ft
∂b2

,
∂ log ft
∂ρ

,
∂ log ft
∂b1

)
.

Note that log f(yt|y1:t−1) = log f(y1:t)− log f(y1:t−1). Define the conditional score function as:

Qt =
∂ log f(yt|y1:t−1)

∂θ
′
1

=
∂ log f(y1:t)

∂θ
′
1

−
∂ log f(y1:t−1)

∂θ
′
1

.

Then the Fisher information matrix can be expressed as:

I(θ) =
1

T

T∑
t=1

QtQ
′

t,

and the full information score function is given as:

U(θ) =
1

T

T∑
t=1

Qt =
1

T

∂ log f(y1:T )

∂θ
′
1

,

which is evatulated at θ1 = θ.

Define the LM test statistic as:

LM = TU ′(θ̂0)I(θ̂0)
−1U(θ̂0)

L−→ χ2(3),

where θ̂0 is the maximum likelihood estimator of θ0 under the null hypothesis. The asymptotic

distribution has three degrees of freedom corresponding to the three restrictions under the null

hypothesis.

As
∂ log f(y1:t)

∂θ
′
1

=
1

f(y1:t)

∂f(y1:t)

∂θ
′
1

, I focus on how to obtain
∂f(y1:t)

∂θ
′
1

. A problem is that

the score function derived in the usual way diverges as the parameter c approaches 0, so I use
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the method proposed in Chesher [1984]. Denote y1:t as y. The score functions with respect to

each parameter under the null hypothesis are given below:

∂ log f(y)

∂c
|H0 = trEh1|y(Jt),

∂ log f(y)

∂ψ
|H0 =

1

2

[
11×tV

1/2
ρ ZρEh1|y[h1]

]
− 1

2
tr
[
Y2V

1/2
ρ ZρEh1|y[h1 exp(−h

′

1)]
]
,

∂ log f(y)

∂b2
|H0 = − 1

2b1
11×tEh1|y [h1] +

1

2b1
tr
[
y2′

2 Eh1|y [exp(−h1) ◦ h1]
]
,

∂ log f(y)

∂ρ
|H0 = −∂ log f(y)

∂ψ
|H0 +

[
− ρ

1− ρ2
− 1

2
b−21 tr

(
∂V−1ρ
∂ρ

Eh1|y

(
h1h

′

1

))]
,

∂ log f(y)

∂b1
|H0 = −∂ log f(y)

∂b2
|H0 −

t

b1
+

1

b31
tr
(
V−1ρ Eh1|y

(
h1h

′

1

))
,

where

Jt =
1

8
{−2 (11×tVρY2 exp(−h1)) + (1t×tVρ)

+
(
VρY2 exp(−h1) exp(−h

′

1)Y2

)
− 2

(
VρY2H

−1
1

)}
.

Further details are given in the Appendix.

4 Monte Carlo Experiments

In order to confirm that the proposed new test statistic is asymptotically distributed as χ2(3)

under the null, and whether it has power to reject a false null hypothesis, I conduct two Monte

Carlo experiments, as given below.

4.1 Asymptotic distribution

This experiment is to generate samples drawn under the null hypothesis, H0, calculates the

new test statistic, and obtains the empirical distribution of the test statistic.

In this test, the significance level corresponds to the probability of the rejection region for

the upper-tailed distribution of χ2(3), so the experiment calculates the rejection rate that is

larger than the theoretical critical value. Using the calculated statistics, I obtain the empirical

distribution of the statistic and use kernel estimation or a simple histogram to show that it

follows the asymptotic χ2(3) distribution.

First, I generate samples drawn from different null hypotheses, particularly for different values

of the parameter, ψ, which is the autocorrelation coefficient of the state variable. The rejection

rates correspond to different critical values, and are shown in Table 1. The parameter vector,
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Table 1: Rejection rates under the null hypothesis

Sampling from H0 Rejection rates

c ψ b2 ψ b2
T=100 T=200 T=500

5% 1% 5% 1% 5% 1%

0 0.7 1 0.7 1 10.2% 4.3% 8.3% 2.7% 7.1% 1.3%

0 0.9 1 0.9 1 21.0% 9.5% 13.1% 4.8% 6.3% 1.7%

0 0.95 0.45 0.95 0.45 22.5% 10.2% 14.7% 5.6% 7.4% 1.6%

θ, follows the same definition as in the previous section, namely θ0 = (0, ψ, b2, ψ, b2). As the

time length T increases, the rejection rate converges to the theoretical significance level.

From the table, I can see that the rejection rate converges sufficiently well when the time

length is 500, which suggests that I should use data with at least 500 observations in practice.

The histogram of the samples statistics obtained when T = 500 is given in the Appendix.

4.2 Statistical power

In comparison with the previous experiments, I generate data drawn from the alternative hy-

pothesis, H1, and calculate the rejection rates to see whether the statistic has power to reject a

false null hypothesis. The parameter vector under H1 shifts from the parameter vector under

H0. The Monte Carlo results are shown in Table 2, where the vector of parameters under the

null hypothesis is given as θ0 = (0, 0.7, 0.32, 0.7, 0.32).

Table 2: Rejection rates under the alternative hypothesis

Sampling from H1 Rejection rates

c ψ b2 ρ b1
T=500

5% 1%

0.32 0.7 0.32 0.7 0.32 28% 13%

0.45 0.7 0.32 0.7 0.32 72% 43%

0 0.7 0.25 0.7 0.32 24% 7%

0 0.7 0.19 0.7 0.32 51% 28%

0 0.5 0.32 0.7 0.32 14% 7%

0 0.9 0.32 0.7 0.32 86% 72%

Given the accurate finite sample rejection rates, it was felt reasonable to perform the Monte
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Carlo simulations only 100 times.

5 Empirical Analysis

5.1 Data adjustment

Before using the LM test statistic, it is worth recalling that the error terms (e1t, e2t) in the

measurement equation are mutually independent. However, as the usual situation is that they

are contemporaneously correlated, I need to adjust the data to eliminate the correlation between

y1t and y2t. Instead of using the original data, y1t and y2t, I use a linear combination of y1t and

y2t. A similar approach is used in Engle and Kozicki [1993]. We illustrate the reason with the

linear transformations, as follows.

First, under the null hypothesis, the measurement equation can be written simply as:(
y
′′
1t

y
′′
2t

)
= exp(

h1
2

)

(
a1 0

a2 a2

)(
e1t

e2t

)
.

It is easy to see that any linear operator applied to (y
′′
1t, y

′′
2t) does not change the state part,

exp(h1
2

), of the equation. If the null hypothesis is true, with linear transformation, I only alter

the structure of the measurement noise, and the state part exp(h1
2

) remains the same after the

data adjustment.

Second, if the original data are drawn under the alternative hypothesis:(
y
′′
1t

y
′′
2t

)
=

(
exp(h1

2
) 0

0 exp(h2
2

)

)(
a1 0

a2 a3

)(
e1t

e2t

)
, (3)

then any linear transformation between (y
′′
1t, y

′′
2t) will retain the two “features” exp(hi

2
), i = 1, 2,

where the word “feature” is used in Engle and Kozicki [1993].

Finally, any linear combination between (y
′′
1t, y

′′
2t) has its own significant meaning in empirical

finance. Notice that the original data, (y
′′
1t, y

′′
2t), denote the difference in the log-price, namely

the financial returns of the assets:

y
′′

1t = log(p1t)− log(p1t−1),

y
′′

2t = log(p2t)− log(p2t−1).

For example, consider two assets, S&P 500 and Nikkei 225, for which the linear combination

of the return is the returns on the portfolio which shares the weights between S&P 500 and

Nikkei 225. In this situation, I can also use the model to analyse two new assets which always

contain two “features”, which makes our test statistic useful for empirical analysis.
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We need two steps to adjust the data, which are given as:(
y1t

y2t

)
= a−10

(
y
′
1t

y
′
2t

)
= a−10 Λ−

1
2

(
y
′′
1t

y
′′
2t

)
, (4)

where estimation of Λ and a0 are given by:

Λ̂ =
1

T

( ∑
y
′′2
1t

∑
y
′′
1ty
′′
2t∑

y
′′
1ty
′′
2t

∑
y
′′2
2t

)
, (5)

â0 =

(
exp

{[
1
T

(∑
log y

′2
1t

)
+ 1.27

]
/2
}

0

0 exp
{[

1
T

(∑
log y

′2
2t

)
+ 1.27

]
/2
} ) . (6)

If:

a−10 Λ−
1
2

p→

(
a1 0

a2 a3

)−1
, (7)

I can obtain a new data set, (y1t, y2t), that has the same distribution compared with the model

that is used in the new test statistic, with the same asymptotic null distribution. Further

adjustments are shown in the Appendix.

5.2 Empirical result

Using the proposed new statistical test in the previous section, I examine the relationship

between different stock markets, and also investigate the exchange rate movements over different

time periods.

5.2.1 Analysis of stock markets

First, I investigate whether there exists a common factor of volatility between different stock

market indices. The data I use for analysis come from Yahoo finance, and I use the Adjusted-

Close price pt. The stock market indices list is given below.

