U-STATISTICS AND U-PROCESSES BASED ON WEAKLY M-DEPENDENT DATA

By

Ken-ichi Yoshihara

(Received March 19, 2014; Revised July 25, 2014)

Summary. The object of this paper is to study asymptotics of U-statistics and U-processes based on centered stationary sequences, weakly \mathcal{M} -dependent in L^p with rate function $\delta(\cdot)$. The notion of the weakly \mathcal{M} -dependence is recently introduced by Berkes et al (2011) and has many examples such as NED processes, augmented GARCH sequences, linear processes with dependent innovations, etc.

1. Introduction

1.1 Weakly \mathcal{M} -dependent in L^p with rate function $\delta(\cdot)$

Berkes et al. (2011) introduced one of the notion of weak dependence which is called "weakly \mathcal{M} -dependent in L^p with rate function $\delta(m)$ " and proved a new type of strong approximation of partial sums of dependent processes.

Let (Ω, \mathcal{F}, P) be a probability space. Let $p \ge 1$ and for any random variable Y, let $||Y||_p = (E|Y|^p)^{\frac{1}{p}}$. For A and $B (\subset \{\cdots, -1, 0, 1, 2, \cdots\})$, we define

$$d(A, B) = \inf\{|a - b|; a \in A, b \in B\}.$$

We say that a real-valued process $\{\eta_i\}$ is weakly \mathcal{M} -dependent in L^p with rate function $\delta(\cdot)$ if $\{\eta_i\}$ satisfies the following conditions:

CONDITION I. (A) For any integer k and positive integer m one can find a random variable $\eta_i^{(m)}$ with finite p-th moment such that

(1)
$$\|\eta_k - \eta_k^{(m)}\|_p \le \delta(m) \downarrow 0 \quad m \to \infty;$$

(B) For any disjoint subsets I_1, \dots, I_r of integers and any positive integers m_1, \dots, m_r the vectors $\{\eta_{j_1}^{(m_1)}, j_1 \in I_1\}, \dots, \{\eta_{j_r}^{(m_r)}, j_r \in I_r\}$ are independent provided

 $d(I_k, I_l) > \max\{m_k, m_l\} \quad (1 \le k < l \le r).$

²⁰¹⁰ Mathematics Subject Classification: 60F17, 62M10, 62G20

Key words and phrases: $U\mbox{-statistic},$ first-order degeneracy, empirical process, weak convergence

(1) implies that

(2)
$$\|\eta_i\|_p \le \|\eta_i^{(m)}\|_p + \|\eta_i - \eta_i^{(m)}\|_p < \infty.$$

Note that sequences satisfying conditions (A) and (B) are approximable by m-dependent processes for any fixed order $m (\geq 1)$ with termwise approximation error $\delta(m)$.

Properties of weakly \mathcal{M} -dependent in L^p

(I) If $\{\eta_i\}$ is weakly \mathcal{M} -dependent in L^p with rate function $\delta(\cdot)$ and h is a Lipschitz α function $(0 < \alpha \leq 1)$ with Lipschitz constant K, then

(3)
$$\|h(\eta_k) - h(\eta_k^{(m)})\|_p \leq K \|\eta_k - \eta_k^{(m)}\|_{\alpha p}^{\alpha} \leq K \|\eta_k - \eta_k^{(m)}\|_p^{\alpha} \leq K \delta^{\alpha}(m)$$

(II) The following theorem was proved in Berkes et al (2011):

THEOREM A. Let p > 2, $\kappa > 0$ and let $\{\eta_i\}$ be a centered stationary sequence, weakly \mathcal{M} -dependent in L^p and a rate function $\delta(\cdot)$ satisfying

(4)
$$\delta(m) \le Cm^{-\alpha}$$

where

(5)
$$\alpha > \frac{p-2}{2\kappa} \left(1 - \frac{1+\kappa}{p}\right) \lor 1, \quad \frac{1+\kappa}{p} < \frac{1}{2}.$$

Then, we can redefine on a new probability space together with two standard Wiener processes $\{W_1(t); t \ge 0\}$ and $\{W_2(t); t \ge 0\}$ such that

(6)
$$\sum_{k=1}^{n} \eta_k = W_1(s_n) + W_2(t_n) + O\left(n^{\frac{1+\kappa}{p}}\right) \quad a.s.$$

where $\{s_n\}$ and $\{t_n\}$ are nondecreasing numerical sequences with

(7)
$$s_n \sim n, \quad t_n \sim C_1 n^{\rho},$$

 $0 < \rho < 1$ and $C_1 > 0$ are some constants.

1.2 A critrion of weak convergence

Let X_n and X be random elements of $\mathcal{D}[0,1]$. Let \mathcal{T}_X be the set of all tin [0,1] which contains 0 and 1, and 0 < t < 1, and $t \in \mathcal{T}_X$ if and only if $P(X(t) \neq X(t-)) = 0$. The following theorem assures the weak convergence of X_n .

THEOREM B. (Billingsley (1968) Theorem 15.6) Suppose that

$$(X_n(t_1), X_n(t_2), \cdots, X_n(t_k)) \xrightarrow{D} (X(t_1), X(t_2), \cdots, X(t_k))$$

holds whenever t_1, t_2, \cdots, t_k all lie in \mathcal{T}_X and that

$$P(|X_n(t) - X_n(t_1)| > \lambda, |X_n(t_2) - X_n(t)| > \lambda) \le \frac{1}{\lambda^{2\kappa}} \{G(t_2) - G(t_1)\}^{2\tau}$$

for $t_1 \leq t \leq t_2$ and $n \geq 1$, where $\kappa \geq 0$, $\tau > \frac{1}{2}$ and G is a nondecreasing continuous function on [0, 1]. Then $X_n \to^D X$.

1.3 U-statistics

Let $\{\eta_i\}$ be a centered stationary sequence, weakly \mathcal{M} -dependent in L^p with rate function $\delta(\cdot)$. Let F be the distribution function of η_1 .

Let $\psi(y_1, y_2, \dots, y_l) : \mathsf{R}^l \to \mathsf{R}$ be a measurable symmetric function, which will be called a kernel and define the *U*-statistic of degree *l* by

$$U_n = \binom{n}{l}^{-1} \sum_{1 \le i_1 < i_2 < \cdots < i_l \le n} \psi(\eta_{i_1}, \eta_{i_2}, \cdots, \eta_{i_l}).$$

We assume that for some r > 2

(8)
$$\sup_{-\infty < i_1, i_2, \cdots, i_l < \infty} E |\psi(\eta_{i_1}, \eta_{i_2}, \cdots, \eta_{i_l})|^r < \infty$$

Put

(9)
$$\theta(F) = \int \int \cdots \int \psi(y_1, y_2, \cdots, y_l) \prod_{j=1}^l dF(y_{i_j})$$

To consider Hoeffding's *H*-decomposition of the *U*-statistic, we define $\psi_j(y_1, y_2, \dots, y_j)$ $(j = 1, \dots, l-1)$ recursively by

$$\psi_j(y_1, y_2, \cdots, y_j) = \int \psi_{j+1}(y_1, y_2, \cdots, y_j, y_{j+1}) dF(y_{j+1}).$$

Assume

$$\int \psi_1(y_1) dF(y_1) = \theta(F)$$

holds.

