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Summary. The object of this paper is to study asymptotics of U -statistics
and U -processes based on centered stationary sequences, weakly M-dependent
in Lp with rate function δ(·). The notion of the weakly M-dependence is recently
introduced by Berkes et al (2011) and has many examples such as NED processes,
augmented GARCH sequences, linear processes with dependent innovations, etc.

1. Introduction

1.1 Weakly M-dependent in Lp with rate function δ(·)

Berkes et al. (2011) introduced one of the notion of weak dependence which

is called ” weakly M-dependent in Lp with rate fuction δ(m)” and proved a new

type of strong approximation of partial sums of dependent processes.

Let (Ω,F , P ) be a probability space. Let p ≥ 1 and for any random variable

Y , let ‖Y ‖p = (E|Y |p)
1
p . For A and B (⊂ {· · · ,−1, 0, 1, 2, · · · }), we define

d(A,B) = inf{|a − b|; a ∈ A, b ∈ B}.

We say that a real-valued process {ηi} is weakly M-dependent in Lp with rate

function δ(·) if {ηi} satisfies the following conditions:

CONDITION I. (A) For any integer k and positive integer m one can find a

random variable η
(m)
i with finite p-th moment such that

‖ηk − η
(m)
k ‖p ≤ δ(m) ↓ 0 m → ∞;(1)

(B) For any disjoint subsets I1, · · · , Ir of integers and any positive integers

m1, · · · , mr the vectors {η(m1)
j1

, j1 ∈ I1}, · · · , {η(mr)
jr

, jr ∈ Ir} are independent

provided

d(Ik, Il) > max{mk,ml} (1 ≤ k < l ≤ r).
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(1) implies that

‖ηi‖p ≤ ‖η(m)
i ‖p + ‖ηi − η

(m)
i ‖p < ∞.(2)

Note that sequences satisfying conditions (A) and (B) are approximable by

m-dependent processes for any fixed order m (≥ 1) with termwise approximation

error δ(m).

Properties of weakly M-dependent in Lp

(I) If {ηi} is weakly M-dependent in Lp with rate function δ(·) and h is a Lipschitz

α function (0 < α ≤ 1) with Lipschitz constant K, then

‖h(ηk) − h(η
(m)
k )‖p(3)

≤ K‖ηk − η
(m)
k ‖α

αp ≤ K‖ηk − η
(m)
k ‖α

p ≤ Kδα(m)

(II) The following theorem was proved in Berkes et al (2011):

THEOREM A. Let p > 2, κ > 0 and let {ηi} be a centered stationary sequence,

weakly M-dependent in Lp and a rate function δ(·) satisfying

δ(m) ≤ Cm−α(4)

where

α >
p − 2

2κ

(
1 − 1 + κ

p

)
∨ 1,

1 + κ

p
<

1

2
.(5)

Then, we can redefine on a new probability space together with two standard

Wiener processes {W1(t); t ≥ 0} and {W2(t); t ≥ 0} such that

n∑
k=1

ηk = W1(sn) + W2(tn) + O
(
n

1+κ
p

)
a.s.(6)

where {sn} and {tn} are nondecreasing numerical sequences with

sn ∼ n, tn ∼ C1n
ρ,(7)

0 < ρ < 1 and C1 > 0 are some constants.

1.2 A critrion of weak convergence

Let Xn and X be random elements of D[0, 1]. Let TX be the set of all t

in [0, 1] which contains 0 and 1, and 0 < t < 1, and t ∈ TX if and only if

P (X(t) 6= X(t−)) = 0. The following theorem assures the weak convergence of

Xn.



U -STATISTICS AND U -PROCESSES 93

THEOREM B. (Billingsley (1968) Theorem 15.6) Suppose that

(Xn(t1), Xn(t2), · · · , Xn(tk))
D→ (X(t1), X(t2), · · · , X(tk))

holds whenever t1, t2, · · · , tk all lie in TX and that

P (|Xn(t) − Xn(t1)| > λ, |Xn(t2) − Xn(t)| > λ) ≤ 1

λ2κ
{G(t2) − G(t1)}2τ

for t1 ≤ t ≤ t2 and n ≥ 1, where κ ≥ 0, τ > 1
2

and G is a nondecreasing

continuous function on [0, 1]. Then Xn →D X.

1.3 U-statistics

Let {ηi} be a centered stationary sequence, weakly M-dependent in Lp with

rate function δ(·). Let F be the distribution function of η1.

Let ψ(y1, y2, · · · , yl) : Rl → R be a measurable symmetric function, which

will be called a kernel and define the U -statistic of degree l by

Un =

(
n

l

)−1 ∑
1≤i1<i2<···<il≤n

ψ(ηi1 , ηi2 , · · · , ηil).