We obtained daily data from January, 2011 to December, 2014 and separated them into two

sets to check the performance in different years. The test needs a combination of two indices,

so there are 28 pairs. We excluded data whenever there were closed-market days in one market,

such as holidays.

The data adjustment follows the two steps given in the previous section. The parameter

estimates are shown in the Appendix as Tables 15,16,17,18, and the test outcomes for different

pairs are shown in Tables 4 and 5.

As can be seen from the tables, even for different time periods, the group that contains the

FTSE, STI and AORD stock markets share the same volatility factor. Stock markets in the
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Table 3: Stock market indices

Index number Stock Market Symbol Country/Region

1 Dow Jones Industrial Average DOW United State

2 FTSE Index FTSE Unite Kingdom

3 DAX Index DAX Germany

4 Shanghai Composite Index SSCI China

5 Nikkei 225 Stock Average Index NIKKEI Japan

6 Hang Seng Index HSI Hong Kong

7 Straits Times Index STI Singapore

8 All Ordinaries Index AORD Australia

Table 4: LM statistics between markets from 2011 to 2012

H
HHH

HHHH
y1

y2
DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 9.1* 9.19* 21.48** 24.22** 5 10.44* 4.07

FTSE 5.14 1.39 20.33** 25.33** 3.66 3.74 1.07

DAX 5.96 8.7* 17.84** 30.19** 2.52 6.22 6.82

SSCI 21.07** 7.63 15.72** 18.07** 4.7 7.92* 8.46*

NIKKEI 22.15** 8.88* 29.5** 15.23** 2.34 10.23* 5.22

HSI 4.9 2.73 5.88 4.14 40.52** 2.87 4.69

STI 7.69 2.99 7.03 3.17 34.31** 18.12** 1.98

AORD 2.46 5.56 12.88** 5.19 69.35** 15.88** 2.68

Note: * significant at 5% level, ** significant at 1% level.

Asian region (such as China and Japan) appear to have a unique factor compared with other

regions during 2011 and 2012. However, in 2013 and 2014, there appear to be more groups that

share the same factor, namely:

Group 1 : FTSE, SSCI, NIKKEI

Group 2 : FTSE, HSI, AORD

Group 2 : FTSE, STI, AORD
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Table 5: LM statistics between markets from 2013 to 2014

HH
HHH

HHH
y1

y2
DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.39 8.05* 11.83** 15.43** 9.24* 4.97 5.21

FTSE 15.79** 9.9* 2.28 4.76 4.17 1.92 2.68

DAX 4.34 7.52 10.64* 21.47** 3.31 7.83* 10.22*

SSCI 11.53** 2.14 10.72* 3.39 12.84** 3.79 6.11

NIKKEI 15.05** 5.68 25.2** 2.58 9.92* 9.78* 9.88*

HSI 7.88* 1.54 7.13 7.47 12.39** 19.45** 2.58

STI 11.42** 1.91 23.23** 7.08 7.13 8.32* 1.63

AORD 6.11 0.8 8.03* 2.31 5.71 3.99 4.13

Note: * significant at 5% level, ** significant at 1% level.

5.2.2 Analysis of exchange rates

We also use foreign exchange rates to evaluate the performance during extreme situations,

especially when volatility is higher than usual. Comparing the performance for two time periods,

namely the global financial crisis and normal times, I focus on the rates that are aggregated

from the table instead of a single result between only two currency pairs.

First, I define two time periods representing the financial crisis and normal times. We use

the Chicago Board Options Exchange (CBOE) Volatility Index (VIX) as an indicator to detect

when volatility is high. It is easy to see that volatility changed from the historical chart (see

Figures 1 and 2). We choose Period 1: Oct/1/2008 ∼ Oct/31/2008 as the financial crisis, and

Period 2: Oct/1/2012 ∼ Oct/31/2012 as normal times.
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Figure 1: VIX during global financial crisis (2008)
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Period 1:
Oct/1/2008~Oct/31/2008

Note: VIX data are downloaded from Yahoo Finance.

Figure 2: VIX during normal times (2012)

Jan/01/2012 Mar/01/2012 May/01/2012 Jul/01/2012 Sep/01/2012 Nov/01/2012 Jan/01/2013 Mar/01/2013 May/01/2013 Jul/01/2013 Sep/01/2013 Nov/01/2013 Jan/01/2014
10
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Period 2:
Oct/1/2012~Oct/31/2012

Note: VIX data are downloaded from Yahoo Finance.

Second, I use 6 major currency pairs that are traded widely. The pairs used are listed in

Table 6, and all contain USD, so that all currencies are priced in USD.

We obtained hourly data for a month, which means roughly 500 data series. The estimated

parameters are listed in the Appendix as Tables 19,20,21,22, and the statistical results are
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Table 6: Currency Pairs list

Paris EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD

shown in Tables 7 and 8.

Table 7: LM statistics for exchange rates during Period 1

HH
HHH

HHH
y1

y2
EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 23.73** 12.06** 34.09** 10.43* 17.89**

USDJPY 35.45** 17.28** 15.62** 28.23** 54.5**

GBPUSD 14.49** 14.34** 53.78** 18.74** 22.03**

AUDUSD 37.32** 33.16** 30.01** 25.47** 28.3**

USDCHF 24.47** 33.96** 43.9** 39.49** 23.63**

USDCAD 18.31** 37.44** 15.14** 19.02** 14.64**

Note: * significant at 5% level, ** significant at 1% level. The exchange rate is downloaded

from FXDD’s historical data.

Table 8: LM statistics for exchange rates during Period 2

H
HHH

HHHH
y1

y2
EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 11.27* 5.17 7.56 6.61 25.69**

USDJPY 15.88** 28.67** 12.97** 16.73** 14.86**

GBPUSD 2.15 23.74** 20.35** 5.39 8.38*

AUDUSD 28.07** 18.32** 26.51** 14.97** 22.86**

USDCHF 3.22 9.53* 4.64 6.9 17.66**

USDCAD 5.5 6.47 4.83 5.82 4.41

Note: * significant at 5% level, ** significant at 1% level. The exchange rate is downloaded

from FXDD’s historical data.

As can be seen from Tables 7 and 8, during the financial crisis volatility is larger than usual,

so it is difficult to find a single asset to hedge volatility. The accepted rate is given as 0 in

14



Table 7. Conversely, it is easy to find currency pairs that potentially share the same volatility

factor during normal times. The accepted rate is given as 43.3% in Table 8.

6 Conclusion

In this paper, I considered whether financial returns has a common volatility process in the

framework of stochastic volatility models, and proposed a Lagrange Multiplier test statistic for

the null hypothesis that the volatility changes of a bivariate series are perfectly correlated. It

is useful in investigating the correlation between different markets, even for frictionless cross-

market hedging.

In the empirical analysis of stock markets, I found some groups that potentially share

common time-varying volatility, especially markets for the United Kingdom, Singapore and

Australia. We also investigated the correlations between different major currencies when big

events, such as financial crises, occurred. The empirical analysis suggested that, during high

volatility periods, it is more difficult to find a common factor between currencies, compared

with low volatility periods, so that it is harder to hedge with different currencies.

However, the approach adopted in the paper it is the simplest case of a multiple stochastic

volatility model. The extension to a multi-factor model, even stochastic volatility with a fat-

tailed distribution of the test, is left for further research.
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Part II

Models with dynamic stable distribution

7 Introduction

Stable distribution is a consequently result of generalized central limit theory, which is the

sum of some not well-define random variables (see Gnedenko et al. [1954]). It is a extension

of normal distribution. Compared to normal distribution which is a special case of families, it

allow the model to measure on heavy tails , Leptokurtic and skewness, which is important in

financial risk measurement. In the Appendix, I list the definition and some important property

of stable distribution. There is more detail description of stable distribution in Chapter 3 of

Rachev [2003]. I use matlab code from Mark S. Veillette(Alpha-Stable distributions CODE).

There are many articles that using stable distribution, such as Liu and Brorsen [1995] (ML

in GARCH with stable innovation) and Mittnik et al. [1998](ARMA with stable distribution).

Instead of using stable distribution directly to model financial data, I use state space model with

stable distribution to measure the data. In Stuck [1978], he describe such a model, and derived

it with a linear filter similarly to Kalman filter. Also, there is continuous time version filter and

smoother in Le Breton and Musiela [1993]. Compared to that they use symmetric distribution

to establish the filter, I modify it with asymmetricity to measurement equation innovation.

Unlike the normal distribution, the posterior distribution of normal distribution is conjugated

to itself, the posterior of the asymmetric stable distribution is not analysis expressible. In

another word, the linear filter is not the best filter compared to nonlinear Bayesian filter.

During to that, the stable distribution does not have analytical expression of density func-

tion, I should evaluate the density function in numerical method. This work is done in Nolan

[1997]. We can also draw stable random variable with the method proposed in Chambers et al.

