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Abstract. In this paper, we consider continuous-time quantum walks (CTQWs)
on finite graphs determined by the Laplacian matrices. By introducing fully
interconnected graph decomposition of given graphs, we show a decomposition
method for the Laplacian matrices. Using the decomposition method, we show
several conditions for graph structure which return probability of CTQW tends
to 1 while the number of vertices tends to infinity.

1. Introduction

Quantum walks (QWs) have been attractive research topic in this decade

[11, 23, 12] as quantum counterparts of the random walks which play important

roles in various fields. For QWs, there are two types of time evolution, discrete-

time and continuous-time. In this paper, we focus on continuous-time quantum

walks (CTQWs) on finite graphs. There are a lot of studies of CTQWs on

various deterministic graphs, such as the line [8], path graph [3], star graph

[20, 24], cycle graph [2, 5, 16], dendrimers [15], spidernet graphs [21], the dual

Sierpinski gasket [1], direct product of Cayley graphs [22], quotient graphs [18],

odd graphs [19], trees [9, 6] and ultrametric spaces [10]. Also there are studies of

CTQWs on probabilistic graphs, such as small-world networks [17], Erdős-Rényi

random graph [25] and the threshold network model [4, 7].

Here we give the definition of our CTQW. Let Gn be a simple (undirected)

graph with n numbers of vertices. In this paper, we use V (Gn) = {1, . . . , n} for

the vertex set and E(Gn) ⊂ V (Gn)×V (Gn) for the edge set of the graph Gn. For

a pair of vertices i, j ∈ V (Gn), we write i ∼ j if (i, j) ∈ E(Gn), i.e., the pair of

vertices i and j is connected by an edge. Let AGn be the adjacency matrix of the

graph Gn which is an n×n matrix whose (i, j) component (AGn)i,j equals 1 if i ∼ j
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and 0 otherwise. The Laplacian matrix LGn of Gn is defined by LGn = DGn−AGn

where DGn be the n×n diagonal matrix given by DGn = diag(dGn(1), . . . , dGn(n))

with dGn(i) =
∑n

j=1(AGn)i,j, i.e., the degree of the vertex i, for i ∈ V (Gn).

The time evolution operator UGn,t of a CTQW on Gn at time t ≥ 0 is defined

by

UGn,t ≡ e
√
−1tLGn =

∞∑
k=0

(
√
−1t)k

k!
Lk

Gn
, (1.1)

where
√
−1 be the imaginary unit. Let {ΨGn,t}t≥0 be the probability amplitude of

the quantum walk, i.e., ΨGn,t =UGn,tΨGn,0, where ΨGn,0 =T
[
ΨGn,0(1). . .ΨGn,0(n)

]
is an n dimensional unit vector which we call the initial condition where T A is

the transpose of a matrix A. Then the probability that the quantum walker on

Gn is in position y ∈ V (Gn) at time t with initial condition ΨGn,0 is defined by

P(Y
ΨGn,0

Gn,t = y) ≡ |(UGn,tΨGn,0)(y)|2,

where Y
ΨGn,0

Gn,t be the random variable representing the quantum walker’ s position

at time t on Gn with initial condition ΨGn,0. In this paper, we only deal with

ΨGn,0(x) = 1 for some specific vertex x ∈ V (Gn) and ΨGn,0(x
′) = 0 for x′ 6= x

case. Note that this corresponds to the case that the walker starts from the

vertex x. Hereafter, we use P x
Gn,t(y) instead of P(Y

ΨGn,0

Gn,t = y) for simplicity.

In this paper, we call strong localization for x ∈ V (Gn) occur when the return

probability tends to 1 in n → ∞, i.e.,

lim
n→∞

P x
Gn,t(x) = 1.

It is known that CTQWs defined by the Laplacian matrix on complete graphs

(see e.g. [11]), star graphs[20, 24] and the threshold network model [4, 7] have

the same transition probabilities from the vertices which connect with all other

vertices and also strong localization for the vertices occur. But it seems that

there are no comprehensive treatments for relationships between graph structure

and the transition probabilities of such graphs.

