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ABSTRACT 

In structural mechanics in the field of naval architecture and ocean engineering, currently, 

the structural analysis is very important such as linear static analysis and the eigenvalue 

analysis. In practical cases, the physical characteristics are not deterministic. There are a lot 

of uncertainties in load, material property, geometrical shape, corrosion and other 

characteristics in the structures. Such uncertainties may cause serious problems as reduction 

of strength or increase of stress which may reduce fatigue strength of the structure or 

reduction of buckling load because the influence of the uncertainties is usually unknown. 

So it can’t be ignored in practice. Structural analysis when uncertainty exists in the 

structure is very important for safety risk assessment of ships and offshore structures. 

This method which consider some uncertain input parameters to compute these uncertain 

results are usually referred to as uncertainty analysis. In the conventional uncertainty 

analysis, Monte Carlo Simulation methods (MCS) combined with finite element methods 

(FEM) is usually used when uncertainty is considered. However, MCS needs heavy and a 

large number of calculations, so that application of MCS to practical problems is sometimes 

very difficult to get reasonable results. Thus, it is very necessary that propose a new method 

of structural analysis to solve problems of response uncertainty when the case involves 

inherent uncertainty. In this study, we will discuss uncertainty problem from two aspects: 

linear static analysis (about studying of uncertainty in shape) and eigenvalue analysis. 

In linear static analysis problem, in order to achieve effectively evaluate uncertainly of 

response (displacement, strain and stress), the Stochastic Finite Element Method (SFEM) 

based on response surface methodology is proposed for the solution of problems of 

response uncertainty for the case that involves uncertainty in shape following the normal 

distribution or non-normal distribution. The proposed method makes use of an Hermite 

polynomial chaos expansion (PCE) (response surface method) to represent the uncertainty 

of shapes and the response surface extending the deterministic finite element. And the 

proposed method ultimately achieved that the uncertainty of response of a displacement, 

strain and stress can be estimated by this method that solves the main stiffness equation 

only once. Some example problems are investigated by the method. The validity of the 
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proposed method of structural analysis is discussed by comparing the results of the method 

with the MCS solution of the deterministic problems. 

In eigenvalue analysis problem, in order to achieve effectively evaluate uncertainly of 

response (a natural frequency and natural mode in vibrations analysis or a buckling load 

and buckling mode in buckling analysis), we have been studied about solution of stochastic 

eigenvalue problems to discuss inherent uncertainty influences on the stochastic response 

eigenvalues and stochastic response eigenvectors. As solution of stochastic eigenvalue 

problem, in this study, we have proposed two methods. Firstly, the improved stochastic 

inverse power method (I-SIPM) based on response surface methodology is proposed by 

which minimum eigenvalue and eigenvector of stochastic eigenvalue problems can be 

effectively evaluated. Secondly, the stochastic Wielandt deflation method (SWDM) is 

proposed which can realize to evaluate ith(i>1) eigenvalues and eigenvectors of stochastic 

eigenvalue problems by using response surface method to extend the Widlandt deflation 

method. Finally, example problems are investigated to discuss the validity of the proposed 

new methods compared with a Monte-Carlo simulation, i.e. the vibration problem and the 

buckling problem when consider uncertainty exists in the model.  
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1. Introduction 

1.1 Research Background 

In structural mechanics in the field of naval architecture and ocean engineering, currently, 

the structural analysis is very important such as linear static analysis and the eigenvalue 

analysis. In practical cases, the physical characteristics are not deterministic. There are a lot 

of uncertainties in load, material property, geometrical shape, corrosion and other 

characteristics in the structures (Fig 1.1). Such uncertainties may cause serious problems as 

reduction of strength or increase of stress which may reduce fatigue strength of the 

structure or reduction of buckling load because the influence of the uncertainties is usually 

unknown. Such as Fig 1.1(a), we show the example of a cruciform weld joint. We can find 

that the structure has misalignment in the joint. When external force is applied to the 

structure, the local stress is increased because the structure occurs additional bending due to 

the eccentricity. So it can’t be ignored in practice. Structural analysis when uncertainty 

exists in the structure is very important for safety risk assessment of ships and offshore 

structures. 

                 

(a) Geometrical shape (Randomness in Manufacturing)[1]  

j misalignme of jnt oint

 The through diaphragm
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(b) Corrosion (Wastage after Years of Exposure in the Operation)[2] 

Fig 1.1: Example of Uncertainty 

 

In order to dell with the uncertainty problems, the uncertainty analysis has been developed. 

Firstly, we will explain the concepts of uncertainty analysis in section 1.1.1. Secondly, the 

typical uncertainty analysis method will be introduced in section 1.1.2. Thirdly, the 

literature will be reviewed in section 1.1.3. Finally, the importance of the uncertainty 

analysis will be explained in section 1.1.4. 

 

1.1.1 Concepts of Uncertainty Analysis 

In Fig.1.2 we show the concept of uncertainty analysis. Here, the inherent randomness such 

as material property, geometrical shape is considered as the input parameter that has a 

probability density function. Then it is applied to 'Analysis Method’ (finite element method, 

etc.), we can obtain a response 1 2( , )u    (e.g. stress/displacement/ eigenvalue/ eigenvector, 

etc.) of the system that will be a function of input random variables. In simple terms, this 

means when the input parameters of a physical problem are considered as uncertain, the 

derived output will be also uncertain. Like this methods to compute these uncertain results 

are usually referred to as uncertainty analysis，which focuses on the computation of the 

statistical characterization (mean, standard deviation, etc.) of the uncertain output. About 

uncertainty analysis method, we will introduce and review in following section. 

Corroded 
Surface 

Original 
Surface 

Average Corrosion 
Diminution (μ) 
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Fig.1.2: General Concept of Uncertainty Analysis 

 

1.1.2 The Uncertainty Analysis Method 

The uncertainty analysis method has been developed in recent years. The efficiency of this 

method is proved by many studies in engineering problems and summarised in a general 

review with regards to its development in the past, present and future of SFEM [3] and 

practical application of SFEM [4].  We can categorize the uncertainty analysis method into 

two major types, “non-intrusive method” and “intrusive method”, as shown in Fig.1.3.  
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Fig.1.3: Intrusive and Non-Intrusive Formulation 

 

(1) Non-Intrusive Method 

As typical representative of the non-intrusive method, Monte Carlo Simulation Method 

(MCS) is most widely used technique which is used to evaluate response uncertainty [5-10]. 

In Fig. 1.4, we show the MCS procedure. The inherent randomness is considered as 

uncertain, and we have information about the input parameters, 1 2,  (such as the input 

parameters 1 is following normal distribution and the input parameters 2 is following 

Non-normal distribution), then we can get the response   1 2, 1,...i iu i m   through m 

realization of set of input random variables (  1 2, 1,...i i i m   ) in the analysis method. We 

can understand that the statistics of the response needs to be evaluated by the large number 

of responses which is obtained by using different samples of the input parameters into the 

'Analysis Method' because the MCS is a non-intrusive method which without any interferes 

with the 'Analysis Method'. Hence it is considered that application of MCS to practical 

problems is sometimes very difficult to get reasonable results. 
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Fig.1.4: Conventional Monte Carlo Simulation 

 

(2) Intrusive Method 

To avoid a large number of calculations, the intrusive method has been developed as 

uncertainty analysis method. The intrusive method is constructing the stochastic response 

surface which does not require multiple simulations of the “Analysis Method” like the 

MCS. Here the two important intrusive method will be introduced, i.e., the typical 

representative are “Perturbation Methods” [11-18] and “Response Surface Method and 

Spectral Approach” [19-25].  

1) Perturbation Method 

SFEM based on perturbation is summarised by Kleiber et al. [18]. The perturbation 

method uses Taylor series expansions to introduce randomness into the finite 

element equation. Ultimately, the influence of the mean and standard deviation and 

covariance of responses variables can be estimated. The perturbation method can 

reduces computing costs compared with the MCS method, but it only can deal with 

the small variability problem. 

2) Response Surface Method and Spectral Approach 
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And in response surface method and spectral approach, the input parameter and the 

response is expanded in a series of orthogonal polynomials, and introduce the 

expanded input parameter and response into the finite element equation. This 

method has been introduced by Ghanem and Spanos [19] as an extension of the 

deterministic finite element method. Ultimately, the reposes surface can be 

estimated, and the mean, the standard deviation and the probability density 

distribution can be also obtained by the obtained reposes surface. The response 

surface method can reduces computing costs compared with the MCS method, and 

it can deal with the large variability problem. 

 

1.1.3 Literature Review 

Based on the research of uncertainty analysis by using these methods, we find that they are 

mainly concerned with only the random material properties of a structure. Uncertainty in 

shape is less developed in recent years in linear static analysis, and uncertainty analysis for 

the eigenvalue problems has not been developed. 

 

(1) Literature Review : Stochastic 2D Elastostatic Problem 

Nakagiri et al. [26] reported works on uncertainty in shape, material uncertainty and 

boundary uncertainty, in which the mean value and the variance of stress are obtained by 

SFEM based on perturbation method. However, it only can deal with the small deformation 

problem because perturbation method has limitations. Recently, Honda [27] proposed 

stochastic boundary element method by using the PCE and a Karhunen-Loeve expansion 

method in which uncertainty of shape of boundary following normal distribution is 

assumed. However, it is less developed that SFEM consider uncertainty in shape of 

structures, and because Karhunen-Loeve expansion method is based on the normal 

distribution, the uncertainty in Shape in the proposed method [27] can only deal with 

normal distribution in general. However, in many practical cases, the uncertainties are not 

following normal distribution. Thus, the research for the structural model involves 

uncertainty in shape to follow the non-normal distribution is important.  
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(2) Literature Review : Stochastic Eigenvalue Problem 

In structural mechanics in the field of naval architecture and ocean engineering, eigenvalue 

problems commonly appear in the context of, e.g. vibrations and buckling. The stochastic 

natural frequency in vibrations analysis and the stochastic buckling load in buckling 

analysis can be obtained when the stochastic eigenvalue is evaluated. Thus eigenvalue 

analysis when uncertainty exists in the structure is very important for safety assessment of 

ships and offshore structures.  

It is also noted that from the above we can find that SFEM are well developed for linear 

structured systems, but are less developed for the eigenvalue problem. However, in 

uncertainty analysis, eigenvalue analysis is also an important problem in a variety of fields.  

About discussion of stochastic eigenvalue problems, the mathematical base of the iterative 

inverse power method as an algorithm for solution of the stochastic eigenvalue problem has 

been discussed in Verhoosel et al. [28].  Sepahvand et al. also discussed the efficiency of 

the developed method by applying it to two examples [29]. However, the authors found that 

the method sometimes cannot give satisfactory results. Based on these studies, we find that 

improving the stochastic inverse power method is necessary. 

 

1.1.4 Importance of Uncertainty Analysis 

With the development of risk-based rules and the development of structural design methods 

in recent years, reliability evaluation and risk evaluation are valued. Hence it is considered 

necessary that the uncertainty analysis apply to reliability evaluation and risk evaluation. 

Here, we show the simple example to explain the reliability index and failure probability. In 

Fig.1.5, a probability density function of the difference, M, between the yield stress Y  and 

the maximum stress response ( )r  is shown. We can find that M has a probability because 

the maximum stress response has a probability nature and obtained through the uncertainty 

analysis. When the PDF of M is obtained, the failure probability can be calculated by M<0, 

and the reliability index can be also calculated by     in which  and   are mean 

and standard deviation respectively. 
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 Fig.1.5: A PDF of the Difference Between and ( )Y r    
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1.2 Research Purposes  

Based on the above studies, in this paper, the following tasks have been studied. 

1.2.1 2D Elastostatic Problem 

The Stochastic Finite Element Method (SFEM) based on response surface methodology is 

formulated for the 2D elastostatic problem with uncertainty in shape to follow the normal 

distribution and non-normal distribution. The uncertainty of response of a displacement, 

strain and stress can be estimated by this method that solves the main stiffness equation 

only once. The proposed method makes use of an Hermite polynomial chaos expansion 

(PCE) to represent the uncertainty of shapes and the response surface, and involves a 

mathematical formulation which is a natural extension of the deterministic finite element 

concept to the space of random variables. 

1.2.2 Eigenvalue Problem 

In order to solve the stochastic eigenvalue problem, as the second objective, we have 

proposed two methods. Firstly, the improved stochastic inverse power method (I-SIPM) 

based on response surface methodology is proposed. The method is different with previous 

stochastic inverse power method [28]. The minimum eigenvalue and eigenvector of 

stochastic eigenvalue problems can be effective evaluated by using the proposed method. 

Secondly, the stochastic Wielandt deflation method (SWDM) is proposed which can realize 

to evaluate ith(i>1) eigenvalues and eigenvectors of stochastic eigenvalue problems. 

 

In Chapter 2, we have detailed on the general theories required for the stochastic model 

formulation. And theories used in the probabilistic domain have been illustrated in detail. In 

Chapter 3 we show the formulation of stochastic 2D structural static problem which 

consists of three parts: the stochastic finite element method for uncertainty in shape 

following normal distribution, the stochastic finite element method for uncertainty in shape 

following non-normal distribution and evaluation of accuracy of the proposed analysis 
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method. In Chapter 4 we show the formulation of stochastic eigenvalue problems which 

consists of four parts: statement of the stochastic eigenvalue problem, the formularization 

of the improved stochastic inverse power method, the formularization of the stochastic 

Wielandt deflation method and numerical examples. Finally in Chapter 5 the study have 

been summarized and future works have also been illustrated. 
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2. Theoretical Background 

In order to realize the uncertainty assessment of the response of structures, in this chapter, 

we requires investigate two different domains. One is the probabilistic domain in which the 

uncertainty of the structures response is depending on the uncertainty of an input parameter 

that may have significant effect on the response. So, we require use an appropriate 

techniques to approximate the response of structure and to represent the input parameters. 

In section 2.1, the appropriate techniques will be illustrated. The other one is the structural 

domain which involves some mathematical techniques, i.e., the finite element method-2D 

elastostatic problems, and the technique about eigenvalue problems in vibration analysis 

and buckling analysis which involves two numerical methods to evaluate the eigenvalue 

and the eigenvector. In this chapter, we introduce both the probabilistic problem and the 

structural problem in detail. It is very important to understand how both the domains can be 

integrated which will be presented in chapter 3 and chapter 4. 

 

2.1 Probabilistic Domain 

2.1.1 Polynomial Chaos Expansion (PCE) 

In this section, we will introduce polynomial chaos expansion techniques because it will be 

used to expand the deterministic finite element method to stochastic finite element method. 

The polynomial chaos is an expansion of orthogonal polynomials in terms of random 

variables to approximate the uncertainty distribution of the input/output by using 

orthogonal basis functions,  i θ . This concept was originally developed by Weiner et al. 

[30]. The general random response surface ( )X θ , viewed as a function of the input random 

variables can be represented by the following equation. 

0
( ) ( )i i

i
X x





 θ θ ,                                                       (2.1) 
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where  1, , n θ  is a set of n -dimensional input random variables. ( )i θ  denotes the 

ith basis function represented by Hermite polynomials of the variables ( )θ . And, ix are the 

unknown coefficients and the response surface can be obtained when the coefficients are 

determined. i represents the items of expansion polynomials and the items can be an infinite

 0,1,2...i   because theoretically, the larger items is more similar to real result. However, 

this is difficult to achieve. Thus, we will consider a finite terms of expansion, P, and 

assume that it can adequately represent the stochastic response. So we have the following 

finite expression:  

0
( ) ( )

P

i i
i

X x


 θ θ ,                                                     (2.2) 

 where, P+1 can be defined by the dimension of the random variables n and the order of 

polynomials [31]. 

( )!1
! !

m nP
m n


  .                                                     (2.3) 

When the input random variables, θ , are considered as standard normal, the basis functions, 

( )i θ , will be represented by Hermite polynomials[31]. So that the orthogonal properties 

of the Hermite polynomials with respect to a weight function ( )W θ  as shown following. 

     2( )i j i ij
D

W d     θ θ θ θ θ ,                                    (2.4) 

where ij represents the Kronecker-Delta property. When Hermite polynomials are used as 

basis functions, the weight function ( )W θ  is the probability density function of the standard 

normal distribution [32] as follows: 

 

 

1
21( ) e

2

T

n
W




θ θ

θ
π

.                                              (2.5) 
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As an example, orthogonal basis functions and the values of  2
i θ  for 1-D and 2-D by 

Hermite polynomials are shown in Table 2.1 and Table 2.2 respectively. 

Table 2.1 One-Dimensional Hermite polynomial chaoses[33] 

(Basis functions) 

 

 

 

 

Table 2.2 Two-Dimensional Hermite polynomial chaoses[33] 

(Basis functions) 
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Apart from the orthogonal properties, these basis functions also satisfy the following 

equation. 

 

   

   

0 0 ( ) 1 ,

( ) 0 1,2, ,
D

m m
D

W d

W d for m p

   

    





θ θ θ θ

θ θ θ θ
                      (2.6) 

 

where, D is the support domain of the random variable. The mean and standard deviation of 

the stochastic response (Eq.2.2) can be simply calculated as follows. 

 

  0X E X X x    ,                                                 (2.7) 

 

   

 

2

2 2

0
0 1

22

1

[ ] [ ]

.

X

P P

i i i i
j i

P

i i
i

Var X X E X

x x x

x



 



  

   
       

  

 

 



θ θ

θ

                         (2.8) 

 

Once the response, ( )X θ , is determined, we can approximate the mean and standard 

deviation of the response by using Eq. 2.7 and Eq. 2.8. Moreover, we can obtain the 

probability density function of the response by using large number of realizations of 

standard normal random variables ( )θ and plugging them into Eq. 2.2. 

Above, we explained that the input random variables, θ , are standard normal distribution. 

When the random variables follow different probability distribution, the corresponding 

orthogonal polynomials have been proposed by Xiu and Karniadakis [32]. Here we show 

the type of independent variables in the polynomials according to the type of random 

distributions in Table 2.3, in which contains two parts for continuous and discrete by the 

Weiner-Askey scheme[32]. 
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Table 2.3 Weiner-Askey Scheme [32] 

 

 

 

 

 

 

 

 

 

2.1.2 Application of Polynomial Chaos[32] 

In this section, Applications of polynomial chaos is described. First, let us consider the 

stochastic differential equation with input random variables ( )θ . 

   ( , ); ( , ) ,u f x θ x θ x θ ,                                                  (2.9) 

where, is a general differential equation and can represent linear or non-linear. ( , ) x θ  

represents the input parameters which is a function about random variables θ ， and 

 ,u x θ is the response term.  ,f x θ  represents the source (such as loading) term which 

can also contain random variables θ  or do not contain random variables θ . Here, the input 

random variables are introduced into the system through geometrical shapes, initial 

conditions, material properties, etc. when the system contain random variables, the 

response u can be represented as random term by Polynomial Chaos Expansion (PCE) as 

follows: 

     
0

,
P

i i
i

u u


 x θ x θ  .                                             (2.10) 

Random variables Polynomial Support

Continuous

Discrete

Gaussian
Gamma
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Uniform

Poisson
Binomial
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Hypergeometric

Hermite
Laguerre

Jacobi
Legendre

Charlier
Krawtchouk

Meixner
Hahn

( , )
[0, )
[ , ]
[ , ]
a b
a b

 



 
 
 
 

0,1, 2,
0,1, ,
0,1, 2,
0,1, ,

N

N
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In this equation, where  iu x are the unknown coefficients of the PCE approximation and P 

is the number of terms which is obtained by Eq.(2.3) and  i θ are the polynomial basis 

functions (Table 2.1 and Table 2.2). Substituting Eq. (2.10) into Eq. (2.9), the equation 

becomes as follows: 

     
0

( , ); ,
P

i i
i

u f


 
   
 

x θ x θ x θ ,                                  (2.11) 

where, the polynomial basis functions  i θ  are orthogonal. Thus when the orthogonal 

property of polynomial is considered, we can obtain the following equation by multiplying 

both sides of Eq. (2.11) by ( ) ( )t W θ θ , and integrating the equation over the stochastic 

domain, we have: 

         
0

( ); , ( ) ,
P

i i i i
i

u f


 
    

 
x θ x θ θ x θ θ  .                    (2.12) 

When the 0,1,i P , we can obtain a set of (P + 1) simultaneous equations for each 

unknown coefficients  iu x . The unknown coefficients  iu x  is obtained by solving these 

simultaneous equations, and the response can be obtained by Eq. (2.10). 

 

In order to make the application of PCE easier to understand, we show the image of the 

application of PCE in Fig.2.1.  The input parameters,  R θ is expressed as a polynomial 

form when the inherent of model has uncertainty and obeying the different random variable 

(θ1,θ2), then the stochastic response,  u θ is approximated as a polynomial function 

(Polynomial Chaos Expansion) of the input random variables, 1 2{ , } θ as output 

parameter because the input include uncertainty. When the expressed input parameters and 

the approximated output parameters (response) is applied to the governing equations (such 

as finite element equation), the governing equations will be redefined as a new equations 

about the deterministic coefficients, iu , of the PCE. Thus we can understand these 
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unknown coefficients become the response of the governing equations. When the 

coefficients iu  is determined by solving the redefined governing equations, the response 

surface u(θ) can be obtained. And we can obtain the probability density distribution by 

using 10000 realization of the standard random variable θ in the obtained response surface 

u(θ). 

 

 

 

Fig.2.1: The Spectral Approach Concept 

 

Governing equations
(finite element equation, etc.)

Input parameters Output parameters

Response Uncertainty
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2.1.3 Numerical Example 

 
In this section, In order to explain the application of polynomial chaos, we show a simple 

numerical example of a spring problem (see Fig.2.2). The displacement of the spring 

problem is discussed considering stiffness with uncertainty. The governing differential 

equation of this problem (Eq. (2.13)) and its analytical solution is well known hence it has 

been chosen as an example to illustrate the method. 

ku P  ,                                                         (2.13) 

 

 

 

 

 

Fig.2.2: A Spring Problem 

where P is the concentrated load as 1N/mm2, the u is displacement and is unknown, The k 

is spring stiffness and assumed following Gaussian distribution with mean 10 2N mm  and 

standard deviation of 2 2N mm . So the k can be expressed as follows. 

k k k   ,                                                        (2.14) 

where, k =10 2N mm , k =2 2N mm  and   is a standard normal random variable. In 

other words, the spring stiffness can be represented as follows by Hermite polynomial of 1st 

order. 

   

 

0 1

1

0
= .i i

i

k k k

k

  




   


                                                (2.15) 

1 

P

u

k
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In this problem, the displacement is considered as response of the system which has an 

uncertainty because the spring stiffness has an uncertainty, thus the response can be 

approximate by using nth dimensional PCE of the random variable   as follows. 

   
0

n

i i
i

u u 


  ,                                                  (2.16) 

where  i   are the orthogonal basis function by Hermite polynomials of the variables

( ) , and iu  are the unknown coefficients of PCE,   is a Gaussian random variable. The 

main idea is to approximate the response  u   by using orthogonal polynomials with 

unknown coefficients iu . At this point, it is fairly clear that we need to estimate iu , which 

will enable us to generate statistics of the response completely. This can be achieved as 

described following.  

First we substitute Eq. (2.15) and Eq. (2.16) into Eq. (2.13) as follows. 

   
1

0 0

n

i i i i
i i

k u P 
 

    .                                        (2.17) 

Utilizing the orthogonality condition, we Multiply both sides of Eq. (2.17) by ( ) ( )t w  , 

and integrating the equation, the following equations is obtained. 

       
1

0 0

n

i j i j t t
i j

k u P   
 

     .                         (2.18) 

For convenience of calculations, the order (n) of PCE approximation of Eq. (2.16) is 

assumed as 2. 