[1976]

Beside the fact that stable is the result of central limit theory, there are several more reasons

that I suggest to use stable distribution instead of normal distribution. First, it is safe for risk

management, and useful in option pricing. We usually underestimate the probability of rare

event, such as financial crisis. Second, α is also well known as tail index. The most common tail

index estimator is the Hill estimator (see Hill et al. [1975]). However, they only use sub-sample

of the data. According to empirical data, it is easy to find that volatility or second moment

changes over time. It is nature to use fat tail distribution such as stable distribution, which

does not have finite second moment instead of applying more assumption such as stochastic

volatility. Third, it is easy to set up asymmetricity or skewness, leptokurtic and kurtosis with
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stable distribution.

An advance that using state space model is that, I can dynamically measure the distribution,

using the past information. The more detail describe of state space model can be found in

Durbin and Koopman [2012]. Because it is univariate state model, I use simple numerical

integration and Sequential Monte Carlo integration. The procedure can be found briefly in

Doucet and Johansen [2009].

We use this model to analysis the exchange rate pair and stock markets. Compare the

estimation result to normal distribution and independent stable distribution with Bayesian

information Criteria (BIC). The result shows that stable distribution show far more suitable

compared to normal distribution, and dynamic stable distribution is more acceptable that

independent stable distribution. We also use the conditional distribution to estimate the Value

at Risk (VaR). Obviously, it is much safer to use fat-tailed distribution during financial crisis.
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8 Definition of Stable distribution

A stable distribution random variable has the characteristic function as

ψ(t) = E(eitx) = exp[itδ − |γt|α(1− iβsgn(t)Φ)]

where Φ = tan(πα/2) for α 6= 1 or Φ = − 2
π

log |t| for α = 1.

α is the index parameter. β is the skewness parameter which is the measure of asymmetry.

δ is the location parameter that play the same role compared to the mean parameter µ in

normal distribution. γ is the scaling parameter similar to standard deviation parameter σ in

normal distribution. The more detail describe about this distribution can be found in Rachev

[2003]. Some properties are presented in Appendix.

In this article, I focus on distribution that the index parameter α range from (1, 2), because

in reality, asset’s log-return can be considered as a martingale sequence which means expected

return is 0.

9 Models

Model 1

We simply use i.i.d distribution to model the real data. This is

Yt = ηt, (8)

where, ηt is distributed as normal distribution or stable distribution. Yt is obtained as

Yt = log(Pt)− log(Pt−1).

Model 2

In finance, the phenomenon of large log-return is tend to be followed by large log-return, is

called as volatility clustering in Mandelbrot [1963]. The usual way to model this feature is to

use the ARCH or GARCH model. The stable version of these model can be find in ?. In this

article, I use the stochastic volatility model as:

Yt = exp(
ht
2

)ηt, (9)

ht = ρht−1 + εt. (10)

Yt is also the log-return, and ht is the unobserved volatility factor. ηt distribute as normal or

stable distribution. The more detail describe about this model can be found in Harvey et al.

[1994].
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Model 3

We conduct a dynamic model using the simplest state-space system.

Yt = Xt + εt, (11)

Xt = Xt−1 + ηt. (12)

Yt is the log-price of assets initialed at price P0:

Yt = log(Pt)− log(P0). (13)

Xt and ηt are all α−Stable distribution random variables with skewness or normal. εt distributes

normal. We have:

εt ∼ N(0, σε), (14)

ηt ∼ S(α, βε, γη, 0) or N(0, ση). (15)

One similar linear filter is introduced in Stuck [1978] for this model with both εt and ηt

symmetric stable distribution. However, when introduce the asymmetry and normal distribu-

tion, the mean of the posterior X|Y is no longer linear with the observation Y = y. This result

can be easily shown in numerical computation. If X ∼ S(1.5, β, 1, 0) and Y = X + ε, where

ε ∼ N(0, 1), I can easily calculate the posterior mean of X|Y with different skewness parameter

β.

Figure 3: Posterior Mean of X given Y
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This result shows that the linear projection is not the best prediction of posterior random

variable X|Y .
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Model 4

Combine model 2 and model 3, I can obtain a hierarchical model that:

Yt = Xt + εt, (16)

Xt = Xt−1 + exp(
ht
2

)ηt, (17)

ht = ρht−1 + ζt. (18)

Again, ε, ζ is distributed as normal and η is distributed as stable or normal.

The reasons I suggest using stable distribution are not only that it is fundamentally solid

in central limited theorem, but also have realistic meaning in finance:

First, in finance, tail events means rare event, such as financial crisis or cooperation default.

It is very important part of risk management and option pricing. To fit the data of log-return of

exchange rate, I use kernel density estimation, normal distribution and stable distribution. The

data is obtained from 03/04/2014 to 02/05/2016 as daily with exchange rate of euro against

dollar. Comparison result is Figure 4.

The first reason is obvious that stable distribution describe the tail probability more suit

than normal distribution.

Figure 4: Comparison between different density function
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Second, the tail index α ranges from 1 to 2 so the higher moments bigger that 2 do not

exist. We calculate the variance of 1 min log-return of exchange rate using rolling-over, though

one day (1440 minutes). It is easy to find the implied variance of log-return changes over time.

It can be explained as stochastic volatility, or simply as the variance does not exits. We also
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simulate the Stable distribution and Normal distribution to calculate the rolling-over variance.

The comparison between different data is listed in Appendix as Figure 5.

Third, asymmetry of the distribution becomes more and more important in finance, especially

Figure 5: Comparison with variance between different distribution
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when financial crisis occurs. It is naturally contained in the parameterization in stable distri-

bution. Also, the higher moment such as kurtosis diverse over time. These feature can also be

found in Figure 4.

10 Likelihood

For Model 1, simple use the normal density or stable density as the likelihood function, and

apply the maximize likelihood method to obtain the parameter estimation. It is:

(α̂, β̂, γ̂) = arg max
n∑
i=1

logS(yi|α, βy, γy). (19)

For Model 2, 3 and 4, because they are general state-space model, I can obtain the likelihood

in filtering step. The likelihood can be expressed as:

f(y) =
T∏
t=1

f(yi|yi−1) (20)

where

f(yi|yi−1) =

∫
f(yi|xi)f(xi|yi−1)dxi (21)
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where xi is the unobserved variable. In model 2, it is ht. In model 3, it is Xt. In model 4, both

Xt and ht is unobserved.

the model detail about filtering process can be found in Durbin and Koopman [2012] and

the contents about Sequential Monte Carlo can be found in Doucet and Johansen [2009].

About the initial point, I can first use the model 1 to estimate the tail index. Set that

estimator value as the initial point for model 2, 3 and 4 for α. Other parameter can be also

applied as the same process.

11 Empirical Analysis

We apply the different models with both normal distribution model and stable distribution

model. We analysis the major currencies exchange rate. It is convenience to set mean of the

variable to 0 because of the Efficient Market Hypothesis. The data I use is obtained from

03/04/2014 to 02/05/2016, the daily exchange rate of euro against dollar. We normalize data

using the standard deviation of the log-return for computation convenience. We estimate model

1 with Maximize Likelihood method, and model 2,3 and 4 with both Maximize Likelihood

method and MCMC Bayesian method. We also calculate the Bayesian information criterion of

each model to compare the performance. Use the table in Kass and Raftery [1995], I decide

which model is better.

Table 9: Evidence against higher BIC

∆BIC Evidence against higher BIC

0 to 2 Not worth more than a bare mention

2 to 6 Positive

6 to 10 Strong

> 10 Very Strong

Model 1

yi ∼ ηt

where ηt is distributed as normal or stable distribution. The estimated distribution density is

shown in Figure 4 and the parameter result is:

Model 2

22



Table 10: Comparison with Normal and Stable distribution in Model 1

ηt Stable Normal

Estimated Parameters α = 1.6431, β = −0.1655, γ = 0.5507 σ = 1

BIC 1383 1425

This model is also targeted for log-return, so it is comparable with Model 1.

Yt = exp(
ht
2

)ηt,

ht = ρht−1 + εt.

The result is shown as:

Table 11: Comparison with Normal and Stable distribution in Model 2

ηt Stable Normal

Estimated Parameters α = 1.7222, β = −0.1821, γ = 0.5700 ση = 0.9305

(ML method) σε = 0.0747, ρ = 0.9820 σε = 0.2188, ρ = 0.9311

BIC 1384 1396

Based on this two models, I can see that the stable distribution has always better perfor-

mance that normal distribution.

Model 3

This model is target for price tracing.

Yt = Xt + εt,

Xt = Xt−1 + ηt.

Yt is the log-price of assets initialed at price P0:

Yt = log(Pt)− log(P0).