The aim of this paper is to clarify relationships between graph structure

and the transition probabilities of CTQWs on graphs. In order to do so, we

introduce fully interconnected graph decomposition (Definition 2.1) which is a

generalization of the graph operation “join” in Sec. 2. We should note that the

decomposition procedure for the Laplacian matrix proposed in Sec. 2 is motivated

by Merris’ s work [13, 14]. After that we derive a decomposition formula for

transition probabilities of CTQW with related to the decomposition (Lemma

2.2). As a consequence, we find that the limit of the return probabilities of the
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CTQW on graph with the decomposition starting from a vertex in a growing

subgraph are equal to that of the subgraph (Theorem 2.3). This means that

local subgraph structure can cause localization in the whole graph. We show two

concrete examples of CTQWs which cause strong localization for some vertices

in Sec. 3. The first one (Sec. 3.1) includes complete graphs, star graphs and the

threshold network model cases. The second one (Sec. 3.2) shows that growing

clique can cause the strong localization. It can be interesting future problems

that to find necessary and sufficient condition of graph structure for the strong

localization and to build a discrete-time version of this decomposition method.

2. Fully interconnected graph decomposition

In this paper, we consider the following decomposition of the graph Gn:

DEFINITION 2.1. (Fully interconnected graph decomposition) Let Gn be a

simple graph. Then (Gn1 , . . . Gnk
) is said to be a fully interconnected graph

decomposition of Gn if it satisfies the following conditions:

1. Each Gni
is an induced subgraph of Gn, i.e., if v ∼ w in Gn then v ∼ w in

Gni
for all v, w ∈ V (Gni

) ⊂ V (Gn), on ni numbers of vertices for i = 1, . . . k.

2. V (Gn) = V (Gn1) ∪ · · · ∪ V (Gnk
) and V (Gni

) ∩ V (Gnj
) = ∅ for i 6= j.

3. For each pair of subgraphs (Gni
, Gnj

) for i 6= j, one of the following condi-

tions is hold:

(a) All pairs of vertices (v, w) ∈ V (Gni
) × V (Gnj

) are connected. In this

case, we call the pair of subgraphs (Gni
, Gnj

) is fully interconnected

and represent Gni
∼ Gnj

.

(b) All pairs of vertices (v, w) ∈ V (Gni
)×V (Gnj

) are disconnected. In this

case, we call the pair of subgraphs (Gni
, Gnj

) is fully interdisconnected

and represent Gni
� Gnj

.

Remark that (Gn) is a trivial fully interconnected graph decomposition of

Gn.

Now we consider a (k blocks × k blocks) block matrix L̃Gn of Gn with a fully

interconnected graph decomposition (Gn1 , . . . Gnk
) defined as follows:

(L̃Gn)i,j block =


d̃iIni

, if i = j,

−Jni,nj
, if Gni

∼ Gnj
,

Oni,nj
, otherwise,

(2.2)

where d̃i =
∑

Gni∼Gnj
nj, In is the n×n identity matrix, Jl,m is l×m all 1 matrix

and Ol,m is l × m all 0 matrix. The Laplacian matrix LGn of Gn with related
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to a fully interconnected graph decomposition (Gn1 , . . . Gnk
) is decomposed into

two (k blocks × k blocks) block matrices as follows:

LGn = diag(LGn1
, . . . , LGnk

) + L̃Gn . (2.3)

In order to analyze the time evolution operator of CTQW, we discuss about

the eigenspace of LGn . Let {λi,li}li=1,...,ni−1 be the eigenvalues of LGni
except for

the trivial eigenvalue 0 corresponding to ni dimensional all 1 vector 1ni
for i =

1, . . . , k. The corresponding eigenvectors {vi,li}li=1,...,ni−1 can be ni dimensional

real unit vectors and orthogonal to each other and orthogonal to 1ni
since each

LGni
is an real symmetric matrix. By Eqs. (2.2), (2.3), if we define

wi,li = T[

n1+···+ni−1︷ ︸︸ ︷
0, . . . , 0 ,vi,li(1), . . . ,vi,li(ni),

ni+1+···+nk︷ ︸︸ ︷
0, . . . , 0 ], (li = 1, . . . , ni − 1),

for i = 1, . . . , k, where vi,li(j) denotes the j-th component of vi,li , then it is easy

to see that

LGnwi,li =
(
diag(LGn1

, . . . , LGnk
) + L̃Gn

)
wi,li = (λi,li + d̃i)wi,li .