We introduce kernels of degrees $1, 2, \dots, l$ which are also defined recursively by the equations

$$h^{(1)}(y_1) = \psi_1(y_1) - \theta(F)$$

and

(10)
$$h^{(k)}(y_1, \cdots, y_k)$$

= $\psi_k(y_1, \cdots, y_k) - \sum_{j=1}^{k-1} \sum_{1 \le i_1 < \cdots < i_j \le k} h^{(j)}(y_{i_1}, \cdots, y_{i_j}) - \theta(F)$

for $k = 2, 3, \dots, l$.

By the above definitions of $h^{(j)}$ we have that for $j = 1, \dots, k-1$ and k = $1, 2, \cdots, l$

$$h_{j}^{(k)}(y_{1}, \cdots, y_{j})$$

= $\int \cdots \int h^{(k)}(y_{1}, \cdots, y_{j}, y_{j+1}, \cdots, y_{k}) \prod_{i=j+1}^{k} dF(y_{i}) = 0$

and

(11)
$$\int \cdots \int h^{(k)}(y_1, \cdots, y_k) \prod_{j=1}^k dF(y_j) = 0.$$

Now, we have the following well known *H*-decomposition of U_n :

(12)
$$U_n = {\binom{n}{l}}^{-1} \sum_{1 \le i_1 < i_2 < \dots < i_l \le n} \psi(\eta_{i_1}, \eta_{i_2}, \dots, \eta_{i_l})$$
$$= \theta(F) + \sum_{k=1}^l {\binom{l}{k}} U_n^{(k)}$$

where $U_n^{(k)}$ is the *U*-statistic of degree *k* based on kernel $h^{(k)}$. Next, to estimate $E|\hat{U}_n^{(k)}|^2$ when $\hat{U}_n^{(k)}$ is constructed by an *m*-dependent sequence, we consider a kind of weak dependence conditions. Let $\{\xi_i\}$ be a stationary sequence of random variables and denote by M^b_a be the σ -algebra generated by ξ_a, \dots, ξ_b $(a \leq b)$. We say that $\{\xi_i\}$ is ϕ -mixing if

(13)
$$\phi(n) = \sup_{A \in \mathsf{M}_{-\infty}^0, B \in \mathsf{M}_n^\infty} \left| \frac{P(AB) - P(A)P(B)}{P(A)} \right| \to 0 \quad (n \to \infty).$$

For any stationary sequence $\{\xi_i\}$ let

(14)
$$M(r) = \max\{\|\psi(X_{i_1}, X_{i_2}, \cdots, X_{i_l})\|_r, \\ \sup_{1 \le i_1 < i_2 < \cdots < i_l} \|\psi(\xi_{i_1}, \xi_{i_2}, \cdots, \xi_{i_l})\|_r\}$$

where $X_{i_1}, X_{i_2}, \dots, X_{i_l}$ are i.i.d. random variables with the same distribution as that of ξ_1 .

The following is known:

LEMMA A. Suppose $\{\xi_i\}$ is a stationary ϕ -mixing sequence satisfying $M(r) < \infty$ holds for some r > 4 and

(15)
$$\sum_{n=1}^{\infty} n\phi^{\frac{1}{4}}(n) < \infty.$$

Then,

(16)
$$E|\hat{U}_n^{(2)}|^2 = O(n^{-2}),$$

(17) $E|\hat{U}_n^{(k)}|^2 = O(n^{-3}), \quad (k = 3, \cdots, l).$

Furthermore, there exists a constant $\gamma > 0$ such that

(18)
$$E|\hat{U}_n^{(2)}|^4 = O(n^{-3-\gamma}).$$

(cf. Yoshihara (1976) and Yoshihara (1993) Lemma 3.2.4.)

It is obvious that if $\{\xi_i\}$ is an *m*-dependent sequence, then it satisfies the ϕ -mixing condition, and so we can use this lemma when $\{\eta_i^{(m)}\}$ is needed.

2. Main results

Let $\{\eta_i\}$ be a centered stationary sequence, weakly \mathcal{M} -dependent in L^p with rate function $\delta(\cdot)$ and $\{\eta_i^{(m)}\}$ (with fixed m) be a centered stationary sequence of random variables satisfying Conditions (A) and (B), so that $\{\eta_i^{(m)}\}$ is a centered stationary m-dependent sequence with $E|\eta_1|^p < \infty$.

Let F be the distribution function of η_1 .

2.1 U-statistics based on $\{\eta_i\}$

Let $\psi(y_1, \dots, y_l) : \mathbb{R}^l \to \mathbb{R}$ be a symmetric kernel function which has continuous bounded partial derivatives, i.e., for some positive constant K

(19)
$$\sup_{y_1, \cdots, y_l} \max_{1 \le j \le l} \left| \frac{\partial \psi(y_1, y_2, \cdots, y_l)}{\partial y_j} \right| \le K.$$

We prove the following theorems.

THEOREM 1. Let p > 4. Let $\{\eta_i\}$ be a centered, stationary sequence, weakly \mathcal{M} -dependent in L^p with rate function $\delta(m)$ satisfying

(20)
$$\delta(m) \le Cm^{-\beta}$$

where $\beta > 6$. Let $\psi(y_1, y_2, \dots, y_l)$ be a measurable symmetric kernel satisfying (19).

Define U-statistic of degree l by

(21)
$$U_n = {\binom{n}{l}}^{-1} \sum_{1 \le i_1 < i_2 < \dots < i_l \le n} \psi(\eta_{i_1}, \eta_{i_2}, \dots, \eta_{i_l}).$$

and $\theta(F)$ by (9). Suppose M(p), defined for $\{\eta_i\}$, is finite.

Then, the series in the next equation is absolutely convergent and

(22)
$$\sigma^{2} = \operatorname{Var}(\psi_{1}(\eta_{1}) + 2\sum_{j=2}^{\infty} \operatorname{cov}(\psi_{1}(\eta_{1}), \psi_{1}(\eta_{j})) < \infty$$

is well defined.

Furthermore, if $\sigma^2 > 0$, then

(23)
$$\left|\frac{\sqrt{n}}{2\sigma}(U_n - \theta(F)) - W_1\right| = o(1) \quad a.s. \quad (n \to \infty),$$

where W_1 is an $\mathcal{N}(0,1)$ random variable.