We assume that for some r > 2

sup
−∞<i1,i2,··· ,il<∞

E|ψ(ηi1 , ηi2 , · · · , ηil)|r < ∞.(8)

Put

θ(F ) =

∫ ∫
· · ·

∫
ψ(y1, y2, · · · , yl)

l∏
j=1

dF (yij).(9)

To consider Hoeffding’s H-decomposition of the U -statistic, we define

ψj(y1, y2, · · · , yj) (j = 1, · · · , l − 1) recursively by

ψj(y1, y2, · · · , yj) =

∫
ψj+1(y1, y2, · · · , yj, yj+1)dF (yj+1).

Assume ∫
ψ1(y1)dF (y1) = θ(F )

holds.

We introduce kernels of degrees 1, 2, · · · , l which are also defined recursively

by the equations

h(1)(y1) = ψ1(y1) − θ(F )
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and

h(k)(y1, · · · , yk)(10)

= ψk(y1, · · · yk) −
k−1∑
j=1

∑
1≤i1<···<ij≤k

h(j)(yi1 , · · · , yij) − θ(F )

for k = 2, 3, · · · , l.

By the above definitions of h(j) we have that for j = 1, · · · , k − 1 and k =

1, 2, · · · , l

h
(k)
j (y1, · · · , yj)

=

∫
· · ·

∫
h(k)(y1, · · · , yj, yj+1, · · · , yk)

k∏
i=j+1

dF (yi) = 0

and ∫
· · ·

∫
h(k)(y1, · · · , yk)

k∏
j=1

dF (yj) = 0.(11)

Now, we have the following well known H-decomposition of Un:

Un =

(
n

l

)−1 ∑
1≤i1<i2<···<il≤n

ψ(ηi1 , ηi2 , · · · , ηil)(12)

= θ(F ) +
l∑

k=1

(
l

k

)
U (k)

n

where U
(k)
n is the U -statistic of degree k based on kernel h(k).

Next, to estimate E|Û (k)
n |2 when Û

(k)
n is constructed by an m-dependent se-

quence, we consider a kind of weak dependence conditions. Let {ξi} be a station-

ary sequence of random variables and denote by Mb
a be the σ-algebra generated

by ξa, · · · , ξb (a ≤ b). We say that {ξi} is φ-mixing if

φ(n) = sup
A∈M0

−∞,B∈M∞
n

∣∣∣∣P (AB) − P (A)P (B)

P (A)

∣∣∣∣ → 0 (n → ∞).(13)

For any stationary sequence {ξi} let

M(r) = max{‖ψ(Xi1 , Xi2 , · · · , Xil)‖r,(14)

sup
1≤i1<i2<···<il

‖ψ(ξi1 , ξi2 , · · · , ξil)‖r}

where Xi1 , Xi2 , · · · , Xil are i.i.d. random variables with the same distribution as

that of ξ1.

The following is known:
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LEMMA A. Suppose {ξi} is a stationary φ-mixing sequence satisfying M(r) <

∞ holds for some r > 4 and

∞∑
n=1

nφ
1
4 (n) < ∞.(15)

Then,

E|Û (2)
n |2 = O(n−2),(16)

E|Û (k)
n |2 = O(n−3), (k = 3, · · · , l).(17)

Furthermore, there exists a constant γ > 0 such that

E|Û (2)
n |4 = O(n−3−γ).(18)

(cf. Yoshihara (1976) and Yoshihara (1993) Lemma 3.2.4.)

It is obvious that if {ξi} is an m-dependent sequence, then it satisfies the

φ-mixing condition, and so we can use this lemma when {η(m)
i } is needed.

2. Main results

Let {ηi} be a centered stationary sequence, weakly M-dependent in Lp with

rate function δ(·) and {η(m)
i } (with fixed m) be a centered stationary sequence of

random variables satisfying Conditions (A) and (B), so that {η(m)
i } is a centered

stationary m-dependent sequence with E|η1|p < ∞.

Let F be the distribution function of η1.

2.1 U-statistics based on {ηi}

Let ψ(y1, · · · , yl) : Rl → R be a symmetric kernel function which has contin-

uous bounded partial derivatives, i.e., for some positive constant K

sup
y1,··· ,yl

max
1≤j≤l

∣∣∣∣∂ψ(y1, y2, · · · , yl)

∂yj

∣∣∣∣ ≤ K.(19)

We prove the following theorems.

THEOREM 1. Let p > 4. Let {ηi} be a centered, stationary sequence, weakly

M-dependent in Lp with rate function δ(m) satisfying

δ(m) ≤ Cm−β(20)
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where β > 6. Let ψ(y1, y2, · · · , yl) be a measurable symmetric kernel satisfying

(19).

Define U-statistic of degree l by

Un =

(
n

l

)−1 ∑
1≤i1<i2<···<il≤n

ψ(ηi1 , ηi2 , · · · , ηil).(21)

and θ(F ) by (9). Suppose M(p), defined for {ηi}, is finite.

Then, the series in the next equation is absolutely convergent and

σ2 = Var(ψ1(η1) + 2
∞∑

j=2

cov(ψ1(η1), ψ1(ηj)) < ∞(22)

is well defined.