Thus we have (n − k) numbers of eigenvalues and corresponding orthonormal

eigenvectors of LGn from the Laplacian matrices LGni
(i = 1, . . . , k) of subgraphs

Gn1 , . . . , Gnk
.

The remaining k numbers of eigenvectors are corresponding to all 1 vectors

1n1 , . . . , 1nk
. Let

xi = T[

n1︷ ︸︸ ︷
αi(1), . . . , αi(1),

n2︷ ︸︸ ︷
αi(2), . . . , αi(2), . . . ,

nk︷ ︸︸ ︷
αi(k), . . . , αi(k)], (2.4)

for i = 1, . . . , k, where αi(1), . . . , αi(k) ∈ R. Then we have

LGnxi =
(
diag(LGn1

, . . . , LGnk
) + L̃Gn

)
xi = L̃Gnxi.

Note that from Eqs. (2.2), (2.4), the eigen equations L̃Gnxi = νixi are equivalent

to LGnxi = νixi with a k × k matrix LGn such that

(
LGn

)
i,j

=


d̃i, if i = j,

−nj, if Gni
∼ Gnj

,

0, otherwise,

and a k-dimensional vector

xi = T[αi(1), . . . , αi(k)].
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Because we can take the set of eigenvectors as an orthonormal base, the

following matrix BGn can be an orthogonal matrix:

BGn

≡

w1,1, . . . ,w1,n1−1, . . . ,wk,1, . . . ,wk,nk−1,
x1√∑k

l=1 nlα1(l)2

, . . . ,
xk√∑k

l=1 nlαk(l)2

.

After diagonalization of the time evolution operator UGn,t of CTQW on Gn (Eq.

(1.1)) by using BGn , we have the following spectoral decomposition of UGn,t:

(UGn,t)x,y

=



ni−1∑
j=1

exp
{√

−1t(λi,j + d̃i)
}

vi,j(x)vi,j(y)

+
k∑

j=1

exp
(√

−1tνj

) αj(i)
2∑k

l=1 nlαj(l)2
if x, y ∈ V (Gni

),

k∑
j=1

exp
(√

−1tνj

) αj(i)αj(i
′)∑k

l=1 nlαj(l)2
if x ∈ V (Gni

) and y ∈ V (Gni′
) (i 6= i′).

Therefore we have the transition probabilities of CTQW as follows:

LEMMA 2.2. Let (Gn1 , . . . , Gnk
) be a fully interconnected graph decomposition

of a graph Gn. Then the transition probabilities of CTQW are given as follows:

P x
Gn,t(y)

=
∣∣∣(UGn,t)x,y

∣∣∣2

=



P x
Gni ,t

(y) + P̃ x
Gni ,t

(y)

− 1

n2
i

− 2

ni

ni−1∑
j=1

vi,j(x)vi,j(y) cos(tλi,j)

+2

ni−1∑
j=1

k∑
j′=1

vi,j(x)vi,j(y)αj′(i)
2 cos

{
t(λi,j + d̃i − νj′)

}
∑k

l=1 nlαj′(l)2
if x, y ∈ V (Gni

),

P̃ x
Gni ,Gni′ ,t

(y) if x ∈ V (Gni
) and y ∈ V (Gni′ ) (i 6= i′).

(2.5)
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where

P x
Gni ,t

(y)

=

ni−1∑
j=1

vi,j(x)2vi,j(y)2 +
1

n2
i

+ 2
∑

1≤j<j′≤ni−1

vi,j(x)vi,j(y)vi,j′(x)vi,j′(y) cos {t(λi,j − λi,j′)}

+
2

ni

ni−1∑
j=1

vi,j(x)vi,j(y) cos(tλi,j),

P̃ x
Gni ,t

(y)

=
k∑

j=1

αj(i)
4(∑k

l=1 nlαj(l)2
)2 + 2

∑
1≤j<j′≤k

αj(i)
2αj′(i)

2 cos {t(νj − νj′)}(∑k
l=1 nlαj(l)2

) (∑k
l=1 nlαj′(l)2

) ,

(2.6)

P̃ x
Gni ,Gni′ ,t

(y)

=
k∑

j=1

αj(i)
2αj(i

′)2(∑k
l=1 nlαj(l)2

)2 + 2
∑

1≤j<j′≤k

αj(i)αj(i
′)αj′(i)αj′(i

′) cos {t(νj − νj′)}(∑k
l=1 nlαj(l)2

)(∑k
l=1 nlαj′(l)2

) .