Thus the simultaneous equations can be derived as follows. 
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 
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=
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 

 
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     
  

    
   

  







.                   (2.19) 

We can see that there are three equations with three unknowns 0 1 2, ,u u u . Thus we need to 

solve only there deterministic equations to generate the polynomial chaos approximation of 

response (response surface)  u  . We can approximate the mean and standard deviation of the 

response by using Eq. (2.7) and Eq. (2.8). Moreover, we can obtain the probability density function 

of the response by using large number of realizations of standard normal random variable ( ) and 

plugging them into Eq. (2.16). Thus we can clearly understand that the MCS has been avoided 

when this method is used. 

And for clarity we show second order PCE (n=2). The inner product values used for i, 

k=0,1,2 are shown in the following tables. 

 

 

Table 2.4 Inner Products 

     0i k      

      k                    

i 

0 1 2 

0 1 0 0 

1 0 1 0 

2 0 0 2 
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     1i k      

      k                    

i 

0 1 2 

0 0 1 0 

1 1 0 2 

2 0 2 0 

 

     2i k      

      k                    

i 

0 1 2 

0 0 0 2 

1 0 2 2 

2 2 0 8 

 

The following Table2.5 shows the PCE approximated mean and standard deviation of the 

response  u   obtained from the present stochastic method. Also 10000 simulations of the 

deterministic problem have been carried out with variable spring stiffness to verify the 

accuracy.  

Table 2.5 Comparative Statistics of Response  u   through PCE and MCS 

Statistics of  u   MCS 
(10000 samples) 

PCE 
(10000 samples) 

PCE 

(By Eq.) 

Mean (mm) 0.10301 0.10307 0.10309 

Standard dev. (mm) 0.01039 0.01038 0.01039 
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In Fig.2.3, the polynomial chaos approximation of response is shown, and the probability 

density distribution is obtained by using the response surface which is shown to prove that 

the results are well consistent with MCS results. Also, as shown in Table 2.5, we find that 

the statistics are reasonably well estimated by the PCE (10000 samples) when compared 

with those obtained from MCS. Note that the mean and the standard deviation of “PCE” in 

the Table 2.5 are calculated by Eq. (2.7) and Eq. (2.8), which also takes almost same value.  

 

 

 

Fig. 2.3: The Probability Density Distributions of the Buckling Load 

 

 

 

 u mm

   1 20.103 0.0103 0.0( ) 0103u      

PDF
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2.2 Structural Domain-2D Structural Static Problem 

The goal of this section is to introduce some theories as preliminary knowledge. In this 

section, the basic theory about the 2D structural static problem will be briefly expounded in 

the linear static analysis [35]. These theories are importantly for to understand 

formularization in the section 3 easily.  

Here, we will expound this problem from the element finite equation as follows. 

=ku f ,                                                           (2.20) 

where, the k is the global stiffness matrix which obtained from the element stiffness matrix 

ke, the u is the displacement, the f is the global force vector which obtained from the 

element force vector fe. And the element stiffness matrix of finite element method is 

construed by the integration of element coordinates ( , )  as shown in Eq. (2.21). 

   
1 1

1 1

, , ( , )e T d d       
 

 

  k B DB J ,                                 (2.21) 

where B is a strain matrix, D is a matrix of material property and J  is a Jacobian matrix. 

B and J are related to nodal coordinates. They are shown as follows.  

31 2 4

31 2 4

3 31 1 2 2 4 4

0 0 0 0

= 0 0 0 0

NN N N
x x x x

NN N N
y y y y

N NN N N N N N
y x y x y x y x

   
 
    

   
 

    
       
 
        

Β ,               (2.22) 

where iN  is the shape functions when the Isoparametric four note element (Iso4) is 

considered as follows. 



 

34 
 

1

2

3

4

1( , ) (1 )(1 ) ,
4
1( , ) (1 )(1 ) ,
4
1( , ) (1 )(1 ) ,
4
1( , ) (1 )(1 ) .
4

N

N

N

N

   

   

   

   

  

  

  
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                                          (2.23) 

The D is the constitutive matrix in plane stress. 

2

1 0
= 1 0

1
1-0 0

2

E







 
 
 
 


 
 
 

D .                                              (2.24) 

The matrix J can be derived and is shown as follows. 

   

   

4 4

1 1

4 4

1 1

i i
i i

i i

i i
i i

i i

N Nx y x y

x y N Nx y

   

   

 

 

     
     
   

     
        

 

 
J .                                (2.25) 

Generally in the finite element formulation, the component, iN
x




and iN

y



, in the B matrix 

is depicted as follows. 

 
1

ii

i i

NN
x

N N
y







  
   
   

   
      

J ,                                                                 (2.26) 

where,  
1J is inverse of J, and can be found by Eq. (2.27). 
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 
1 22 12

21 11

1=
det

J J
J J

  
 
 

J
J

.                                            (2.27) 

The determinant of J can be given as follows. 

11 22 21 12det =J J J JJ  .                                                (2.28) 

The global stiffness matrix can be assembled when the element stiffness matrix is obtained. 

And then the element force vector is derived where only the distributed load h is applied to 

the element edge (see edge 1-2 in Fig.2.4).  

When constant surface force vector in one element edge is considered, the force vector in 

node A (A=1 or 2) is represented as follows. 

 
1

0 0
1 2

1

( ; )e e
A AN N N j d   





f h h  ,                                (2.29) 

 

 

 

 

 

 

 

Fig.2.4: The Distributed Load along the Side of Element 

 

where 0 0
1 2N N  are the shape functions for the surface force applied to the edge(1-2)(see 

Fig.2.4(b)), and ej  is the line Jacobian (as show below). 

1 2

3 4
e

h

( )a ( )b
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2 2

=e x yj
 

    
   

    
.                                                   (2.30) 

We use the shape functions to interpolate the coordinates between the nodes.  

2
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y N y


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






                                                            (2.31) 

 The line Jacobian is obtained by substitute Eq. (2.31) into Eq. (2.30). 

 1 2
1
2

ej x x  .                                                               (2.32) 

Thus, the force vector is represented as follows. 

   
1

0 0
1 1 2 2 1 2

1

1
2

e
AN N N x x d





   f h h  .                                       (2.33) 

The force vector can be derived by assembly of element force vector. 

 

When the global system stiffness system is computed, the displacement can be evaluated by 

solve Eq. (2.20). And the stress can be assessed by matrix of material property D and strain 

matrix B and displacement u . 

σ = DBu .                                                           (2.34) 
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2.3 Structural Domain- Eigenvalue Problem 

Eigenvalue analysis is an important problem in a variety of fields. In structural mechanics 

in the field of naval architecture and ocean engineering, eigenvalue problems commonly 

appear in the context of, e.g. vibrations and buckling. In the vibrations analysis, the 

eigenvalue analysis is used to evaluate the natural frequencies (or Eigen frequencies) of 

vibration, and the eigenvectors determine the shapes of these vibrational modes. And in the 

buckling analysis, eigenvalue analysis can be used to evaluate the buckling load 

(eigenvalue buckling analysis) and buckling mode. In section 2.3, the basic theory about 

eigenvalue problem is expounded in eigenvalue analysis, and solution of eigenvalue 

problem is also introduced because the stochastic eigenvalue problem will be proposed in 

section 4. These theories are importantly for to understand formularization of stochastic 

eigenvalue problem easily.  

 

2.3.1 In the Vibrations Analysis[36] 

 

Here, we consider a dynamic system. The equations of motion in matrix can be expressed 

as follows. 

  Mu Bu Ku P ,                                                 (2.35) 

where, u is displacement, and the M is a mass matrix, B is a damping matrix , K is a 

stiffness matrix,  and P is a load vector.  

When we consider this system that there is no damping and no applied loading, the 

equations of motion can be written as follows. We find it becomes as free vibration 

equation. 

0 Mu Ku .                                                       (2.36) 
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In order to solve Eq.(2.36), we assume the displacement can be described by a sinusoidal 

vibration. 

i te u ,                                                          (2.37) 

where,   is eigenvector,   is the circular natural frequency. And the acceleration is the 

second derivative of the displacement, it is shown as follows. 

2 i te   u .                                                     (2.38) 

Substituted into the equation of motion (Eq.(2.36)), the following is obtained. 

2 0i t i te e     M K .                                           (2.39) 

Because i te   cannot zero, the equation will be rewritten as the form of a general eigenvalue 

problem. 

  0  K M ,                                                 (2.40) 

where, K is a linear stiffness matrix, M is a mass matrix,   is the eigenvalue which 2= 

that related to the natural frequency,   is the corresponding eigenvector that represents the 

vibrational mode. 

As traditional eigenvalue solution, we can find that there are two possible solutions for Eq. 

(2.40): 

1. If determinant   0 K M , the only possible solution is shown. 

0  .                                                           (2.41) 

This is the trivial solution, and we can understand that it represents the case of no motion. 

And it is consider that this solution is totally meaningless. Thus we consider following 

solution. 

2. If determinant  =0K M , that is 0  . So the solution is obtained. 
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  0determinant  K M .                                                  (2.42) 

By solving the equation, we can obtain the eigenvalues i , and corresponding eigenvectors

i . In solving the above eigenvalue problem, we can see that many eigenvalues and 

corresponding eigenvectors will be obtained for multi degrees of freedom problem. 

However, from practical problem often only some smaller natural frequency is concerned. 

So the frequency of first mode is always considered as important. In section 2.3.3, we will 

introduce a numerical method (The inverse power method) for solving the first mode, and 

introduce other numerical method (The Wielandt deflation method) based on the inverse 

power method for solving other some smaller mode. 

 

 

2.3.2 In Linear Buckling Analysis 

In this section, we will introduce theory of linear buckling analysis. In linear buckling 

analysis, the critical buckling load of structure is generally concerned. In order to estimate 

the critical buckling load of structures, the eigenvalue of system will be evaluated because 

the critical buckling load is the product of the eigenvalue and the static load. Thus 

eigenvalue problem is solved as follows. 

  0 K K U ,                                                  (2.43) 

where, K is the stiffness matrix,   is the eigenvalues, K  is the initial stress stiffness 

matrix which is a matrix abort the static load F, and U is the eigenvectors. We can 

understand that the solution of Eq. (2.43) has n eigenvalues in which n is the number of 

degrees of freedom. However, not all eigenvalues are required, only the lowest eigenvalues 

are required for to calculate buckling load and buckling modes. Here, the critical buckling 

load is shown when minimum eigenvalue is calculated. 
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mic nri imut mF F .                                                        (2.44) 

2.3.3 A Numerical Algorithm 

In this section, we will introduce a numerical algorithm to solve eigenvalue problems in 

order to understand the proposed methods easily in section 4. Firstly, the Inverse Power 

Method (IPM) is developed to compute minimum eigenvalue and eigenvector, secondly, 

the Wielandt Deflation Method (WDM) is developed to compute the rest of eigenvalues 

and eigenvectors based on the inverse power method. 

(1) The Inverse Power Method 

 

Algorithm 2.1 The Inverse Power Method [28,37] 

 

 

 

 

 

 

 

 

 

 

As shown front, we show the algorithm for the inverse power method [28, 36]. An 

approximate eigenvalue and the corresponding eigenvector are evaluated by using the 

method to solve   0 A u  equation where A is -1R K , Note that R is regular (non-

singular) matrix in general vibration and buckling problems. 

(0):Initialize u
*While  

 (q 1) (q) (q)T
   u Au

2

(q 1)
(q 1)

(q 1)

L







uu
u

(q 1) (q 1) (q) Au u

2

(q 1) (q 1)[ ]
L

    A I u

1:Step

2 :Step

3:Step

4 :Step

End While

* *: ,Result  u
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The inverse power method is an iterative method for computing minimum eigenvalue 

(Algorithm 1), where q is iterations, (0)u is initial normalized eigenvector, A is a matrix by

  0 A u .  

 

step1: 

The Rayleigh quotient is used to update the eigenvalue based on the normalized 

eigenvector (q)u  of the previous iteration using Eq. (2.45). We can see that an eigenvalue 

(1) can be found when an initial eigenvector (q=0) is known.  

 (q 1) (q) (q)T
   u Au .                                                     (2.45) 

 

step2: 

An updated eigenvector (1)u is found when initial eigenvector (0)u  and eigenvalue (1) is 

known, and this equation can be rewritten as 

(q 1) (q 1) 1 (q)  u A u .                                                    (2.46) 

 

step3: 

In step3, we need to normalize the updated eigenvector (1)u  (this is, the length of 

eigenvector is 1) because the updated eigenvector is not normalized. This step is necessary, 

so that it can prevent the magnitude of the eigenvector increase unboundedly from 

increasing with each iteration step. 

2

(q 1)
(q 1)

(q 1)

L







uu
u

.                                                    (2.47) 
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step4： 

Finally, the convergence of the iterative method is checked. When the condition *   is 

satisfied, the iteration will be terminated, and we can obtain an approximate eigenvalue and 

the corresponding eigenvector.  

 

(2) The Wielandt Deflation Method 

In order to solve the all the eigenvalues and eigenvectors, the Wielandt deflation method 

[38] based on the inverse power method is introduced in this section. The method can to 

realize computation of concerned the eigenvalues and the eigenvectors. For example, 

eigenvalues and eigenvectors of 1st and 2nd are only computed when we need 2nd 

eigenvalues and eigenvectors. 
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Fig.2.5: Flowchart of the Wielandt Deflation Method 
 

In Fig.2.5, we show the flowchart of the Wielandt deflation method. Generally, if we have 

the minimum eigenvalue (1)  of A and corresponding normalized eigenvector (1)u  from the 

inverse power method, we can make a new matrix B from the matrix A, where the 

eigenvalues of B are identical to all eigenvalues of A except the minimum eigenvalue in A.  
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Firstly, we will prove the new matrix B identical to all eigenvalues of A except the 

minimum eigenvalue (1) [38]. 

Here we assume that the minimum eigenvalue (1)  and corresponding normalized 

eigenvector (1)u  of A have been calculated by using the inverse power method. Then in 

order to prove the new matrix B identical to all eigenvalues of A except the minimum 

eigenvalue (1) , we consider the deflated matrix B , and it is shown as follows. 

11
T B A u x（ ） ,                                                        (2.48) 

where 1x  is any vector such that it can defined as follows. 

1 11
T x u（ ） .                                                           (2.49) 

Post multiplying Eq.(2.48) by 1u（ ）, we can obtain as follows. 

1 1 1 1 1 1
T Bu Au u u u（ ） （ ） （ ）（ ）（ ）（ ）.                                           (2.50) 

When we consider 1 1 =1Tu u（ ）（ ） , the Eq.(2.50) can write as follows. 

1 11 1 1 0   Bu u u（ ） （ ） （ ） .                                              (2.51) 

We can see that 1u（ ） is an eigenvector of the matrix B belonging to the null eigenvalue. So 

here, let us consider any vector ii u u（） （1）, and multiply Eq.(2.48) by ii u u（） （1）. 

( 1 0T
i u u（ ）（） ) 

     1 1

1 1

1 1
1 .

T
i i ii i i

T
i i i

T
i i i

i

  






    

 

  
     

  

（） （1） （） （1） （ ）（ ） （） （1）

（）（） （ ）（ ）（）

（） （） （ ）（） （ ）

（）

B u u A u u u x u u

u u x u

u x u u

                       (2.52) 
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By Eq.(2.52), 1
1 T

i i
i




 x u（ ）（）

（）

 and introducing the notation, 

1 1
1 T

i i i
i

 
   

 
v u x u u（） （） （ ）（） （ ）

（）

.                                        (2.53) 

We can write Eq.(2.53) in the form. 

( )ii iBv v（） （）.                                                    (2.54) 

From which we conclude that the nonzero eigenvalues of the matrix B are 2 3, , N  （ ）（ ） （ ） 

and hence the same as the subdominant eigenvalues of the matrix A. on the other hand, the 

corresponding eigenvectors of the matrix B are 2 3, , Nv v v（ ） （ ） （ ）. In order to obtain the 

eigenvectors of the matrix A, we need to do computation by Eq.(2.53). 

 

When we understand the above concept, the step of Wielandt deflation method will be 

illustrated for to evaluate all the eigenvalues and eigenvectors. 

 

step1: 

As shown in Fig.2.5, a new the matrix B with dimension N can be obtained by following 

equation. 

(1) 1
(1),1

1
u

 B A u A ,                                                  (2.55) 

where (1),1u  is value in the first row of eigenvector (1) ,u  and 1A (row vector) is the first row 

of matrix A . The first row of the matrix B is 0 by calculating Eq. (2.55).  
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step2: 

In step2, the first row and the first column of matrix B are deleted to obtain a new matrix 

(1)B  with dimension N-1. Then the matrix (1)B  has eigenvalues (2) (3) ( ), , N   .  

 

Step3: 

Next, the defined new matrix (1)B  is used to the inverse power method to evaluate a new 

minimum eigenvalue (this is, the 2nd eigenvalue (2)  in A). But we need to obtain an 

eigenvector with dimension N, because obtained eigenvector is vector with dimension N-1. 

Therefore by step4, the 2nd eigenvector (2)u can be derived.  

 

step4: 

In step4, Eq. (2.56) can be used to obtain the eigenvector u  of the matrix A .  

 

(1) (2)
(2) (1) (2)

(1),1 1 (2)

1
u

 
 u u v

A v
 ,                                           (2.56) 

where (1) is minimum eigenvalue and (1)u  is corresponding eigenvector in the matrix A

obtained by the inverse power method. (2)v is defined as follows.  

(2)
(2)(2),1

01
v

 
  

 
v

v
,                                                  (2.57) 

where (2),1v  is value in the first row of eigenvector (2)v .  

Consequently, the 2nd eigenvalue and eigenvector in A can be obtained by the above 

proposed method. It is noted that by using the procedure to reduce dimensionality of the 
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matrix ( (1)A B , (1) (2) ,B B  ( (2)B  is the matrix with dimension N-2)), it is possible to 

achieve solving mth eigenvalue, ( )m , and corresponding eigenvector, ( )mu , of the matrix A . 
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3. Stochastic 2D Structural Static Problem 

In the design and the construction of ships and offshore structures, there are a lot of 

uncertainties in the shape of the structures (welding deformation, effect of misalignment, 

corrosion wastage). In the conventional uncertainty analysis, Monte Carlo Simulation 

methods (MCS) combined with finite element methods (FEM) is usually used when 

uncertainty in shape is considered. However, MCS needs heavy and a large number of 

calculations, so that application of MCS to practical problems is sometimes very difficult to 

get reasonable results. In this study, a new method of structural analysis is proposed for the 

solution of problems of response uncertainty for the case that involves uncertainty in shape. 

The method makes use of an Hermite polynomial chaos expansion (PCE) to represent the 

uncertainty of shapes and the response surface. The proposed method involves a 

mathematical formulation which is a natural extension of the deterministic finite element 

concept to the space of random variables. In section 3.1, the stochastic finite element 

method for uncertainty in shape following normal distribution is formularized and the 

validity of the proposed method is discussed by two cases. In section 3.2, the stochastic 

finite element method for uncertainty in shape following non-normal distribution is 

formularized and an algorithm is developed that can deal with arbitrary approximate order 

to represent uncertainty of shape following non-normal distribution problem. In section 3.3, 

the evaluation of accuracy of the analysis method is discussed. 
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3.1 The Formularization of Stochastic Finite Element Method for 

Uncertainty in Shape Following normal Distribution 

In this study, a new method of structural analysis is proposed for the solution of problems 

of response uncertainty for the case that involves uncertainty in shape following normal 

distribution. 

3.1.1 Introduction of Input Random Variable: 

In this section, the method to represent uncertainty of structural shape is considered. We 

first introduce a random input variable to nodal coordinate of mesh, where shape of the 

analysis object is changed by changing the input variable. 

We assume that shape change (node coordinate change) can be expressed by liner function 

of the random variable,  . Consequently, nodal coordinate can be stated as follows: 

,
,

i i i

i i i

x x l
y y l





  

  
                                                   (3.1) 

where ,i ix y  is i-th nodal coordinate before shape change, and ,i ix y  is i-th nodal coordinate 

after shape change. Moreover ,i i  are coefficients of the degree of shape change at each 

node. l  is the deviation length at the representative node. In the study, we assume that 

uncertainty in shape is defined as normal distribution, so that the movement of all the nodes 

can be expressed by linear function of the deviation length, l , as shown in Eq. (3.2): 

0 1l l l   ,                                                    (3.2) 

where 0l is mean of l . 1l  is standard deviation of l . Fig.3.1 shows a specific example of a 

1/4 model plate with a circular hole at the center, which is divided into 36 elements. It is 

assumed that size of a central hole has uncertainty, so that the change of the radius of the 

hole is considered. 
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Fig 3.1: Model of Linear Deformation. 
 

It is also assumed that the change of each nodal coordinate, as shown by a dotted line in the 

Fig 3.1, is represented by the deviation length ( )l  of the nodal point 1(representative node). 

And, for example, the nodal point 2 is moved with length 5l/6, and the nodal point 3 is 

moved with length 4l/6. Fig.3.1 shows the coefficient ( , )i i  of all nodes when size of a 

central hole is changed whit length l. It is noted that the change of the coordinate is 

assumed not only at the nodes on the hole (nodes 1, 4, 7 in Fig.3.1), but also at the other 

nodes in the mesh, in order to avoid the distortion of the elements by moving the nodes.  

In the following section, we derive SFEM formulation involving random variable ( )  by 
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using the above assumption of uncertainty in shape (mesh change). 

 

3.1.2 Stochastic Finite Element Formulation 

(1) Stochastic Element Stiffness Matrix 
 

The theory of deterministic finite element method is introduced in the section 2.2. Based on 

the theory of finite element method, we can construct the element stiffness matrix 

considering the uncertainty in shape, the following integration in terms of element 

coordinates ( , )   should be evaluated. 

     
1 1

1 1

( ) , ; , ; , ;e T d d           
 

 

     k B DB J  ,                   (3.3) 

where ( , ; )  B  is a strain matrix involving random variable ( ) , ( , ; )  J  is a Jacobian 

matrix also involving random variable ( ) . In this study, | |J and B  involving uncertainty 

in shape ( )  is treated as follows. 

 

1) Representation of ( , ; )  J  

Generally, in the 4-noded plane element, mapping from element coordinate ( , )   to global 

coordinate ( , )x y   is expressed as follows by using shape functions ( )iN . 

 

 

4

1
4

1

, ,

, .

i i
i

i i
i

x N x

y N y

 

 





 

 




                                            (3.4) 

The Jacobian matrix ( , ; )  J  with the uncertainty parameter ( )  is derived by 

substituting Eq. (3.1) into Eq. (3.4). 
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 
   

   

4 4

1 1

4 4

1 1

, ;

i i
i i i i

i i

i i
i i i i

i i

N Nx y x l y l

x y N Nx l y l

 
   

  

 
   

 

 

       
      

    
      

         

 

 
J  .                            (3.5)

 

The determinant of the Jacobian matrix is derived by Eq. (3.5) and Eq. (3.2), and can be 

written in the form of the polynomial of random variable ( )  as follows. 

        2
0 1 2, ; , , ,               J J J J ,                      (3.6) 

where 

 
4 4 4 4

0
1 1 1 1

4 4 4 4

0 0
1 1 1 1

4 4 4 4

0 0
1 1 1 1

4 4

0 0
1 1

, i i i i
i i i i

i i i i

i i i i
i i i i

i i i i

i i i i
i i i i

i i i i

i i
i i

i i

N N N Nx y x y

N N N Nx l x l

N N N Ny l y l

N Nl l

 
   

 
   

 
   

 
 

   

   

   

 

   
    

   

   
   

   

   
   

   

 
 

 

   

   

   

 

J

4 4

0 0
1 1

,i i
i i

i i

N Nl l 
  

 
 

 
                    

(3.7-1) 

 
4 4 4 4

1 1 1
1 1 1 1

4 4 4 4

1 1
1 1 1 1

,

,

i i i i
i i i i

i i i i

i i i i
i i i i

i i i i

N N N Nx l x l

N N N Ny l y l

   
   

 
   

   

   

   
    

   

   
   

   

   

   

J
                  (3.7-2)

 

 
4 4 4 4

2 1 1 1 1
1 1 1 1

, .i i i i
i i i i

i i i i

N N N Nl l l l     
      

   
    

   
   J                   (3.7-3) 

 

2) Representation of B   

Generally in the finite element formulation, the component, AN x  and AN y  , in the

B matrix is depicted as follows. 
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 
1

, ;

AA

A A

NN
x

N N
y


  





  
   
         
      

J  .                                    (3.8) 

Using Eq. (3.5), we can arrange Eq. (3.8) as follows. 