THEOREM 2. Suppose conditions of Theorem 1 hold. Then

(24)
$$U_n \to \theta(F) \quad a.s.$$

For the function $h^{(2)}(x_1, x_2)$ defined by (10) associated with the kernel $\psi(x_1, x_2, \dots, x_l)$ $(l \ge 2)$, we define an operator A on the function space L^2 by

(25)
$$A\phi(x) = \int h^{(2)}(x,y)\phi(y)dF(y), \quad x \in \mathsf{R}, \phi \in L^2.$$

In connection with any such operator A, we define the associated eigenvalues $\lambda_1, \lambda_2 \cdots$ to be the real numbers λ (not necessarily distinct) corresponding to the distinct solutions ϕ_1, ϕ_2, \cdots of the equation

$$A\phi - \lambda\phi = 0$$

Then

(26)
$$\int \phi_j(x)\phi_k(x)dF(x) = \begin{cases} 1 & (j=k) \\ 0 & (j\neq k) \end{cases}$$

and

$$\lim_{N \to \infty} \int \int \left\{ h^{(2)}(x,y) - \sum_{k=1}^{N} \lambda_k \phi_k(x) \phi_k(y) \right\}^2 dF(x) dF(y) = 0.$$

Thus, we can write

$$h^{(2)}(x,y) = \sum_{q=1}^{\infty} \lambda_q \phi_q(x) \phi_q(y).$$

Let

(27)

$$S_{q,n} = \sum_{i=1}^{n} \phi_q(\eta_i).$$

Using facts $E\phi_k(\eta_i) = 0$ and $\|\phi_k(\eta_i)\|_2 = 1$, by the usual method (cf. Lemma 3 (below)) we can prove that for some constant C > 0 (independent of $n \ge 1$ and K_0)

$$ES_{q,n}^2 = E \bigg| \sum_{i=1}^n \phi_q(\eta_i) \bigg|^2 \le Cn.$$

and so put

(28)
$$\sigma_q^2 = \lim_{n \to \infty} \frac{1}{n} E S_{q,n}^2 = 1 + 2 \sum_{i=1}^{\infty} E \phi_q(\eta_1) \phi_q(\eta_{i+1})$$

and

(29)
$$\sigma_{q,q'} = \lim_{n \to \infty} \frac{1}{n} ES_{q,n} S_{q',n}$$
$$= E\phi_q(\eta_1)\phi_{q'}(\eta_1) + \sum_{i=1}^{\infty} \{E\phi_q(\eta_1)\phi_{q'}(\eta_{i+1}) + E\phi_{q'}(\eta_1)\phi_q(\eta_{i+1})\}.$$

THEOREM 3. Suppose conditions of Theorem 1 hold and

$$E|h^{(1)}(\eta_1)|^2 = 0, \quad and \quad \inf_{-\infty < i,j < \infty} E|h^{(2)}(\eta_i, \eta_j)|^2 > 0.$$

Suppose the above defined eigenvalues satisfy the conditions

(30)
$$|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge \cdots, \text{ and } \sum_{l=1}^{\infty} |\lambda_l| < \infty,$$

and the above defined eigenfunctions satisfy the Lipschitz condition

(31)
$$\sup_{q \ge 1} |\phi_q(x+h) - \phi_q(x)| \le K|h|.$$

Furthermore, assume

(32)
$$0 < \inf_{q \ge 1} \sigma_q^2 \le \sup_{q \ge 1} \sigma_q^2 < \infty.$$

Then

(33)
$$nU_n^{(2)} \xrightarrow{D} \mathbf{Y} = \sum_{k=1}^{\infty} \lambda_k (W_k^2 - 1),$$

where $U_n^{(2)}$ is defined by (12), $W_q \sim \mathcal{N}(0, \sigma_q^2)$ $(q \ge 1)$, $EW_qW_{q'} = \sigma_{q,q'}$ $(q \ne q' \ge 1)$ and **Y** is defined in the sense of the limit in mean square.

Consequently, from (16) and (17) in Lemma A, we have

(34)
$$n(U_n - \theta(F)) \xrightarrow{D} \frac{l(l-1)}{2} \mathbf{Y}.$$

2.2 Empirical processes based on $\{\eta_i\}$

Define the empirical distribution function by

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n I(\eta_i \in (-\infty, t]).$$

Let $\mathcal{U} = \{\{u_t; 0 \le t \le 1\}\}$ be the class of functions satisfying the conditions

(35)
$$\begin{cases} 0 \le u_t(y) \le 1, & 0 \le t \le 1, \\ u_s(y) \le u_t(y), & 0 \le s \le t \le 1 & \text{for all y.} \end{cases}$$

Put

$$G(t) = Eu_t(\eta_1)$$
 and $g_t(y) = u_t(y) - G(t)$

We assume that G is Lipschitz continuous on [0, 1], i.e.

$$(36) \qquad |G(t) - G(s)| \le K|t - s|$$

For $u_t \in \mathcal{U}$, define

(37)
$$W_n(t) = \sqrt{n} \int u_t(s) (dF_n(s) - dF(s))$$
$$= \sqrt{n} \left\{ \frac{1}{n} \sum_{i=1}^n u_t(\eta_i) - \int u_t(y) dF(y) \right\}$$

Then, $\{W_n(t); 0 \le t \le 1\}$ is a random element of $\mathcal{D}[0, 1]$.

THEOREM 4. Let p > 4. Let $\{\eta_i\}$ be a centered, stationary sequence, weakly \mathcal{M} -dependent in L^p with rate function $\delta(m)$ satisfying

(38)
$$\delta(m) \le Cm^{-\beta}$$

where $\beta > 4$. Let $u_t \in \mathcal{U}$ and the function G satisfies (36).

Then, the empirical processes $\{W_n(t); 0 \leq t \leq 1\}$ converges weakly to the centered Gaussian process $\{W(t); 0 \leq t \leq 1\}$ with covariance structure

(39)
$$\operatorname{cov}(W(s), W(t)) = \operatorname{cov}(u_s(\eta_1), u_t(\eta_1)) + \sum_{j=1}^{\infty} \operatorname{cov}(u_s(\eta_1), u_t(\eta_j + 1)) + \sum_{j=1}^{\infty} \operatorname{cov}(u_s(\eta_{j+1}), u_t(\eta_1)).$$

Moreover, the series on the right hand side of (39) converges absolutely and the limit process W has continuous paths almost surely.

2.3 U-processes of stochastic sequences

Let \mathcal{H} be a class of kernel functions $h(x, y; t) : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ such that

(40)
$$\begin{cases} 0 \le h(x, y; t) \le 1, \quad h(x, y; 0) = 0, \\ h(x, y; t) \text{ is increasing in } t, \text{ for fixed } x, y \in \mathsf{R}. \end{cases}$$

Define

$$\begin{split} U_n(t) &= \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} h(\eta_i, \eta_j; t), \\ U(t) &= \int \int h(x, y; t) dF(x) dF(y) \quad (t \in \mathsf{R}), \\ W_n(t) &= \sqrt{n} (U_n(t) - U(t)). \end{split}$$

Put

$$h^{(1)}(x;t) = \int h(x,y;t)dF(y) \quad (x \in \mathsf{R}).$$

Note that if $h \in \mathcal{H}$,

$$0 \le h^{(1)}(x;t) \le 1, \quad h^{(1)}(x;0) = 0$$

and it is increasing in t.