Again, η can be chose between stable and normal. The estimate result is below:

Model 4

Add stochastic volatility to model, I have hierarchical model that:

Yt = Xt + εt,

Xt = Xt−1 + exp(
ht
2

)ηt,

ht = ρht−1 + ζt.
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Table 12: Comparison with Normal and Stable distribution in Model 3

ηt Stable Normal

Estimated Parameters α = 1.6008, β = −0.1936, γ = 0.5093 σε = 0.8718

(ML method) σε = 0.1779 ση = 0.3464

BIC for ML 1383 1424

Estimated Parameters α = 1.6201, β = −0.1647, γ = 0.5024 analytical result

(MCMC method) σε = 0.2200 using ML

BIC for MCMC 1384 1424

Again, η is distributed as stable or normal.

The estimate result is in Table 13

Based on the estimation I obtain, I also predict the Value at Risk using conditional distribution.

Table 13: Comparison with Normal and Stable distribution in Model 4

ηt Stable Normal

Estimated Parameters α = 1.7164, β = −0.1925, γ = 0.5012 ση = 0.8904, σε = 0.2390

(ML method) σε = 0.1512, ρ = 0.9732, σζ = 0.0814 σζ = 0.2037, ρ = 0.9620

BIC for ML 1384 1405

Estimated Parameters α = 1.7088, β = −0.2072, γ = 0.5454 ση = 0.9511, σε = 0.2284

(MCMC method) σε = 0.1995, ρ = 0.9730, σζ = 0.1059 σε = 0.1814, ρ = 0.9638

BIC for MCMC 1390 1404

12 Conclusion

We use stable distribution to fit both i.i.d models and dynamic models. We find that sta-

ble distribution is always outperform normal distribution. However, the dynamic structure in

volatility change remain inflexible, so does the tail index α. We will focus on flexible parameter

changes and adaptive process to improve the performance of model 4.
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Figure 6: Value at Risk for Model 4 with Stable distribution
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Part III

Fast algorithm in filtering and smoothing with Stochastic Volatility

13 Introduction

This part focus on the description of fast smoothing algorithm using Fast Gaussian transform

(FGT) proposed in Greengard and Strain [1991]. It is one of the fast algorithm called the fast

multipole method (FMM). It use the two asymptotic expansion: the near field expansion well

known as Taylor expansion, and the far field multipole expansion named as Hermite expansion.

There may be potential useful in high dimension particle filter and smoother , or multi-asset

option pricing. Thanks for the C code provided by Sebastien PARIS LSIS/DYNI, Aix-Marseille

University (AMU), UMR CNRS 7296.

13.1 Forward Filtering

Forward Filtering algorithm is widely used in State-Space model in many fields. Usually, I

want to obtain likelihood of non-linear model, I will attempt apply the Sequential Monte Carlo

method to calculate the likelihood. This method is also usually called as particle filter. The

model detail can be found in Doucet and Johansen [2009].

Assuming that I get density of f(xt|yt) and transition kernel f(xt+1|xt), the filtering problem

can be simplified as an integral such as:

f(xt+1|yt) =

∫
f(xt+1|xt)f(xt|yt)dxt. (22)

This integral can not be calculated efficiently under usual direct discretization method due to

cross term f(xt+1|xt).

13.2 Backward Smoothing

Backward smoothing algorithm is also widely used in State-Space model. Especially when come

to statistic inference problem, I usually need to calculate the smoothed probability to obtain

statistic. The more detail can also be found in Doucet and Johansen [2009].

In smoothing process, I want to obtain the probability or density function f(xt−1|y1:T ) as:

f(xt−1|y1:T ) =

∫
f(xt−1|xt, y1:T )f(xt|y1:T )dxt. (23)
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Assuming that I already obtain the density function f(xt|y1:T ). Using Markovian equation

f(xt−1|xt, y1:T ) = f(xt−1|xt, yt−1) We can further write the equation as:

f(xt−1|y1:T ) =

∫
f(xt−1|xt, yt−1)f(xt|y1:T )dxt (24)

=

∫
f(xt−1|xt, yt−1)f(xt|y1:T )dxt (25)

=

∫
f(xt|xt−1, yt−1)f(xt−1|yt−1)

f(xt|yt−1)
f(xt|y1:T )dxt (26)

= f(xt−1|yt−1)
∫
f(xt|xt−1)
f(xt|yt−1)

f(xt|y1:T )dxt (27)

Assuming that I have already obtained the density function f(xt|yt−1) in filtering process. Then

the core calculate problem can also be an integral as:∫
f(xt|y1:T )

f(xt|yt−1)
f(xt|xt−1)dxt. (28)

Again, the calculation problem is occurred by the cross term f(xt|xt−1).

13.3 Summary of Problem

We use the discretization method to rewrite the integral as summation of particles as:∫
qtf(xt|xt−1)dxt =

n∑
i

q
(i)
t f(x

(i)
t |x

(i)
t−1) (29)

where qt is f(xt|yt) in filtering problem and f(xt|yT )
f(xt|y1:T )

in smoothing problem.

Furthermore, if the transition kernel is Gaussian kernel, the I can rewrite the integration as:∫
qte
− (xt−1−xt)

2

2σ dxt =
n∑
i

q
(i)
t e
− (xt−1−x

(i)
t )2

2σ , (30)

the problem is I need to calculate the transition density e−
(xt−1−xt)

2

2σ many times , in briefly the

whole field to obtain the integration for each Xt−1. So if I got N xt’s and M xt−1’s, I need

calculate the density M ∗N times.

14 Solution

14.1 The Common solution: Fast Fourier Transform (FFT)

This integral is also known as convolution of two function. The common way to calculate

this integral is using Fast Fourier Transform (FFT) to reduce the calculation to O(N logN) if

27



M = N . The formal explanation of FFT is introduced in Cooley and Tukey [1965]. If I denote

two function as f1(y−x), f2(x), and I want to obtain f(y) as the convolution of these functions:

f(y) =

∫
f1(y − x)f2(x)dx. (31)

Apply Fourier transform to function f(y):

F(f(y)) =

∫
e−ity

∫
f1(y − x)f2(x)dxdy (32)

=

∫
e−it(y−x+x)

∫
f1(y − x)f2(x)dxd(y − x) (33)

=

∫
e−it(y−x)f1(y − x)d(y − x)

∫
e−itxf2(x)dx (34)

= F(f1(y
∗))F(f2(x)). (35)

This means I only have to obtain the Fourier transform to each function. Then take the inverse

Fourier transform to obtain the function f(y):

f(y) = F−1(F(f(y))) (36)

In practice, for filtering or smoothing, assuming I have points (y − x)i and xi for i = 1 · · ·N
with same constant interval, I only have to calculate the vector f1((y − x)i) and f2(x

i), and

add N − 1 zeros to the vector to make the length equals to 2N − 1. Then transform them into

Fourier vector with dimension 2N − 1, take Hadamard product(element by element) with each

other to get the new Fourier vector F(f(y)). Finally, I take the inverse Fourier transform to

obtain the original probability vector f(y). Notice that I should normalize every probability

vector.

Beside the FFT, I will learn to use the other method called Fast Gaussian Transform (FGT).

14.2 the description of Fast Gaussian Transform

The problem I introduced above can be concluded as the integration with the Gaussian field

as:

G(x) =
N∑
j=1

qje
−
|x−sj |

2

δ , (37)

which the notation is cited from Greengard and Strain [1991]. We call the x as target and sj

as source. Suppose I want to evaluate Gaussian kernel in Equation.37 at target ti with source

sj,

Gij = e−
|ti−sj |

2

δ , (38)

and I have M targets and N sources, then the direct evaluation will need M ∗N calculation of

Gaussian function. However, use the FGT, only need O(M +N) calculation.
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14.2.1 Hermite expansions and Taylor expansions

This section introduce Hermite expansions of the Gaussian kernel which is used in Fast Gaussian

Transform.

First is Hermite polynominals is defined as:

Hn(t) = (−1)net
2

Dne−t
2

, (39)

where D = d/dt. The Hermite polynomials then can write as:

e2ts−s
2

=
∞∑
n=0

sn

n!
Hn(t). (40)

Multiply both side with e−t
2

and I have:

e−(t−s)
2

=
∞∑
n=0

sn

n!
hn(t), (41)

where Hermite functions hn(t) are defined as:

hn(t) = e−t
2

Hn(t). (42)

The shifted and scaled version of Hermite expansion at s0 with scaling δ for Gaussian function

is:

e−(t−s)
2/δ = e−((t−s0)−(s−s0))

2/δ

=
∞∑
n=0

1

n!

(
s− s0√

δ

)n
hn

(
s− s0√

δ

)
(43)

= e−(t−s0)
2
∞∑
n=0

1

n!

(
s− s0√

δ

)n
Hn

(
s− s0√

δ

)
.

This formula allows us to evaluate the Gaussian field e−(t−s)
2/δ as Hermite expansion centered

at s0, which is very important in this fast algorithm. Also, I can rewrite the Gaussian field as:

e−(t−s)
2/δ =

∞∑
n=0

1

n!
hn

(
s− t0√

δ

)(
t− t0√

δ

)n
. (44)

This formula is usually called Taylor expansion at t0 near the target t. Thus I call Formula.44

near-field expansion. The formula.43 is call far-field expansion because of expansion centered

point s0 is far from target point t. Also, there are many article call the Hermite expansion as

Singular expansion and the Taylor expansion as Regular expansion. These are the names in the

Fast Multipole Method (FMM) algorithm. We also need recurrence relation between Hermite

function:

hn+1(t) = 2thn(t)− 2nhn−1(t). (45)
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In the original paper, there are bound condition about the error from both expansion, and

also multi-dimension expansion with Gaussian function. However. I omit these statements and

focus on the explanation of algorithm.