 

 

1 12
0 1 2

0 12
0 1 2

1 ,

1 ,

A
AX AX

A
AY AY

N H H
x

N H H
y


 


 


   

     


   

     

J J J

J J J

                         (3.9) 

where the coefficients, 0 1 0 1,AX AX AY AYH H H H, , , is expressed by differentials of  shape 

functions in terms of ( , )   as follows. 

4 4

0
1 1

4 4

0
1 1

,

i iA A
AX i i

i i

i iA A
i i

i i

N NN NH y x

N NN N l

   

 
   

 

 

   
    

    

   
     

    

 

 
                     (3.10-1) 

4 4

1 1 1
1 1

,i iA A
AX i i

i i

N NN NH l l 
    

  
   

   
                              (3.10-2)
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 
                     (3.10-3)
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,i iA A
AY i i

i i

N NN NH l l 
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    

   
                          (3.10-4)

 

Therefore, ( , ; )  B  can be written as shown below.  

 
 

 
 

 0 1
1 1, ; , ,
, ; , ;

       
     

      
 

B B B
J J .                        (3.11) 



 

55 
 

3) Approximation of 
 

1
, ;  J  

It can be seen that the item,  1 , ;  J , is remained in the integral of the element 

stiffness matrix after substituting Eq. (3.11) into Eq. (3.3). Generally, in the formulation of 

SFEM, the orthogonality is used when the stiffness matrix or the force vector is evaluated. 

However when denominator of   1 , ;  J  involves random variable ( ) , the 

orthogonality is not available. In this study, to overcome this problem, it is assumed that 

 1 , ;  J  can be approximated by Hermite PCE as follows. 

 
 

0

1
, ;

p

u u
u

A 
   




J  ,                                         (3.12) 

where, uA  are unknown coefficients of approximated polynomial,  u   are the basis 

functions, represented by Hermite polynomial.  

The unknown coefficients, uA , can be decided as follows. 

Firstly, Eq. (3.12) is rewritten as follows by using Eq. (3.6) and Hermite polynomial. 

   
2

0 0
1

p

i i u u
i u

A   
 

   J ,                                       (3.13) 

where 0 1 2( , ) ( , )     J J J+ , 1 1( , )  J J , 2 2( , )  J J , and we assume that p=6. 

Multiplying ( ) ( )t w    to both sides of Eq. (3.13), and integrating the equation, we 

have: 

           
2 6

0 0
1 .i i u u t t

i u
A w d w d           

 

  

     J          (3.14)
 

This equation can be depicted as follows. 
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       
2 6

0 0
i u i u t t

i u
A        

 

  J .                         (3.15) 

This means that the following simultaneous equations about the coefficients, iA , are 

obtained. 
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660 61 66

1
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e e e

AJ J J
AJ J J

AJ J J

       
            
     
     
       

,                                 (3.16) 

where e
utJ   is      

2

0

e
i i u t

i
     



 J . It is noted that      i u t      can be 

evaluated by numerical integration (Eq.(3.17a) ) or by using Eq.(3.17b)[39]. And we can 

reference table 2.4 about the inner product values. 

            ( )i u t i u t
D

w d               ,               (3.17a) 

     

0 ,max( ) s
! ! !

( )
( )!( )!( )! 2

i u t

i u t odd i,u,t
i u t i u totherwise s

s i s u s t
     

    


   
   

.    (3.17a) 

Then the unknown coefficients of approximation polynomial, uA , is derived by the 

above simultaneous equations. 

Now, we can substitute Eq. (3.6), Eq. (3.11) and Eq. (3.12) into Eq. (3.3) as follows. 

   
1 1 6

2
0 0 0 1 1 0 1 1

01 1

( )

.

e

T T T T
u u

u
A d d



      
 

 



 
            

 
 

k

B DB B DB B DB B DB
   (3.18) 

By rearranging the above equation, we can obtain a new equation which is represented by θ. 

8

0
( )e e i

i
i

 


 k k  ,                                                (3.19) 
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where the coefficients, e
ik , is expressed as follows. 

     
4

0 0 0 0
1

, , , ,e T
i i i i i i

i
A w     



  k B DB                                             (3.20-1) 
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Then we need rewrite equation from the θ form (Eq. 3.19) to ( )i   form. 

 
8

0

e e
i i

i
 



 k k  ,                                                (3.21) 

where, 

0 0 2 4 6 9

1 1 3 5 7

2 2 4 6 8

3 3 5 7

4 4 6 8

5 5 7

6 6 8

7 7

3 15 105 ,
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8 8 .e e k = k

                         (3.22) 

As shown above, the element stiffness matrix is derived by the polynomial of order eight 

based on the basis functions, ( )i  . 
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(2) Stochastic Force Vector 

The force vector is changed when the shape of the analysis domain is changed and the force 

is applied to the moved boundary. Here formulation of the force vector is derived where the 

distributed load, is applied to the changing (moving) element edge (see edge 1-2 in 

Fig.3.2(a)).  

 

 

             (a)                                            (b) 

Fig.3.2: The Distributed Load along the Side of Element 

When constant surface force vector ( )h in one element edge is considered, the force vector 

in node A is represented as follows: 

 
1

0 0
1 2

1

( ; )e
A A eN N N j d   





 f h h( )=  ,                           (3.23) 

where 0 0
1 2N N,  are the shape functions for the surface force applied to the edge(1-2)(see 

Fig.3(b)), and ej  is the line Jacobian. And it is shown as follows. 

2 2

e
dx dyj
d d 

    
     

   
  .                                          (3.24) 
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The global coordinate ( , )x y  is expressed as follows by using shape functions 0( )iN . 

2
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1
2
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1

,

.

i i
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i i
i

x N x

y N y




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


                                                (3.25) 

We can substitute Eq. (3.25) into Eq. (3.24) as follows. 

    1 2 1 2 0 1 2 1
1
2ej x x l l           .                          (3.26) 

The force vector can be obtained by substitute Eq. (3.26) into Eq. (3.23) 
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f

h h
     (3.27) 

So, the force vector can be written as follows.  

0 1
e e e  f f + f  ,                                              (3.28) 

where, 
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

    f h h .                        (3.29-2) 

Eq. (2.28) can be rewritten as Hermite polynomials form as is the case of the stiffness 

matrix. 
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 
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 f f  ,                                             (3.30) 
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where e e
i i f f . 

 

(3) The Stiffness Equation of SFEM 

Formulation of SFEM is performed by using the element stiffness matrix, the force vector 

and the approximate response surface of the displacement. 

The element stiffness equation involving random variable ( ) is written as follows: 

e e e  k u f  ,                                                     (3.31) 

where the element stiffness matrix, ek  (Eq. (3.21)), and the force vector, ef  (Eq. (3.30)), 

are represented by basis functions, ( )i  . The unknown displacement response eu of Eq. 

(3.31) is also approximated by using Hermite polynomial. 

 
0

q
e

i i
i

 


  eu u .                                                  (3.32) 

Substituting Eq. (3.21), Eq. (3.30) and Eq. (3.32) into Eq. (3.31) the stiffness equation 

becomes as follows: 
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  k u f  ,                         (3.33) 

where the element stiffness matrix ek is approximated by 8th order polynomial as shown in 

Eq. (3.21). Thus, in this study, the order (q) of PCE approximation of Eq. (3.33) is assumed 

as eight. 

Multiplying both sides of Eq. (3.33) by ( ) ( )t w   , integrating the equation, we have: 
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(3.34) 
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Thus the element stiffness equation can be derived as follows: 
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,                                   (3.35) 

where, 
8

0
( ) ( ) ( )e e

tj i i j ti
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
 K k ,

1

0
( ) ( )e e

t i i ti
   


 F f . 

Compared with the usual deterministic element stiffness equation, it involves not only the 

unknown displacement of deterministic part 0( )eu  but also involves the unknown 

displacement of stochastic part (the stochastic part of order 1 1( )eu , the stochastic part of 

order 2 2( )eu , ). The unknown displacement of the all node ( 0u , 1,u ) is derived by 

solving the global equation system which can be obtained by assembly of element stiffness 

matrices. The uncertainty of stress can be assessed by Eq. (3.36) with Eq. (3.11), Eq. (3.12) 

and Eq. (3.32) after the displacement is obtained. 

 
15

0
i i

i
 



  σ = DB u σ  .                                         (3.36) 

It is noted that the uncertainty of response of displacement can be estimated by the 

proposed method that solves the main stiffness equation only once. 

 

3.1.3 Numerical Example 

In this study, we developed SFEM program by using C language which can deal with a 

two-dimensional problem considering uncertainty in shape following normal distribution. 

The validity and feasibility of the proposed method of structural analysis is discussed by 

two cases, (1) a plate with a circular hole at the center with uncertainty in the size of a 

circular hole, (2) a cruciform weld joint with uncertainty in the magnitude of misalignment.  
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(1) A Plate with a Circular Hole with Uncertainty 

A plate with a circular hole (Fig. 3.3(a)) is considered and mesh is shown in Fig. 3.3(b). It 

is assumed that the radius of a circular hole follows Gaussian distribution with mean μ 

=3mm, the standard deviation σ=0.1~1mm. It is also assumed that the distributed load p

=78.4 2N/mm , and symmetry boundary condition is applied to the boundaries, 1 　and 2 　. 

The coefficient ( , )i i   of each node is defined based on the method shown in the previous 

section when the radius of the hole changes with length l. The validity of the proposed 

method (SFEM) is discussed by comparing the result of the method with the MCS solution 

of the deterministic problems (FEM) for a same mesh size. 

 

 

Fig. 3.3:  The Geometrical Deformation of the Hole 

1) The Mean μ=3mm and the Standard Deviation σ=0.5mm of the Radius of A Circular 

Hole  

In order to discuss the validity of the proposed SFEM, the method is applied to the problem 

with the mean μ =3mm and the standard deviation σ=0.5mm. Fig.3.4 shows the stochastic 

response surface of the stress (Eq. (3.36)) at a particular node (point A in Fig.3.3(a)) in y-

direction. In this figure the stress value when the radius of the hole ( )Rl  is 3mm is shown at 
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0( 0)l   . The black line is response surface by formula of approximating response 

surface when θ is value from -5 to 5, and the square in Fig.3.4 is reference value which 

obtained by used FEM. We can find that a good agreement is observed between the results 

from the stochastic response surface and the reference values. The approximate expression 

of the response surface is 15th order PCE. However, the 6th order approximate expression 

of the response surface is shown in Fig.3.4, because the influence is small after 7th order. 

 

 

Fig. 3.4: The Response Surface of Stress 

(Standard Deviation is 0.5mm) 

Fig.3.5 shows the probability density distributions of the stress concentration factor 

obtained through the SFEM and FEM with Monte Carlo Simulation (FEM(MCS)). This has 

been obtained by using 10000 realization of the standard random variable θ in the obtained 

response surface ( ( ))k   of the stress concentration factor by the proposed SFEM. It is 

observed that the probability distribution obtained by the SFEM has good agreement with 
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the result of MCS with the conventional FEM(MCS). Also, as shown in the table in Fig.3.5, 

we find that the statistics are reasonably well estimated by the proposed SFEM when 

compared with those obtained from FEM(MCS). Note that the mean and the standard 

deviation of “SFEM-PCE” in the Table 3.1 are calculated by Eq. (2.7) and Eq. (2.8), which 

also takes almost same value. 

 

Fig.3.5: Stochastic Responses to Shape Uncertainty 

Table 3.1 Statistics of the Stress Concentration Factor 

 
SFEM FEM(MCS) SFEM_PCE 

Mean 3.10660 3.10611 3.10703 

Std.dev. 0.02982 0.03032 0.02953 
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2) The Mean μ=3mm and the Standard Deviation  σ=0.1mm ~1mm of the Radius of A 

Circular Hole  

In this section, we will assess the accuracy of stress concentration factor through different 

values of the standard deviation (σ=0.1mm ~1mm) with the mean μ =3mm. 

 

Fig.3.6: Error of the Stress Concentration Factor 

 

Fig.3.6 shows the errors of the mean and the standard deviation of the stress concentration 

factor obtained from SFEM and FEM when the standard deviation of the size of the hole is 

changed. This clearly shows the error of mean of stress concentration factor does not 

change a lot, but the error of standard deviation becomes larger as the standard deviation of 

the size of the hole becomes larger. The error becomes 35.16% when the standard deviation 

of size of hole is 1mm.  

In order to investigate the cause of the error, we show the response surface of  1 , ;  J  

35.16%

3.87%

0.503% 0.594%
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when the standard deviation is 1mm in Fig.3.7. As shown in the figure,  1 , ;  J

becomes less than 0 when the deviation length is less than -3( 3l   ). This is because the 

mean minus 3 times of the standard deviation (3σ) in this case means that the radius of the 

hole becomes negative value. This negative radius is not appropriate for problem definition. 

It is concluded that proper problem definition is necessary when we use the proposed 

SFEM. It is noted that a good agreement is observed between the results from the response 

surface of  1 , ;  J and  1 , ;  J  within -5  to +5 range when the standard 

deviation is 0.1 to 0.8. 

 

 

Fig.3.7: Response Surface of  1 , ;  J  

(Standard Deviation is 1mm) 

Thus we can understand that in the example of the uncertainty in the size of circular hole, 

when the standard deviation of the size of circular hole is large, it becomes unsuitable 

( )
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problem because the size of circular hole can become negative with relatively high 

probability. It is concluded that proper problem definition is important when we use the 

proposed SFEM. Based on the above, in section 3.2, we will develop an SFEM which can 

define inherent uncertainty of non-normal distribution, such as the log-normal distribution, 

by which negative size of the shape can be avoided in the problem definition. 

 

(2) A Cruciform Weld Joint with Uncertainty in the Magnitude of Misalignment 

In this section, we assess a cruciform weld joint with uncertainty in the magnitude of 

misalignment by the developed SFEM. The cruciform weld joint shown in Fig. 3.8(a) is 

considered with the mesh shown in Fig. 3.8(b).  

 

 

 

Fig.3.8: The Cruciform Weld Joint 

In the rule of IACS(1999) for tolerance of misalignment, the magnitude of the 

misalignment is restricted within t/3 where t is the thickness of the plate. In this problem, 

we define the mean of misalignment as 0mm and the standard deviation as 1.333mm, so 
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that 3 times of the standard deviation (3σ) becomes equal to t/3 where the plate thickness 

t=12mm. It is also assumed that the distributed load p =78.4 2N/mm , symmetry boundary 

condition is applied to the boundary 1 　 as shown in Fig.3.8(a). The validity of the 

proposed method is discussed by comparing the result of the method with the MCS solution 

using the deterministic FEM for the same mesh size. 

 

 

Fig.3.9:   Model of Linear Deformation 

 

1) Setting of the Uncertainty of Misalignment 

First, we will describe about the deviation length of mesh (the deviation length ( )l  and 

coefficient of the degree of shape change for each node ( , )i i  ) with change in the 

magnitude of misalignment. As shown in Fig.3.8 and 3.9, we assume that “area: A” moves 

with the distance l to the x-direction, and each node in “area: C” moves in parallel to the x-

direction with the movement of “area: A”, and each node in “area: B” and “area: D” moves 

to the x-direction in a linear relationship with the movement of “area: A”. For example, 
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when the deviation length of the node 1 (representative node) is set as l, the deviation 

length of the node 2 is 2l/3, the node 3 is l/3, the node 4 is l/5, the node 5 is l, and so on. By 

this concept, the coefficient of each node ( , )i i  is obtained. 

 

2) Analysis Results by SFEM  

Fig.3.10 shows the response surface of the stress in y-direction at a particular node (point A 

in Fig.3.8(a)) obtained by SFEM. A good agreement is observed between the results from 

the stochastic response surface and the reference values by usual deterministic FEM. 

 

 

Fig.3.10: The Response Surface of Stress 
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Table 3.2 Statistics of the Stress Concentration Factor 

 
SFEM FEM(MCS) SFEM_PCE 

Mean 2.85505 2.85505 2.85634 

Std.dev. 0.10543 0.10544 0.10509 

 

 

 

Fig.3.11: Stochastic Responses to Shape Uncertainty 

 

Fig.3.11 show the probability density distributions of the stress concentration factor 

obtained from the SFEM and the FEM of 3000 samples. A similar distribution is obtained 

and the mean and standard deviation of the FEM(MCS), SFEM and SFEM_PCE is also 

almost same as indicated in the table in Fig.3.11. 

( / )y pk  

MCS
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Form the results in this section, it can be concluded that the proposed methodology is valid 

and effective for probabilistic estimation of the misalignment of cruciform weld joint. 

And we can find that the stress in point A is increased 2.1 times when the deviation length 

is 2.67 mm, and the stress is increased 2.7 times when the deviation length is 4mm 

compared with that at the mean value (the deviation length is 0mm). we can consider that it 

only is a small variability compared with size of structure, but the stress at this point has 

been greatly changed. We consider that it cannot be ignored in practice from a security 

perspective.  

 

3.1.4 Conclusions 

In this section, the stochastic finite element method (SFEM) based on response surface 

methodology considering uncertainty in shape is formulated by an Hermite PCE. 

1. The validity and feasibility of the proposed method is demonstrated by two cases in 

which the uncertainty in shape exists in the size of circular hole, and in the 

misalignment of weld joint. The probabilistic characteristics (the response surface of 

stress, and the probability distribution of the response) can be accurately estimated by 

the proposed method that solves the main stiffness equation only once. 

 

2. In the example of the uncertainty in the size of circular hole, when the standard 

deviation of the size of circular hole is large, it becomes unsuitable problem because the 

size of circular hole can become negative with relatively high probability. It is 

concluded that proper problem definition is important when we use the proposed SFEM.  

 
 

3. In the proposed SFEM, the degree of freedom is increased 9 times compared to the 

deterministic finite element method. So it is considered that the computational cost 

becomes higher by increase of random variables or increase of order of approximate 

expression. However, by using the proposed method, it is possible to obtain 
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approximate response surface is theoretically reasonable from the viewpoint of response 

surface approximation concept, which is different from the Monte Carlo method with 

conventional FEM. 

4. In the proposed SFEM, only the normal distribution can be used to represent the 

inherent randomness of the shape. However, it is considered that the random parameter 

for the shape does not necessarily following a normal distribution, and may also cause 

unrealistic problems when negative size of the shape. Thus, in next section, we develop 

an SFEM which can define inherent uncertainty of non-normal distribution. 
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3.2 The Formularization of Stochastic Finite Element Method for 

Uncertainty in Shape Following Non-normal Distribution 

In this study, the Stochastic Finite Element Method (SFEM) based on response surface 

methodology is formulated for the 2D problem with uncertainty in shape following non-

normal distribution. And we develop a new algorithm which can deal with arbitrary order 

of PCE approximation. 

 

3.2.1 An Approximate Method for Non-normal Distribution 

In this section, we assume that the input random parameter (about uncertainty in shape) 

follow non-normal distribution, such as the log-normal distribution, arbitrary distribution. 

However, we can find a non-normal distribution cannot be expressed as a polynomial form 

(for example, an arbitrary normal distribution (x) can be expressed as a relation to the 

normal random variable of a standard normal distribution (θ) ( x    )), so the SFEM 

which deal with arbitrary distribution cannot be formulated. Thus, we need do to 

approximate for a random parameter (l) following non-normal distribution. This 

approximated method is proposed by Xiu and Karniadakis[32]. Here, the random parameter 

(l) following non-normal distribution is assumed to be approximated by Hermite PCE as 

follows. 

0
( ) ( )

n

i i
i

l l  


 ,                                                          (3.37) 

where, n is the order of expansion terms. il  are the unknown coefficients that need to be 

determined to define the approximating response surface. The determination method and 

approximation process of il  are expounded as follows when the random parameter is 

defined as no-normal distribution. 

Firstly, multiplying ( ) ( )t w    to both sides of Eq. (3.37), and integrating the equation, 
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the unknown coefficients il  is obtained as follows. 

( ) ( )

( ) ( ) ( )

i
D

i
i i

D

l w d
l

w d

   

     





.                                                          (3.38) 

We need to transform the fully correlated random variables l and   to the same 

probability space because the two random variables might be defined on different 

probability space. Here, let us assume that the random variable u is uniformly 

distributed in (0, 1). A transformation of variables in probability space is shown as 

follow. 

 

 

( ) ,

( ) ,

du f l dl g d

u F l G

 



 

 
                                        (3.39) 

where ( ), ( )f l F l is the probability density functions and the cumulative distribution 

function for l, respectively. It is shown as follows. 

2

2
(ln )

21( ) e
2

l

f l
l










  ,                                           (3.40) 

1 ln( ) erfc
2 2

lF l 



 
  

 
,                                           (3.41) 

‘erfc’ is complementary error function which is defined by the error function ‘erf’ as 

22erfc( ) 1 erf( ) t

x

x x e dt




    . And    ,g G   is the probability density functions 

and the cumulative distribution function for  , respectively. It is shown as follows. 

2 /21( )
2

g e 


  ,                                                 (3.42) 

1( ) (1 erf )
2 2

G 
   ,                                             (3.43) 
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The Inverse function  1 1( ),F u G (u)   is obtained by an approximation formula[34]. 

2
0 1 2

2 3
1 2 3

1sign( )( )
2 11

2
1 0 1 2

2 3
1 2 3

2

0 1 2

1 2

( ) ,
1sign( )( ) ,
2 1

ln[min( ,1 )] ,
2.515517, 0.802853, 0.010328 ,
1.432788, 0.189269,
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                        (3.44) 

Here, we have effectively transformed the two different random variables l and θ to 

the same probability space defined by  0,1u U , and substituting Eq. (3.44) into Eq. 

(3.38), the coefficients equation can be performed as follows: 

1
1 1

0
2

( ) ( )( ) ( )

( ) ( ) ( ) ( )

it
D

i
i t i

D

F u G (u) dul w d
l

w d

   

       

 

 



 ,                       (3.45) 

The coefficients can be evaluated by using a numerical integration method to evaluate the 

above integral. When the coefficients are evaluated, and substituting il  into Eq. (3.37), the 

random parameter (l) following non-normal distribution can be represented by Hermite 

PCE. 

 

3.2.2 Example for Approximation of Non-normal Distribution  

In section 3.2.1, it is expound that the random parameter (l) following non-normal 

distribution can be represented by random variable ( ) following standard normal 

distribution. In this section, the example for approximation of non-normal distribution is 

shown. As an example, we consider that the non-normal distribution is log-normal 

distribution with the mean 1   and the standard deviation 0.5  . Fig.3.12 shows the 
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probability density distributions of the random parameter (l) following log-normal 

distribution obtained from the exact results and the approximate method in section 3.2.1. 

This has been obtained by using 10000 realization of the standard random variable θ in the 

obtained response surface ( )l  . Here, we assume that the approximate expression of the 

response surface is 6th order PCE. It is noted that a good agreement is observed between 

the results. Thus it is understood that lognormal distribution l is fully expressed by response 

surface of 6th order.  

However, in order to obtain a good approximation precision for different problems 

(different distribution of input parameter), we need to adjust (to increase or to reduce) the 

order (n) of PCE approximation accordingly. In the following sections, it is developed that 

an algorithm which can deal with arbitrary order (n) of PCE approximation. 

Fig.3.12: Probability Density Estimate of l 
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3.2.3 Stochastic Finite Element Formulation 

In this section, we derive SFEM formulation involving random variable by using the 

assumption of uncertainty in shape shown in section 3.1.1 (mesh change). The SFEM 

formulation is different with the SFEM formulation in section 3.1.2. In this section, this 

method can deal with uncertainty in shape following non-normal distribution and it can also 

deal with arbitrary order of PCE approximation. The algorithm of SFEM with uncertainty 

in shape is developed in the following section. 