We impose the following condition.

Condition II There exists a constant K > 0 such that

(41)
$$|U(t) - U(s)| \le K|t - s|,$$

(42)
$$|Eh(\eta_0, \eta_k; t) - Eh(\eta_0, \eta_k; s)| \le K|t - s|,$$

(43)
$$\left| \int \int h(y_0, y_k; t) dF(y_0) dF(y_k) - \int \int h(y_0, y_k; s) dF(y_0) dF(y_k) \right| \le K |t - s|$$

hold for all $s, t \in [0, 1]$ and $k \ge 1$.

THEOREM 5. Let p > 4. Let $\{\eta_i\}$ be a centered, stationary sequence, weakly \mathcal{M} -dependent in L^p with rate function $\delta(m)$ satisfying

(44)
$$\delta(m) \le Cm^{-\beta}$$

where $\beta > 4$. Suppose that $h(\cdot, \cdot; t) \in \mathcal{H}$ for all $t \in [0, 1]$ and Condition II holds. Then

(45)
$$\{\sqrt{n}(U_n(t) - U(t); 0 \le t \le 1\} \xrightarrow{D} \{W(t); 0 \le t \le 1\}$$
 in $\mathcal{D}[0, 1]$

where $\{W(t); 0 \le t \le 1\}$ is a centered Gaussian process with covariance structure

(46)
$$\operatorname{cov}(W(s), W(t))$$

= $4\operatorname{cov}(h^{(1)}(\eta_1, s), h^{(1)}(\eta_1, t)) + 4\sum_{j=1}^{\infty} \operatorname{cov}(h^{(1)}(\eta_1, s), h^{(1)}(\eta_{j+1}, t))$
+ $4\sum_{j=1}^{\infty} \operatorname{cov}(h^{(1)}(\eta_{j+1}, s), h^{(1)}(\eta_1, t)),$

which converges absolutely and the limit process W has continuous paths on [0, 1] almost surely.

3. Proofs

3.1 Proofs of Theorems 1-3

In the sequel, we use $\sum_{(n,l)}$ to denote the sum taken over all subsets $1 \le i_1 < \cdots < i_l \le n$ of $\{1, 2, \cdots, n\}$.

Let p > 4. Let $\{\eta_i\}$ be a centered, stationary sequence, weakly \mathcal{M} -dependent in L^p with rate function $\delta(\cdot)$. Then, corresponding to $\{\eta_i\}$, we can choose a centered, stationary m dependent sequence $\{\eta_j^{(m)}\}$ with $E|\eta_i^{(m)}|^p < \infty$ satisfying (1). For a while we assume that m is fixed. Let $\hat{F}(y_1)$ be the ditribution function of $\eta_1^{(m)}$.

Corresponding to U_n we consider the following $U\mbox{-statistic}$ and its H-decomposition as follows:

(47)
$$\hat{U}_{n} = {\binom{n}{l}}^{-1} \sum_{(n,l)} \psi(\eta_{i_{1}}^{(m)}, \eta_{i_{2}}^{(m)}, \cdots, \eta_{i_{l}}^{(m)})$$
$$= \theta(F) + \sum_{k=1}^{l} {\binom{l}{k}} \hat{U}_{n}^{(k)}$$

where $\hat{U}_{n}^{(k)}$ is the *U*-statistic of degree *k* based on kernel $\hat{h}^{(k)}$ which is defind by $\{\eta_{i}^{(m)}\}$.

We note that by (19) and (3)

$$\|\psi(\eta_1,\cdots,\eta_l)-\psi(\eta_1^{(m)},\cdots,\eta_l^{(m)})\|_p \le lK\delta(m)$$

which implies

(48)
$$||U_n - \hat{U}_n||_2 \le ||U_n - \hat{U}_n||_p \le c\delta(m).$$

We prove the following lemma, which will be used in the proofs of Theorems.

LEMMA 1. Suppose conditions of Theorem 1 hold. Then, for some $\gamma > 0$

(49)
$$E|U_n^{(2)}|^4 \le C_0 n^{-3-\gamma}$$

and

(50)
$$E|U_n^{(k)}|^2 \le C_0 n^{-3} \quad (k=3,\cdots,l)$$

where C_0 is a positive constant independent of n.

Consequently, we have

(51)
$$\sqrt{n}U_n^{(k)} = O(n^{-\frac{\gamma}{2}}) \quad a.s. \quad (k = 2, \cdots, l).$$

Proof. By the Hölder inequality and (1)

$$\begin{split} |E(U_n^{(2)})^4 - E(\hat{U_n}^{(2)})^4| \\ &\leq \|U_n^{(2)} - \hat{U_n}^{(2)}\|_4 \|(|U_n^{(2)}| + |\hat{U_n}^{(2)}|)((U_n^{(2)})^2 + (\hat{U_n}^{(2)})^2)\|_{\frac{4}{3}} \leq c\delta(m), \end{split}$$

and similarly

$$|E(U_n^{(k)})^2 - E(\hat{U}_n^{(k)})^2| \le c\delta(m) \quad (k = 3, \cdots, l).$$

Hence, by Lemma A we have

(52)
$$E|U_n^{(2)}|^4 \le c\{E|\hat{U_n}^{(2)}|^4 + |E(U_n^{(2)})^4 - E(\hat{U_n}^{(2)})^4|\}$$

$$\leq c\{n^{-3-\gamma} + \delta(m)\}$$

and similarly

(53)
$$E|U_n^{(k)}|^2 \le c\{E|\hat{U_n}^{(k)}|^2 + |E(U_n^{(k)})^2 - E(\hat{U_n}^{(k)})^2|\} \le c\{n^{-3} + \delta(m)\} \qquad (k = 3, \cdots, l).$$

Now, put $m = [n^{\frac{1}{2}}]$ and we have

$$\delta(m) \le n^{\frac{-\beta}{2}} \quad (\beta > 6).$$

Thus, (49) and (50) follow from (52) and (53).

By the Markov inequality and (49)

$$P(\sqrt{n}|U_n^{(2)}| > n^{-\frac{\gamma}{8}}) \le n^{\frac{\gamma}{2}} E|U_n^{(2)}|^4 \le c n^{-1-\frac{\gamma}{2}}.$$

Thus, from the Borel-Cantelli lemma, (51) (with k = 2) is obtained.

Similarly, for $k = 3, \cdots, l$ we have

(54)
$$P(\sqrt{n}|U_n^{(k)}| \ge n^{-\frac{1}{3}}) \le n^{\frac{2}{3}} n E |U_n^{(k)}|^2 \le c n^{\frac{5}{3}} n^{-3} \le c n^{-\frac{4}{3}},$$

which, via the Borel-Cantelli lemma, implies (51) (with $k = 3, \dots, l$).