14.3 Taylor expansion of Hermite expansion

Follow the original paper’s notation. Denote Target point t lies in Box C with center tC and

side length r
√

2δ. NB sources as sj lies in Box B with center sB and side length r
√

2δ. Then

the Gaussian field due to sources in B is:

G(t) =

NB∑
j=1

qje
−|t−sj |2/δ. (46)

Then take Hermite expansion about sB:

G(t) =
∑
α≥0

Aαhα

(
t− sB√

δ

)
, (47)

where the coefficients Aα is given by:

Aα =
1

α!

NB∑
j=1

qj

(
sj − sB√

δ

)α
(48)

Furthermore, expand Hermite expansion with Taylor expansion at point tC , I will get:

G(t) =
∑
β≥0

Bα

(
t− tC√

δ

)β
, (49)

where the coefficient Bβ is given by:

Bβ =
(−1)|β|

β!

∑
α≥0

Aαhα+β

(
sB − tC√

δ

)
. (50)

Here I use the Taylor series of hα:

hα(t) =
∑
β≥0

(t− t0)β

β!
(−1)|β|hα+β(t0) (51)

Combine the Taylor expansion of G(t) at near point tC :

G(t) =
∑
β≥0

Cβ

(
t− tC√

δ

)β
(52)

where

Cβ =
(−1)|β|

β!

NB∑
j=1

qjhβ

(
sj − tC√

δ

)
(53)

I have three asymptotic expansion if I truncate each expansion series properly.
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14.4 the image of Fast Gaussian Transform

Include direct evaluation of Gaussian, I have 4 methods. We will use scatter to explain how

FGT work more clearly. We first will rethink about Gaussian function, it also means how source

sj pass impact to target t. In Figures, they can be shown as:

Figure 7: Direct Evaluation’s Image
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The Taylor expansion is also called as near-field expansion or Regular expansion. It means

that instead of receive the impact direct from source, I can receive it through local box center.

Figure 8: Taylor expansion’s Image
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Figure 9: Hermite expansion’s Image
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The Hermite expansion is also called as far-field expansion or Singular expansion. It means

that I gather source box’s impact at source box’s center, then pass it to target t.

Figure 10: Hermite expansion with Taylor expansion’s Image
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Hermite expansion with Taylor expansion means that with Hermite expansion, source box’c

center does not pass impact to target directly, but pass to target box’s center.

14.5 Numeric experiment

The model I use is stochastic volatility model as:

Yt = exp(
ht
2

)ηt,

ht = ρht−1 + εt.

We use the particle filter to obtain the prediction density f(xt+1|yt). Simulate state variable ht

as AR process with auto-correlation coefficient ρ = 0.7 and marginal distribution is standard

normal distribution. Measurement error ηt is distributed as standard normal distribution. We

compare methods between directly evaluation and FGT by calculating the prediction probabil-

ity of this model. The result of different particle numbers, is shown in Table.(14.5).

15 Conclusion

By learning this Fast Gaussian transform, I know that the Gaussian convolution can be com-

puted very fast. This is can be an important improvement of our computation of particle filter
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Table 14: Elapsed time comparison between Direct evaluation and Fast Gaussion Transform

#Particles Direct evaluation(second) FGT(second)

100 0.4502 0.0946

200 1.7584 0.2292

300 3.9491 0.3979

400 6.9924 0.6087

500 10.8800 0.8303

and smoother.
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Appendices

A Likelihood Function

In order to express the transition equation (2) in matrix form, I express the log volatilities and

disturbance terms used in (1) and (2) in vector form, as follows:

h1 = (h11, . . . , h1t)
′, h2 = (h21, . . . , h2t)

′, (54)

u1 = (u11, . . . , u1t)
′, u2 = (u21, . . . , u2t)

′, (55)

e1 = (e11, . . . , e1t)
′, e2 = (e21, . . . , e2t)

′. (56)

Then the transition equation (2) is expressed as:

h1 = V1/2
ρ (b1u1), h2 = V

1/2
ψ (b2u1 +

√
cu2) = V

1/2
ψ (V−1/2ρ h1b2/b1 +

√
cu2), (57)

where Vρ and Vψ are the covariance matrices of the autoregressive processes of order one, h1

and h2, respectively, and V1/2
ρ and V

1/2
ψ are defined by their Cholesky decomposition:

Vρ = (V1/2
ρ )(V1/2

ρ )′, Vψ = (V
1/2
ψ )(V

1/2
ψ )′,

where

V
1/2
ψ =



1/
√

1− ψ2 0 . . . 0 0

ψ/
√

1− ψ2 1 . . . 0 0

ψ2/
√

1− ψ2 ψ . . . 0 0
...

ψn−1/
√

1− ψ2 ψn−2 . . . ψ 1


, V1/2

ρ =



1/
√

1− ρ2 0 . . . 0 0

ρ/
√

1− ρ2 1 . . . 0 0

ρ2/
√

1− ρ2 ρ . . . 0 0
...

ρn−1/
√

1− ρ2 ρn−2 . . . ρ 1


,

(58)

It is easy to see that their inverses are decomposed as Vψ
−1 = (V

− 1
2

ψ )′V
− 1

2
ψ , Vρ

−1 = (V
− 1

2
ρ )′V

− 1
2

ρ ,

where:

V
− 1

2
ψ =



√
1− ψ2 0 . . . 0 0

−ψ 1 . . . 0 0

0 −ψ . . . 0 0

0 0 . . . 0 0
...

0 0 . . . −ψ 1


, V

− 1
2

ρ =



√
1− ρ2 0 . . . 0 0

−ρ 1 . . . 0 0

0 −ρ . . . 0 0

0 0 . . . 0 0
...

0 0 . . . −ρ 1


. (59)
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Then the density functions of the transition and measurement equations of the model can

be expressed as:

f(h1) =
1

(2π)
t
2

∣∣∣V1/2
ρ

∣∣∣ bt1 exp

{
−1

2
b−21 h

′

1V
−1
ρ h1

}
, (60)

f(h2|h1) =
1

(2π)
t
2

∣∣∣V1/2
ψ

∣∣∣ (√c)t exp

{
−1

2
u
′

2u2

}
, (61)

f(y1|h1) =
1

(2π)
t
2

1∣∣∣H1/2
1

∣∣∣ exp

{
−1

2
y
′

1H
−1
1 y1

}
, (62)

f(y2|h2) =
1

(2π)
t
2

1∣∣∣H1/2
2

∣∣∣ exp

{
−1

2
y
′

2H
−1
2 y2

}
, (63)

where

u2 =

(
V
− 1

2
ψ h2 −V

− 1
2

ρ h1
b2
b1

)
/
√
c, (64)

H1 = diag(exp(h11), . . . , exp(h1t)), H2 = diag(exp(h21), . . . , exp(h2t)). (65)

Then I can rewrite the likelihood function, given by:

f(y1,y2) =

∫
f(y2|h2)f(y1|h1)f(h2|h1)f(h1)dh2dh1, (66)

as

f(y1, y2) =

∫
f(y2|u2,h1)f(y1|h1)f(u2|h1)f(h1)du2dh1, (67)

where

f(u2|h1) =
1

(2π)
t
2

exp

(
−1

2
u
′

2u2

)
, (68)

in terms of u2, instead of h2, by the variable transformation given in (64).

B Score function with respect to c

We obtain the score function with respct to c from (67) as:

∂f(y)

∂c
=

∫
∂f(y2|u2,h1)

∂c
f(y1|h1)f(u2|h1)f(h1)du2dh1, (69)

as the variance parameter c appears only in:

f(y2|h1,u2) =
1

(2π)
t
2

1∣∣∣H1/2
2

∣∣∣ exp

{
−1

2
y
′

2H
−1
2 y2

}
through h2 in H2 = diag(exp(h2)) because, from (57), I have:

h2 = V
− 1

2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)
. (70)
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Then I obtain the derivative of f(y2|h1,u2, ) with respect to c, as follows. First, noting

(70), I define:

f(y2|h1,u2, ) = EtFt, (71)

where

Et =
1

|H2|1/2
= exp

(
−1

2
11×th2

)
= exp

(
−1

2
11×tV

1/2
ψ

(√
cu2 + V

− 1
2

ψ

b2
b1

h1

))
, (72)

Ft = exp

{
−1

2
y
′

2H
−1
2 y2

}
= exp

{
−1

2
( exp(−h2))

′y2
2

}
, (73)

and, for notational convenience, I define:

exp(−h2) = (exp(−h21), . . . , exp(−h2t))′, y2
2 =

{
y221, y

2
22, . . . , y

2
2t

}′
,

and h2 denotes a function of u2 as the abbreviation of equation (70).