 

(1) Stochastic Element Stiffness Matrix 

The element stiffness matrix considering the uncertainty in shape is considered, and the 

following integration in terms of element coordinates ( , )   should be evaluated. 

     
1 1

1 1

( ) , ; , ; , ;e T d d           
 

 

     k B DB J ,                    (3.46) 

where the definition of notations can be found in section 3.1.2. | |J and B  involving 

uncertainty in shape ( )  is treated as follows. 

 

1) Representation of ( , ; )  J  

The Jacobian matrix ( , ; )  J  with the uncertainty variable ( )  is derived from Eq. (3.37), 

Eq. (3.46) and the mapping relationship    
4 4

1 1
, , ,i i i i

i i
x N x y N y   

 

 
     

 
   as follows. 
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 
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   

J

                             (3.47)

 

The determinant of the Jacobian matrix is derived by Eq. (3.47), and can be written in the 

form of the polynomial of random variable ( )  as follows. 

        2, ; , , , n
n                0 1 2J J J J  ,                (3.48) 

where l is nth order PCE approximation, which is different from section 3.1.2 where l is 1st 

order PCE approximation. Thus,  , ;  J  is 2n order PCE approximation in Eq. (3.48). 

In the following formulation, the form of the polynomial of random variable ( ) needs to 

be written as the form of Hermite polynomial ( )   because we will use orthogonality of 

the polynomial. 

     
2 2

0 0
, ; , , ( )

n n
i

i i i
i i

         
 

    J J J ,                   (3.49) 

where, n is order of PCE approximation for the uncertainty of shape following an arbitrary 

non-normal distribution. We can see that 2n order of PCE approximation is obtained from 

the arbitrary order of PCE approximation. It is noted that  ,i  J  can be calculated based 

on the author developed automatic transformation algorithm which is introduced in section 

3.2.4.  

2) Representation of B   

Generally in the finite element formulation, the component, AN x  and AN y  , in the

B matrix is depicted as follows. 
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
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      

J .                                     (3.50) 

Using Eq. (3.49), we can arrange Eq. (3.50) as follows. 
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                (3.51) 

Therefore, when we arrange Eq.(3.51), ( , ; )  B  can be written as shown below.  

 
 

 
0

1, ; ,
, ;

n
u

u
u

     
   

  


B B
J .                             (3.52) 

3) Approximation of 
 

1
, ;  J  

In this section, it is assumed that  1 , ;  J  can be approximated by an arbitrary order 

(p order) of Hermite PCE as follows. 

 
 

0

1
, ;

p

u u
u

A 
   




J  ,                                         (3.53) 

where, uA  are unknown coefficients of approximated polynomial,  u   are the basis 

functions, represented by Hermite polynomial, and p+1 is the number of expansion terms. 
 

The unknown coefficients, uA , can be decided as follows. 

Firstly, Eq. (3.53) is rewritten as follows by using Eq. (3.49) and Hermite polynomial. 

   
2

0 0
, ( ) 1

pn

i i u u
i u

A     
 

   J  .                               (3.54) 
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Multiplying ( ) ( )t w    to both sides of Eq. (3.54), and integrating the equation, we have 

following equation. 

           
2

0 0
1

pn

i i u u t t
i u

A w d w d           
 

  

     J  .        (3.55)
 

This equation can be depicted as follows when consider  (Eq.(3.56)) ( )tD
w d     

 (Eq.(3.56)) t   

       
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0 0

pn

i u i u t t
i u

A        
 

  J .                         (3.56) 

This means that the following simultaneous equations about the coefficients, iA , are 

obtained. 
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where e
utJ   is      

2

0

n
e

i i u t
i

     


 J .  

Then the unknown coefficients of approximation polynomial, uA , is derived by solving 

the above simultaneous equations. 

When we substitute Eq. (3.53) into Eq. (3.52), it is found that Eq. (3.52) contains both 

 u   and u . Thus a polynomial transformation will be implemented for Eq. (3.53) as 

follows. 

 
 

0 0

1
, ;

p p
u

u u u
u u

A A  
    

 


 J .                                         (3.58) 
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Finally, the element stiffness matrix is obtained by rearranging Eq. (3.46) using Eq. (3.52) 

and Eq. (3.58) which is represented by the Hermite polynomial of order 2n+p based on the 

basis functions, ( )i  . 

 
2

0

n p

i
i

 




  e e
ik k  .                                               (3.59) 

It is noted that “Transformation from Hermite polynomial to general polynomial” in Eq. 

(3.58) and “Transformation from general polynomial to Hermite polynomial” in Eq. (3.49) 

is done automatically by the author developed transformation algorithm in this study. 

 

(2) Force Vector 

The force vector is changed when the shape of the analysis domain is changed and the force 

is applied to the moved boundary. Here the force vector will be derived through the same 

consideration in the element stiffness matrix and it can be represented by the Hermite 

polynomial of order n. 

0
( )

n
e e

i i
i

 


 f f .                                              (3.60) 

(3) Assembly of Global Stiffness Matrix 

In this study, it is very difficult to assemble a global stiffness matrix for each element like 

the usual finite element method because order of PCE approximation is introduced into the 

equation as a parameter. Thus, we assemble a global stiffness matrix separately for the 

element stiffness matrix ( e
ik (i=0,…2n+p)) of each order (i) in Eq. (3.59). Finally, we can 

obtain the global stiffness matrix and the force vector which contains both order of PCE 

approximation (p) and that of random variable (n). 
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n p

i i
i

 




  k k ,                                               (3.61) 
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 
0

n

i i
i

 


 f f .                                               (3.62) 

 

(4) The Stiffness Equation of SFEM 

Formulation of SFEM is performed by using the stiffness matrix, the force vector and the 

approximate response surface of the displacement. 

The global stiffness equation involving random variable ( ) is written as follows: 

  k u f  ,                                                       (3.63) 

where the global stiffness matrix, k  (Eq. (3.61)), and the force vector, f  (Eq. (3.62)), are 

represented by basis functions, ( )i  . The unknown displacement response u of Eq. (3.63) 

is also approximated by using Hermite polynomial of q order. 

 
0

q

i i
i

 


 u u .                                                  (3.64) 

Substituting Eq. (3.61), Eq. (3.62) and Eq. (3.64) into Eq. (3.63) the stiffness equation 

becomes as follows: 
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 
  k u f  ,                          (3.65) 

where the global stiffness matrix k is approximated by 2n+p order polynomial. Thus, the 

order (q) of PCE approximation of Eq. (3.65) is assumed as 2n+p. 

Multiplying both sides of Eq. (3.65) by ( ) ( )t w   , integrating the equation, we have: 

         
2 2

0 0 0

n p n p n

i j i j t i i t
i j i
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 

  

    k u f .             
 
(3.66) 

Thus the global stiffness equation can be derived as follows: 
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where, 
2

0
( ) ( ) ( )n p

tj i i j ti
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t i i ti
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 F f . 

Compared with the usual deterministic global stiffness equation, it involves not only the 

unknown displacement of deterministic part 0( )u  but also involves the unknown 

displacement of stochastic part (the stochastic part of order 1 1( )u , the stochastic part of 

order 2 2( )u ,  the stochastic part of order 2n+p 2( )n pu ). And the uncertainty of stress 

can be assessed by Eq. (3.52) with Eq. (3.53), Eq. (3.64) after the displacement is obtained. 

 
3 2

0

n p

i i
i

 




   σ = DB u σ .                                          (3.68) 

 

 

3.2.4 Algorithm of SFEM with Uncertainty in Shape 

In this section, we will expound algorithm of proposed SFEM. This section falls into two 

parts: Overview of analysis procedure and Algorithm of SFEM.  

 

(1) Overview of Analysis Procedure 

In the above formulation of SFEM, we find that we need to develop a new algorithm which 

can deal with an approximate polynomial of arbitrary order (n) when input parameter of 

uncertainty in shape following non-normal distribution and an approximate polynomial of 
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arbitrary order (p) of 1/|J|. In this section, it is proposed that an algorithms applicable to 

arbitrary approximate order n and p. And the algorithm is shown in Fig.3.13. 

 

 

Fig.3.13: An Overall Flowchart 

 

Step 1: Pre processing 

In the pre-processing, we need to determine the input parameters such as 

, ( 1,2... ), , ( 1,2... ),i i ji nodes n l j n p    , for use in the next step solver, where, the ,i i   

are the coefficients of the degree of shape change and it is given in section 3.1.1. The n is 



 

87 
 

the order of PCE approximation about input parameter (uncertainty of shape), and the 

0 1, , , nl l l  are the unknown coefficients that can be determined by refer to section 3.2.1. 

The p is the order of PCE approximation of  1 , ;  J . 

Step 2: Solving 

In this step we will use the above input parameter as input data to the stochastic finite 

element method (SFEM). 

Step 3: Post processing 

In the post processing, the response surface of the displacement response/the stress 

response of each node is evaluated by using the proposed SFEM, and the statistics of 

response (mean value, standard deviation) and probability distribution can be obtained by 

the obtained response surface. 

It is noted that the SFEM in step2, we need to develop an algorithm which can deal with 

arbitrary approximate order n and p automatically. In the next section, the algorithm of 

SFEM will be explained. 

 

(2) Algorithm of SFEM 

Fig.3.14 shows the Flowchart of the SFEM.  
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Fig.3.14: Flowchart of the SFEM  

1:Step

2 :Step

3:Step

4 :Step

5:Step
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7 :Step
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Step1: 

The Jacobian matrix is computed using Eq. (3.47). And the determinant for the zeroth order 

 0 , J , the first order  1 , J , the second order  2 , J , …, and the 2nth order

 2 ,n  J (see Eq.(3.48)) is also computed, respectively. 

Step2: 

We can find that it is necessary to transform the general polynomial form  
2

0 ,n i
ii   


 J

to the Hermite polynomial form  
2

0 , ( )n
i ii    


 J as shown in Eq.(3.49). In this study, 

we developed an algorithm to realize automatic transformation from the general polynomial 

form to the Hermite polynomial form. Here, as an example, we will explain the polynomial 

transforms of the m order such as the following equation. 

0 0
( )

m m
i

i i i
i i

a b  
 

  .                                         (3.69) 

 

Table 3.3 The Coefficients ijt of θ of Hermite Polynomial  i   

 

 

Here, we assume that the coefficients ( 1,2, )ia i m( 1,2, )( 1,2, )a i m( 1,2, ) of Eq.(3.69) is given. And a table is 

also shown in which i is order of polynomial,  j is the jth power of θ, and the values ijt  is 
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coefficients of j in each order, it is corresponding to the basis function of Table 2.1. The 

coefficient ib of the Eq.(3.69) can be computed by the following procedure. 

(i)  

Firstly, let me consider the coefficient ma of the highest order term ( m ). When the Table 

3.3 is used, the m
ma   can be expressed as follows. 

1

0( ) mm j
m m m m mjja a a t   




   ,                                          (3.70) 

where, m mb a . However, we can see that Eq.(3.70) has a remainder term 1

0

m j
m mjja t 



 . 

This coefficient need be added to ( 0,1, 1)ja j m   that is, the coefficient ja  can be 

given as follows. 

( 0,1, 1)j j m mja a a t j m    .                                           (3.71) 

For example: when m=3 is considered, the 3
3a  can be rewrite as  3 3

3 3 3( 3 ) 3a a a       in 

which 3
3( ) 3     , 30 0t   , 31 3t   , 32 0t  . By adding the remainder term 33a   to 

the coefficient 1a  of 1 on the left side of equation (3.69) , we can obtained a new 

coefficient 1 1 33a a a  , and execute the following steps. 

(ii)  

Secondly，we consider the coefficient  1ma 
 of second highest order term 1m  . By using  

the same method as (ⅰ), 1 1m mb a   can be obtained.  Thus, the coefficient ja  on the left 

side of equation (3.69) can be expressed as 1 1 ( 0,1,2, 2)j j m m ja a a t j m    ，  because 

terms less than m-2 is remained. 

(iii)  

Finally, the coefficients of  ( 2,3, )m j j m    can be obtained in order by reducing the 

order. 
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Thus, by the above concept, the polynomial of 2n order can be automatically transformed 

into Hermite polynomial. 

Step3: 

In step3, the reciprocal of the Jacobian determinant   1 , ;  J can be approximated by 

Hermite PCE of p order. Here, based on the same concept as step2, an algorithm which can 

deal with an arbitrary approximate order (p) is developed to achieve the automatic 

transformation of Eq. (3.58), and another algorithm is also developed to achieve the 

approximation of Eq. (3.53) for an arbitrary approximate order (p). 

Step4: 

A strain matrix  , ;  B  involving random variable ( )  is generated. 

Step5: 

The element stiffness matrix is generated in step5. 

Step6: 

The global stiffness matrix is assembled for each order. 

Step7: 

The global stiffness equation is made (Eq.3.67), and by solving the equation, the unknown 

response of displacement can be evaluated.  Finally, we can obtain the response surface of 

the displacement at each node (Eq. (3.64)) and the response surface of stress (Eq. (3.68)). 

As described above, in this study, we developed an algorithm that can deal with arbitrary 

order for uncertainty of shape following non-normal distribution. 
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3.2.5 Numerical Example 

In this study, the validity and feasibility of the proposed method of structural analysis is 

discussed by two examples, (1) A plate with a circular hole at the center with uncertainty in 

the size of a circular hole, (2) A cruciform weld joint with uncertainty in the weld toe radius.   

(1) A Plate with a Circular Hole with Uncertainty 

In this example, the problem of a plate with a circular hole with uncertainty problem is 

discussed again. However, the case is different with section 3.1.3(1) because a negative size 

of the shape will be avoided by assuming the uncertainty of shape following log-normal 

distribution. 

 

 

 

Fig.3.15:  The Geometrical Deformation of the Hole 

A plate with a circular hole (Fig. 3.15(a)) is considered and mesh is shown in Fig. 3.15(b). 

It is assumed that the distributed load p =78.4 2N/mm , and symmetry boundary condition is 

applied to the boundaries, 1 　and 2 　. The validity of the proposed method (SFEM) is 

discussed by comparing the result of the method with the MCS solution of the deterministic 

1

2

278.4 /p N mm 

20xL mm

:Area A

:Area B

: 581
528

Nodes
Elements：
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problems (FEM) for a same mesh size. 

In this case, the coefficient ( , )i i   of each node is defined based on the considering method 

shown in the previous section 3.1.1 when the radius of the hole changes with length l. 

However, in order to maintain a low aspect ratio (close to a square) for the elements near 

the circular hole, we need adjust coefficient ( , )i i   of each node appropriately, to prevent 

lower analysis accuracy due to the distortion of the element. The effect of defining of the 

coefficient ( , )i i   of each node on accuracy will be discussed in later section. 

Here, a circular hole following log-normal distribution will be considered. It is assumed 

that minimum value of the radius of a circular ( Rl ) is 2mm, and the deviation length is 

assumed following log-normal distribution with mean μ =1mm, and the standard deviation 

σ=0.5mm. And the deviation length (Eq. (3.37)) is approximated by Hermite PCE of 6th 

order (n=6), and  1 , ;  J  is also approximated by Hermite PCE of 6th order (p=6). 

Thus, we deduce that the response surface of stress should be an approximate polynomial 

of 30th order (3n+2p) based on the approximate order of input (n=6) and the approximate 

order of  1 , ;  J  (p=6). 

Fig.3.16 shows the stochastic response surface of the stress at a particular node (point A) in 

y-direction. The equation in Fig.3.16 is approximate expression of the response surface by 

SFEM, where, the 8th order approximate expression of the response surface is shown 

because the influence is small after 9th order. We can find that good agreement is observed 

between the results from the stochastic response surface and the reference values obtained 

by used FEM within the wide limits. Note that the approximation accuracy of the response 

surface is worse near the minimum value of radius of the circular ( 2mm)Rl  and maximum 

of radius of the circular ( 11.49mm)Rl  . In order to investigate the effect of them on analysis 

results, we also show the probability density distributions and statistics in the following.  
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Fig.3.16: The Response Surface of Stress (Logarithmic Distribution) 

 
Fig. 3.17: Stochastic Responses to Shape Uncertainty 
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Table 3.4 Statistics of the Stress Concentration Factor 

 
SFEM FEM(MCS) SFEM_PCE 

Mean 3.10553 3.10518 3.10574 

Std.dev. 0.03650 0.03580 0.03605 

 

Fig.3.17 shows the probability density distributions of the stress concentration factor 

obtained through the SFEM and FEM through the deterministic FEM with MCS 

(FEM(MCS)) with 10000 samples. The distribution by SFEM has been obtained by using 

10000 realization of the standard random variable θ in the obtained response surface ( ( ))k   
of the stress concentration factor by the proposed SFEM. It is observed that the probability 

distribution obtained by the SFEM has good agreement with the result of MCS with the 

conventional FEM. Also, as shown in the Table3.4, we find that the statistics are 

reasonably well estimated by the proposed SFEM and “SFEM-PCE” when compared with 

those obtained from FEM(MCS). Thus, we can consider that the probability of occurrence 

of θ is very small near 2mmRl  and 11.49mmRl  , so that the bad accuracy of the response 

surface shown in Fig3.16 do not affect to the probability distribution of the response in 

Fig.3.17 and the statistics in Table 3.4. 

Here, we also investigated the computational time of the proposed SFEM of this section 

compared with that of MCS. And two cases are considered, i.e., case1: the deviation length 

(l) following normal distribution and case2: the deviation length (l) following non-normal 

distribution uncertainty. In the case 1, n and p in Eq. (3.67) are 1 and 6, we can know that 

the degree of freedom is D×9 in which D is the degree of freedom for deterministic 

problem, and it takes 1.5 hours for solving Eq. (3.67). In the case 2, we can know that it has 

degree of freedom of D×30 when n and p in Eq. (3.67) are 6 and 6, and to solve the 

Eq.(3.67) takes 7.65 hours. On the other hand, the computational time of MCS is shown 

which is taking 13.9 hours by FEM of 10000 samples. We can find that compute time for 

case 1 is reduced evidently. However in the case 2 the computational time is only reduced 
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by half compared with the MCS. In this study, the obtained stiffness matrix of the degree of 

freedom D×(2n+p+1) is not a  band matrix. This is because the order of PCE approximation 

is introduced into the equation as a parameter, so it is very difficult to assemble a global 

stiffness matrix for each element like the usual finite element method. In this study, we use 

the simple Gaussian elimination to solve the equation which is not good solution for this 

matrix. As a future work, an efficient numerical analyzing technique will be discussed for 

to realize quick solving of this matrix. 

In conclusion, we can understand that the uncertainty of shape following non-normal 

distribution can be evaluated by using the program of SFEM which can deal with an 

arbitrary approximate order. And we can also find that a good agreement can be observed 

even when there is bigger deviation length as shown in Fig3.16 ( 7.92mmRl  ). 

 

(2) A Cruciform Weld Joint with Uncertainty in the Weld Toe Radius 

In this example, we assess a cruciform weld joint with uncertainty in radius of weld toe by 

the developed SFEM. The cruciform weld joint in Fig. 3.18(a) is considered and the mesh 

is shown in Fig. 3.18(b).  

In this problem, we define the radius of weld toe following a lognormal distribution with 

the mean as 0.9667mm and the standard deviation as 0.474mm and minimum value of 

radius of weld toe is defined as 0.3mm based on the measurement result data of shape of 

welding toe in References [40]. 

Here the minimum value of radius of weld toe (0.3mm) and mean (0.6667mm) and the 

standard deviation (0.474mm) for the deviation length of radius is used as input data. It is 

also assumed that the distributed load p =78.4 2N/mm , symmetry boundary condition is 

applied to the boundary 1 1Γ , Γ　 　 as shown in Fig.3.18(a). The validity of the proposed 

method is discussed by comparing the result of the method with the MCS solution using the 

deterministic FEM for the same mesh size. 
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In this case, the coefficient ( , )i i   of each node in area A of Fig.3.18(b) is defined based 

on changing mesh automatically when the radius of weld toe changes with length l in 

Fig.3.18(a). And in area B and area C, the coefficient ( , )i i   of each node can be defined 

based on an idea in which the each node in area B or area C can move automatically when 

the each node in area A is moved. In area D, we define the coefficient ( , )i i   of each node 

as (0, 0) because it is considered that the each node in area D is not moved. 

 

 

(a) Model 

 

x

y

p

1

25mm
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(b) Mesh 

Fig.3.18: The Cruciform Weld Joint 

 

Fig.3.19: Approximation of Probability Distribution 
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Fig.3.19 shows the probability density distribution (Exact) of the deviation length (l) and 

the probability density distribution obtained through polynomial approximation 

(
0

( ) ( )
n

i i
i

l l  


 ) when the n are 2, 4, 6 respectively.  

As shown in the Fig.3.19, we can find that the result by the approximation of PCE of low 

order (n = 2) has a large deviation from the exact distribution and the distribution in the 

vicinity of the lower limit of the left end. Thus, we will use the approximation of PCE of 6th 

order for analysis.  

Fig.3.20 shows the stochastic response surface of the stress at point A and the reference 

values obtained by used FEM. Here, the order (p) of the approximation of PCE of 

 1 , ;  J  is assumed as 2, 4, 6, and we can find that a good agreement is observed 

between the results from the reference values and the stochastic response surface when the 

order (p) of the approximation of PCE is 6. And Fig.3.20 also shows the stochastic 

response surface which is obtained through the approximation of input parameter (the 

deviation length (l)) of low order (n=2) and the approximation of  1 , ;  J of 6th order 

(p=6). We can understand that the response surface has bad estimation accuracy when the 

order of approximation of  1 , ;  J  is 6th but the order of approximation of the 

deviation length (l) is 2nd. 

From the above, it is very important that appropriately define the order (p) of 

approximation of  1 , ;  J  and the order (n) of approximation of the input random 

parameter (l) should be decided appropriately when considering uncertainty in shape 

following non-normal distribution. 
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Fig. 3.20: The Response Surface of Stress for Different Degree 

 

Fig.3.21: Stochastic Responses to Shape Uncertainty 
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Table 3.5 Statistics of the Stress  

 
SFEM FEM(MCS) SFEM_PCE 

Mean 199.1278 198.9900 199.3325 

Std.dev. 15.3262 15.2963 15.3235 

 

Fig.3.21 shows the probability density distributions of the stress concentration factor 

obtained through the SFEM which has been obtained by using 10000 realization of the 

standard random variable θ in the obtained response surface of the stress concentration 

factor by the proposed SFEM and FEM(MCS).  

Also, it is observed that the probability distribution obtained by the SFEM has good 

agreement with the result of MCS with the conventional FEM in which the MCS obtained 

by using 5000 realization. As shown in the Table 3.5, we find that the mean and standard 

deviation of stress are reasonably well estimated by the proposed SFEM when compared 

with those obtained from FEM.  

The results in this section provide a possibility for uncertainty estimation of the response 

using the proposed methodology when the input parameter is considered as non-normal 

distribution. And we also can find that the stress can be reduced when the radius of weld 

toe becomes larger, such that when the radius of weld toe is increased from 0.54mm to 

1.85mm, the stress is reduced from 186.71Mpa to 140.81Mpa. 

 

3.2.6 Conclusions 

In this section, the stochastic finite element method (SFEM) based on response surface 

methodology considering uncertainty in shape is formulated by an Hermite PCE, in which 

the uncertainty in shape is following normal distribution. And by the proposed method, the 

probabilistic characteristics (the response surface of stress and the probability distribution 

of the response) can be accurately estimated.  
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In the proposed algorithm, it is possible that the order of approximate of uncertainty of 

shape is given as an input parameter. And highly accurate analysis result can be obtained by 

defining appropriate the order of approximate. 

We developed SFEM program by using C language which can deal with a two-dimensional 

problem considering uncertainty in shape with a higher order of approximate (non-normal 

distribution). And the validity and feasibility of the proposed method is demonstrated by 

two cases in which the uncertainty in shape exists in the size of circular hole, and in the 

radius of weld joint. 