The first term P x
Gni ,t

(y) in Eq. (2.5) is the transition probability of CTQW

on the graph Gni
. The second term P̃ x

Gni ,t
(y) and the last term P̃ x

Gni ,Gni′ ,t
(y)

are the transition probabilities determined only by L̃Gn which is not depend on

the detailed structures of the subgraphs Gn1 , . . . , Gnk
. Because the number of

vertices ni in Gni
plays an important role in Theorem 2.3, we explicitly describe

ni in Eqs. (2.5) and (2.6). The following theorem shows that the terms in Eq.

(2.5) except for P x
Gni ,t

(y) vanish in ni → ∞ for return probability cases (x = y):

THEOREM 2.3. Let (Gn1 , . . . , Gnk
) be a fully interconnected graph decomposi-

tion of a graph Gn. If limni→∞ P x
Gni ,t

(x) with x ∈ V (Gni
) exists then

lim
ni→∞

P x
Gn,t

(x) = lim
ni→∞

P x
Gni ,t

(x).

Proof of Theorem 2.3. From BGn
TBGn = In, we have

ni−1∑
j=1

vi,j(x)vi,j(y) +
k∑

j=1

αj(i)
2∑k

l=1 nlαj(l)2
=

{
1 if x = y,

0 otherwise,
(2.7)
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for x, y ∈ V (Gni
), and also we have

ni−1∑
j=1

vi,j(x)vi,j(y) +
1

ni

=

{
1 if x = y,

0 otherwise,
(2.8)

for x, y ∈ V (Gni
) because {vi,li}li=1,...,ni−1 ∪ { 1√

ni
1ni

} is a set of orthonormal

eigenvectors of LGni
. Combining Eqs. (2.7) and (2.8), we obtain

k∑
j=1

αj(i)
2∑k

l=1 nlαj(l)2
=

1

ni

. (2.9)

In particular, we obtain the following uniform bound from Eq. (2.9):

αj(i)
2∑k

l=1 nlαj(l)2
≤ 1

ni

for ∀i, j ∈ {1, . . . k}. (2.10)

By substituting Eq. (2.9) into Eq. (2.6) and using Eq. (2.10), we have

P̃ x
Gni ,t

(y) =
k∑

j=1

αj(i)
4(∑k

l=1 nlαj(l)2
)2 + 2

∑
1≤j<j′≤k

αj(i)
2αj′(i)

2 cos {t(νj − νj′)}(∑k
l=1 nlαj(l)2

)(∑k
l=1 nlαj′(l)2

)
≤ 1

ni

k∑
j=1

αj(i)
2∑k

l=1 nlαj(l)2
+ 2

(
k∑

j=1

αj(i)
2∑k

l=1 nlαj(l)2

)2

=
3

n2
i

.

On the other hand, by using Eqs. (2.7) and (2.9), we have

2

ni

ni−1∑
j=1

vi,j(x)2 cos(tλi,j) ≤
2

ni

(
1 −

k∑
j=1

αj(i)
2∑k

l=1 nlαj(l)2

)
=

2

ni

(
1 − 1

ni

)
,

2

ni−1∑
j=1

k∑
j′=1

vi,j(x)2αj′(i)
2 cos

{
t(λi,j + d̃i − νj′)

}
∑k

l=1 nlαj′(l)2

≤ 2

(
1 −

k∑
j=1

αj(i)
2∑k

l=1 nlαj(l)2

)
k∑

j′=1

αj′(i)
2∑k

l=1 nlαj′(l)2

=
2

ni

(
1 − 1

ni

)
.