Then, from (69), I have:

Bt = lim
c→0

∂f(y)

∂c
(74)

= lim
c→0

∫
(other terms)(Ft

∂Et
∂c

+ Et
∂Ft
∂c

)du2dh1 (75)

= lim
c→0

√
c
∫

(other terms)(Ft M1t + Et M2t)du2dh1

c
, (76)

where I define:

M1t =
∂Et
∂c

1√
c
, M2t =

∂Ft
∂c

1√
c
. (77)

We need
√
c in the denominator of (77) as:

∂Et
∂c

= −1

2
Et

1

2
√
c
11×tV

1/2
ψ u2 (78)

= − 1

4
√
c
Et 11×tV

1/2
ψ u2, (79)

∂Ft
∂c

= −1

2
Ft

(
∂

∂c
exp(−h

′

2)y
2
2

)
(80)

= −1

2
Ft

(
− 1

2
√
c
u
′

2V
1/2
ψ

′

H−12 y2
2

)
(81)

=
1

4
√
c
Ft Gt, (82)

Gt = u
′

2V
1/2
ψ

′

H−12 y2
2, (83)
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as

∂h2

∂c
=

1

2
√
c
V

1/2
ψ u2,

∂ exp(−h2)

∂c
= − 1

2
√
c
H−12 V

1/2
ψ u2.

Note that the denominators of the derivatives (79) and (82) contain c, which converges to zero,

and hence is intractable by conventional methods. It is convenient to use the method proposed

by Chesher [1984]. First, applying L’Hopital’s rule to (76) with respect to c , I obtain:

Bt =
1

2
Bt + lim

c→0

√
c
∂

∂c

∫
(other terms)(Ft M1t + Et M2t)du2dh1. (84)

Comparing both sides of equation (84), I have:

Bt = 2 lim
c→0

√
c

∫
(other terms)(

∂Ft
∂c

M1t +
∂Et
∂c

M2t + Ft
∂M1t

∂c
+ Et

∂M2t

∂c
)du2dh1 (85)

= 2 lim
c→0

√
c

∫
(other terms)(2M1t M2t + Ft

∂M1t

∂c
+ Et

∂M2t

∂c
)du2dh1. (86)

Defining Y2 = diag(y2
2), the terms in the integrand of Ct can be expressed as follows:

M1t M2t =(
√
c
∂Et
∂c

)(
√
c
∂Ft
∂c

)

=

(
−1

4
Et 11×tV

1/2
ψ u2

)(
1

4
Ft u

′

2V
1/2
ψ

′

Y2 exp(−h2)

)
=− 1

16
EtFt

(
11×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

Y2 exp(−h2)

)
,

∂M1t

∂c
=− 1

4

∂Et
∂c

11×tV
1/2
ψ u2

=− 1

4

(
−
√
c

4c

)
Et 11×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

1t×1

=
1

16
√
c
Et tr

(
11×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

1t×1

)
=

1

16
√
c
Et tr(1t×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

),

∂M2t

∂c
=

1

4

∂Ft
∂c

Gt +
1

4
Ft
∂Gt

∂c

=
1

16
√
c
FtG

2
t +

1

4
Ft
∂Gt

∂c
,

∂Gt

∂c
=u

′

2V
1/2
ψ

′

Y2
∂ exp(−h2)

∂c

=− 1

2
√
c
u
′

2V
1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2

=− 1

2
√
c
tr

(
u
′

2V
1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2

)
=− 1

2
√
c
tr

(
V

1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2u

′

2

)
,
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G2
t =u

′

2V
1/2
ψ

′

Y2 exp(−h2) exp(−h
′

2)Y2V
1/2
ψ u2

=tr

(
u
′

2V
1/2
ψ

′

Y2 exp(−h2) exp(−h
′

2)Y2V
1/2
ψ u2

)
=tr

(
V

1/2
ψ

′

Y2 exp(−h2) exp(−h
′

2)Y2V
1/2
ψ u2u

′

2

)
.

Then I have:

Bt =
1

8
lim
c→0

∫
f(y1|h1)

1

(2π)
t
2

EtFt{
−2tr

(
11×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

Y2 exp(−h2)

)
+ tr

(
1t×tV

1/2
ψ u2u

′

2V
1/2
ψ

′
)

+ tr

(
V

1/2
ψ

′

Y2 exp(−h2) exp(−h
′

2)Y2V
1/2
ψ u2u

′

2

)
− 2tr

(
V

1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2u

′

2

)}
f(u2|h1)f(h1)du2dh1. (87)

We can perform the integration with respect to u2 in (87) analytically. As u2|h1 follows the

t-dimensitonal standard normal distribution:∫
u2u

′

2f(u2|h1)du2 = It, (88)

under the null hypothesis h2 = h1 and ψ = ρ, equation (87) is expressed as:

Bt =
1

8

∫
f(y1|h1)

1

(2π)
t
2

EtFt{
−2tr

(
11×tV

1/2
ρ V1/2

ρ

′

Y2 exp(−h1)
)

+ tr
(
1t×tV

1/2
ρ V1/2

ρ

′)
+ tr

(
V1/2
ρ

′

Y2 exp(−h1) exp(−h
′

1)Y2V
1/2
ρ

)
− 2tr

(
V1/2
ρ

′

Y2H
−1
1 V1/2

ρ

)}
f(h1)dh1. (89)

Noting that Vρ = V1/2
ρ V1/2

ρ

′

, and applying the cyclic property of the trace operator to

simplify equation (89), I have:

Bt =
∂f(y)

∂c

∣∣∣∣
H0

=

∫
trJtf(y,h1)dh1, (90)

where

Jt =
1

8
{−2 (11×tVρY2 exp(−h1)) + (1t×tVρ) (91)

+
(
VρY2 exp(−h1) exp(−h

′

1)Y2

)
− 2

(
VρY2H

−1
1

)}
. (92)
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It follows that:

∂ log f(y)

∂c

∣∣∣∣
H0

= lim
c→0

1

f(y)

∂f(y)

∂c
(93)

=

∫
trJt

1

f(y)
f(h1,y)dh1 (94)

= tr

∫
Jtf(h1|y)dh1 (95)

= trEh1|y(Jt), (96)

as f(h1|y) = f(h1,y)/f(y). From (91), I have only to evaluate Eh1|y [exp(−h1)] and

Eh1|y

[
exp(−h1) exp(−h1)

′
]

to obtain the score function with respect to ψ. These expected values have no analytic expres-

sions, so that they will need to be evaluated numerically.

C Score function with respect to ψ

In the log-likelihood function, ψ appears only in f(y1|h1,u2) = EtFt, as shown in (67) and

(71). The partial derivative of the likelihood with respect to ψ can be expressed as :

∂f(y)

∂ψ
=

∫ (
∂Et
∂ψ

E−1t +
∂Ft
∂ψ

F−1t

)
f(y,u2,h1)du2dh1 (97)

=

∫ (
∂Et
∂ψ

E−1t +
∂Ft
∂ψ

F−1t

)
f(y,h1)dh1, (98)

since, as will be seen later, u2 can be integrated out in
(
∂Et
∂ψ
E−1t + ∂Ft

∂ψ
F−1t

)
. Then I have:

∂ log f(y)

∂ψ

∣∣∣
H0

=

∫ (
∂Et
∂ψ

E−1t +
∂Ft
∂ψ

F−1t

)
f(h1|y)dh1 = Eh1|y

(
∂Et
∂ψ

E−1t +
∂Ft
∂ψ

F−1t

)
, (99)

as

f(h1|y) = f(h1,y)/f(y).

First, using the formula:

∂V
1/2
ψ

∂ψ
= −V

1/2
ψ ZψV

1/2
ψ , (100)

where

Zψ =
∂V

−1/2
ψ

∂ψ
,
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note that

∂Et
∂ψ

= −1

2
Et

[
11×t

∂V
1/2
ψ

∂ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)]
(101)

=
1

2
Et

[
11×tV

1/2
ψ ZψV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)]
, (102)

∂Ft
∂ψ

= −1

2
Ft

∂

∂ψ

[
y2′

2 exp(−h2)
]

(103)

=
1

2
Ft

[
y2′

2 H−12

∂V
1/2
ψ

∂ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)]
(104)

= −1

2
Ft

[
y2′

2 H−12 V
1/2
ψ ZψV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)]
, (105)

as I have:

h2 = V
1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)
, (106)

so that:
∂

∂ψ
h2 =

∂V
1/2
ψ

∂ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)
, (107)

Et = exp

(
−1

2
11×tV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

))
,

Ft = exp

{
−1

2
( exp(−h2))

′y2
2

}
.

We have used−V
1/2
ψ ZψV

1/2
ψ rather than

∂V
1/2
ψ

∂ψ
because it is easy to generate computationally.