In the example of the uncertainty in the size of circular hole, the section 3.1.3(ⅰ) discussed 

a case for the uncertainty in the size following normal distribution. The negative size of the 

radius is occurred because the lower limit value does not exist in the normal distribution. 

Thus correct analysis results cannot be obtained when the standard deviation becomes 

larger. In this study, we can see that negative size of the shape can be avoided because the 

non-normal distribution has a lower limit value. So, it is considered that the developed 

method can be applied to more practical problem. 

 

In the proposed SFEM, the degree of freedom is increased D×(2n+p+1) times compared to 

the deterministic finite element method. So it is considered that the computational cost 

becomes higher by increase of random variables or increase of order of approximate 

expression.  

In this study, we can find that computational time is reduced by using proposed SFEM 

compared with MCS. However, we also find that the computational time is increased 

significantly when the degree of freedom is increased. In formulation, we can understand 

that the obtained stiffness matrix for the degree of freedom D×(2n+p+1) is not a band 

matrix. Thus solving Eq.(3.67) takes a lot of time by using Gaussian elimination. It is 

considered that Gaussian elimination is not good solution for this matrix. As a future work, 

an efficient numerical analyzing technique will be discussed to realize quick solving this 

matrix (reduction of computational time). 
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3.3 Evaluation of Accuracy of the Analysis Method 

In this section, we will discuss the accuracy of the proposed analysis method by an example 

for the uncertainty in the size of circular hole which is same as the problem in section 

3.1.3(1).  

First, we investigate the effect of nodal point movement method of mesh on accuracy of the 

analysis method because the mesh is moved when the shape is changed. Here the nodal 

movement methods of two cases are discussed in the following. 

Case(1): 

As show in Fig.3.22, it is assumed that when the nodal point 1(representative node) and the 

points on the circle of the hole moves length l in the direction of the radius, the all nodal 

points from the nodal point 2 will be moved by a linear relationship. For example, the nodal 

point 2 is moved with length 5l/6, the nodal point 3 is moved with length 4l/6. Thus, the 

coefficient ( , )i i  of all nodes can be defined in this way. 

 
Fig.3.22 Mesh for Case1 
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Case(2): 

As show in Fig.3.23, it is assumed that the nodal point 1(representative node), the points on 

the circle of the hole moves length l and adjacent nodal points (including the point 2) have 

a same movement length l in the direction of the radius, and the all nodal points around 

these nodes will be moved by a linear relationship. For example, the nodal point 2 is moved 

with length l, the nodal point 3 is moved with length 4l/5. The coefficient ( , )i i  of all 

nodes can be defined by this way. 

 

 

Fig.3.23 Mesh for Case2 
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and that when the radius is μ-2σ or radius is μ+2σ in Table3.7. Here, we consider these 

results as indices representing the variation of responses when the radius varies from the 

mean. 

 

Table 3.6 Analysis Result for Three Radiuses (in Point A [MPa]) 
 

 Radius Theoretical value Case 1 
Error 

(%) 
Case 2 

Error 

(%) 

μ-2σ 2mm 239.51 240.40 0.37 239.51 0 

μ 3mm 243.36 243.54 0.07 243.41 0.02 

μ+2σ 4mm 249 248.03 0.39 248.77 0.09 

 
 

Table 3.7 Result for stress variability [MPa] 
 

Variability Theoretical value Case 1 Case 2 

-2σ 3.85 3.14 3.9 

2σ 5.64 5.25 5.36 

 

 

As show in Table 3.6, when this radius is μ (3mm), the error is 0.07% compared to 

theoretical value. And when the radius is μ-2σ (2mm) or μ+2σ (4mm), the errors is 0.37% 

and 0.39% respectively. We can consider that the case 1 has an appropriate result by these 

small error values. However, we can see that the errors for the radius of 2mm or 4mm 

become large compared to the error for radius of 3mm. 
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And by the results for stress variability in Table 3.7, we can find that result for stress 

variability has a difference from the theoretical value especially in case 1 especially when 

the radius of circular hole is smaller than the mean value.  

However, the case 2 has a small error by Table3.6 in which error are 0%, 0.02% and 0.09% 

respectively when the radiuses are is μ-2σ, μ , μ+2σ. And Table 3.7 also shows the case 2 

has a small variability compared to case1. 

In order to investigate the cause of this error, the meshes near circular hole of case 1 and 

case 2 are compared when the radius is μ-2σ (2mm); that is, the meshes near the stress 

concentration part is compared for the two different nodal point movement method, and the 

meshes are shown in Fig.3.24 and Fig.3.25. 

 

 

Fig.3.24: Mesh near Circular Hole for Case1 
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Fig.3.25: Mesh near Circular Hole for Case2  

 
In Fig.3.24, it is understood that the mesh near the circular hole is distorted as the radius 

becomes small because node 1 and node 2 have different movement length. Especially, the 

elements with high aspect ratio is observed (red box in Fig.3.24) around the circular hole. 

That is, it is considered that the calculation accuracy will be influenced to some extent if 

the mesh for the elements around the circular hole produces distortion when the shape is 

changed. However, by the nodal point movement methods of case 2, we can see the mesh 

for the elements around the circular hole (Fig.3.25) has a good shape compared to case 1 

when the radius is μ-2σ. 

As described above, by using the nodal point movement method of case 2, the elements of 

the stress concentration part (elements of the red box) can maintain a lower aspect ratio 

(close a square) compared to case 1. That is, in the case 2, the mesh of a good shape is kept 

in the large stress gradient direction. Thus, we can understand that the error is reduced due 

to the influence of the mesh movement when the nodal point movement method is proper 
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defined. It is concluded that we can obtain accurate results by the proposed methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

109 
 

4. Stochastic eigenvalue Problem 

Eigenvalue analysis is an important problem in a variety of fields. In structural mechanics 

in the field of naval architecture and ocean engineering, eigenvalue problems commonly 

appear in the context of, e.g. vibrations and buckling.  In eigenvalue analysis, the physical 

characteristics are not deterministic, such as mass, geometries, stiffness in the structures. 

Such uncertainties may cause serious problems because the influence of the uncertainties is 

in general unknown. The proposed method makes use of an Hermite polynomial chaos 

expansion (PCE) (response surface method) to represent the inherent uncertainty and the 

response (eigenvalues and eigenvectors) uncertainty, and involves a mathematical 

formulation which is a natural extension of the deterministic eigenvalue problem to the 

space of random variables. In order to solve the stochastic eigenvalue problem, some 

researchers have tried to propose some methods (see chapter 1.1.3(2))[28-29]. However, we 

found that these methods sometimes cannot give good results. Thus, in this chapter we have 

proposed two methods. Firstly, the improved stochastic inverse power method (I-SIPM) is 

proposed. The method is different with previous stochastic inverse power method. The 

minimum eigenvalue and eigenvector of stochastic eigenvalue problems can be evaluated 

by using the proposed method. Secondly, the stochastic Wielandt deflation method 

(SWDM) is proposed which can realize to evaluate ith(i>1) eigenvalues and eigenvectors of 

stochastic eigenvalue problems. This is very important for solving natural mode and 

buckling mode analysis problem. Next, three example problems are investigated to show 

the validity of two new methods compared with a Monte-Carlo simulation, i.e. the vibration 

problem of a discrete 2-DOF system, the buckling problem of a continuous beam with 

uncertainty in section dimension and the buckling problem with uncertainty in Young’s 

Modulus. Finally, the uncertainty estimation for the dynamic damper problem is discussed 

by using proposed method. The probability of resonance occurrence is shown when the 

dynamic damper has a stochastic mass and stiffness. 
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4.1 Statement of the Stochastic Eigenvalue Problem  

The generalized eigenvalue problem can be written as follows. 

Ku Ru ,                                                            (4.1) 

where K is a stiffness matrix with dimension N. R is mass matrix in vibrations analysis or 

it is initial stress matrix in buckling analysis with dimension N. The generalized eigenvalue 

problem may be converted to a standard eigenvalue problem. 

Au u ,                                                            (4.2) 

where A is -1R K , Note that R is regular (nonsingular) matrix in general vibration and 

buckling problems. The objective of solving the deterministic eigenvalue problem is to find 

a scalar eigenvalue ( ) and the corresponding eigenvector ( )u by using the deterministic 

eigenvalue equation (Eq. (4.2)).  

For systems with uncertain parameters, the equation switches to the stochastic standard 

eigenvalue problem given as follows. 

( ) ( ) ( ) ( )   A θ u θ θ u θ ,                                             (4.3) 

where ’ is used to indicate involving random variables ( )θ . 1( ) ( ) ( )  A θ R θ K θ , ( )K θ is a 

stiffness matrix involving random variables ( )θ , and ( )R θ is a mass matrix involving 

random variables ( )θ  in vibrations analysis or it is initial stress matrix involving random 

variables ( )θ in buckling analysis. Thus the stiffness matrix ( )K θ  and matrix ( )R θ are 

considered as a stochastic matrix. The stochastic stiffness matrix ( )K θ can be represented 

by using limited PCE with 1 1n   terms of basis functions. 

1

0
( ) ( )

n

i i
i

  K θ K θ .                                               (4.4) 
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When the uncertain physical characteristics are considered in mass or initial stress matrix, 

the stochastic matrix ( )R θ  also can be represented by using PCE with 2 1n   terms of 

basis functions. 

2

0
( ) ( )

n

i i
i

  R θ R θ .                                               (4.5) 

Thus, ( )A θ  can be represented as follows.  

3

0
( ) ( )

n

i i
i

  A θ A θ ,                                                (4.6) 

where 3n  is the order of expansion terms by the sum of the approximate order of 1( )R θ

and 1 2n n .. See Appendix 1 and Appendix 2 for derivation of the coefficients ( )iA . The 

coefficient matrix ( )A θ  is considered as stochastic by Eq.(4.6), thus the eigenvalues   and 

eigenvectors u also become functions of the random variables such as ( ) θ and ( )u θ . 

Accordingly, the stochastic eigenvalues response and eigenvectors response can be 

approximated by using PCE with n  terms of basis functions. 

0
( ) ( )

n

i i
i

 


  θ θ ,                                                 (4.7) 

0
( ) ( )

n

i i
i

  u θ u θ .                                                 (4.8) 

The purpose of the stochastic eigenvalue problem is to derive unknown PCE coefficients

( , )i i u of eigenvalues and eigenvectors. Substituting Eq. (4.6), Eq. (4.7) and Eq. (4.8) into 

Eq. (4.3), the stochastic generalized eigenvalue equation becomes as follows. 

3

0 0 0 0
( ) ( ) ( ) ( )

n n n n

i i i i i i i i
i i i i


   

   
          

   
   A θ u θ θ u θ ,                    (4.9) 

where the coefficient matrix ( )A θ  is approximated by 3
thn order polynomial as shown in 
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Eq. (4.9) . Thus, in this study, the order (n) of PCE approximation of Eq. (4.7)(4.8) is 

assumed as 3n . 

Multiplying both sides of Eq. (4.9) by ( ) ( )t W θ θ , integrating the equation over the 

stochastic domain (  (Eq.(4.9)) ( )tD
W d θ θ θ  (Eq.(4.9)) t  θ ), we have following 

equation. 

 
3 3 3 3

0 0 0 0
( ) ( ) ( ) ( ) ( ) ( )

n n n n

i j i j t i j i j t
i j i j


   

          A u θ θ θ u θ θ θ .          (4.10) 

Thus the stochastic generalized eigenvalue equation when the t=0,…, 3n can be derived as 

follows. 

3 3
3

3 3 3 3 3 3 3 3

00 0 00 00 0

0
0 0

n i i nn

i
i

n n n n in in n n

c c

c c




        
      

      
         

      



A A I Iu u

A A u I I u
,              (4.11) 

where, 3

0
( ) ( ) ( )n

tj i i j ti
    A A θ θ θ , ( ) ( ) ( )itj i j tc    θ θ θ . 

By Eq.(4.11), we can find that it is difficult to be solved by the conventional method of 

eigenvalue analysis.  

In order to solve the stochastic eigenvalue problem, the Monte Carlo simulation (MCS) is 

usually used. The stochastic results are obtained by the solution of Eq.(4.1) (deterministic 

eigenvalue problem) again and again for many times. However, MCS needs heavy and a 

large number of calculations, and the application of MCS to practical problems is 

sometimes very difficult to get reasonable results. So, it is desirable to solve stochastic 

eigenvalues ( )i  and eigenvectors ( )iu  directly from Eq.(4.10) or (4.11). However, at 

present, there is no algorithm available to solve Eq.(4.10) or (4.11) directly. As a numerical 

algorithm to solve deterministic eigenvalue problems, the inverse power method is 

developed to compute minimum eigenvalue and eigenvector [37]. The algorithm is early 
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used for evaluating stochastic eigenvalue problems in Verhoosel et al. [28] by which 

satisfactory results sometimes cannot be obtained in the authors’ experience.  

In the following section, we improve the algorithm and develop the improved stochastic 

inverse power method formularization. 
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4.2 The Formularization of I-SIPM for Solution of the Stochastic 

Eigenvalue Problem  

In study by Verhoosel et al. [28], the stochastic inverse power method (SIPM) algorithm is 

proposed. However the correct eigenvalue and eigenvector cannot be obtained when we use 

the algorithm to solve a simple stochastic eigenvalue problem. Here, we improved step3 of 

the method in reference 28, and the improved stochastic inverse power method (I-SIPM) is 

proposed to obtain a correct eigenvalue and eigenvector. In this section, I-SIPM algorithm 

is elaborated and the formularization is provided.  

(i). The formularization for Step1 

As shown in Algorithm, the Rayleigh quotient is used to update the stochastic eigenvalue 

based on the normalized stochastic eigenvector (q)u  of the previous iteration. 

 (q 1) (q) (q)T
     u A u .                                          (4.12) 

Substituting Eq. (4.7), Eq. (4.8) into Eq. (4.12) the equation becomes as follows. 

(q 1)

0

(q) (q)

0 0 0

( )

( ) ( ) ( ) .

n

i i
i

Tn n n

i i i i i i
i i i

 



  

 

    
         

    



  

θ

u θ A θ u θ           
(4.13) 

Multiplying both sides of Eq. (4.13) by ( ) ( )t W θ θ , integrating the equation, we have 

following equation. 

(q 1)

0

T(q) (q 1) (q)

0 0 0

( ) ( )

( ) ( ) ( ) ( ) .

n

i i t
i

n n n

i k j i j k t
i j k

 





  

  

      





θ θ

u A u θ θ θ θ   
(4.14) 

Then the update equation of the eigenvalue can be shown as follows. 
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(q 1)

T(q) (q 1) (q)
2

0 0 0

1 ( ) ( ) ( ) ( ) .
( )

t
n n n

i k j i j k t
i j kt

 



  



      


u A u θ θ θ θ
θ

   (4.15) 

The deterministic part (q 1)
0( )  of the eigenvalue is calculated when t=0, and the stochastic 

parts (q 1)( )t
 of the eigenvalue can be calculated when t=1,…,n. 

 

(ii). The formularization for Step2 

The stochastic eigenvector is updated by solving the below equation. 

(q 1) (q 1) (q)    A u u .                                           (4.16) 

Substituting Eq. (4.7), Eq. (4.8) into Eq. (4.16) the equation becomes as follows. 

(q 1) (q 1) (q)

0 0 0 0
( ) ( ) ( ) ( )

n n n n

i i i i i i i i
i i i i

 

   

     
            

     
   A θ u θ θ u θ .     (4.17) 

Multiplying both sides of Eq. (4.17) by ( ) ( )t W θ θ , integrating the equation, we can obtain 

the following equation. 

(q 1)

0 0

(q 1) (q)

0 0

( ) ( ) ( )

( ) ( ) ( ) .

n n

i j i j t
i j

n n

i i i j t
i j





 



 

    

    





A u θ θ θ

u θ θ θ
                      (4.18) 

Thus when the t=0,…,n, the update stochastic eigenvector equation can be derived as 

follows. 

(q 1)
00 0 0 0

(q 1)
0

n

n nn n n





    
    

    
        

Ω Ω u ζ

Ω Ω u ζ
,                                   (4.19) 
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where tiΩ and tζ can be shown as follow. 

0
( ) ( ) ( )

n

ti j i j t
j

   Ω A θ θ θ  ,                               (4.20) 

( 1) ( )

0 0
( ) ( ) ( )

n n
q q

t i i i j t
i j

 

 

    ζ u θ θ θ .                         (4.21) 

The stochastic eigenvector can be updated by solving the derived Eq. (4.19). We can update 

stochastic eigenvector (q) ( )u θ  using Eq.(4.8) when the coefficients (q) (q)
0( , , )n u u of 

stochastic eigenvector is calculated. But derived stochastic eigenvector (q)u is not 

normalized and the length of eigenvector could change when the value of random variables 

θ are changed.  

 

(iii). The formularization for Step3 

In this section, the improved normalization method is formularized in step3, which is 

different with the previous stochastic inverse power method [28] and is indispensable to 

achieve solving stochastic eigenvalue problems. The stochastic eigenvector is normalized 

by using the below equation. 

2

(q 1)
(q 1)

(q 1)

sL







 



uu
u

 .                                           (4.22) 

Substituting Eq. (4.8) into Eq. (4.22) the equation becomes as follows. 

 

2

(q 1)
(q 1)

(q 1)

(q 1)

0

(q 1) (q 1)
0 0

( )
,

( ) ( )

sL

n

i i
i

Tn n
i j i ji j










 

 


 



 



   



 

uu
u

u θ

u u θ θ

                      (4.23) 
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It can be seen that the denominator of Eq. (4.23) involves random variables θ. Though the 

coefficient vector, (q)
iu , should be decided for the next iteration based on the normalization 

equation, it is not possible to solve the above equation directly. Thus, to overcome this 

problem, the solution is elaborated as follows. 

 

Firstly, we arrange Eq. (4.24) as follows. 

2

(q 1)
(q 1)

(q 1) 0
(q 1) 2 (q 1)

0

( )

( )
s

n

i i
i

n
L i ii

U




 






 


  
 





u θ
uu

u θ
 ,                          (4.24) 

where  (q 1) (q 1) (q 1)T

i i jU     u u and the order of expansion becomes 2n because two basis 

functions ( ( )i θ  and ( )j θ ) are multiplied (see Appendix 2). 

Next, in order to overcome the problem of the denominator which involves random 

variables θ, it is assumed that 2 (q 1)
0

1 ( )n
i ii

U 


 θ  can be approximated by Hermite 

PCE as follows. 

1
(q 1)

2 (q 1) 0
0

1 ( )
( )

p

i in
i

i ii

Z
U



 


 





θ

θ
 ,                               (4.25) 

where, (q 1)
iZ  are unknown coefficients of approximated polynomial,  i θ are the basis 

functions, represented by Hermite polynomial, and 1p  is the order of approximated 

expansion terms. It can be seen that the unknown coefficients (q 1)
iZ   need to be 

determined. Eq. (4.26) is rewritten as follows. 

1
2 2

(q 1) (q 1)

0 0
( ) ( ) 1

p n

i i i i
i i

Z U 

 

   
     

  
 θ θ .                               (4.26) 

Multiplying ( ) ( )t W θ θ  to both sides of Eq. (4.26), and integrating the equation, we 
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have. 

1 1 2
(q 1) (q 1) (q 1)

0 0 0
( ) ( ) ( ) ( ) W( )

( ) ( ) .

p p n

i j k i j k tD
i j k

tD

Z Z Z d

W d

  

  

   

 





θ θ θ θ θ θ

θ θ θ
         (4.27) 

This equation can be depicted as follows: 

1 1 2
(q 1) (q 1) (q 1)

0 0 0
( ) ( ) ( ) ( ) ( )

p p n

i j k i j k t t
i j k

Z Z U  

  

      θ θ θ θ θ .         (4.28) 

This means that the following nonlinear simultaneous equations about the coefficients,
(q 1)
iZ  and (q 1)

jZ  , are obtained when 10, ,t p  . 

1 1

1 1

1 1

1

2
(q 1)

0 0
0 0 0

2
(q 1)

1 1
0 0 0

2
(q 1)

0 0 0

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) .

p p n

i j k i j k
i j k

p p n

i j k i j k
i j k

p p n

i j k i j k p p
i j k

Z Z U

Z Z U

Z Z U



  



  



  

     

     

     







θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

               (4.28) 

Eq. (4.28) is solved by using Newton's method, and the detailed process is indicated in 

follows.  

 

Firstly, the Eq. (4.28) with 0 1( ) 1, ( ) 0i   θ θ is rewritten as follows in the form 

( ) 0F Z  where Z  is a vector containing the set 10 1, ... pZ Z Z . 
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1 1

1

1 1

1

1

1 1 1

2
(q 1)

1 0 1 0
0 0 0

2
(q 1)

2 0 1 1
0 0 0

2
(q 1)

1 0 1
0 0

( , ... ) ( ) ( ) ( ) ( ) 1 ,

( , ... ) ( ) ( ) ( ) ( ) ,

( , ... ) ( ) ( ) ( ) ( )

p p n

p i j k i j k
i j k

p p n

p i j k i j k
i j k

p n

p p i j k i j k p
i j k

f Z Z Z Z Z U

f Z Z Z Z Z U

f Z Z Z Z Z U



  



  





  

     

    

    







θ θ θ θ

θ θ θ θ

θ θ θ θ
1

0
.

p



           (4.29) 

 10 1, ... pZ Z ZZ  are obtained by using following the iterative equation.  

1 1 1(q 1) (q ) (q )( )  Z Z Z ,                                      (4.30) 

where 1q  is iteration number and 1 1 1(q ) (q ) (q )1( ) ( ) ( )  Z J Z F Z , 1(q )( )J Z is depicted as 

follows. 

1 1

1

1 1

(q ) (q )
1 1

0 0
(q )

(q ) (q )
1 1

( ) ( )

( )
( ) ( )p p

p p

f f
Z Z

f f
Z Z

 

  
 

  
 
 
  
    

Z Z

J Z
Z Z

 .                         (4.31) 

 

On the above method, the unknown coefficients of approximation polynomial, (q 1)
iZ  , 

can be derived. Thus Eq.(4.25) can be represented by Hermite polynomial. More 

details about the Newton's method can be found in reference [41]. 

 

 

Now, we can substitute Eq. (4.25) into Eq. (4.23) as follows. 

1
(q 1) (q 1) (q 1)

0 0
( ) ( )

pn

i j i i
i j

Z  

 

   u u θ θ .                           (4.32) 

After the right hand side of Eq. (4.32) is expanded and simplified by the method in 

Appendix 2, the Eq. (4.32) can be represented by the basis functions, ( )i θ  as shown 
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below. 
1

(q 1) (q 1)

0
( )

n p

i i
i


 



  u u θ .                                         (4.33) 

As shown above, the stochastic normalized equation is derived by the polynomial of order 

1n p . Because the stochastic normalization equation includes the random variables θ, it is 

considered that the length of eigenvector should become 1 for the different value of the 

variables θ. This condition can be satisfied by the above proposed method which is very 

important to get appropriate results. In references [28] and [29], the correct eigenvalue and 

eigenvector sometimes cannot be obtained because the stochastic eigenvector is averagely 

normalized in step3.  

 

 

(iv). The formularization for Step4 

The convergence of the stochastic method is evaluated by the relative change, and the 

equation is shown as follows: 

(q 1) (q)
(q 1)

(q 1)

V V

V
 












 ,                                              (4.33) 

where, the (q)V is the coefficient of variation of the eigenvalue, (q) [ ] [ ]V Var E   , 

where [ ], [ ]Var E  is obtained by Eq.(2.7) and Eq.(2.8), respectively. The convergence 

condition definition can be used as a stopping criterion because it will go to zero when the 

case tends to be convergent. In this improved stochastic inverse power method (I-SIPM), 

good convergence performance can be obtained using only this convergence criterion. 