Furthermore, if σ2 > 0, then∣∣∣∣√n

2σ
(Un − θ(F )) − W1

∣∣∣∣ = o(1) a.s. (n → ∞),(23)

where W1 is an N (0, 1) random variable.

THEOREM 2. Suppose conditions of Theorem 1 hold. Then

Un → θ(F ) a.s.(24)

For the function h(2)(x1, x2) defined by (10) associated with the kernel

ψ(x1, x2, · · · , xl) (l ≥ 2), we define an operator A on the function space L2

by

Aφ(x) =

∫
h(2)(x, y)φ(y)dF (y), x ∈ R, φ ∈ L2.(25)

In connection with any such operator A, we define the associated eigenvalues

λ1, λ2 · · · to be the real numbers λ (not necessarily distinct) corresponding to

the distinct solutions φ1, φ2, · · · of the equation

Aφ − λφ = 0.

Then ∫
φj(x)φk(x)dF (x) =

{
1 (j = k)

0 (j 6= k)
(26)

and

lim
N→∞

∫ ∫ {
h(2)(x, y) −

N∑
k=1

λkφk(x)φk(y)
}2

dF (x)dF (y) = 0.
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Thus, we can write

h(2)(x, y) =
∞∑

q=1

λqφq(x)φq(y).(27)

Let

Sq,n =
n∑

i=1

φq(ηi).

Using facts Eφk(ηi) = 0 and ‖φk(ηi)‖2 = 1, by the usual method (cf. Lemma

3 (below)) we can prove that for some constant C > 0 (independnt of n ≥ 1 and

K0)

ES2
q,n = E

∣∣∣∣ n∑
i=1

φq(ηi)

∣∣∣∣2 ≤ Cn.

and so put

σ2
q = lim

n→∞

1

n
ES2

q,n = 1 + 2
∞∑
i=1

Eφq(η1)φq(ηi+1)(28)

and

σq,q′ = lim
n→∞

1

n
ESq,nSq′,n(29)

= Eφq(η1)φq′(η1) +
∞∑
i=1

{Eφq(η1)φq′(ηi+1) + Eφq′(η1)φq(ηi+1)}.

THEOREM 3. Suppose conditions of Theorem 1 hold and

E|h(1)(η1)|2 = 0, and inf
−∞<i,j<∞

E|h(2)(ηi, ηj)|2 > 0.

Suppose the above defined eigenvalues satisfy the conditions

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · , and
∞∑
l=1

|λl| < ∞,(30)

and the above defined eigenfunctions satisfy the Lipschitz condition

sup
q≥1

|φq(x + h) − φq(x)| ≤ K|h|.(31)

Furthermore, assume

0 < inf
q≥1

σ2
q ≤ sup

q≥1
σ2

q < ∞.(32)
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Then

nU (2)
n

D→ Y =
∞∑

k=1

λk(W
2
k − 1),(33)

where U
(2)
n is defined by (12), Wq ∼ N (0, σ2

q ) (q ≥ 1), EWqWq′ = σq,q′ (q 6= q′ ≥
1) and Y is defined in the sense of the limit in mean square.

Consequently, from (16) and (17) in Lemma A, we have

n(Un − θ(F ))
D→ l(l − 1)

2
Y.(34)

2.2 Empirical processes based on {ηi}

Define the empirical distribution function by

Fn(t) =
1

n

n∑
i=1

I(ηi ∈ (−∞, t]).

Let U = {{ut; 0 ≤ t ≤ 1}} be the class of functions satisfying the conditions{
0 ≤ ut(y) ≤ 1, 0 ≤ t ≤ 1,

us(y) ≤ ut(y), 0 ≤ s ≤ t ≤ 1 for all y.
(35)

Put

G(t) = Eut(η1) and gt(y) = ut(y) − G(t).

We assume that G is Lipschitz continuous on [0, 1], i.e.

|G(t) − G(s)| ≤ K|t − s|.(36)

For ut ∈ U , define

Wn(t) =
√

n

∫
ut(s)(dFn(s) − dF (s))(37)

=
√

n

{
1

n

n∑
i=1

ut(ηi) −
∫

ut(y)dF (y)

}
.

Then, {Wn(t); 0 ≤ t ≤ 1} is a random element of D[0, 1].

THEOREM 4. Let p > 4. Let {ηi} be a centered, stationary sequence, weakly

M-dependent in Lp with rate function δ(m) satisfying

δ(m) ≤ Cm−β(38)
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where β > 4. Let ut ∈ U and the function G satisfies (36).

Then, the empirical processes {Wn(t); 0 ≤ t ≤ 1} converges weakly to the

centered Gaussian process {W (t); 0 ≤ t ≤ 1} with covariance structure

cov(W (s),W (t))(39)

= cov(us(η1), ut(η1)) +
∞∑

j=1

cov(us(η1), ut(ηj + 1))

+
∞∑

j=1

cov(us(ηj+1), ut(η1)).

Moreover, the series on the right hand side of (39) converges absolutely and the

limit process W has continuous paths almost surely.