Evaluating each term under the null hypothesis c = 0 and b1 = b2, I have:

∂Et
∂ψ
|H0 =

1

2
Et

[
11×tV

1/2
ψ Zψh1

]
, (108)

∂Ft
∂ψ
|H0 = −1

2
Ft

[
y2′

2 H−11 V
1/2
ψ Zψh1

]
(109)

= −1

2
Ft tr

[
exp(−h

′

1)Y2V
1/2
ψ Zψh1

]
(110)

= −1

2
Ft tr

[
Y2V

1/2
ψ Zψh1 exp(−h

′

1)
]
,

using the identity:

y2′

2 H−11 = exp(−h
′

1)Y2.

From (99), I have:

∂ log f(y)

∂ψ

∣∣∣∣
H0

=
1

2

[
11×tV

1/2
ρ ZρEh1|y[h1]

]
− 1

2
tr
[
Y2V

1/2
ρ ZρEh1|y[h1 exp(−h

′

1)]
]
. (111)

Note that the matrix Y2V
1/2
ρ Zρ is lower triangular, and I have only to calculate the upper

triangular part of the matrix Eh1|y[h1 exp(−h
′

1)] in evaluating the score function (111).
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D Score function with respect to b2

First, note that, in the log-likelihood function, b2 appears only in f(y2|h1,u2) = EtFt, through:

h2 = V
1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)
, (112)

as shown in (67) and (71). Then I have the formula:

∂ log f(y)

∂b2
= Eu2,h1|y

(
∂Et
∂b2

E−1t +
∂Ft
∂b2

F−1t

)
, (113)

using:

∂f(y)

∂b2
=

∫
(y1|h1)

∂f(y2|h1,u2)

∂b2
f(h1)f(u2|h1)du2h1 =

∫ (
∂Et
∂b2

E−1t +
∂Ft
∂b2

F−1t

)
f(y,h1)dh1,

as I have:

∂f(y2|h1,u2)

∂b2
=
∂Et
∂b2

Ft + Et
∂Ft
∂b2

=

(
∂Et
∂b2

E−1t +
∂Ft
∂b2

F−1t

)
f(y2|h1,u2). (114)

The partial derivatives of Et and Ft are:

∂Et
∂b2

= −1

2
Et

[
11×tV

1/2
ψ

(
V
− 1

2
ρ

1

b1
h1

)]
, (115)

∂Ft
∂b2

= −1

2
Ft

∂

∂b2

[
y2′

2 exp(−h2)
]

(116)

=
1

2
Ft tr

[
y2′

2 H2V
1/2
ψ

(
V
− 1

2
ρ

1

b1
h1

)]
. (117)

Note that, under the null hypothesis, ρ = ψ,h1 = h2, and Vρ = Vψ, so that I have:

∂Et
∂b2

∣∣∣∣
H0

= −1

2
Et

[
11×t

1

b1
h1

]
, (118)

∂Ft
∂b2

∣∣∣∣
H0

= −1

2
Ft

∂

∂b2

[
y2′

2 exp(−h2)
] ∣∣∣

H0

, (119)

=
1

2
Ft tr

[
y2′

2 H2
1

b1
h1

] ∣∣∣
H0

, (120)

as
∂

∂b2
exp(−h2) = −H−12 b2/b1.

Then I have:

∂ log f(y)

∂b2
|H0 = − 1

2b1
11×tEh1|y [h1] +

1

2b1
tr
[
y2′

2 Eh1|y [exp(−h1) ◦ h1]
]
, (121)

where ◦ denotes the Hadamard (or element-by-element) product.
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E Score function with respect to ρ

In the log-likelihood function, ρ appears only in f(y1|h1,u2) = EtFt and f(h1), as shown in

(60) and (71). Then I have the derivative using the formula:

∂ log f(y)

∂ρ

∣∣∣
H0

= Eh1|y

(
∂Et
∂ρ

E−1t +
∂Ft
∂ρ

F−1t +
∂f(h1)

∂ρ
f(h1)

−1
)
, (122)

analogously to that of (99). As:

Et = exp

(
−1

2
11×tV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

))
, (123)

Ft = exp

{
−1

2
exp(−h

′

2)y
2
2

}
, (124)

f(h1) =
1

(2π)
t
2

∣∣∣V1/2
ρ

∣∣∣ bt1 exp

{
−1

2
b−21 h

′

1V
−1
ρ h1

}
, (125)

defining

Zρ =
∂V−1/2ρ

∂ρ
, (126)

their derivatives are expressed as:

∂Et
∂ρ

= −1

2
Et

[
11×tV

1/2
ψ Zρ

b2
b1

h1

]
, (127)

∂Ft
∂ρ

=
1

2
Ft

[
y2′

2 H−11 V
1/2
ψ Zρ

b2
b1

h1

]
, (128)

∂f(h1)

∂ρ
= f(h1)

[
− ρ

1− ρ2
− 1

2
b−21 tr

(
h
′

1

∂V−1ρ
∂ρ

h1

)]

= f(h1)

[
− ρ

1− ρ2
− 1

2
b−21 tr

(
∂V−1ρ
∂ρ

h1h
′

1

)]
. (129)

We have used (∂/∂ρ)
∣∣∣V1/2

ρ

∣∣∣ = 1/
√

1− ρ2 in deriving the first term of equation (129).

Noting that exp(−h1
′)Y2 = (y2

2)
′H−11 under the null hypothesis, the above can be expressed

as:

∂Et
∂ρ
|H0 = −1

2
Et

[
11×tV

1/2
ρ Zρ

b2
b1

h1

]
(130)

= −∂Et
∂ψ
|H0 , (131)

∂Ft
∂ρ
|H0 = −1

2
Ft tr

[
Y2V

1/2
ρ Zρ

b2
b1

h1 exp(−h
′

1)

]
(132)

= −∂Ft
∂ψ
|H0 . (133)
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The score function with respect to ρ can be expressed as:

∂ log f(y)

∂ρ
|H0 = −∂ log f(y)

∂ψ
|H0 +

[
− ρ

1− ρ2
− 1

2
b−21 tr

(
∂V−1ρ
∂ρ

Eh1|y

(
h1h

′

1

))]
. (134)

F Score function with respect to standard deviation b1

In the likelihood function, b1 appears only in:

Et = exp

(
−1

2
11×tV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

))
, (135)

Ft = exp

(
−1

2
exp(−h

′

2)y
2
2

)
, (136)

f(h1) =
1

(2π)
t
2

∣∣∣V1/2
ρ

∣∣∣ bt1 exp

(
−1

2
b−21 h

′

1V
−1
ρ h1

)
. (137)

Then I can derive the score function with respect to b1 using the formula analogous to that of

ρ given in (122), with ρ replaced by b1. We can easily show from (72) and(73) that, under the

null hypothesis b2 = b1, the derivatives of Et and Ft with respect to b1 are equal to the negative

of the derivatives with respect to b2 , namely:

∂Et
∂b1
|H0 = −∂Et

∂b2
|H0 , (138)

∂Ft
∂b1
|H0 = −∂Ft

∂b2
|H0 , (139)

so that no additional calculations are necessary. From (60), the derivative of f(h1) can be

expressed as:

∂f(h1)

∂b1
= f(h1)

[
− t

b1
+

1

b31
tr
(
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′
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(140)

= f(h1)
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tr
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. (141)

Using the formula:

∂ log f(y)

∂b1

∣∣∣
H0

= Eh1|y

(
∂Et
∂b1

E−1t +
∂Ft
∂b1
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∂b1
f(h1)

−1
)
, (142)

where the derivation is analogous to that of (122), and comparing it with the formula (113),

I have:

∂ log f(y)

∂b1
|H0 = −∂ log f(y)

∂b2
|H0 −

t

b1
+

1

b31
tr
(
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(
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))
. (143)

G Monte Carlo Results

Histogram of LM statistic distribution:
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Figure 11: Histogram of LM statistic for ψ=0.7

Figure 12: Histogram of LM statistic for ψ=0.9
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Figure 13: Histogram of LM statistic for ψ=0.95
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H Data adjustment

The model to which I can apply the statistic test is:(
y
′′
1t

y
′′
2t

)
=

(
exp(h1

2
) 0

0 exp(h2
2

)

)(
a1 0

a2 a3

)(
e1t

e2t

)
. (144)

Adding to the correlation between e1t and e2t I have the measurement equation given as:(
y
′′
1t

y
′′
2t

)
=

(
a1 exp(h1

2
) 0

0 a2 exp(h2
2

)

)(
1 0

λ 1

)(
e1t

e2t

)
, (145)

where e1t and e2t remain independent, and λ represents the correlation coefficient. Owing to

the identification between (a1, a2) and the variance of (e1t, e2t), I set the variance of (e1t, e2t)

equal to 1.