The above formularized improved stochastic inverse power method is summarized as 

follows (Algorithm 4.1):  
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Algorithm 4.1 The Improved Stochastic Inverse Power Method (I-SIPM) 

 

 

 

 

 

 

 

 

 

 

 

 

The minimum eigenvalue can be calculated by using the proposed improved stochastic 

inverse power method (I-SIPM). Compared with the usual inverse power method, it 

involves not only the deterministic part (q 1)
0( )   of eigenvalue but also involves the 

stochastic parts (the stochastic part of order 1 (q 1)
1( )  , the stochastic part of order 2

(q 1)
2( )  ， ). And the unknown coefficients (p 1) (p 1)

0 1( , , )  u u of the stochastic eigenvector 

are derived by solving the updated stochastic eigenvector equation (Eq. (4.19)).  

 

 

(0):Initialize u

*While  

2 :Step

3:Step

4 :Step

End While

* *: ,Result  u

(q 1)
00 0 0 0

(q 1)
0

n

n nn n n





    
    

    
        

Ω Ω u ζ

Ω Ω u ζ

(q 1) (q)
(q 1)

(q)

V V

V
 












1:Step

1
(q 1) (q 1)

0
( )

n p

i i
i


 



  u u θ

(q 1) T(q) (q 1) (q)

0 0 0

1 ( ) ( ) ( ) ( )
( ) ( )

n n n

t i k j i j k t
i j kt t

  

  

       
 

u A u θ θ θ θ
θ θ
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4.3 The Formularization of the Stochastic Wielandt Deflation Method 

In section 4.2, the I-SIPM is proposed to evaluate minimum eigenvalue and eigenvector, 

which we call mode-1 eigenvalue and eigenvector as (1) , (1)u . However, mode-2, mode-3 

and other modes are often important, while these modes cannot be evaluated by the 

proposed I-SIPM. Thus, as the other purpose of this study, the stochastic Wielandt deflation 

method (SWDM) is proposed to achieve evaluating the ith (i>1) eigenvalues and 

eigenvectors of a general stochastic eigenvalue problem. In this section, we derive the 

SWDM formularization. The deterministic WDM is expounded in section 2.3.3(2). 

 

(i). The formularization for Step1 

 

In step1, a new stochastic matrix ( )B θ  can be made from the stochastic matrix ( )A θ  as 

follows. 

(1) 1
(1),1

1( ) ( ) ( ) ( )
( )u

    


B θ A θ u θ A θ
θ  ,                            (4.34)

 

where the B is a matrix involving random variables ( )θ because the matrix A  and 

eigenvector (1)u involve random variables ( )θ . ( )A θ  and (1) ( )u θ  is represented by matrix 

form (See Eq. (4.6)(4.8)). 

11 1

0
1

( ) ( )
i Nin

i
i

N i NNi

A A

A A

 
   
 
  

A θ θ  ,                              (4.35) 

1
(1),1

(1)
0

(1),

( ) ( )
in p

i
i

Ni

u

u





 
 

   
 
 

u θ θ  .                                     (4.36) 
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Then, (1),1( )u θ  is defined as value in the first row of eigenvector (1) ( )u θ , 1( )A θ  is defined as 

the first row (row vector) of matrix ( )A θ . They are shown as follows. 

1

(1),1 (1),1
0

( ) ( )
n p

i
i

u u




  θ θ ,                                        (4.37) 

1 11 1
0 0

( ) ( ) ( )
n n

i i Ni i
i i

A A
 

 
    

 
 A θ θ θ .                        (4.38) 

Substituting Eq. (4.35), Eq. (4.36), Eq. (4.37) and Eq. (4.38) into Eq. (4.34) the Eq. (4.34) 

becomes as follows: 

1

1

1

11 1

0
1

(1),1
0

11 1
0 0

(1),1
0 (1),

0

( )

( )

( )
1 ( ) ( ) .

( )
( )

i Nin

i
i

N i NNi

n p

i i
i n n

i i Ni in p
i in p

i i
i Ni i

i

A A

A A

u

A A
u

u










 







 
 

 
 
  

 
 

   
    
   
 
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



 




B

θ

θ

θ θ
θ

θ

        (4.39) 

We can find that the denominator of Eq.(4.39) involves random variables (θ). In order to 

solve this problem, it is assumed that (1),10
1 ( )n

i ii
u


 θ can be approximated by Hermite 

PCE as follows.  

2

0
(1),1

0

1 ( )
( )

p

u un
u

i i
i

R
u 



 





θ

θ  .                                     (4.40) 

Again details about approximation method can be found in Appendix 1. 

Now, we can substitute Eq. (4.40) into Eq. (4.39) as follows. 
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21 2

1

0 0

( ) N

N NN

B B

B B

 
 
  
 
 
 

B θ  ,                                           (4.40) 

where 2 1

(1), 10 0 0 0
( ) ( ) ( ) ( )n p n p n

ts tsi i i tj sk i k ji i j k
B A Ru A

   
        θ θ θ θ . After the right 

hand side of Eq. (4.40) is expanded and simplified by the method of Appendix 2, the Eq. 

(4.41) can be derived based on the basis functions, ( )i θ . 

1 22
21 2

0

1

0 0

( ) ( )
n p p

N
i

i

N NN

B B

B B

 



 
  
   
 
 
  

B θ θ .                              (4.41) 

 

(ii). The formularization for Step2 

 

In step2, we can obtain the matrix (1) ( )B θ with dimension N-1 by deleting 0 in the first row 

and deleting the first column. Then (1) ( )B θ  has eigenvalues (2) (3) ( ), , N     . 

1 2
22 22

(1)
0

2

( ) ( )
Nn p p

i
i

N NN

B B

B B

 



  
   
 
   

B θ θ .                               (4.42) 

 

 

(iii). The formularization for Step3 

 

The minimum eigenvalue (2) ( ) θ  (this is, the 2nd eigenvalue in ( )A θ ) and corresponding 

eigenvector (2) ( )v θ  in the matrix (1) ( )B θ  can be evaluated by using the improved 
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stochastic inverse power method (I-SIPM) in the step3.  

1 22

(2) (2)
0

( ) ( )
n p p

i i
i

 
 



  θ θ ,                                       (4.43) 

1 22 2

(2) (2)
0

( ) ( )
n p p

i i
i

 



  v θ v θ .                                     (4.44) 

However we can find that the eigenvector, (2) ( )v θ , is a vector with dimension N-1. In next 

step, the vector with dimension N-1 will be transformed as a vector with dimension N 

which is the 2nd eigenvector in the matrix ( )A θ . 

 

(iv). The formularization for Step4 

 

In step4, Eq. (4.45) is used to obtain the eigenvector (2) ( )u θ  of the matrix ( )A θ as follows.  

(1) (2)
(2) (1) (2)

(1),1 1,1 (2)

( ) ( )1( ) ( ) ( )
( ) ( )u

  
   

 

θ θ
u θ u θ v θ

θ A v θ  ,                   (4.45) 

where (1) ( ) θ is minimum eigenvalue and (1) ( )u θ  is corresponding eigenvector in the 

matrix ( )A θ obtained by the I-SIPM shown section 4.1. (2)( )v θ  is defined as follows.  

(2)
(2)(2),1

01( )
( )( )v


 

     
v

v θθ
,                                    (4.46) 

where (2),1( )v θ  is value in the first row of eigenvector (2) ( )v θ . In this equation, it can be 

seen that the denominator involves random variables θ when substituting Eq. (4.44) into Eq. 

(4.46). Thus it will be again approximated by Hermite PCE as follows by the method in 

Appendix 1. 
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3

1 22
0

(2),1
0

1 ( )
( )

p

i in p p
i

i i
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G
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
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

θ
θ .                                  (4.47) 

Substituting Eq. (4.7), Eq. (4.8), Eq. (4.37), Eq. (4.38), Eq. (4.43), Eq. (4.44), Eq. (4.46) 

and Eq. (4.47) into Eq. (4.45), the Eq. (4.45) becomes as follows. 
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(2)
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u
u
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u ,                                                  (4.48) 

where 
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where, 3, ,s N  . And they can be simplified to the following equation. 

1 2 34

(2) (2)
0

3 2

( ) ( )i

p

i
i

n p p  



  u θ u θ .                                   (4.50) 

Consequently, the 2nd eigenvalue and eigenvector in ( )A θ can be obtained by the above 

proposed method. Also we can understand that the 2nd eigenvalue is approximated by the 

polynomial of order 2n+p1+p2 in Eq.(4.43), and the 2nd eigenvector is by the polynomial of 

order 4n+3p1+2p2+p3 in Eq.(4.50).  

It is noted that by using the procedure to reduce dimensionality of the matrix 

( (1)( ) ( ) A θ B θ , (1) (2)( ) ( ), B θ B θ ( (2) ( )B θ is the matrix with dimension N-2)), it is 

possible to achieve solving mth eigenvalue, ( ) ( )m θ , and corresponding eigenvector, ( ) ( )mu θ , 

of the matrix ( )A θ . 

The above formularized improved stochastic inverse power method is summarized as 

follows (Algorithm 4.2). 
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Algorithm 4.2 The Stochastic Wielandt Deflation Method (SWDM) 
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4.4 Numerical Examples 

In this study, we developed I-SIPM program and SWDM program by using C language 

which can deal with discrete and continuous model considering uncertainty. The validity 

and feasibility of the proposed methods is discussed by four cases, (1) eigen frequency 

problem - a simple discrete 2-DOF undamped system with uncertainty in stiffness, (2) 

buckling eigenvalue problem - a continuous beam model with uncertainty in size, and (3) 

buckling eigenvalue problem - a continuous beam model with uncertainty in Young’s 

Modulus. Finally, (4) the dynamic damper problem is discussed by using proposed method 

as a more practical example.  

 

 

4.4.1 Two Degrees of Freedom Undamped System 

A discrete 2-DOF undamped system is considered. In this example, in order to prove 

validity of the proposed two methods, the two cases are discussed. Case(1): three springs 

stiffness is assumed to be following Gaussian distribution and obeying same random 

variable 1 . Case(2): two of springs stiffness is assumed to be following Gaussian 

distribution and obeying same random variable 1 , the other springs stiffness is assumed to 

be obeying random variable 2 . 

 

(1) Case (1): The Three Springs Stiffness is Considered as Obeying Some Variable 1  

 

The statistical properties of uncertain parameters are given in Table 4.1. The three springs 

stiffness 1 1( ),k  2 1( ),k  3 1( )k  obeying same random variable 1 , where,  1θ . The 

masses are deterministic with 1 1m kg , 2 2m kg . The validity of the proposed methods 

(I-SIPM and SWDM) is discussed by comparing the results of the method with the MCS of 
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the deterministic problems for the same condition. 

 

 
 
 
 
 
 
 

 

Fig.4.1: A Discrete 2-DOF Undamped System 
 
 
 

Table 4.1 The Statistical Parameters of the Undamped System (N/m) 
 

Uncertain 
variable Mean Standard 

deviation 

1 1( )k   2.5 0.4 

2 1( )k   7 1 

3 1( )k   1 0.15 

 
The system stiffness matrix involving random variables θ can be obtained as follows. 

1 1 3 1 3 1

3 1 2 1 3 1

0 1

( ) ( ) ( )
( )

( ) ( ) ( )

3.5 1 0.55 0.15
( ) ( ).

1 8 0.15 1.15

k k k
k k k

  

  

  
   

  

    
      

    

K θ

θ θ
                (4.51) 

And the system mass matrix is as follows. 

1
0 0

2

0 1 0
( ) ( ( ) 1)

0 0 2
m

m
   

       
  

M θ θ  .                    (4.52) 

1 1( )k  3 1( )k  2 1( )k 

1m 2m
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The stochastic eigenvalue problem is represented by Eq.(4.3), where ( )R θ is the system 

mass matrix and is deterministic form as shown Eq.(4.52). The 1st stochastic eigenvalue 

(1) ( ) θ  and corresponding eigenvector (1) ( )u θ  can be evaluated by using proposed I-SIPM. 

Also, the 2nd stochastic eigenvalue (2) ( ) θ  and corresponding eigenvector (2) ( )u θ  can be 

evaluated by using proposed SWDM. 

 

Fig. 4.2: The Response Surface of Eigenvalues 
 

In Fig.4.2, the response surfaces of stochastic eigenvalues ( (1) ( ) θ and (2) ( ) θ ) and 

determinate results are described. As can be seen, a good agreement is observed between 

the results from the stochastic response surfaces and the reference values (deterministic 

cases).  

Fig. 4.3 and Fig. 4.4 show probability density distributions of stochastic eigenvalues 

obtained through the proposed methods (The 1st stochastic eigenvalue obtained through I-

SIPM, and the 2nd stochastic eigenvalue obtained through SWDM) which has been obtained 

by using 10000 realization of the standard random variable 1 in the obtained response 
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surface of the eigenvalue and the reference distribution obtained by MCS by solving many 

deterministic eigenvalue problems. As can be seen, the results of the proposed methods 

agree well with the results from the Monte Carlo simulation (MCS) of 10000 samples. Also, 

as shown in the Table in Fig.4.3, we find that statistical properties are reasonably well 

estimated by the proposed I-SIPM when compared with those obtained from determinate 

(MCS) result. And we can also find from Fig.4.4 that statistical properties of the second 

eigenvalue by the proposed SWDM have a good agreement with the MCS result. Note that 

the mean and the standard deviation of “I-SIPM_PCE/SWDM_PCE” in the Table4.2 and 

Table4.3 are calculated by Eq. (2.7) and Eq. (2.8), which also takes almost the same value. 

 

Fig.4.3: The Probability Density Distributions of Eigenvalue (1) ( ) θ  
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Table 4.2 Statistics of Eigenvalue (1) ( ) θ  

 
I-SIPM MCS I-SIPM_PCE 

Mean 2.996 3.003 2.999 

Std.dev. 0.465 0.456 0.459 

 

Fig.4.4: The Probability Density Distributions of Eigenvalue (2) ( ) θ  

Table 4.3 Statistics of Eigenvalue (2) ( ) θ  

 
SWDM MCS SWDM_PCE 

Mean 4.498 4.506 4.500 

Std.dev. 0.674 0.663 0.667 
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Fig. 4.5 and Fig. 4.6 show the response surfaces for the components  (1),1 (1),2,
T

u u  and 

 (2),1 (2),2,
T

u u  of eigenvectors (1) ( )u θ  and (2) ( )u θ  respectively. They showed good agreement 

between proposed two methods and reference values obtained by deterministic eigenvalue 

analysis. And the probability density distributions are also shown in the Fig.4.7 and Fig.4.8. 

As can be seen, the reasonable results are shown for solving eigenvectors problem. Thus, 

from the results in this section we can conclude the proposed I-SIPM is valid for evaluating 

1st eigenvalue and eigenvector. And the validity of the proposed SWDM is also 

demonstrated for evaluating 2nd eigenvalue and eigenvector. Also, as shown in the Table4.4 

and Table4.5, we find that the statistics are reasonably well estimated by the proposed I-

SIPM when compared with those obtained from MCS with deterministic eigenvalue 

analysis. Note that the mean and the standard deviation of “I-SIPM_PCE/SWDM_PCE” in 

the Table4.4 and Table4.5 are calculated by Eq. (2.7) and Eq. (2.8), which also takes almost 

same value. We can understand the statistics can be easy evaluated using by using Eq. (2.7) 

and Eq. (2.8) based on obtained response surface. 

 

Fig.4.5: The Response Surface of Eigenvector Components: (1) ( )u  
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Fig.4.6: The Response Surface of Eigenvector Components: (2) ( )u  

 

It is noted that the approximate expressions of the stochastic minimum eigenvalue response 

surface and the stochastic eigenvector components response surface are 5th (n=5) and 10th 

(n=5 and p1=5) order PCE, respectively. The approximate expressions of the stochastic 2nd 

eigenvalue response surface and the stochastic eigenvector components response surface 

are 20th (n=5, p1=5 and p2=5) and 50th (n=5, p1=5, p2=5 and p3=5) order PCE, respectively. 

However, only the 3rd order approximate expressions of the response surfaces are shown in 

Fig.4.2, Fig.4.5 and Fig.4.6, because the influence is small after the 4th order. 
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Fig.4.7: The Probability Density Distributions of Eigenvector (1) ( )u  

 

Fig.4.8: The Probability Density Distributions of Eigenvector (2) ( )u  
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Table 4.4 Statistics of Eigenvector (1) ( )u θ  

 

 
 

I-SIPM MCS I-SIPM _PCE 

(1) 1( )u θ，
 Mean 0.8946 0.8951 0.8947 

 Std.dev. 0.0063 0.0062 0.0063 

(1) 2 ( )u θ，
 Mean 0.4447 0.4456 0.4464 

 Std.dev. 0.0145 0.0127 0.0129 

 

 

Table 4.5 Statistics of Eigenvector (2) ( )u θ  

 

 
 

SWDM MCS SWDM_PCE 

(2) 1( )u θ，
 Mean -0.7052 -0.7053 -0.7051 

 Std.dev. 0.0128 0.0128 0.0128 

(2) 2 ( )u θ，
 Mean 0.7106 0.7087 0.7089 

 Std.dev. 0.0152 0.0125 0.0.127 
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(2) Case (2): The Three Springs Stiffness is Considered as Obeying Different Variables 

1 2,   

 

The statistical properties of uncertain parameters are given in Table 4.6. The two springs 

stiffness 1 1( ),k  2 1( ),k  obeying same random variable 1 , the other spring stiffness 3 2( )k   

obeying random variable 2 , where,  1 2, θ .The masses are deterministic with 

1 1m kg , 2 2m kg . The validity of the proposed methods (I-SIPM and SWDM) is 

discussed for the two variables problem by comparing the results of the method with the 

MCS of the deterministic problems for the same condition. 

 

 
 
 
 
 
 
 

 

Fig.4.9: A Discrete 2-DOF Undamped System 
 
 

Table 4.6 The Statistical Parameters of the Undamped System (N/m) 
 

Uncertain 
variable Mean Standard 

deviation 

1 1( )k   2.5 0.4 

2 1( )k   7 1 

3 2( )k   1 0.15 

 
Here, we firstly show the system stiffness matrix when it has the two variables problem. 

1 1( )k  3 2( )k  2 1( )k 

1m 2m
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The system stiffness matrix involving random variables θ can be obtained as follows. 

 

1 1 3 2 3 2

3 2 2 1 3 2

0 1 2

( ) ( ) ( )
( )

( ) ( ) ( )

3.5 1 0.4 0 0.15 0.15
( ) ( ) ( ) .

1 8 0 1 0.15 0.15

k k k
k k k

  

  

  
   

  

      
          

      

K θ

θ θ θ
    (4.53) 

 

And the system mass matrix is as follows. 

 

1
0 0

2

0 1 0
( ) ( ( ) 1) .

0 0 2
m

m
   

       
  

M θ θ                      (4.54) 

 

The stochastic eigenvalue problem is represented by Eq.(4.3), where ( )R θ is the system 

mass matrix and is deterministic form as shown Eq.(4.54). The 1st stochastic eigenvalue 

(1) ( ) θ  and corresponding eigenvector (1) ( )u θ  can be evaluated by using proposed I-SIPM. 

Also, the 2nd stochastic eigenvalue (2) ( ) θ  and corresponding eigenvector (2) ( )u θ  can be 

evaluated by using proposed SWDM. 
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(a)I-SIPM 

 

(b) The reference values (deterministic cases) 

Fig. 4.10: The Response Surface of Eigenvalues (1) ( ) θ  
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(4.55) 

In Fig.4.10, the response surfaces of stochastic eigenvalues ( (1) ( ) θ ) and determinate 

results are described. Where I-SIPM is described by Eq.4.55 in which the two variables 

1 2,   are values from -5 to 5, respectively. It is noted that the approximate expressions of 

the stochastic minimum eigenvalue response surface is 6th (n=6). As can be seen, a good 

agreement is observed between the results from the stochastic response surfaces and the 

reference values (deterministic cases).   
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θ θ θ θ
(4.56) 

 

In Fig.4.11, the response surfaces of stochastic eigenvalues ( (2) ( ) θ ) and the determinate 

results are described. The I-SIPM is described by Eq.4.56. It is noted that the stochastic 2nd 

eigenvalue response surface should is 20th because of n=5, p1=5 and p2=5, but by Eq.4.56, 

we can see only the 3rd order approximate expressions of the response surfaces is shown 

because the coefficients of approximation polynomial are approaching zero after the 3rd 

order. As can be seen, a good agreement is observed between the results from the stochastic 

response surfaces and the reference values (deterministic cases) by SWDM, and 2nd 

eigenvalue response surface is approaching plane compared to 1st eigenvalue response 

surface. So the response has hardly any the quadratic term.  
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(a)SWDM 

 

(b) The reference values (deterministic cases) 

Fig. 4.11: The Response Surface of Eigenvalues (2) ( ) θ  

1

1

2

2
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Fig. 4.12 and Fig. 4.13 show probability density distributions of stochastic eigenvalues 

which obtained through the proposed methods (The 1st stochastic eigenvalue obtained 

through I-SIPM, and the 2nd stochastic eigenvalue obtained through SWDM) which has 

been obtained by using 10000 realization of the standard random variables 1  and 2  in the 

obtained response surface of the eigenvalue and the reference distribution obtained by MCS 

respectively. As can be seen, the results of proposed methods agree well with the results 

from the Monte Carlo simulation (MCS) of 10000 samples. And we can also find from 

Fig.4.13 that statistical properties of the second eigenvalue by the proposed SWDM have a 

good agreement with the MCS result. And we show statistics of eigenvalue in Table 4.7 

and Table 4.8.  

 

Fig.4.12: The Probability Density Distributions of Eigenvalue (1) ( ) θ  

In Table 4.7, we can see that mean values are almost same value by the proposed I-SIPM 

when compared with those obtained from determinate (MCS) result. But the standard 

deviation is almost same value for the I-SIPM and MCS, the SIPM_PCE has error which 

0.9%. We can consider that is a small error.  
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Table 4.7 Statistics of Eigenvalue (1) ( ) θ  

 
I-SIPM MCS I-SIPM_PCE 

Mean 2.993 2.996 2.995 

Std.dev. 0.439 0.438 0.434 

 

Fig.4.13: The Probability Density Distributions of Eigenvalue (2) ( ) θ  

 

In Table 4.8, we can see that the error of mean values and the standard deviation are 0.25% 

and 0.04% for the SWDM and MCS, the error of mean values and the standard deviation 

are 0.17% and 0.78% for the SWDM_PCE and MCS. We can consider that is a small error. 

It is concluded that the proposed two methods are very efficient methods to estimate 

statistics response. 
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Table 4.8 Statistics of Eigenvalue (2) ( ) θ  

 
SWDM MCS SWDM_PCE 

Mean 4.498 4.509 4.501 

Std.dev. 0.514 0.512 0.508 
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Fig. 4.14 and Fig. 4.15 show the response surfaces for the components  (1),1 (1),2,
T

u u   of 

eigenvectors (1) ( )u θ   respectively, in which the response surfaces are obtained by Eq.(4.57). 

In Fig.4.14, they show good agreement between the proposed I-SIPM and the reference 

values in the most of the areas. Though they have some inconsistent results in edges (for 

example: 1  is around 5 and 2 is around -5, 1  is around -5 and 2 is around 5.), and the 

results in edges have more big values by I-SIPM, if we see Table 4.9, it does not affect the 

statistical properties because the probabilities of occurrence are very low in the edges. In 

Fig.4.15, we also can find that they show good agreement between the proposed I-SIPM 

and the reference values in the most of the areas. Although they have some inconsistent 

results in the edges, they again do but did not affect the results of statistical properties if we 

see Table 4.9. 
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Fig. 4.16 and Fig. 4.17 show the response surfaces for the components  (2),1 (2),2,
T

u u  of 

eigenvectors (2) ( )u θ  respectively, in which the response surfaces are obtained by Eq.(4.58). 

In Fig.4.16, they show good agreement between the proposed SWDM and the reference 

values in almost all of the areas by using SWDM. In Fig.4.17, we also can find that they 

show good agreement between the proposed SWDM and the reference values in the most of 

the areas. Though they have some inconsistent results in edges (for example: 1  is around 5 

and 2 is around -5, 1  is around -5 and 2 is around 5.), and the results in edges have more 

big values by SWDM, if we see Table 4.10, it does not affect the statistical properties 

because the probabilities of occurrence are very low in the edges. 