2.3 U-processes of stochastic sequences

Let H be a class of kernel functions h(x, y; t) : R2 × R → R such that{
0 ≤ h(x, y; t) ≤ 1, h(x, y; 0) = 0,

h(x, y; t) is increasing in t, for fixed x, y ∈ R.
(40)

Define

Un(t) =
2

n(n − 1)

∑
1≤i<j≤n

h(ηi, ηj; t),

U(t) =

∫ ∫
h(x, y; t)dF (x)dF (y) (t ∈ R),

Wn(t) =
√

n(Un(t) − U(t)).

Put

h(1)(x; t) =

∫
h(x, y; t)dF (y) (x ∈ R).

Note that if h ∈ H,

0 ≤ h(1)(x; t) ≤ 1, h(1)(x; 0) = 0

and it is increasing in t.

We impose the following condition.

Condition II There exists a constant K > 0 such that

|U(t) − U(s)| ≤ K|t − s|,(41)
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|Eh(η0, ηk; t) − Eh(η0, ηk; s)| ≤ K|t − s|,(42) ∣∣∣∣ ∫ ∫
h(y0, yk; t)dF (y0)dF (yk)(43)

−
∫ ∫

h(y0, yk; s)dF (y0)dF (yk)

∣∣∣∣ ≤ K|t − s|

hold for all s, t (∈ [0, 1]) and k ≥ 1.

THEOREM 5. Let p > 4. Let {ηi} be a centered, stationary sequence, weakly

M-dependent in Lp with rate function δ(m) satisfying

δ(m) ≤ Cm−β(44)

where β > 4. Suppose that h(·, ·; t) ∈ H for all t ∈ [0, 1] and Condition II holds.

Then

{
√

n(Un(t) − U(t); 0 ≤ t ≤ 1} D→ {W (t); 0 ≤ t ≤ 1} in D[0, 1](45)

where {W (t); 0 ≤ t ≤ 1} is a centered Gaussian process with covariance structure

cov(W (s), W (t))(46)

= 4cov(h(1)(η1, s), h
(1)(η1, t)) + 4

∞∑
j=1

cov(h(1)(η1, s), h
(1)(ηj+1, t))

+4
∞∑

j=1

cov(h(1)(ηj+1, s), h
(1)(η1, t)),

which converges absolutely and the limit process W has continuous paths on [0, 1]

almost surely.

3. Proofs

3.1 Proofs of Theorems 1-3

In the sequel, we use
∑

(n,l) to denote the sum taken over all subsets 1 ≤ i1 <

· · · < il ≤ n of {1, 2, · · · , n}.
Let p > 4. Let {ηi} be a centered, stationary sequence, weakly M-dependent

in Lp with rate function δ(·). Then, corresponding to {ηi}, we can choose a

centered, stationary m dependent sequence {η(m)
j } with E|η(m)

i |p < ∞ satisfying

(1). For a while we assume that m is fixed. Let F̂ (y1) be the ditribution function

of η
(m)
1 .
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Corresponding to Un we consider the following U -statistic and its H-decompo-

sition as follows:

Ûn =

(
n

l

)−1 ∑
(n,l)

ψ(η
(m)
i1

, η
(m)
i2

, · · · , η
(m)
il

)(47)

= θ(F ) +
l∑

k=1

(
l

k

)
Û (k)

n

where Û
(k)
n is the U -statistic of degree k based on kernel ĥ(k) which is defind by

{η(m)
i }.
We note that by (19) and (3)

‖ψ(η1, · · · , ηl) − ψ(η
(m)
1 , · · · , η

(m)
l )‖p ≤ lKδ(m)

which implies

‖Un − Ûn‖2 ≤ ‖Un − Ûn‖p ≤ cδ(m).(48)

We prove the following lemma, which will be used in the proofs of Theorems.

LEMMA 1. Suppose conditions of Theorem 1 hold. Then, for some γ > 0

E|U (2)
n |4 ≤ C0n

−3−γ(49)

and

E|U (k)
n |2 ≤ C0n

−3 (k = 3, · · · , l)(50)

where C0 is a positive constant independent of n.

Consequently, we have

√
nU (k)

n = O
(
n− γ

2

)
a.s. (k = 2, · · · , l).(51)

Proof. By the Hölder inequality and (1)

|E(U (2)
n )4 − E(Ûn

(2)
)4|

≤ ‖U (2)
n − Ûn

(2)
‖4‖(|U (2)

n | + |Ûn
(2)
|)((U (2)

n )2 + (Ûn
(2)

)2)‖ 4
3
≤ cδ(m),

and similarly

|E(U (k)
n )2 − E(Ûn

(k)
)2| ≤ cδ(m) (k = 3, · · · , l).

Hence, by Lemma A we have

E|U (2)
n |4 ≤ c{E|Ûn

(2)
|4 + |E(U (2)

n )4 − E(Ûn
(2)

)4|}(52)
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≤ c{n−3−γ + δ(m)}

and similarly

E|U (k)
n |2 ≤ c{E|Ûn

(k)
|2 + |E(U (k)

n )2 − E(Ûn

(k)
)2|}(53)

≤ c{n−3 + δ(m)} (k = 3, · · · , l).