Proof of Theorem 1. Since U_n defined by (21) may be written as (12), we have

$$\sqrt{n}(U_n - \theta(F)) = \frac{l}{\sqrt{n}} \sum_{i=1}^n h^{(1)}(\eta_i) + \sum_{k=2}^l \binom{l}{k} \sqrt{n} U_n^{(k)}.$$

Noting that $\{h^{(1)}(\eta_i)\}\$ is a weakly, centered stationary sequence, weakly \mathcal{M} -dependent in L^p with rate function $\delta(m)$ satisfying $\delta(m) \leq m^{-\beta}$ ($\beta > 6$), from Theorem A we obtain

(55)
$$\left| \frac{l}{\sqrt{n\sigma}} \sum_{i=1}^{n} h^{(1)}(\eta_i) - W_1 \right| = O(n^{-\frac{1}{4}}) \quad a.s.$$

where

$$\sigma^{2} = E(h^{(1)}(\eta_{1}))^{2} + 2\sum_{i=1}^{\infty} Eh^{(1)}(\eta_{1})h^{(1)}(\eta_{1+i})$$

= $E(\psi_{1}(\eta_{1}) - \theta(F))^{2} + 2\sum_{i=1}^{\infty} E(\psi_{1}(\eta_{1}) - \theta(F))(\psi_{1}(\eta_{1+i}) - \theta(F)) > 0.$

Further, by (51)

$$\sum_{k=2}^{l} \binom{l}{k} \sqrt{n} U_n^{(k)} = O\left(n^{-\frac{\gamma}{2}}\right) \quad a.s. \quad (n \to \infty).$$

for some $\gamma > 0$. Combining these results we obtain (23).

Proof of Theorem 2. We note that by Theorem A

(56)
$$\frac{1}{n} \sum_{j=1}^{n} h^{(1)}(\eta_j) = o\left(n^{-\frac{1}{2}}\right) \quad a.s. \quad (n \to \infty).$$

Hence, from (56) and Lemma 1 we obtain that for some $\gamma > 0$

$$U_n - \theta(F) = \frac{1}{n} \sum_{j=1}^n h^{(1)}(\eta_j) + \sum_{k=2}^l \binom{l}{k} U_n^{(k)} = o\left(n^{-\frac{1}{2}}\right) \quad a.s.$$

as $n \to \infty$ and the proof is completed.

LEMMA 2. Let p > 2. Let $\{\eta_i\}$ be a centered, stationary sequence, weakly \mathcal{M} -dependent in L^p with rate function $\delta(m)$ satisfying

$$D_p = \sum_{m=0}^{\infty} \delta(m) < \infty.$$

Let $g_l : \mathsf{R} \to \mathsf{R}$ (l = 1, 2) be Lipschitz continuous functions such that

(57)
$$\begin{cases} Eg_l(\eta_1) = 0, \quad E|g_l(\eta_1)|^p < \infty \\ |g_l(y) - g_l(x)| \le K|y - x|. \end{cases}$$

Then

(58)
$$\frac{1}{n} E\left(\sum_{i=1}^{n} g_{1}(\eta_{i}) \sum_{j=1}^{n} g_{2}(\eta_{j})\right)$$
$$\to V(g_{1}, g_{2}) = Eg_{1}(\eta_{1})g_{2}(\eta_{1}) + \sum_{i=1}^{\infty} Eg_{1}(\eta_{1})g_{2}(\eta_{i+1})$$
$$+ \sum_{i=1}^{\infty} Eg_{2}(\eta_{1})g_{1}(\eta_{i+1})$$

as $n \to \infty$. The series in $V(g_1, g_2)$ is absolutely convergent.

Proof. We use the method of the proof in Berkes et al (2011).

We note first that both $\{g_1(\eta_k)\}$ and $\{g_2(\eta_k)\}$ are centered, stationary sequences, weakly \mathcal{M} -dependent in L^p with rate function $K\delta(m)$. We use below that

$$\sup_{m \ge 0} \max \left\{ \|g_1(\eta_k^{(m)})\|_2, \|g_2(\eta_k^{(m)})\|_2 \right\}$$

$$\leq \max \left\{ \|g_1(\eta_k)\|_2 + KD_p, \|g_2(\eta_k)\|_2 + KD_2 \right\} \le C_1$$

Without loss of generality we assume that $Eg_1(\eta_k^{(m)}) = Eg_2(\eta_k^{(m)}) = 0$ for all $k \in \mathbb{Z}$ and $m \in \mathbb{N}$. Since $g_1(\eta_k^{(j-1)})$ and $g_2(\eta_{k+j}^{(j-1)})$ are independent, by Condition I (B)

$$Eg_1(\eta_k^{(j-1)})g_2(\eta_{k+j}^{(j-1)}) = 0.$$

Hence, we have

$$(59) \qquad |Eg_{1}(\eta_{k})g_{2}(\eta_{k+j})| = |E\{(g_{1}(\eta_{k}) - g_{1}(\eta_{k}^{(j-1)}))g_{2}(\eta_{k+j}) + g_{1}(\eta_{k}^{(j-1)})(g_{2}(\eta_{k+j}) - g_{2}(\eta_{k+j}^{(j-1)})) + g_{1}(\eta_{k}^{(j-1)})g_{2}(\eta_{k+j}^{(j-1)})\}| \\ \leq |E(g_{1}(\eta_{k}) - g_{1}(\eta_{k}^{(j-1)}))g_{2}(\eta_{k+j})| \\ + E|g_{1}(\eta_{k}^{(j-1)})(g_{2}(\eta_{k+j}) - g_{2}(\eta_{k+j}^{(j-1)}))| \\ \leq ||g_{1}(\eta_{k+j})||_{2}||g_{1}(\eta_{k}) - g_{1}(\eta_{k}^{(j-1)})||_{2} \\ + ||g_{1}(\eta_{k}^{(j-1)})||_{2}||g_{2}(\eta_{k+j}) - g_{2}(\eta_{k+j}^{(j-1)})||_{2} \\ \leq (||g_{2}(\eta_{k+j})||_{2} + ||g_{1}(\eta_{k}^{(j-1)})||_{2})K\delta(j-1) \\ \leq K(||g_{1}(\eta_{1})||_{2} + ||g_{2}(\eta_{1})||_{2} + KD_{2})\delta(j-1) \leq C\delta(j-1)$$

and by the same method we obtain

(60)
$$|Eg_1(\eta_k)g_2(\eta_{k+j})| \le K(||g_1(\eta_1)||_2 + ||g_2(\eta_1)||_2 + KD_2)\delta(j-1) \le C\delta(j-1).$$