It is noted that the approximate expressions of the stochastic minimum eigenvector 

components response surface is 10th (n=5 and p1=5) order PCE. And the approximate 

expressions of the stochastic 2nd eigenvector components response surface is 50th (n=5, 

p1=5, p2=5 and p3=5) order PCE. However, only the 5rd order approximate expressions of 

the response surfaces are shown, because the influence is small after 6th order. 

And the probability density distributions are also shown in the Fig.4.18 and Fig.4.19. The 

Fig.4.18 shows the probability density distributions of the 1st eigenvector components

(1),1u ( )  and (1),2u ( )  , respectively. As can be seen, the reasonable results are shown by 

contrasting MCS results for solving eigenvectors problem.  

The Fig.4.19 shows the probability density distributions of 2st eigenvector components

(2),1u ( )  and (2),2u ( )  , respectively. As can be seen, the reasonable results are also shown 

for solving eigenvectors problem by using the proposed SWDM.  
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(a)I-SIPM 

 

(b) The reference values (deterministic cases) 

Fig. 4.14: The Response Surface of Eigenvector Components: (1),1u ( )  

1
2

1
2
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(a)I-SIPM 

 

(b) The reference values (deterministic cases) 

Fig. 4.15: The Response Surface of Eigenvector Components: (1),2u ( )  

1
2

1
2
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(a)SWDM 

 

(b) The reference values (deterministic cases) 

Fig. 4.16: The Response Surface of Eigenvector Components: (2),1u ( )  

1
2

1
2
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(a)SWDM 

 

(b) The reference values (deterministic cases) 

Fig. 4.17: The Response Surface of Eigenvector Components: (2),2u ( )  

1
2

1
2
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(a) (1),1u ( )  

 

(b) (1),2u ( )  
Fig.4.18: The Probability Density Distributions of Eigenvector (1) ( )u  
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(a) (2),1u ( )  

 

(b) (2),2u ( )  

Fig.4.19: The Probability Density Distributions of Eigenvector (2) ( )u  

SWDM

SWDM
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Table 4.9 Statistics of Eigenvector (1) ( )u θ  

 

 
 

I-SIPM MCS I-SIPM _PCE 

(1) 1( )u θ，
 Mean -0.8950 -0.8945 -0.8949 

 Std.dev. 0.0218 0.0214 0.0218 

(1) 2 ( )u θ，
 Mean -0.4437 -0.4443 0.4437 

 Std.dev. 0.0432 0.0441 0.0438 

 

 

Table 4.10 Statistics of Eigenvector (2) ( )u θ  

 

 
 

SWDM MCS SWDM_PCE 

(2) 1( )u θ，
 Mean 0.7000 0.7018 0.7003 

 Std.dev. 0.0410 0.0454 0.0417 

(2) 2 ( )u θ，
 Mean -0.7116 -0.7096 -0.7112 

 Std.dev. 0.0423 0.0432 0.0426 

 

 

Thus, from the results in this section we can conclude that the proposed I-SIPM is valid for 

evaluating 1st eigenvalue and eigenvector. And the validity of the proposed SWDM is also 

demonstrated for evaluating 2nd eigenvalue and eigenvector.  
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4.4.2 A Continuous Beam with Uncertainty in Section Dimension 

In this section, a continuous free-standing beam problem (buckling problem shown in 

Fig.4.20 (a)) is considered to prove that ( )ⅰ  the proposed method can deal with continuous 

problem, ( )ⅱ  the method can solve buckling problem, and ( )ⅲ  the method is valid for 

solving multi degree of freedom problem.  

The buckling problem of a beam is discussed considering beam section dimension H with 

uncertainty, which is solved by the developed I-SIPM. The mesh is shown in Fig. 4.20(b) 

and the beam section dimension is shown in Fig. 4.20(c), and the depth H is assumed to be 

following Gaussian distribution and obeying random variable 1 ,where  1θ . It will be 

discussed through two cases with the different standard deviation. It is also assumed that 

the concentrated load P =1 2N/mm , Young's modulus 2=206000 N mmE , the length of 

beam 5000mml  , and fixed boundary condition is applied to the boundary 1 　. The 

moment of inertia of area about the stronger axis is considered, assuming that the column 

deflection is supported to its weaker direction. The validity of the proposed method (I-

SIPM) is discussed by comparing the results of the deterministic problem for the same 

condition. 

 

 

 

 

 

 

 

 

 

        

                (a)              (b)                                    (c) 

Fig.4.20: Free-Standing Beam 
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(1) Case (1): The Depth H is Assumed as Including A Small Deviation 

 

In the rule of JIS G3192[42] for tolerance of H-sections, the tolerance of depth (H) is 

3mm  when over 400mm in width (B). In this problem, we define the mean of depth as 

418mm and the standard deviation as 1mm, so that 3 times of the standard deviation (3σ) 

becomes equal to 3mm. The statistical properties of uncertain parameter H are given in 

Table 4.11. 

 

Table 4.11 The Statistical Parameters of Free-Standing Beam 

Uncertain parameter Mean  0H  Std.dev.  1H  

 1H   418mm 1mm 

 

The parameter depth, H , is represented using a standard normal random variable 1  as 

follows by the above condition. 

1 0 1 1( )H H H   ,                                           (4.59) 

where 0H  is mean with 418mm, and 1H  is standard deviation with 1mm. The cross section 

A and the moment of inertia of area I are related to the depth H. In order to construct the 

element stiffness matrix and the element initial stress matrix considering the uncertainty in 

depth H, A and I involving uncertainty in depth H  is treated as follows.  

For H-shaped steel, the equation of cross section A is given as follows. 

A BH bh  .                                               (4.60) 

The cross section ( )A θ  with the uncertain parameter is derived by substituting Eq. (4.59) 

into Eq. (4.60). 
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0 0 1 1( ) ( ) ( )A A A    θ θ θ ,                                   (4.61) 

where 0 0A BH bh  , 1 1A BH . 

The moment of inertia of area I is given as follows. 

 
3 3

12
BH bhI 

 .                                             (4.62) 

Substituting Eq. (4.59) into Eq. (4.62), we can derive the moment of inertia of area ( )I  θ  

with uncertain parameter. 

 

0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( )I I I I I        θ θ θ θ θ ,                        (4.63) 

 

where,  3 2
0 0 0 13 12I BH bh BH H   ,  2 3

1 0 1 1 4I BH H BH  , 2
2 0 1 4I BH H , 

3
3 1 12I BH . 

Thus, the element stiffness matrix involving random variables θ  can be derived as follows 

by the polynomial of 3rd order (See [43] for the formulation of the deterministic problem). 
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And the element initial stress matrix is as follows. 0( ( ) 1) θ  
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By assembly of element system, we can derive a global equation system which has 24 

degrees of freedom. The eigenvalue is derived by solving Eq.(4.3) in which ( )R θ is initial 

stress matrix with deterministic (Eq.(4.65)) and ( )K θ is stiffness matrix with uncertainty 

(Eq.(4.64)).  

In Fig.4.21, we show the obtained response surface of the buckling load (1st eigenvalue) 

which is represented by Eq.(4.66) . The approximate expression of the response surface is 

5th order PCE. However, only the 1st order approximate expression of the response surface 

is shown because the influence is small after the 2nd order. And we can see that a good 

agreement is observed between the results from the stochastic response surface and the 

reference values by usual theoretical formula. 

7 5
0 1( ) 2.028 10 ( ) 3.615 10 ( )P      θ θ θ .                      (4.66) 
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Fig. 4.21: The Response Surface of the Buckling Load 

 

Fig. 4.22: The Probability Density Distributions of the Buckling Load 



 

159 
 

In Fig.4.22, the probability density distributions are also shown to prove that the results are 

well consistent with MCS results. Also, as shown in Table 4.12, we find that the statistics 

are reasonably well estimated by the proposed I-SIPM when compared with those obtained 

from MCS. Note that the mean and the standard deviation of “I-SIPM-PCE” in the Table 

4.12 are calculated by Eq. (2.7) and Eq. (2.8), which also takes almost same value.  

 

Table 4.12 Statistics of the Buckling Load (× 710 N) 

 
I-SIPM MCS I-SIPM _PCE 

Mean 2.028 2.026 2.028 

Std.dev. 0.036 0.036 0.036 

 

From the results in this section, it can be concluded that the proposed methodology can 

effectively evaluate ( )ⅰ  the continuous problem, ( )ⅱ  the buckling problem, and ( )ⅲ  the 

multi degree of freedom problem.  

It is observed that the linear responses of buckling load (see Fig.4.21) is obtained even 

though the input parameter K is PCE of 3th order because the variability of the depth H is 

very small(the standard deviation is 1mm) then the input parameter K is considered as liner 

(I2 =I3≈0 in Eq.(4.63)). In following case, we will discuss that the depth H has a relatively 

large deformation to validate the reason. 

 

 

(2) Case (2): The Depth H is Assumed as Including A Large Deviation 

 

In this case, we define the mean of depth as 418mm and the standard deviation as 12mm, 

and the statistical properties of uncertain parameter H are given in Table 4.13. 
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Table 4.13 The Statistical Parameters of Free-Standing Beam 

Uncertain parameter Mean  0H  Std.dev.  1H  

 1H   418mm 12mm 

 

 

Fig. 4.23: The Response Surface of the Buckling Load 
 

In Fig.4.23 and Eq.4.67, we show the response surface of the buckling load which is 

obtained by the proposed method Eq.(4.67) . The approximate expression of the response 

surface is 5th order PCE. However, the 3st order approximate expression of the response 

surface is shown because the influence is small after the 4th order. And we can see that a 

good agreement is observed even if the standard deviation become as a large value. As 

shown Fig4.23 we also find that a nonlinear result (response surface) is obtained compared 

with linear response Fig.4.21 when the large standard deviation is considered. 

346 358 370 382 394 406 418 430 442 454 466 478 490
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7 6 5 3
0 1 2 3( ) 2.040 10 ( ) 4.341 10 ( ) 1.245 10 ( ) 1.191 10 ( )P            θ θ θ θ θ . (4.67) 

 

Fig. 4.24: The Probability Density Distributions of the Buckling Load 
 

In Fig.4.24, the probability density distributions are also shown to prove that the results are 

well consistent with MCS results. Also, as shown in Table 4.14, we find that the statistics 

are reasonably well estimated by the proposed I-SIPM and I-SIPM-PCE when compared 

with those obtained from MCS.  

Table 4.14 Statistics of the Buckling Load (× 710 N) 

 
I-SIPM MCS I-SIPM _PCE 

Mean 2.040 2.038 2.040 

Std.dev. 0.434 0.434 0.434 
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And we can find that the buckling load when the depth H is ‘Meam-1 Std.dev.’ (406mm) is 

1.6×107, then the buckling load is reduced 25% compared with that at the mean value 

(418mm). Also, the buckling load when the depth H is ‘Meam-3 Std.dev.’ (382mm)is 8.4× 

106, then the buckling load is reduced 49% compared with that at the mean value (418mm). 

That is, even if the depth H has a small variability, the buckling load also will greatly 

change. This is very dangerous from the viewpoint of structural safety. 

 

4.4.3 A Beam with Uncertainty in Young’s Modulus 

In this section, the buckling problem of a beam is discussed considering Young’s modulus 

with uncertainty, which is solved by the developed I-SIPM. The mesh is shown in Fig. 

4.25(b) and the beam section dimension is shown in Fig. 4.25(c). It is assumed that the 

concentrated load P =1 2N/mm , the length of beam 5000mml  , and fixed and supported 

boundary condition are applied to the boundary 1 　and 2 　 respectively. As uncertainty 

parameter, the Young’s modulus E in some elements is assumed to be following Gaussian 

distribution and obeying random variable 1 ,where  1θ . The assumptions of Young’s 

modulus for each element are given in Table 4.15. The moment of inertia of area about the 

stronger axis is considered, assuming that the column deflection is supported to its weaker 

direction. The validity of the proposed method (I-SIPM) is discussed by comparing the 

results of the deterministic problem for the same condition.  

 

Table 4.15 The Statistical Parameters of Young's Modulus ( 2N mm ) 

Element number  parameter Mean  0E  Std.dev.  1E  

1,2,6,7,8 Deterministic E  206000 0 

3,4,5 Uncertainty E 400000 80000 
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                (a)              (b)                                    (c) 

Fig.4.25: Free-Standing Beam 

 

In Fig.4.26, we show the response surface of the buckling load which is obtained by the 

proposed method and represented by Eq.(4.68) . The approximate expression of the 

response surface is 4th order PCE. And we can see that a good agreement is observed 

between the results from the stochastic response surface and the reference values by usual 

theoretical formula. 

8 7 6
0 1 2

5 4
3 4

( ) 3.38 10 ( ) 1.33 10 ( ) 2.58 10 ( )

4.92 10 ( ) 8.32 10 ( ) .

P         
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θ θ θ θ
θ θ

                      (4.68) 

In Fig.4.27, the probability density distributions are also shown to prove that the results are 

well consistent with MCS results. Also, as shown in Table 4.16, we find that the statistics 

are reasonably well estimated by the proposed I-SIPM when compared with those obtained 

from MCS. Note that the mean and the standard deviation of “I-SIPM-PCE” in the Table 

4.16 are calculated by Eq. (2.7) and Eq. (2.8), which also takes almost same value.  
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Table 4.16 Statistics of the Buckling Load (× 810 N) 

 
I-SIPM MCS I-SIPM _PCE 

Mean 3.382 3.382 3.382 

Std.dev. 0.137 0.139 0.138 

 

 

 

Fig. 4.26: The Response Surface of the Buckling Load 
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Fig. 4.27: The Probability Density Distributions of the Buckling Load 

 
In Fig.4.28, we show the buckling mode with n=1 which is obtained by using I-SIPM, and 

Fig.4.29 shows the buckling mode with n=1 which is obtained by usual theoretical formula 

when the θ is value form -4 to 4. We can see that a good agreement is observed between the 

buckling mode from I-SIPM and the reference values. And we also find that the bucking 

mode dose not change greatly when consider the Young's modulus of element 3,4,5 with 

uncertainty. However, we can find that when the Young's modulus of element 3,4,5 is large 

(for example θ=4), the shape of the element 3,4,5 approach line compare with small 

Young’s modulus(for example θ=-4). 

Form the results in this section, we can conclude that the proposed method is valid for the 

beam problem with uncertainty in Young’s modulus (middle element with uncertainty). 

And it is understood that the buckling load has large changes, whereas the buckling mode 

dose not change greatly, when the Young's modulus of the elements 3,4,5 is changes 

between 8×104 to 72×104. 
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Fig.4.28: The Buckling Mode 1 by using I-SIPM 
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Fig.4.29: The Buckling Mode 1 by usual theoretical formula 
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4.4.4 The Dynamic Damper 

The validity and feasibility of the proposed methods is concluded by the previous two 

examples for vibrations problems and buckling problems. In this section, we will discuss a 

dynamic damper problem as a more practical example in which stiffness and mass are 

considered as uncertain parameters. The probability of resonance occurrence of ship 

structure is studied by using the developed I-SIPM. 

 

 

(1) Concepts of Dynamic Damper 
 

A dynamic damper is a tuned spring-mass system which can reduce or eliminates the 
resonance of a system when the exciting frequently is close to the natural frequencies of the 
system. 

Here, in order to illustrate basic theory of dynamic damper, we consider the 2DOF system 
(without the dynamic damper attached) in Fig. 4.30(a), and resonance curve for the main 
mass B of the 2DOF system is shown in Fig.4.30 (b). We can see that the system will be 
causing resonance when the exciting frequency ( ) equals the first order natural frequency 
( 1 ) of the system, and it can cause severe problems for the vibrating systems. 

 

 

 

 

 

 

(a) 2DOF system 

 

1k 2k
1m

2m

A
B

i tF Pe 
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(b) Resonance curve for DOF system 

Fig. 4.30: The 2DOF System (Without the Dynamic Damper Attached) 

However, when a dynamic damper is considered, it can be considered as the 3DOF system 
as shown in Fig.4.31 (a). And we also show the resonance curve for the main mass B of the 
3DOF system in Fig.4.31 (b). It can been see that when a mass-spring system (dynamic 
damper C) is attached to the main mass B so that the Ⅰ in Fig.4.31(b) matches to the first 

natural frequency( 1 ) of the system with the main mass A and B(Fig.4.30(b)), the motion 
of the main mass B is reduced to zero at its resonance frequency. This is because the system 
has changed from the 2-DOF system to the 3-DOF system and now has three natural 
frequencies. That is, the first and the second order natural frequencies of the 3-DOF system 
avoid the exciting frequency (the first order natural frequency ( 1 ) of the 2DOF system). 
Thus attaching a dynamic damper with appropriate mass and stiffness can achieve to avoid 
resonance. In following section, selection methods for the mass and stiffness of a dynamic 
damper will be introduced. 

 

 

 

 

(a) 3DOF system 
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(b) Resonance curve for 3DOF system 

Fig. 4.31: 3DOF System (The Dynamic Damper Attached) 

 

(2) Selection Methods for the Mass and Stiffness of A Dynamic Damper [44] 
 

First, we calculate the natural frequencies the 2-DOF undamped system in Fig.4.30 (a).  

We can get the equations of motion as follows. 

1 1 1 2 1 2 2

2 2 2 1 2 2

( ) 0 ,

,i t

m x k k x k x
m x k x k x Pe 

   

  

1 1 1 2 1 2 21 1 1 2 1 2 2( ) 0 ,1 1 1 2 1 2 2m x k k x k x1 1 1 2 1 2 2m x k k x k x1 1 1 2 1 2 2( ) 0 ,m x k k x k x( ) 0 ,1 1 1 2 1 2 2( ) 0 ,1 1 1 2 1 2 2m x k k x k x1 1 1 2 1 2 2( ) 0 ,1 1 1 2 1 2 2m x k k x k x   m x k k x k x1 1 1 2 1 2 2m x k k x k x1 1 1 2 1 2 2   1 1 1 2 1 2 2m x k k x k x1 1 1 2 1 2 2( ) 0 ,m x k k x k x( ) 0 ,   ( ) 0 ,m x k k x k x( ) 0 ,1 1 1 2 1 2 2( ) 0 ,1 1 1 2 1 2 2m x k k x k x1 1 1 2 1 2 2( ) 0 ,1 1 1 2 1 2 2   1 1 1 2 1 2 2( ) 0 ,1 1 1 2 1 2 2m x k k x k x1 1 1 2 1 2 2( ) 0 ,1 1 1 2 1 2 2

2 2 2 1 2 2m x k x k x Pe2 2 2 1 2 2m x k x k x Pe2 2 2 1 2 2m x k x k x Pe  m x k x k x Pe2 2 2 1 2 2m x k x k x Pe2 2 2 1 2 2  2 2 2 1 2 2m x k x k x Pe2 2 2 1 2 2
                                  (4.69) 

where, 1x  and 2x are variables describing the motion, and the m1 and m2 are mass of A and 

B, the k1 and k2 are stiffness of A and B. Eq. (4.69) can be rewritten as a matrix form. 

1 1 1 2 2 1

2 2 2 2 2

0 0
0 i t

m x k k k x
m x k k x Pe 

          
                   

       1 1 2 2 1       1 1 2 2 1m x k k k x       m x k k k x1 1 2 2 1m x k k k x1 1 2 2 1       1 1 2 2 1m x k k k x1 1 2 2 1
       

1 1 2 2 1
       

1 1 2 2 1       
       
       1 1 2 2 1       1 1 2 2 1
       

1 1 2 2 1       1 1 2 2 1
         

1 1 2 2 1
 

1 1 2 2 1
       

1 1 2 2 1
 

1 1 2 2 1
       m x k k x       m x k k x

         
       2 2       2 2m x k k x       m x k k x2 2m x k k x2 2       2 2m x k k x2 2m x k k x       m x k k x       m x k k x       m x k k xm x k k xm x k k x       m x k k xm x k k x                  .                     (4.70) 

The displacement and the second derivative of the displacement can be described by the 

following equations.  

  

Ⅰ Ⅲ


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
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   

   
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   

   
    

   

                                                  (4.71)

 

where 1A  and 2A are constants that denote the maximum amplitudes of 1x and 2x . 

Substituting Eq. (4.71) into Eq. (4.70), we have following equation. 

1 2 2

1 11 12

2 22 2
2

2 2

0
k k k

m mA A
P

A Ak k
m

m m



 
   

                     
 

.                            (4.72) 

Rearranging Eq.(4.72), we can obtain the maximum amplitudes of 1x and 2x . 

  

2
1 2

12 2 2 2
2 2 2

k
A P m m
A  



 
          

   
1 2

Ⅰ

.                            (4.73) 

By Eq.(4.73), we can see that the amplitudes of the main mass B can be shown as follows. 

  
2 22

2 2 2 2 2
( )P mA 

 
  

   
Ⅰ

1 2

.                          (4.74) 

The resonance will cause when the ,  1 2 .  

 

Next, we calculate the natural frequencies the 3-DOF undamped system in which the mass 
and the stiffness of the dynamic damper are m3 and k3 in Fig.4.31 (a).  

We can get the equations of motion as follows. 
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 

 

1 1 1 2 1 2 2

2 2 2 1 2 3 2 3 3

3 3 3 2 3 3

0 ,

,
0 ,

i t

m x k k x k x

m x k x k k x k x Pe
m x k x k x



   

    

  

                   (4.75) 

where, 1 2 3, ,x x x is variables describing the motion. Eq. (4.75) can be rewritten as a matrix 

form. 

1 11 1 2 2

2 22 2 2 3 3

3 3 33 3

0 0 0 0
0 0
0 0 0 0

i t

x xm k k k
x xm k k k k Pe

m k kx x



         
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                

.                (4.76) 

The displacement and the second derivative of the displacement can be described by 

following equation.  
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                                                   (4.77)

 

where 1A , 2A  and 3A  are constants that denote the maximum amplitudes of 1x , 2x  and 3x , 

respectively. Substituting Eq. (4.77) into Eq. (4.76), and rearranging we have following 

equation. 
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.                     (4.78) 

We can obtain the maximum amplitudes of 1x , 2x  and 3x  as follows. 
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(4.79) 

where, 2 2 22 3 31 2

1 2 3

, ,k k kk k
m m m

  


  Ⅰ Ⅱ Ⅲ (see Fig.4.31(b)), By Eq.(4.79), we can see that 

the amplitudes of the main mass B can be equal to 0 when 

2 2 2 2 31 2

1 3

, kk k
m m

   


   Ⅰ Ⅲ  as shown in Fig.4.31(b). By using the condition, the 

mass and stiffness of the dynamic damper is satisfying the following conditions to avoid 

resonance of the first order natural frequency (1 ) of the 2DOF system. 

2 23
1

3

k
m

   Ⅲ .                                                (4.80) 
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Thus, the relationship between mass (m3) and stiffness (k3) can be shown by Eq.(4.80) 

when the mass (m3) is considered as a fixed value, the stiffness (k3) can be calculated by 

using the mass of dynamic damper (m3) and the first order natural frequency (1 ) of the 

2DOF system. 

Based on the above, in the following section, we will discuss the resonance of the 

superstructure of a ship. 

(3) Modelling and Condition 
 

In large ship structures, the resonance of the superstructure of a ship to engine or propeller 

exciting force is an important problem. In order to reduce the resonance response of the 

superstructure, the dynamic damper is attracted as a counterplan of avoiding resonance [45].  

The main structure A and the dodger B are shown in Fig.4.32. A simple model of two 

degrees of freedom (Fig.4.33 (a)) is proposed to model the superstructure of the ship and 

the dodger in Fig.4.32. And when the dynamic damper attached on the dodger B is 

considered, we can use a simple model of the three degrees of freedom to model the system 

where 3k  and 3m  represent the dynamic damper system (Fig.4.33 (b)).  