Now, put m = [n
1
2 ] and we have

δ(m) ≤ n
−β
2 (β > 6).

Thus, (49) and (50) follow from (52) and (53).

By the Markov inequality and (49)

P (
√

n|U (2)
n | > n− γ

8 ) ≤ n
γ
2 E|U (2)

n |4 ≤ cn−1− γ
2 .

Thus, from the Borel-Cantelli lemma, (51) (with k = 2) is obtained.

Similarly, for k = 3, · · · , l we have

P (
√

n|U (k)
n | ≥ n− 1

3 ) ≤ n
2
3 nE|U (k)

n |2 ≤ cn
5
3 n−3 ≤ cn− 4

3 ,(54)

which, via the Borel-Cantelli lemma, implies (51) (with k = 3, · · · , l).

Proof of Theorem 1. Since Un defined by (21) may be written as (12), we have

√
n(Un − θ(F )) =

l√
n

n∑
i=1

h(1)(ηi) +
l∑

k=2

(
l

k

)√
nU (k)

n .

Noting that {h(1)(ηi)} is a weakly, centered stationary sequence, weakly M-

dependent in Lp with rate function δ(m) satisfying δ(m) ≤ m−β (β > 6), from

Theorem A we obtain∣∣∣∣ l√
nσ

n∑
i=1

h(1)(ηi) − W1

∣∣∣∣ = O(n− 1
4 ) a.s.(55)

where

σ2 = E(h(1)(η1))
2 + 2

∞∑
i=1

Eh(1)(η1)h
(1)(η1+i)

= E(ψ1(η1) − θ(F ))2 + 2
∞∑
i=1

E(ψ1(η1) − θ(F ))(ψ1(η1+i) − θ(F )) > 0.

Further, by (51)

l∑
k=2

(
l

k

)√
nU (k)

n = O
(
n− γ

2

)
a.s. (n → ∞).

for some γ > 0. Combining these results we obtain (23).
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Proof of Theorem 2. We note that by Theorem A

1

n

n∑
j=1

h(1)(ηj) = o
(
n− 1

2

)
a.s. (n → ∞).(56)

Hence, from (56) and Lemma 1 we obtain that for some γ > 0

Un − θ(F ) =
1

n

n∑
j=1

h(1)(ηj) +
l∑

k=2

(
l

k

)
U (k)

n = o
(
n− 1

2

)
a.s.

as n → ∞ and the proof is completed.

LEMMA 2. Let p > 2. Let {ηi} be a centered, stationary sequence, weakly M–

dependent in Lp with rate function δ(m) satisfying

Dp =
∞∑

m=0

δ(m) < ∞.

Let gl : R → R (l = 1, 2) be Lipschitz continuous functions such that{
Egl(η1) = 0, E|gl(η1)|p < ∞
|gl(y) − gl(x)| ≤ K|y − x|.

(57)

Then

1

n
E

( n∑
i=1

g1(ηi)
n∑

j=1

g2(ηj)

)
(58)

→ V (g1, g2) = Eg1(η1)g2(η1) +
∞∑
i=1

Eg1(η1)g2(ηi+1)

+
∞∑
i=1

Eg2(η1)g1(ηi+1)

as n → ∞. The series in V (g1, g2) is absolutely convergent.

Proof. We use the method of the proof in Berkes et al (2011).

We note first that both {g1(ηk)} and {g2(ηk)} are centered, stationary se-

quences, weakly M-dependent in Lp with rate function Kδ(m). We use below

that

sup
m≥0

max
{
‖g1(η

(m)
k )‖2, ‖g2(η

(m)
k )‖2

}
≤ max

{
‖g1(ηk)‖2 + KDp, ‖g2(ηk)‖2 + KD2

}
≤ C1
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Without loss of generality we assume that Eg1(η
(m)
k ) = Eg2(η

(m)
k ) = 0 for all

k ∈ Z and m ∈ N.

Since g1(η
(j−1)
k ) and g2(η

(j−1)
k+j ) are independent, by Condition I (B)

Eg1(η
(j−1)
k )g2(η

(j−1)
k+j ) = 0.