Here C > 0 is a constant independent of k and j. From relations (59) and (60) we obtain

$$\begin{aligned} \left| V(g_1, g_2) - \frac{1}{n} E\left(\sum_{i=1}^n g_1(\eta_i) \sum_{j=1}^n g_2(\eta_j)\right) \right| \\ &= \left| V(g_1, g_2) - \left\{ Eg_1(\eta_1)g_2(\eta_1) \right. \\ &+ \sum_{j=1}^{n-1} \frac{n-j}{n} E\{g_1(\eta_1)g_2(\eta_{1+j}) + g_2(\eta_1)g_1(\eta_{1+j})\} \right. \\ &+ \sum_{j=n}^{\infty} E\{(g_1(\eta_1)g_2(\eta_{1+j}) + g_2(\eta_1)g_1(\eta_{1+j}))\} \right\} \\ &\leq \sum_{j=1}^{n-1} \frac{j}{n} \{ |Eg_1(\eta_1)g_2(\eta_{1+j})| + |Eg_2(\eta_1)g_1(\eta_{1+j})|\} \\ &+ \sum_{j=n}^{\infty} \{ |Eg_1(\eta_1)g_2(\eta_{1+j})| + |Eg_2(\eta_1)g_1(\eta_{1+j})|\} \end{aligned}$$

$$\leq \frac{c}{n} \sum_{j=1}^{n-1} j\delta(j) + c \sum_{j=n}^{\infty} \delta(j).$$

Since $D_p < \infty$, we have

$$\frac{1}{n}\sum_{j=1}^{n-1}j\delta(j) = o(1) \quad \text{and} \quad \sum_{j=n}^{\infty}\delta(j) = o(1)$$

which implies

$$\left| V(g_1, g_2) - \frac{1}{n} E\left(\sum_{i=1}^n g_1(\eta_i) \sum_{j=1}^n g_2(\eta_j)\right) \right| = o(1) \quad (n \to \infty).$$

Proof of Theorem 3. Let

(61)
$$G_{q,n} = {\binom{n}{2}}^{-1} \sum_{(n,2)} \lambda_q \phi_q(\eta_{i_1}) \phi_q(\eta_{i_2}) = (n-1)^{-1} \lambda_q (W_{q,n}^2 - Z_{q,n})$$

where

(62)
$$W_{q,n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_q(\eta_i) \text{ and } Z_{q,n} = \frac{1}{n} \sum_{i=1}^{n} \phi_q^2(\eta_i),$$

and consider

(63)
$$(n-1)V_n^{(N,L)} = \sum_{q=N+1}^L G_{q,n}.$$

Since $\phi_q{\rm 's}$ satisfy (57), from Lemma 3 we obtain

$$\lim_{n \to \infty} EW_{q,n,N}^2 = \lim_{n \to \infty} \frac{1}{n} E\left(\sum_{i=1}^n \phi_q(\eta_i)\right)^2 = \sigma_q^2$$

and

$$\lim_{n \to \infty} EW_{q,n,N}W_{q',n,N}$$
$$= \lim_{n \to \infty} \frac{1}{n} E\left(\sum_{i=1}^{n} \phi_q(\eta_i)\right) \left(\sum_{i=1}^{n} \phi_{q'}(\eta_i)\right) = \sigma_{q,q'}.$$

In addition, as $E\phi_q(\eta_1) = 0$, $E\phi_q^2(\eta_1) = 1$ and $E\phi_q^4(\eta_1) < \infty$, by Theorem A we can construct a sequence of Gaussian random variables $\{W_q; q \ge 1\}$ on the common probability space such that $Var(W_q) = \sigma_q^2$, $cov(W_q, W_{q'}) = \sigma_{q,q'}$ and

(64)
$$|W_{q,n} - W_q| \le \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \phi_q(\eta_i) - W_q \right| = o(n^{-\frac{1}{4}}) \quad a.s.$$

and

(65)
$$\sqrt{n}|(Z_{q,n}-1)| = \left|\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(\phi_q^2(\eta_i)-1)\right| = o(n^{-\frac{1}{4}}) \quad a.s.$$

By the Schwarz inequality

$$\begin{split} &(n-1)^{2}E|V_{n}^{(N,L)}|^{2} = E\left(\sum_{q=N+1}^{L}\lambda_{q}\left(W_{q,n}^{2} - Z_{q,n}\right)\right)^{2} \\ &\leq E\left(\sum_{q=N+1}^{L}|\lambda_{q}||W_{q}^{2} - 1 + o(n^{-\frac{1}{4}})|\right)^{2} \\ &\leq cE\left(\sum_{q=N+1}^{L}|\lambda_{q}||W_{q}^{2} - 1|\right)^{2} + cn^{-\frac{1}{2}}\left(\sum_{q=N+1}^{L}|\lambda_{q}|\right)^{2} \\ &\leq c\left(\sum_{q=N+1}^{L}|\lambda_{q}|\right)E\left(\sum_{q=N+1}^{L}|\lambda_{q}|(W_{q}^{2} - 1)^{2}\right) + cn^{-\frac{1}{2}}\left(\sum_{q=N+1}^{L}|\lambda_{q}|\right)^{2} \\ &\leq c\left(\sum_{q=N+1}^{L}|\lambda_{q}|\right)^{2}(1 + n^{-\frac{1}{2}}). \end{split}$$

Hence, as $n \to \infty$ first, and then $N, L \to \infty$, from (30) we obtain (66) $(n-1)^2 E |V_n^{(N,L)}|^2 \to 0.$

(66)
$$(n-1)^2 E|V_n^{(i,j)}|^2$$

Now, put

$$T_{n,N} = (n-1) \sum_{q=1}^{N} G_{q,n}.$$

By (66) we have that for all n sufficiently large

(67)
$$E|T_{n,L} - T_{n,N}|^2 = (n-1)^2 E|V_n^{(N,L)}|^2 \to 0 \quad (N,L\to\infty).$$

In terms of the representation (27), T_n may be expressed as

$$T_n = (n-1)\sum_{q=1}^{\infty} G_{q,n}$$

Hence, by Fatou's lemma

(68)
$$E|T_n - T_{n,N}|^2 \le \lim_{L \to \infty} E|T_{n,L} - T_{n,N}|^2 = 0$$

for all n sufficiently large.

Next, let

(69)
$$\mathbf{Y}_N = \sum_{q=1}^N \lambda_q (W_q^2 - 1).$$

By (69), (64), (65) and (30) we have

(70)
$$E|T_{n,N} - \mathbf{Y}_N|^2 = E\left(\sum_{q=1}^N \lambda_q \left\{ (W_{q,n}^2 - W_q^2) - (Z_{q,n} - 1) \right\}^2 \right)^2$$
$$\leq E\left(\sum_{q=1}^N \lambda_q \left(cn^{-\frac{1}{4}} \right) \right)^2 \leq cn^{-\frac{1}{2}} \left(\sum_{q=1}^N |\lambda_q| \right)^2 \to 0$$

as $n \to \infty$.