Recall that the null hypothesis is h1t = h2t for any t, so that the measurement equation can be

rewritten as: (
y
′′
1t

y
′′
2t

)
= exp(

h1
2

)

(
a1 0

λa2 a2

)(
e1t

e2t

)
, (146)

and the product and moment of (y
′′
1t, y

′′
2t) would be given as:(

y
′′2
1t y
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′′
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y
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E
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(148)

= E(exp(h1))

(
a21 λa1a2

λa1a2 a22

)
(149)

≡ Λ, (150)

where Λ is defined as:

Λ−
1
2 = (E(exp(h1)))

− 1
2

(
a1 0

λa2 a2

)−1
. (151)

It follows that:
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y
′′
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)
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2

(
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. (152)

At the first adjustment, I define:(
y
′
1t

y
′
2t

)
= Λ−

1
2

(
y
′′
1t

y
′′
2t

)
= a0 exp(

h1
2

)

(
e1t

e2t

)
, (153)
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where

a0 = (E(exp(h1)))
− 1

2 , (154)

and the second adjustment is given as:(
y1t

y2t

)
= a−10

(
y
′
1t

y
′
2t

)
. (155)

Note that: (
log y

′2
1t

log y
′2
2t

)
= 2 log a0 + h1 +

(
log e21t

log e22t

)
, (156)

E

(
log y

′2
1t

log y
′2
2t

)
= 2 log a0 − 1.27, (157)

according to the state variable with zero mean and E(log(e2)) = −1.27. Therefore, I reach the

conclusion: (
y1t
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)
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(
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′
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′
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)
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2
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)
, (158)

where the estimates of Λ and a0 are given as:

Λ̂ =
1

T

( ∑
y
′′2
1t

∑
y
′′
1ty
′′
2t∑

y
′′
1ty
′′
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, (159)

â0 =

(
exp

{[
1
T

(∑
log y

′2
1t

)
+ 1.27

]
/2
}

0

0 exp
{[

1
T

(∑
log y

′2
2t

)
+ 1.27

]
/2
} ) . (160)

Then the adjusted data (y1t, y2t) can be applied to the proposed test.
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I Empirical estimates

Table 15: Empirical estimates between stock markets correspond to b̂ from 2011 to 2012

Stocks DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.1711 0.2103 0.147 0.3169 0.1998 0.1819 0.211

FTSE 0.165 0.1605 0.6314 0.2718 0.1879 0.1384 0.1495

DAX 0.199 0.1632 0.1089 0.3065 0.1676 0.1374 0.157

SSCI 0.1464 0.1016 0.1043 0.6901 0.7408 0.7272 0.7892

NIKKEI 0.318 0.2688 0.3078 0.685 0.3443 0.2865 0.3301

HSI 0.2 0.1904 0.1695 0.7045 0.343 0.1839 0.1576

STI 0.1858 0.1359 0.1374 0.7086 0.2871 0.1968 0.1137

AORD 0.2093 0.1469 0.1577 0.7487 0.3617 0.1768 0.1129

Table 16: Empirical estimates between stock markets correspond to ψ from 2011 to 2012

Stocks DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.9717 0.9634 0.9717 0.9178 0.9699 0.9732 0.9674

FTSE 0.9714 0.9793 0.4727 0.9164 0.9732 0.9825 0.982

DAX 0.9657 0.9795 0.9811 0.9141 0.9821 0.9858 0.9833

SSCI 0.9711 0.9817 0.984 0.2652 0.0901 0.09 0.09

NIKKEI 0.9157 0.9147 0.915 0.2833 0.8388 0.8938 0.8648

HSI 0.9694 0.9725 0.9815 0.0902 0.8438 0.9662 0.9724

STI 0.9713 0.9829 0.9856 0.0901 0.8961 0.9609 0.9888

AORD 0.9674 0.9826 0.983 0.09 0.8449 0.9647 0.9885
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Table 17: Empirical estimates between stock markets correspond to b from 2013 to 2014

Stocks DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.3496 0.3341 0.3013 0.2941 0.2959 0.31 0.3048

FTSE 0.3665 0.289 0.2017 0.2479 0.2441 0.2416 0.2448

DAX 0.3328 0.2922 0.2458 0.1955 0.8115 0.3015 0.2804

SSCI 0.2966 0.1943 0.2476 0.1187 0.7535 0.2666 0.3395

NIKKEI 0.2957 0.2493 0.2046 0.1205 0.116 0.1465 0.1975

HSI 0.2861 0.2459 0.8285 0.1746 0.6946 0.7223 0.4359

STI 0.3108 0.2475 0.3074 0.6258 0.1478 0.6895 0.1905

AORD 0.3053 0.2433 0.2765 0.3251 0.2031 0.4082 0.1878

Table 18: Empirical estimates between stock markets correspond to ψ from 2013 to 2014

Stocks DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.8696 0.8769 0.8857 0.9065 0.8611 0.8792 0.8857

FTSE 0.8633 0.8633 0.9502 0.9337 0.8932 0.918 0.9179

DAX 0.8776 0.8672 0.9294 0.9542 0.1669 0.8881 0.8981

SSCI 0.8908 0.9574 0.9269 0.9841 0.24 0.9123 0.8596

NIKKEI 0.9041 0.9342 0.9467 0.983 0.972 0.968 0.9451

HSI 0.8816 0.8928 0.1741 0.9523 0.2281 0.09 0.7186

STI 0.8751 0.9151 0.8847 0.6001 0.9662 0.09 0.9391

AORD 0.8856 0.9182 0.8984 0.8594 0.9419 0.7373 0.9395
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Table 19: Empirical estimates for exchange rates correspond to b in financial crisis

Pairs EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 0.322 0.6375 0.4357 0.5225 0.4753

USDJPY 0.3004 0.4268 0.4564 0.3658 0.5701

GBPUSD 0.5962 0.4318 0.4854 0.5239 0.6284

AUDUSD 0.4413 0.4552 0.4797 0.4342 0.535

USDCHF 0.5745 0.349 0.5816 0.4315 0.5294

USDCAD 0.4799 0.5578 0.6279 0.5191 0.5133

Table 20: Empirical estimates for exchange rates correspond to ψ in financial crisis

Pairs EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 0.9014 0.7209 0.8183 0.7963 0.8463

USDJPY 0.9101 0.872 0.8523 0.8703 0.8261

GBPUSD 0.7437 0.8703 0.8449 0.8033 0.8038

AUDUSD 0.8089 0.8527 0.8475 0.8239 0.8616

USDCHF 0.768 0.8854 0.7953 0.8368 0.8243

USDCAD 0.8445 0.8281 0.8029 0.8661 0.8259
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Table 21: Empirical estimates for exchange rates correspond to b in normal times

Pairs EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 0.8462 0.8073 0.7858 0.918 0.8892

USDJPY 0.8599 0.8206 0.6888 0.85 0.8186

GBPUSD 0.8037 0.8333 0.7449 0.7302 0.7736

AUDUSD 0.8515 0.7424 0.8307 0.8041 0.8936

USDCHF 0.9163 0.8165 0.7198 0.6969 0.8686

USDCAD 0.8833 0.8113 0.818 0.8534 0.9306

Table 22: Empirical estimates for exchange rates correspond to ψ in normal times

Pairs EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 0.404 0.644 0.4239 0.4179 0.6104

USDJPY 0.4325 0.5258 0.467 0.4317 0.5272

GBPUSD 0.6537 0.4644 0.5188 0.6825 0.677

AUDUSD 0.4202 0.4001 0.4774 0.4384 0.3643

USDCHF 0.4613 0.4794 0.7036 0.5476 0.6441

USDCAD 0.6384 0.5173 0.6559 0.3455 0.5727

J Basic Describe of Stable Distribution

There are certain definitions of stable random variables, here gives a mostly common one.

Definition 1 Non-degenerate X is stable if and only if for all n > 1, there exist constants

cn > 0 and dn ∈ R such that X1 + · · · + Xn
d
= cnX + dn, where X1, ..., Xn are independent,

identical copies of X. X is strictly stable if and only if dn = 0 for all n

Remember that the sum of random variables usually converge to a normal distribution

which is the statement of central limit theorem. A generalization of the theorem is completed

in Gnedenko et al. [1954]. Here gives a briefly statement.

Theorem 1 The sum of a number of random variables with a power-law tail (Paretian tail)

distribution decreasing as |x|−α−1 where 0 < α < 2 (and therefore having infinite variance) will
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tend to a stable distribution f(x;α, 0, c, 0) as the number of summands grows.If α > 2 then

the sum converges to a stable distribution with stability parameter equal to 2, i.e. a Gaussian

distribution.

According to this theorem, I model the log-price process in short term time frame. Con-

sidering that in market, there are individual and institution investors at the same time. Every

transaction they made can be considered as an independent random variable. At short term

time frame, I can also consider them as identically random variables. However, because of ex-

change volume is huge which institution investor made, so the variance random variable should

be consider as larger enough to measure the tail probability. So, this does not generality to ex-

press variance as infinity. There is another important property with stable distribution random

variables. They are closure under convolution.

Property 1 If X1 ∼ S(x1;α, β1, γ1, δ1) and X2 ∼ S(x2;α, β2, γ2, δ2), then the convolution

X = X1 +X2 follow the distribution of S(x;α, β, γ, δ), where

δ = δ1 + δ2

γ = (|γ1|α + |γ2|α)1/α

β =
β1|γ1|α + β2|γ2|α

γα
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