Hence, we have

|Eg1(ηk)g2(ηk+j)| =
∣∣E{

(g1(ηk) − g1(η
(j−1)
k ))g2(ηk+j)(59)

+g1(η
(j−1)
k )(g2(ηk+j) − g2(η

(j−1)
k+j )) + g1(η

(j−1)
k )g2(η

(j−1)
k+j )

}∣∣
≤

∣∣E(g1(ηk) − g1(η
(j−1)
k ))g2(ηk+j)

∣∣
+E

∣∣g1(η
(j−1)
k )(g2(ηk+j) − g2(η

(j−1)
k+j ))

∣∣
≤ ‖g1(ηk+j)‖2‖g1(ηk) − g1(η

(j−1)
k )‖2

+‖g1(η
(j−1)
k )‖2‖g2(ηk+j) − g2(η

(j−1)
k+j )‖2

≤ (‖g2(ηk+j)‖2 + ‖g1(η
(j−1)
k )‖2)Kδ(j − 1)

≤ K(‖g1(η1)‖2 + ‖g2(η1)‖2 + KD2)δ(j − 1) ≤ Cδ(j − 1)

and by the same method we obtain

|Eg1(ηk)g2(ηk+j)| ≤ K(‖g1(η1)‖2 + ‖g2(η1)‖2 + KD2)δ(j − 1)(60)

≤ Cδ(j − 1).

Here C > 0 is a constant independent of k and j. From relations (59) and (60)

we obtain ∣∣∣∣V (g1, g2) −
1

n
E

( n∑
i=1

g1(ηi)
n∑

j=1

g2(ηj)

)∣∣∣∣
=

∣∣∣∣V (g1, g2) −
{

Eg1(η1)g2(η1)

+
n−1∑
j=1

n − j

n
E{g1(η1)g2(η1+j) + g2(η1)g1(η1+j)}

+
∞∑

j=n

E{(g1(η1)g2(η1+j) + g2(η1)g1(η1+j)}
}∣∣∣∣

≤
n−1∑
j=1

j

n
{|Eg1(η1)g2(η1+j)| + |Eg2(η1)g1(η1+j)|}

+
∞∑

j=n

{|Eg1(η1)g2(η1+j)| + |Eg2(η1)g1(η1+j)|}
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≤ c

n

n−1∑
j=1

jδ(j) + c

∞∑
j=n

δ(j).

Since Dp < ∞, we have

1

n

n−1∑
j=1

jδ(j) = o(1) and
∞∑

j=n

δ(j) = o(1)

which implies∣∣∣∣V (g1, g2) −
1

n
E

( n∑
i=1

g1(ηi)
n∑

j=1

g2(ηj)

)∣∣∣∣ = o(1) (n → ∞).

Proof of Theorem 3. Let

Gq,n =

(
n

2

)−1 ∑
(n,2)

λqφq(ηi1)φq(ηi2) = (n − 1)−1λq

(
W 2

q,n − Zq,n)(61)

where

Wq,n =
1√
n

n∑
i=1

φq(ηi) and Zq,n =
1

n

n∑
i=1

φ2
q(ηi),(62)

and consider

(n − 1)V (N,L)
n =

L∑
q=N+1

Gq,n.(63)

Since φq’s satisfy (57), from Lemma 3 we obtain

lim
n→∞

EW 2
q,n,N = lim

n→∞

1

n
E

( n∑
i=1

φq(ηi)

)2

= σ2
q

and

lim
n→∞

EWq,n,NWq′,n,N

= lim
n→∞

1

n
E

( n∑
i=1

φq(ηi)

)( n∑
i=1

φq′(ηi)

)
= σq,q′ .
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In addition, as Eφq(η1) = 0, Eφ2
q(η1) = 1 and Eφ4

q(η1) < ∞, by Theorem A

we can construct a sequence of Gaussian random variables {Wq; q ≥ 1} on the

common probability space such that Var(Wq) = σ2
q , cov(Wq,Wq′) = σq,q′ and

|Wq,n − Wq| ≤
∣∣∣∣ 1√

n

n∑
i=1

φq(ηi) − Wq

∣∣∣∣ = o
(
n− 1

4 ) a.s.(64)

and

√
n|(Zq,n − 1)| =

∣∣∣∣ 1√
n

n∑
i=1

(φ2
q(ηi) − 1)

∣∣∣∣ = o
(
n− 1

4 ) a.s.(65)

By the Schwarz inequality

(n − 1)2E|V (N,L)
n |2 = E

( L∑
q=N+1

λq

(
W 2

q,n − Zq,n)

)2

≤ E

( L∑
q=N+1

|λq||W 2
q − 1 + o(n− 1

4 )|
)2

≤ cE

( L∑
q=N+1

|λq||W 2
q − 1|

)2

+ cn− 1
2

( L∑
q=N+1

|λq|
)2

≤ c

( L∑
q=N+1

|λq|
)

E

( L∑
q=N+1

|λq|(W 2
q − 1)2

)
+ cn− 1

2

( L∑
q=N+1

|λq|
)2

≤ c

( L∑
q=N+1

|λq|
)2

(1 + n− 1
2 ).

Hence, as n → ∞ first, and then N,L → ∞, from (30) we obtain

(n − 1)2E|V (N,L)
n |2 → 0.(66)

Now, put

Tn,N = (n − 1)
N∑

q=1

Gq,n.

By (66) we have that for all n sufficiently large

E|Tn,L − Tn,N |2 = (n − 1)2E|V (N,L)
n |2 → 0 (N,L → ∞).(67)

In terms of the representation (27), Tn may be expressed as

Tn = (n − 1)
∞∑

q=1

Gq,n
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Hence, by Fatou’s lemma

E|Tn − Tn,N |2 ≤ lim
L→∞

E|Tn,L − Tn,N |2 = 0(68)

for all n sufficiently large.