As a consequence, we have the following estimation on the return probabilities:∣∣∣P x
Gn,t

(x) − P x
Gni ,t

(x)
∣∣∣ ≤ 4

ni

,
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for x ∈ V (Gni
). This implied that

lim
ni→∞

P x
Gn,t

(x) = lim
ni→∞

P x
Gni ,t

(x),

if limni→∞ P x
Gni ,t

(x) exists.

3. Local subgraph structure can cause localization

In this section, we show two examples of CTQWs which cause strong local-

ization for some vertices.

3.1 Graphs with dominating vertices

In this paper, we call a vertex i ∈ V (Gn) “dominating vertex” if d(i) =

n − 1, i.e., the vertex is connected with all other vertices in V (Gn). If there are

nd numbers of dominating vertices in Gn, then the dominating vertices form a

complete graph Knd
on nd numbers of vertices as an induced subgraph of Gn (In

other words, the induced subgraph of all dominating vertices is a clique Knd
). In

this case, Gn is devided into two subgraphs Knd
and Gn−nd

the induced subgraph

with the vertex set V (Gn)\V (Knd
). It is easy to see that (Knd

, Gn−nd
) is a fully

interconnected graph decomposition of Gn. Therefore, we can apply Lemma 2.2

with k = 2, Gn1 = Knd
, Gn2 = Gn−nd

, d̃1 = n − nd, d̃2 = nd.

The eigenvalues {λ1,l1}l1=1,...,nd
and corresponding orthonormal eigenvectors

{v1,l1}l1=1,...,nd
of LKnd

are know as follows:

λ1,l1 = nd, v1,l1 =
1√

l1(l1 + 1)

 1l1

−l1
0n−l1−1

 (l1 = 1, . . . , nd − 1),

λ1,nd
= 0, v1,nd

=
1

√
nd

1nd
,

where 0n is the n dimensional all zero vector. On the other hand, it is easy to

see that the eigenvalues ν1, ν2 and corresponding eigenvectors x1,x2 are given as

follows:

ν1 = n, x1 =

[
(n − nd)1nd

−nd1n−nd

]
ν2 = 0, x2 = 1n.

This shows that α1(1) = n − nd, α1(2) = −nd, α2(1) = α2(2) = 1. Therefore

from Eq. (2.5), we have the following result:
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PROPOSITION 3.1. (Dominating vertices can cause strong localization) Let

Gn be a graph with arbitrary numbers of dominating vertices. If we consider

CTQW starting from a dominating vertex x then

P x
Gn,t(y) =


1 − 2

n

(
1 − 1

n

)
(1 − cos nt) if x = y,

2

n2
(1 − cos nt) if x 6= y.

Therefore

lim
n→∞

P x
Gn,t(x) = 1.

REMARK 3.2. Proposition 3.1 shows that if we consider the CTQW defined by

the Laplacian matrix on complete graph then strong localization always occur

for all vertices. Because complete graphs, star graphs and the threshold network

model have dominating vertices, then CTQWs starting from dominating vertices

on these graphs have the same transition probabilities.

3.2 Graphs with growing clique

In this subsection, we show another sufficient condition for strong localization.

Suppose Gn includes a clique Knc . A vertex v ∈ Knc is said to be a gateway vertex

when there exist at least one edge (v, w) ∈ E(Gn) with w ∈ V (Gn) \ V (Knc).

PROPOSITION 3.3. (Clique can cause strong localization) Suppose Gn includes

a clique Knc. Let ng be the number of gateway vertices in Knc and {i1, . . . , ing} ⊂
Knc be the set of all gateway vertices in Knc. If x ∈ V (Knc) \ {i1, . . . , ing} and

(nc − ng) → ∞, then

lim
n→∞

P x
Gn,t(x) = 1.

Proof of Proposition 3.3. By the assumption, (Knc−ng , {i1}, . . . , {ing}, Gn−nc) is

a fully interconnected graph decomposition of the graph Gn, where Knc−ng be

the clique with the vertex set V (Knc) \ {i1, . . . , ing} and Gn−nc be the induced

subgraph with the vertex set V (Gn) \ V (Knc). By Proposition 3.1, we can see

that

lim
(nc−ng)→∞

P x
Knc−ng ,t(x) = 1.

Therefore, by the virtue of Theorem 2.3, we have desired result.
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