Further, by the Schwarz inequality we have

(71)
$$E|\mathbf{Y}_{L} - \mathbf{Y}_{N}|^{2} = E \left| \sum_{q=N+1}^{L} \lambda_{q} (W_{q}^{2} - 1) \right|^{2}$$
$$\leq E \left\{ \left(\sum_{q=N+1}^{L} |\lambda_{q}| \right) \left(\sum_{q=N+1}^{L} |\lambda_{q}| (W_{q}^{2} - 1)^{2} \right) \right\}$$
$$\leq c \left(\sum_{q=N+1}^{L} |\lambda_{q}| \right) \left(\sum_{q=N+1}^{L} |\lambda_{q}| E(W_{q}^{2} - 1)^{2} \right)$$
$$\leq c \left(\sum_{q=N+1}^{L} |\lambda_{q}| \right)^{2} \rightarrow 0 \quad (N, L \rightarrow \infty),$$

which implies that $\{\mathbf{Y}_N\}$ is a Cauchy sequence in the L^2 space. Thus, we can define in the sense of the limit in mean square

$$\mathbf{Y} = \sum_{q=1}^{\infty} \lambda_q (W_q^2 - 1)$$

and hence

(72)
$$E|\mathbf{Y} - \mathbf{Y}_N|^2 \to 0 \quad (N \to \infty).$$

From (68),(70) and (72) we obtain that for an arbitrary positive ϵ there are positive constants N_0 and n_0 such that for all $N \ge N_0$ and $n \ge n_0$

$$E|\mathbf{Y} - T_n|^2 \le 3(E|\mathbf{Y} - \mathbf{Y}_N|^2 + E|\mathbf{Y}_N - T_{n,N}|^2 + E|T_{n,N} - T_n|^2) \le 9\epsilon,$$

which implies

$$\begin{aligned} &|E(\exp(it\mathbf{Y}) - E(\exp itT_n)| \\ &\leq |t|E|\mathbf{Y} - T_n| \leq |t|\|\mathbf{Y} - T_n\|_2 \leq 3\sqrt{\epsilon}. \end{aligned}$$

Hence, the distribution of T_n converges to that of **Y**.

4. Proofs of Theorems 4 and 5

4.1 Proof of Theorem 4

LEMMA 3. Let p > 4. Let $\{\eta_i\}$ be a centered stationary sequence, weakly \mathcal{M} dependent in L^p with rate function $\delta(m)$. If $u_t(x)$ satisfies the conditions in Theorem 4, then for fixed t the $\{u_t(x)I(\eta_i < x)\}$ is weakly \mathcal{M} -dependent in L^1 with rate function $K\sqrt{\delta(m)}$ where K > 0 some constant.

Proof. Let $\{\eta_i^{(m_i)}\}$ be the random variables which corresponding to $\{\eta_i\}$ satisfy Condition I (A) and (B). For brevity put $m = m_i$. Define

$$B = \left\{ \omega : |\eta_i - \eta_i^{(m)}| \le \sqrt{\delta(m)} \right\} \text{ and } B^c = \Omega - B.$$

Since for fixed $t \ 0 \le u_t(x) \le 1$,

$$E|u_t(x)I(\eta_i < x) - u_t(x)I(\eta_i^{(m)} < x)|$$

$$\leq E|I(\eta_i < x) - I(\eta_i^{(m)} < x)|$$

$$\leq E\{E\{|I(\eta_i < x) - I(\eta_i^{(m)} < x)|B\}\}$$

$$+E\{E\{|I(\eta_i < x) - I(\eta_i^{(m)} < x)|B^c\}\}.$$

Further, noting that on B

$$\eta_i - \sqrt{\delta(m)} \le \eta_i^{(m)} \le \eta_i + \sqrt{\delta(m)}$$

and so using the absolute continuity of F we have

$$E\{E|I(\eta_i < x) - I(\eta_i^{(m)} < x)|B\}\}$$

$$\leq \max \left\{ E(I(\eta_i < x) - I(\eta_i < x - \sqrt{\delta(m)})), \\ E(I(\eta_i < x + \sqrt{\delta(m)}) - I(\eta_i < x))) \right\}$$
$$= \max \left\{ F(x) - F(x - \sqrt{\delta(m)}), F(x + \sqrt{\delta(m)}) - F(x) \right\}$$
$$\leq K\sqrt{\delta(m)}.$$

On the other hand, by the Markov inequality

$$E\{E\{|I(\eta_i < x) - I(\eta_i^{(m)} < x)|B^c\}\} \le 2P(B^c)$$

$$\le 2\frac{1}{\sqrt{\delta(m)^p}}E|\eta_i - \eta_i^{(m)}|^p \le c\sqrt{\delta(m)^p}.$$

Combining these results, we have

$$\sup_{-\infty < x < \infty} E|u_t(x)I(\eta_i < x) - u_t(x)I(\eta_i^{(m)} < x)| \le c\sqrt{\delta(m)}.$$

Thus, we have the desired conclusion.

LEMMA 4. Suppose conditions of Theorem 4 are satisfied. Then

(73)
$$E\left(\sum_{i=1}^{n} \eta_i\right)^4 \le cn^2 \|\eta_1\|_2^4.$$

Proof. We note first that for fixed $m \{\eta_i^{(m)}\}$ is a stationary *m*-dependent sequence which satisfies a ϕ -mixing condition. Hence, we have

$$E\left|\sum_{i=1}^{n} \eta_{i}^{(m)}\right|^{4} \le cn^{2} \|\eta_{i}^{(m)}\|_{2}^{4},$$

(cf. Uteev (1984) and Doukhan(1994)). Consequently, we have

(74)
$$E\left|\sum_{i=1}^{n}\eta_{i}^{(m)}\right|^{4} \leq cn^{2}\{\|\eta_{i}\|_{2}^{4}+\|\eta_{i}-\eta_{i}^{(m)}\|_{2}^{4}\}.$$

From (74) it follows that

$$E\left(\sum_{i=1}^{n} \eta_{i}\right)^{4} \leq E\left|\sum_{i=1}^{n} \eta_{i}^{(m)}\right|^{4} + E\left|\sum_{i=1}^{n} (\eta_{i} - \eta_{i}^{(m)})\right|^{4}$$
$$\leq cn^{2}\left\{\|\eta_{1}\|_{2}^{4} + \|\eta_{1} - \eta_{1}^{(m)}\|_{2}^{4}\right\} + cn^{4}\|\eta_{1} - \eta_{1}^{(m)}\|_{2}^{4}\right\}$$
$$\leq cn^{2}\left\{\|\eta_{1}\|_{2}^{4} + \delta^{4}(m) + n^{2}\delta^{4}(m)\right\}.$$

Put $m = [n^{\frac{1}{2}}]$. Then, $\delta^4(m) = o(n^{-2})$ and so $n^2 \delta^4(m) \le ||\eta_1||_2^4$. Thus, we have (73).