Next, let

YN =
N∑

q=1

λq(W
2
q − 1).(69)

By (69), (64), (65) and (30) we have

E|Tn,N − YN |2 = E

( N∑
q=1

λq

{
(W 2

q,n − W 2
q ) − (Zq,n − 1)

}2
)2

(70)

≤ E

( N∑
q=1

λq

(
cn− 1

4

))2

≤ cn− 1
2

( N∑
q=1

|λq|
)2

→ 0

as n → ∞.

Further, by the Schwarz inequality we have

E|YL − YN |2 = E

∣∣∣∣ L∑
q=N+1

λq(W
2
q − 1)

∣∣∣∣2(71)

≤ E

{( L∑
q=N+1

|λq|
)( L∑

q=N+1

|λq|(W 2
q − 1)2

)}

≤ c

( L∑
q=N+1

|λq|
)( L∑

q=N+1

|λq|E(W 2
q − 1)2

)

≤ c

( L∑
q=N+1

|λq|
)2

→ 0 (N,L → ∞),

which implies that {YN} is a Cauchy sequence in the L2 space. Thus, we can

define in the sense of the limit in mean square

Y =
∞∑

q=1

λq(W
2
q − 1)

and hence

E|Y − YN |2 → 0 (N → ∞).(72)
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From (68),(70) and (72) we obtain that for an arbitrary positive ε there are

positive constants N0 and n0 such that for all N ≥ N0 and n ≥ n0

E|Y − Tn|2

≤ 3(E|Y − YN |2 + E|YN − Tn,N |2 + E|Tn,N − Tn|2) ≤ 9ε,

which implies ∣∣E(exp(itY) − E(exp itTn)|
≤ |t|E|Y − Tn| ≤ |t|‖Y − Tn‖2 ≤ 3

√
ε.

Hence, the distribution of Tn converges to that of Y.

4. Proofs of Theorems 4 and 5

4.1 Proof of Theorem 4

LEMMA 3. Let p > 4. Let {ηi} be a centered stationary sequence, weakly M-

dependent in Lp with rate function δ(m). If ut(x) satisfies the conditions in

Theorem 4, then for fixed t the {ut(x)I(ηi < x)} is weakly M-dependent in L1

with rate function K
√

δ(m) where K > 0 some constant.

Proof. Let {η(mi)
i } be the random variables which corresponding to {ηi} satisfy

Condition I (A) and (B). For brevity put m = mi. Define

B =
{
ω : |ηi − η

(m)
i | ≤

√
δ(m)

}
and Bc = Ω − B.

Since for fixed t 0 ≤ ut(x) ≤ 1,

E|ut(x)I(ηi < x) − ut(x)I(η
(m)
i < x)|

≤ E|I(ηi < x) − I(η
(m)
i < x)|

≤ E{E{|I(ηi < x) − I(η
(m)
i < x)|B}}

+E{E{|I(ηi < x) − I(η
(m)
i < x)|Bc}}.

Further, noting that on B

ηi −
√

δ(m) ≤ η
(m)
i ≤ ηi +

√
δ(m)

and so using the absolute continuity of F we have

E{E|I(ηi < x) − I(η
(m)
i < x)|B}}
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≤ max

{
E(I(ηi < x) − I

(
ηi < x −

√
δ(m))

)
,

E
(
I
(
ηi < x +

√
δ(m)

)
− I(ηi < x)

)}
= max

{
F (x) − F

(
x −

√
δ(m)

)
, F

(
x +

√
δ(m)

)
− F (x)

}
≤ K

√
δ(m).

On the other hand, by the Markov inequality

E{E{|I(ηi < x) − I(η
(m)
i < x)|Bc}} ≤ 2P (Bc)

≤ 2
1√

δ(m)
p E|ηi − η

(m)
i |p ≤ c

√
δ(m)

p
.

Combining these results, we have

sup
−∞<x<∞

E|ut(x)I(ηi < x) − ut(x)I(η
(m)
i < x)| ≤ c

√
δ(m).

Thus, we have the desired conclusion.

LEMMA 4. Suppose conditions of Theorem 4 are satisfied. Then

E

( n∑
i=1

ηi

)4

≤ cn2‖η1‖4
2.(73)

Proof. We note first that for fixed m {η(m)
i } is a stationary m-dependent sequence

which satisfies a φ-mixing condition. Hence, we have

E

∣∣∣∣ n∑
i=1

η
(m)
i

∣∣∣∣4 ≤ cn2‖η(m)
i ‖4

2,

(cf. Uteev (1984) and Doukhan(1994)). Consequently, we have

E

∣∣∣∣ n∑
i=1

η
(m)
i

∣∣∣∣4 ≤ cn2{‖ηi‖4
2 + ‖ηi − η

(m)
i ‖4

2}.(74)

From (74) it follows that

E

( n∑
i=1

ηi

)4

≤ E

∣∣∣∣ n∑
i=1

η
(m)
i

∣∣∣∣4 + E

∣∣∣∣ n∑
i=1

(ηi − η
(m)
i )

∣∣∣∣4
≤ cn2

{
‖η1‖4

2 + ‖η1 − η
(m)
1 ‖4

2} + cn4‖η1 − η
(m)
1 ‖4

2

}
≤ cn2{‖η1‖4

2 + δ4(m) + n2δ4(m)}.