 

 

 

Fig.4.32: Superstructure 

A
B
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(a) 

 

 

 

 

(b) 

Fig.4.33: Superstructure (Simple Model) 

 

In this example, it is considered that first order natural frequency of two degrees of freedom 

(Fig.4.33 (a)) is close to the fourth order exciting frequency component of the main engine. 

So the system will produce serious vibration with large amplitude. And we can understand 

that when the dynamic damper is attached (three degrees of freedom (Fig.4.33 (b)), the first 

order natural frequency will be decreased so that the fourth order exciting frequency can be 

avoided. However, there is a possibility that the first order natural frequency of the three 

degrees of freedom becomes close to the third order exciting frequency component of the 

main engine (That is, the first order natural frequency is probably entering the range 

between third order and fourth order exciting frequency component of the main engine.). 

Thus, we will discuss the problem to avoid the third and the fourth order exciting 

frequencies of the main engine in the following. 

As problem conditions, it is assumed that the third order exciting frequency component of 

the main engine is 4Hz (3rdorder×80rpm/60), and the fourth order exciting frequency 

component of the main engine is 5.33Hz (4thorder×80rpm/60) with main engine with 

normal revolution of 80rpm[46]. In order to avoid resonance, it is necessary to avoid ranges 

of the third order and fourth order exciting frequency of the main engine which are 

assumed as 3.8Hz ~ 4.2Hz ( 5%of 4Hz), Hz ~5.07 5.60Hz ( 5%of 5.33Hz), respectively. 

The image is shown in Fig.4.34. 
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Fig.4.34: The Image for Ranges of the Third Order and  

the Fourth Order Exciting Frequency of the Main Engine 

 

 

Table 4.17 The Parameters of Model (Deterministic Parameters) 

 

Structure The spring stiffness(N/m) The mass (kg) 

The main structure A 8
1 7.27 10k    5

1 1.8 10m    

The dodger B 7
2 2.31 10k    4

2 2.0 10m    

 

 

    
    

3.8 ~ 4.2

the third order exciting
frequency of the main engine

Hz Hz     
    

5.07 ~ 5.60

the fourth order exciting
frequency of the main engine

Hz Hz

1
f



 

177 
 

The parameters of model are assumed as shown in Table 4.17 which is a practical 

assumption by the references [47][48]. As a result of the coupled vibration of the main 

structure and the dodger, the first and the second order natural frequencies are calculated to 

be 5.30Hz and 10.33Hz, respectively. The first order natural frequency is completely within 

the range of fourth order exciting frequency of the main engine, very possibly causing 

excessive vibration of the superstructure. To avoid this resonance, the two cases are 

discussed in the following: 

 

1) The spring stiffness of the dynamic damper is assumed as including random variable 

1  and the mass is deterministic value (see section (4)).  

2) The spring stiffness of the dynamic damper is assumed as including a random variable 

1 , and the mass of dynamic damper is assumed as including another random variable,

2  (see section (5)). 

 

 

(4) The Spring Stiffness of Dynamic Damper with Uncertainty 
 

In this case, the spring stiffness with uncertainty is discussed through different values of the 

mass of the dynamic damper. In Table 4.18, the statistical properties of the two cases are 

given. In both cases, the spring stiffness of the dynamic damper is assumed to be following 

Gaussian distribution and obeying random variable 1 . Also in case (1), the mass is 

deterministic value with 1/110  , and in case (2), the mass is deterministic value with 

1/ 40  . Note that   is defined as 3 2mm  . The general relationship between the 

spring stiffness and the mass of the dynamic damper can be found from the dynamic 

damper theory in section (2)(Eq.4.80). 
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Table 4.18 The Statistical Parameters of the Dynamic Damper 
 

Case 

The spring stiffness (N/m) 

(Uncertain parameters) 
The mass  3m  (kg) 

 3 2m m   

(deterministic value) Mean 3( )k   
Standard deviation 

 3( ) . .  8%CV isk   

(1) 51.995 10  41.596 10   11 0 108 /1   

(2) 55.542 10  44.434 10   000 45 1/   

 

Here, the system stiffness matrix involving random variables θ can be derived as follows. 

 

1 2 2

2 2 3 1 3 1

3 1 3 1

1 2 2

2 2 3 3 0
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0

0
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k k k
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k k
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k k k k

k k

k k k
k k k k

k k
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 

 

 

 



  
 

   
 
  

  
 

     
  

  
 

    
 
  

K θ

θ

θ

                   (4.81) 

 

where, 3k   is mean of the spring stiffness of the dynamic damper and 3k   is standard 

deviation. And the system mass matrix is represented as follows. 

 

1

2 0 0

3

0 0
0 0 ( ) ( ( ) 1)
0 0

m
m

m

 
 

   
 
  

M θ θ .                         (4.82) 
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The matrix ( )A θ  in Eq.(4.3) can be obtained by using Eq.(4.81) and Eq.(4.82), and we 

solve Eq.(4.3) by using the proposed I-SIPM. When the spring stiffness 3k  is considered as 

uncertain parameter, the first order natural frequency is considered as uncertain response 

which will be described as probability distribution. So the stochastic eigenvalue can be 

evaluated to observe the probability of resonance occurrence.  

 

Fig.4.35: The Probability Density Distributions of First Order Frequency.  

(The Spring Stiffness with Uncertainty) 

 

 

In Fig.4.35, the probability density distributions of first order natural frequency are shown 

for the case (1) and the case (2). As can be seen, in both cases, the mean values of the first 

order natural frequency are moving toward the range of third order exciting frequency of 

the main engine and are out of the range of the fourth order exciting frequency of the main 

engine. However, they are more closer to the range of fourth order exciting frequency of 

the main engine, while the resonance due to the third order exciting frequency of the main 

(1) :5.033HzCase Mean

(2) : 4.884HzCase Mean

3.8Hz ~ 4.2Hz

The third order
exciting frequency

  
 

(1) 1/110 : 0%
(2) 1/ 40 : 0%

Probability of
resonance occurrence
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Case









5.07Hz ~ 5.60Hz

The fourth order
exciting frequency

  
 

(1) 1/110 : 44.8%
(2) 1/ 40 : 0.2%

Probability of
resonance occurrence
Case
Case






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engine is completely avoided.  

In case (1), when the mass is 180kg, observing the blue histogram in Fig.4.33, we can see 

that the resonance due to the fourth order exciting frequency cannot be avoided because the 

first order natural frequency has a probabilistic nature and the most of the right of the 

distribution overlaps with the fourth order exciting frequency range. The probability of 

resonance occurrence reaches up to 44.8%. This is very dangerous because of a large 

probability of resonance occurrence for this practical problem. 

In case (2), we attempt to increase the mass of the dynamic damper to 500kg to discuss the 

probability of resonance occurrence. Here the probability density distribution is shown in 

Fig.4.35. Observing the red histogram, we can see that the probability density distribution 

of the first order natural frequency moves to more left when the mass ratio μ becomes 

larger compared with case(1). And the probability becomes smaller for entering the range 

of the fourth order exciting frequency of the main engine. It should be clear that the 

probability of resonance occurrence becomes a small value, 0.2%.  

So we can understand that when the mass ratio μ becomes larger, the probability density 

distribution of the first order natural frequency moves closer to the range of the third order 

exciting frequency of the main engine compared with a small mass ratio, and the 

probability of resonance occurrence becomes smaller. From the synthetically viewpoint 

considering the probability of resonance occurrence and the economic cost, the appropriate 

selection of the mass is necessary.  

Regarding the second order natural frequency, the probability of resonance occurrence can 

be evaluated in the same manner using SWDM. Here, we have confirmed that the natural 

frequency is sufficiently above the range of fourth order exciting frequency of the main 

engine, and the probability of resonance occurrence is very small, both in case (1) and in 

case (2). 
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(5) Both the Spring Stiffness and Mass of Dynamic Damper with Uncertainty 

 

In this case, both the spring stiffness and the mass with uncertainty are discussed through 

different mean values of the mass of the dynamic damper. The statistical properties of two 

cases are given in Table 4.19. In both cases, the spring stiffness of the dynamic damper is 

assumed to be following Gaussian distribution and obeying random variable 1 , and the 

mass is also assumed to be following Gaussian distribution represented by another random 

variable, 2 . Also in case(1), the mean of the mass is considered as 180kg  1/110  . In 

case (2), the mean of the mass is considered as 500kg  1/ 40  . It is noted that in these 

two cases, the two random variables  1 2, θ is used to solve the stochastic eigenvalue 

problem. It is noted that this two random variables problem is different from the two 

random variables problem in case (2) of section 4.4.1 because the uncertainty parameter is 

assumed to exists in the mass and stiffness respectively. 

 

 Table 4.19 The Statistical Parameters of the Dynamic Damper 
 

Case 

The spring stiffness (N/m) 

(Uncertain parameters) 

The mass (kg) 

(Uncertain parameters) 

Mean 

3( )k   

Standard deviation 

 3( ) . .  8%CV isk   

Mean 

3( )m   

Standard deviation 

 3( ) . .  5%CV ism   

(1) 51.995 10  41.596 10   11 0 108 /1   9 

(2) 55.542 10  44.434 10   000 45 1/   25 

  
 
 

Here, the system stiffness matrix involving random variables θ  is same as Eq.(4.80) except 

that two dimensional basis functions are used ( 0 1 1 2 2( ) 1, ( ) , ( ) , ,      θ θ θ by 

Table 2.2). The system mass matrix involving random variable θ  is derived as follows 
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because the mass is also uncertain parameter. 

 

1

2

3 2

1

2 0 2

3 3

0 0
( ) 0 0

0 0 ( )

0 0 0 0 0
0 0 ( ) 0 0 0 ( ) ,
0 0 0 0

m
m

m

m
m

m m 



 
  
 
  

   
   

      
     

M θ

θ θ

            (4.83) 

 

where 3m   is mean of the mass of the dynamic damper and 3m   is standard deviation. The 

( )R θ  in Eq.(4.3) is mass matrix, ( )M θ . The matrix ( )A θ  can be derived by solving
1( ) ( ) ( )  A θ R θ K θ , where, 1( )R θ is derived by Appendix 1 and the simplification of

1( ) ( ) R θ K θ is done by the method in Appendix 2. The stochastic eigenvalue can be 

evaluated using the proposed I-SIPM to solve Eq.(4.3). 

 

Firstly, we will discuss validity of the proposed I-SIPM for the system with two random 

variables,  1 2, θ . In Fig.4.36, the response surface by I-SIPM is shown for case(2), while 

that obtained by many deterministic analyses is shown in Fig.4.37. As can be seen, a good 

agreement is observed between the results from the stochastic response surface and 

deterministic results in the most of the areas. Though they have some inconsistent results in 

edges (for example: 1  is around 5 and 2 is around -5, 1  is around -5 and 2 is around 5.), 

if we see Table 4.20, it does not affect to the statistical properties because the probabilities 

of occurrence are very low in the edges.  
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Fig. 4.36: The Response Surface by I-SIPM (Case(2)) 

 

Fig. 4.37: The Response Surface by Deterministic Values (Case(2)) 

1
2

1
2
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Fig.4.38: The Probability Density Distributions of First Order Frequency  

(Both the Spring Stiffness and the Mass with Uncertainty) 

Table 4.20 Statistical Properties of Case (2) (Hz) 

 
I-SIPM MCS 

Mean 4.883 4.882 

Std.dev. 0.118 0.116 

 

 

Fig.4.38 also showed the probability density distributions of first order natural frequency 

obtained from the I-SIPM (red graph) and MCS (gray graph) of 10000 samples in case(2). 

They have good agreement from the two results for the two random variables problem. In 

Fig.4.38, we can also find the probability density distribution of the first order natural 

frequency in case(1) by using I-SIPM.  
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In case(1), The probability of resonance occurrence is 45.3%. As can be seen, the 

probability becomes larger for entering the range of the fourth order exciting frequency of 

the main engine compared with case(1) in section (4) because both the spring stiffness 3k  

and the mass 3m  are considered as uncertain parameters.  

In case(2), from the observation of the red histogram in Fig.4.38, we can see that the 

probability density distribution of the first order natural frequency moves toward the range 

of the third order exciting frequency of the main engine when the mass ratio μ becomes 

larger. The probability of resonance occurrence becomes 1.99%, which is significantly 

reduced compared with case(1). And we can also see the probability is larger compared 

with case(2) in section (4).  

From the results in this section, it can be concluded that the proposed I-SIPM is valid for 

the system with two random variables  1 2, θ . And by applying the proposed method to 

the dynamic damper problem, it is possible to evaluate the probability of resonance 

occurrence, and to propose an effective countermeasure to reduce the probability of 

resonance by appropriate selection of the mass and the spring of the dynamic damper. 
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4.5 Conclusions  
In this section, we present summarize about stochastic eigenvalue analysis as follows. 

 

1. In this study, the stochastic eigenvalue problem is formulated. And in order to solve a 

stochastic eigenvalue problem, as a numerical analysis algorithm, the improved 

stochastic inverse power method (I-SIPM) based on response surface methodology is 

formulated by an Hermite PCE. The method is different with the previous stochastic 

inverse power method. The minimum eigenvalue and eigenvector of stochastic 

eigenvalue problems can be validly evaluated by using the proposed method.  

2. As another purpose of this study, the stochastic Wielandt deflation method (SWDM) is 

proposed and formulated to evaluate ith(i>1) eigenvalues and eigenvectors of stochastic 

eigenvalue problems. Bases on the I-SIPM, the proposed SWDM can successfully 

evaluate ith eigenvalues and eigenvectors. 

3. In discrete 2-DOF example, the 1st and 2nd eigenvalues and eigenvectors are computed 

by the proposed I-SIPM and SWDM. The validity and feasibility of the proposed I-

SIPM and SWDM are demonstrated by solving the one variable problem  1θ  and 

the two variables problem  1 2, θ of the eigen frequency problem in which the 

uncertainty exists in spring stiffness. The probabilistic characteristics (the response 

surface and the probability distribution of the response) can be accurately estimated by 

the proposed methods. 

4. As an example of buckling eigenvalue problem, a continuous free-standing beam is 

considered with uncertainty of beam section dimension, H. The validity and feasibility 

of the proposed I-SIPM are demonstrated in that ( )ⅰ  the proposed method can deal with 

continuous problem, ( )ⅱ  the method can solve buckling problem, and ( )ⅲ  the method 

is valid to solve multi degree of freedom problem. And the validity of a beam problem 

with uncertainty of Young’s modulus is also demonstrated. 

5. In the final example, the practicability of the proposed method is proved by the problem 
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of resonance avoidance by the application of the dynamic damper. When the spring 

stiffness is considered as uncertain parameter, the probability of resonance occurrence 

is obtained. It is understood that the probability of resonance occurrence could be 

significantly reduced by appropriate selection of the mass of the dynamic damper. And 

also it is understood that the probability of resonance occurrence becomes larger when 

the mass is also considered as uncertain parameter. By the dynamic damper example, 

the validity and feasibility of the proposed I-SIPM is demonstrated by solving the two 

variables problem  1 2, θ in which the uncertainty exists in both the spring stiffness 

and the mass.  

6. In the proposed I-SIPM, the degree of freedom is increased compared to the 

deterministic Inverse power method(IPM). However the overall results including 

response surface and probability distribution of the response can be obtained by solving 

the proposed method only once. It is considered that the computational cost becomes 

higher by increase of random variables or increase of order of approximate expression. 

However, by using the proposed method, it is possible to obtain approximate response 

surface which is theoretically reasonable from the viewpoint of response surface 

approximation concept, which is different from the Monte Carlo simulation (MCS) with 

conventional eigenvalue analysis. 

7. The proposed methods are very important for solving stochastic vibrations and buckling 

problem for safety assessment of ships and offshore structures. As a future work, the 

proposed methods can be used to deal with multi degrees of freedom problem which 

consider uncertainty in the practical large structures such as ships and offshore 

structures. 
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5. Conclusions and Future Recommendations 

5.1 Conclusions  

In this chapter, we will present the conclusions which including two parts, i.e., linear static 

analysis and eigenvalue analysis. 

5.1.1 Conclusions: Linear Static Analysis 

 

1. In this study, the stochastic finite element method (SFEM) based on response surface 

methodology considering uncertainty in shape following normal distribution and non-

normal distribution is formulated by an Hermite PCE. 

2. The validity and feasibility of the proposed method is demonstrated by some example 

cases. The probabilistic characteristics (the response surface of stress and the probability 

distribution of the response) can be accurately estimated by the proposed method that 

solves the main stiffness equation only once. 

3. In this study, an algorithm is developed in which the order of approximate of the random 

parameter of uncertainty of shape is given as an input. And highly accurate analysis result 

can obtain by defining appropriate order of approximation. 

4. In the example of the uncertainty in the size of circular hole following normal 

distribution. The negative size of the radius is caused because the lower limit value does not 

exist in the normal distribution, thus correct analysis results may occurs be obtained when 

the standard deviation becomes larger. However, we can see that negative size of the shape 

can be avoided when the uncertainty in shape following non-normal distribution because 

the non-normal distribution has a lower limit value. So, it is considered that the proposed 

method which can deal with non-normal distribution can be applied to more practical 

problems. 

5. In the proposed SFEM, the degree of freedom is increased n times compared to the 

deterministic finite element method, where the n is related to the order of approximate of 
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input parameter and the order of approximate of 1/|J|. So it is considered that the 

computational cost becomes higher by increase of random variables or increase of order of 

approximate expression. However, by using the proposed method, it is possible to obtain 

approximate response surface which is theoretically reasonable from the viewpoint of 

response surface approximation concept, which is different from the Monte Carlo method 

with conventional FEM. 

 

5.1.2 Eigenvalue Analysis 

 

1. In this study, the stochastic eigenvalue problem is formulated. And in order to solve a 

stochastic eigenvalue problem, as a numerical analysis algorithm, the improved 

stochastic inverse power method (I-SIPM) based on response surface methodology is 

formulated by an Hermite PCE. The method is different with the previous stochastic 

inverse power method. The minimum eigenvalue and eigenvector of stochastic 

eigenvalue problems can be validly evaluated by using the proposed method.  

2. As another purpose of this study, the stochastic Wielandt deflation method (SWDM) is 

proposed and formulated to evaluate ith(i>1) eigenvalues and eigenvectors of stochastic 

eigenvalue problems. Bases on the I-SIPM, the proposed SWDM can successfully 

evaluate ith eigenvalues and eigenvectors. 

3. The validity and feasibility of the proposed I-SIPM are demonstrated in that ( )ⅰ  the 

proposed method can deal with discrete problem, ( )ⅱ the proposed method can deal 

with vibration problem, ( )ⅲ the proposed method can deal with continuous problem, 

( )ⅳ the method can solve buckling problem, ( )ⅴ the method is valid to solve multi 

degree of freedom problem, and ( )ⅵ the method is valid to solve the two variables 

problem.  

4. The practicability of the proposed method is proved by the problem of resonance 
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avoidance by the application of the dynamic damper. When the spring stiffness is 

considered as uncertain parameter, the probability of resonance occurrence is obtained 

by using proposed method.  

5. In the proposed I-SIPM, the degree of freedom is increased compared to the 

deterministic Inverse Power Method (IPM). However the overall results including 

response surface and probability distribution of the response can be obtained by solving 

the proposed method only once. It is considered that the computational cost becomes 

higher by increase of random variables or increase of order of approximate expression. 

However, by using the proposed method, it is possible to obtain approximate response 

surface which is theoretically reasonable from the viewpoint of response surface 

approximation concept, which is different from the Monte Carlo simulation (MCS) with 

conventional eigenvalue analysis. 
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5.2  Future Work 

 
In this chapter, we will present future recommendations as follows. 

1. The proposed methods are very important for solving stochastic vibrations and buckling 

problem for safety assessment of ships and offshore structures. As a future work, the 

proposed methods can be used to deal with multi degrees of freedom problem which 

consider uncertainty in the practical large structures such as ships and offshore 

structures. 

2. It is well known that the buckling strength of shell structures such as spherical shell, 

cylindrical shell and stiffened plate is reduced by initial shape imperfections 

(uncertainty in shape). As a future work, we will develop a structural analysis method 

with uncertainty in shape which can deal with 3D shell structures. Then by combining 

the above concept and the concept of stochastic eigenvalue solution, it may become 

possible to evaluate the stochastic buckling strength of shell structures considering 

uncertainty in shape (initial imperfections). 
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APPENDICES 

 

Appendix 1: Approximation method of 
0
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Here we show the approximation method. When denominator of 0
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i ii
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
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random variables ( )θ , the orthogonality of basis functions cannot be used in the 

formulation. In this study, to overcome this problem, it is assumed that 0
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i ii
Q


 θ  can 

be approximated by Hermite PCE as follows. 
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where u  are unknown coefficients of approximated polynomial, ( )u θ are the basis 

functions, represented by Hermite polynomial, and m is the order of expansion terms.  

The unknown coefficients, u , can be decided as follows: 

Firstly, Eq. (A1) is rewritten as follows: 

0 0
( ) ( ) 1

n m

i i u u
i u

Q
 

     θ θ                                       (A2) 

Multiplying ( ) ( )t W θ θ  to both sides of Eq. (A2), and integrating the equation, we have: 

0 0
( ) ( ) ( ) ( )

1 ( ) ( )

n m

i i u u t
i u

t

Q W d

W d



 





    

 

 



θ θ θ θ θ

θ θ θ
                         (A3)

 

This equation can be depicted as follows: 
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0 0
( ) ( ) ( ) ( )

n m

i u i u t t
i u

Q
 

      θ θ θ θ                        (A4) 

This means that the following simultaneous equations about the coefficients, uAp , are 

obtained. 

00 01 0 0

110 11 1

1 2

ˆ ˆ ˆ 1
ˆ ˆ ˆ 0

0ˆ ˆ ˆ

m

m

mm m mm

Q Q Q

Q Q Q

Q Q Q

     
               
     

     

                                       (A5) 

where 0
ˆ ( ) ( ) ( )n

tu i i u ti
Q Q


    θ θ θ . It is noted that ( ) ( ) ( )i u t  θ θ θ  can be 

evaluated by the following equation. 

( ) ( ) ( ) ( ) ( ) ( ) ( )i u t i u t
D

W d      θ θ θ θ θ θ θ θ                          (A6) 

Then the unknown coefficients of approximation polynomial, u  , is derived by the above 

simultaneous equations. 
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Appendix 2: Derivation of coefficients, kC  , for 
0 0 0

( ) ( ) ( )n n m
i j i j k ki j k

A B C
  

     θ θ θ  

For easy understanding, here the order n of expansion terms is defined as 2 and  1θ is 

considered to explain the derivation process. The expansion equation can be shown as 

follows. 

  

2 2

0 0

0 0 1 1 1 1 2 2 1 0 0 1 1 1 1 2 2 1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

i j i j
i j

A B

A A A B B B     

 

  

         

 θ θ
(A7) 

Expand right of Eq.(A7),we have: 

2 2
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1 0 1 1 0 1 1 1 1 1 1 1 1 2 1 1 2 1
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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i j i j
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A B A B A B
A B A B A B
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 θ θ

          (A8) 

and referring to Table 2.1, we can understand 0 1( ) 1  , 0 1 1( )   , 2
0 1 1( ) 1,    . 

Substituting basis functions into Eq.(A8), it can show as follows: 
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 θ θ

          (A9) 

By simplifying Eq.(A9), we can obtain Eq.(A10). 
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                          (A10) 

By rewriting Eq.(A10), the 0 0
( ) ( )n n

i j i ji j
A B

 
   θ θ  can be represented by basis 

functions, 1( )i   as follows. 
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                  (A11) 

Then, kC is derived as follows, and the order m is 4. 

0 0 0 1 1 2 2 2 23C A B A B A B A B                                   (A12-1) 

1 0 1 1 0 1 2 2 12 2C A B A B A B A B                                  (A12-2) 

2 1 2 2 1C A B A B                                                          (A12-3) 

4 2 2C A B                                                                   (A12-4) 

Thus, 0 0 0
( ) ( ) ( )n n m

i j i j k ki j k
A B C

  
     θ θ θ  is derived. This derivation method is 

implemented in the developed program for arbitrary n . 
 