Proof of Theorem 4. We show first that for fixed $t \in [0, 1]$

(75)
$$W_n(t) = \frac{1}{\sqrt{n}} \sum_{i=1}^n g_t(\eta_i) \xrightarrow{D} \mathcal{N}(0, \sigma_t^2)$$

where

$$\sigma_t^2 = Eg_t^2(\eta_0) + 2\sum_{j=1}^{\infty} \operatorname{cov}(g_t(\eta_0), g_t(\eta_j)) > 0.$$

The random variables $g_t(\eta_i)$ are centered and bounded, and themselves again weakly \mathcal{M} -dependent in L^p with rate function $2\sqrt{\delta(m)}$. Hence, from Theorem A (75) is obtained.

Now, an application of the Cramér-Wold device (cf. Billingsley 1968) yields that for any (t_1, t_2, \dots, t_k) the vector $(W_n(t_1), W_n(t_2), \dots, W_n(t_k))$ a k-dimensional centered normal distribution with covariance given by (46).

It remains to show that the sequence of processes $\{W_n(t); 0 \le t \le 1\}$ $(n \ge 1)$ is tight. Thightness follows if we can show that the condition of Theorem B is satisfied.

Consider the difference

$$W_n(t) - W_n(s) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \{g_t(\eta_i) - g_s(\eta_i)\}.$$

Note that if t > s, then $u_t(x) - u_s(x) \ge 0$ and $G(t) - G(s) \ge 0$ and hence

(76)
$$|g_t(\eta_0) - g_s(\eta_0)| = |(u_t(\eta_0) - G(t)) - (u_s(\eta_0) - G(s))| = |(u_t(\eta_0) - u_s(\eta_0)) - (G(t) - G(s))| \le G(t) - G(s)$$

and hence, for any $2 < r \leq p$

$$||g_t(\eta_0) - g_s(\eta_0)||_p^r \le c|G(t) - G(s)|^r.$$

Applying Lemma 5 we have that for any $2 < r \le p$

(77)
$$E|W_n(t) - W_n(s)|^r = E\left|\frac{1}{\sqrt{n}}\sum_{i=1}^n \{g_t(\eta_i) - g_s(\eta_i)\}\right|$$
$$\leq cn^{-\frac{r}{2}}n^{-\frac{r}{2}}||g_t(\eta_0) - g_s(\eta_0)||^{\frac{r}{2}} \leq c|G(t) - G(s)|^{\frac{r}{2}}$$

Thus, by the Markov inequality and the Schwarz inequality we have that for any $0 \le t_1 < t < t_2 \le 1$

$$P(|W_n(t_2) - W_n(t)| > \lambda, |W_n(t) - W_n(t_1)| > \lambda)$$

$$\leq \frac{1}{\lambda^{r}} E \left\{ |W_{n}(t_{2}) - W_{n}(t)|^{\frac{r}{2}} |W_{n}(t) - W_{n}(t_{1})|^{\frac{r}{2}} \right\}$$

$$\leq \frac{1}{\lambda^{r}} \left\{ E |W_{n}(t_{2}) - W_{n}(t)|^{r} \right\}^{\frac{1}{2}} \left\{ E |W_{n}(t) - W_{n}(t_{1})|^{r} \right\}^{\frac{1}{2}}$$

$$\leq \frac{c}{\lambda^{2}} (G(t) - G(t_{1}))^{\frac{r}{4}} (G(t_{2}) - G(t))^{\frac{r}{4}}$$

$$\leq \frac{c}{\lambda^{2}} (G(t_{2}) - G(t_{1}))^{\frac{r}{2}}.$$

Since r > 2, we can use Theorem B with $2\tau = r$ and the tightness of $\{W_n(t)\}$ follows.

Hence, $\{W_n(t) : 0 \le t \le 1\}$ converges weakly to some Gaussian process $\{W(t) : 0 \le t \le 1\}$.

Since

$$EW_n(t)W_n(s) = \frac{1}{n}E\left(\sum_{i=1}^n g_t(\eta_i)\right)\left(\sum_{j=1}^n g_t(\eta_i)\right)$$

and

$$Eg_t(\eta_i)g_s(\eta_j) = cov(u_t(\eta_i), u_s(\eta_i)) \quad (1 \le i, j \le n; s, t \in [0, 1]),$$

by Lemma 3 we see that (46) is the covariance structure of $\{W(t)\}$.

4.2 Proof of Theorem 5

Proof of Theorem 5. Put

$$g(x,t) = h_1(x,t) - U(t)$$

and

$$J(x, y, t) = h(x, y, t) - h_1(x, t) - h_1(y, t) + U(t).$$

Define

$$V_n(t) = \frac{1}{n}g(\eta_i, t)$$
 and $R_n(t) = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} J(\eta_i, \eta_j, t).$

Then

$$U_n - U(t) = 2V_n(t) + R_n(t)$$

and by Lemma 1

(78)
$$\sup_{0 \le t \le 1} \sqrt{n} R_n(t) = O\left(n^{-\frac{\gamma}{2}}\right) \quad a.s.$$

for some $\gamma > 0$. Further, as $h_1(x,t)$ satisfies the conditions of Theorem 4, we have that

(79)
$$\{2\sqrt{n}V_n(t); 0 \le t \le 1\} \xrightarrow{D} \{W(t); 0 \le t \le 1\} \quad (n \to \infty).$$

Now, from (78) and (79) the conclusion of Theorem 5 follows.

References

- I. Berkes, W. Hörmann, and J. Schauer, Split invariance principles for stationary processes. Ann. Probab. 39 (2011), 2441–2476.
- [2] P. Billingsley, Convergence of probability measures. Wiley, New York, 1968.
- [3] P. Doukhan, *Mixing.* Lecture note in Statistics 85. Springer-Verlag, Berlin, 1995.
- [4] A. J. Lee, *U-statistics*. Marcel Dekker, Inc. New York, 1990.
- [5] C. Levy-Leduc, R. Boistrad, E. Moulines, M. S. Taqqu, and D. N. Reisen, Asymptotic properties of U-processes under long-range dependence. Ann. Statist., 39 (2011), 1399– 1426.
- [6] R. J. Serfling, Approximation theorems of mathematical statistics. Wiley, New York, 1980.
- [7] S. Uteev, Inequalities and estimates of the convergent rate for the weakly dependent case. Adv. in Probab. Th., 1985. Novosibirsk.
- [8] K. Yoshihara, Limiting behavior of U-stastistics for stationary absolutely regular processes. Z. Wahrsch. verw. Gebiete, 35 (1976), 237–252.
- [9] K. Yoshihara, Weakly dependent stochastic sequences and their applications Vol. I, Sanseido, Tokyo, 1992.
- [10] K. Yoshihara, Weakly dependent stochastic sequences and their applications Vol. II, Sanseido, Tokyo, 1993.
- [11] K. Yoshihara Weakly dependent stochastic sequences and their applications Vol. XV, Sanseido, Tokyo, 2005.