Put m = [n
1
2 ]. Then, δ4(m) = o(n−2) and so n2δ4(m) ≤ ‖η1‖4

2. Thus, we

have (73).
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Proof of Theorem 4. We show first that for fixed t ∈ [0, 1]

Wn(t) =
1√
n

n∑
i=1

gt(ηi)
D→ N (0, σ2

t )(75)

where

σ2
t = Eg2

t (η0) + 2
∞∑

j=1

cov(gt(η0), gt(ηj)) > 0.

The random variables gt(ηi) are centered and bounded, and themselves again

weakly M-dependent in Lp with rate function 2
√

δ(m). Hence, from Theorem

A (75) is obtained.

Now, an application of the Cramér-Wold device (cf. Billingsley 1968) yields

that for any (t1, t2, · · · , tk) the vector (Wn(t1),Wn(t2), · · · ,Wn(tk)) a k-dimen-

sional centered normal distribution with covariance given by (46).

It remains to show that the sequence of processes {Wn(t); 0 ≤ t ≤ 1} (n ≥ 1)

is tight. Thightness follows if we can show that the condition of Theorem B is

satisfied.

Consider the difference

Wn(t) − Wn(s) =
1√
n

n∑
i=1

{gt(ηi) − gs(ηi)}.

Note that if t > s, then ut(x) − us(x) ≥ 0 and G(t) − G(s) ≥ 0 and hence

|gt(η0) − gs(η0)|(76)

= |(ut(η0) − G(t)) − (us(η0) − G(s))|
= |(ut(η0) − us(η0)) − (G(t) − G(s))| ≤ G(t) − G(s)

and hence, for any 2 < r ≤ p

‖gt(η0) − gs(η0)‖r
p ≤ c|G(t) − G(s)|r.

Applying Lemma 5 we have that for any 2 < r ≤ p

E|Wn(t) − Wn(s)|r = E

∣∣∣∣ 1√
n

n∑
i=1

{gt(ηi) − gs(ηi)}
∣∣∣∣r(77)

≤ cn− r
2 n− r

2‖gt(η0) − gs(η0)‖
r
2 ≤ c|G(t) − G(s)|

r
2

Thus, by the Markov inequality and the Schwarz inequality we have that for

any 0 ≤ t1 < t < t2 ≤ 1

P (|Wn(t2) − Wn(t)| > λ, |Wn(t) − Wn(t1)| > λ)
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≤ 1

λr
E

{
|Wn(t2) − Wn(t)|

r
2 |Wn(t) − Wn(t1)|

r
2

}
≤ 1

λr

{
E|Wn(t2) − Wn(t)|r

} 1
2
{

E|Wn(t) − Wn(t1)|r
} 1

2

≤ c

λ2
(G(t) − G(t1))

r
4 (G(t2) − G(t))

r
4

≤ c

λ2
(G(t2) − G(t1))

r
2 .

Since r > 2, we can use Theorem B with 2τ = r and the tightness of {Wn(t)}
follows.

Hence, {Wn(t) : 0 ≤ t ≤ 1} converges weakly to some Gaussian process

{W (t) : 0 ≤ t ≤ 1}.
Since

EWn(t)Wn(s) =
1

n
E

( n∑
i=1

gt(ηi)

)( n∑
j=1

gt(ηi)

)
and

Egt(ηi)gs(ηj) = cov(ut(ηi), us(ηi)) (1 ≤ i, j ≤ n; s, t ∈ [0, 1]),

by Lemma 3 we see that (46) is the covariance structure of {W (t)}.

4.2 Proof of Theorem 5

Proof of Theorem 5. Put

g(x, t) = h1(x, t) − U(t)

and

J(x, y, t) = h(x, y, t) − h1(x, t) − h1(y, t) + U(t).

Define

Vn(t) =
1

n
g(ηi, t) and Rn(t) =

2

n(n − 1)

∑
1≤i<j≤n

J(ηi, ηj, t).

Then

Un − U(t) = 2Vn(t) + Rn(t)

and by Lemma 1

sup
0≤t≤1

√
nRn(t) = O

(
n− γ

2

)
a.s.(78)
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for some γ > 0. Further, as h1(x, t) satisfies the conditions of Theorem 4, we

have that

{2
√

nVn(t); 0 ≤ t ≤ 1} D→ {W (t); 0 ≤ t ≤ 1} (n → ∞).(79)

Now, from (78) and (79) the conclusion of Theorem 5 follows.
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