YOKOHAMA MATHEMATICAL
JournaL Vor. 60, 2014

U-STATISTICS AND U-PROCESSES BASED ON
WEAKLY M-DEPENDENT DATA

By
KEN-ICHI YOSHIHARA

(Received March 19, 2014; Revised July 25, 2014)

Summary. The object of this paper is to study asymptotics of U-statistics
and U-processes based on centered stationary sequences, weakly M-dependent
in L? with rate function 6(-). The notion of the weakly M-dependence is recently
introduced by Berkes et al (2011) and has many examples such as NED processes,
augmented GARCH sequences, linear processes with dependent innovations, etc.

1. Introduction

1.1 Weakly M-dependent in L? with rate function J(-)

Berkes et al. (2011) introduced one of the notion of weak dependence which
is called ” weakly M-dependent in LP with rate fuction 6(m)” and proved a new
type of strong approximation of partial sums of dependent processes.

Let (2, F, P) be a probability space. Let p > 1 and for any random variable
Y, let ||Y], = (E|Y|p)%. For Aand B (C {---,-1,0,1,2,---}), we define

d(A, B) = inf{|a — b|;a € A,b € B}.

We say that a real-valued process {n;} is weakly M-dependent in L? with rate
function §(-) if {n;} satisfies the following conditions:

CONDITION 1. (A) For any integer k and positive integer m one can find a
random variable ni(m) with finite p-th moment such that

(1) e =0l < 6(m) L0 m — oo

(B) For any disjoint subsets I,--- I, of integers and any positive integers
mi,--- ,m, the vectors {nj(fll),jl € L}, ,{nJ(TT),jT € I,} are independent
provided

d(Ix, I;) > max{mg,m} (1<k<l<r).
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(1) implies that

2) 17:llp < 110 Nl + s — 0™l < 0.

Note that sequences satisfying conditions (A) and (B) are approximable by
m-~dependent processes for any fixed order m (> 1) with termwise approximation
error 0(m).

Properties of weakly M-dependent in L”
(I) If {n;} is weakly M-dependent in L with rate function §(-) and h is a Lipschitz
a function (0 < o < 1) with Lipschitz constant K, then

(3) 1A () — h(n <m>>||p

< Kllne — Kl —n™ g < K5%(m)

N5, <

(IT) The following theorem was proved in Berkes et al (2011):

THEOREM A. Let p> 2, k>0 and let {n;} be a centered stationary sequence,
weakly M-dependent in LP and a rate function §(-) satisfying

(4) d(m) < Cm™@
where

p—2 1+k 1+x 1
5 1-— V1 —.
) “7 o ( p ) C T T2

Then, we can redefine on a new probability space together with two standard
Wiener processes {Wi(t);t > 0} and {Ws(t);t > 0} such that

(6) Zﬁk Wi(sy) + Wal(t )—l—O(nHTN) a.s.

where {s,} and {t,} are nondecreasing numerical sequences with
(7) Sp~mn, by~ O’

0<p<1andCy>0 are some constants.
1.2 A critrion of weak convergence

Let X, and X be random elements of D[0,1]. Let 7x be the set of all ¢

in [0,1] which contains 0 and 1, and 0 < t < 1, and ¢t € 7y if and only if

P(X(t) # X (t—)) = 0. The following theorem assures the weak convergence of
Xn.
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THEOREM B. (Billingsley (1968) Theorem 15.6) Suppose that
(Xa(tr), Xalt2), -+ Xa(ty)) = (X (02), X (t2), -, X (1))
holds whenever ti,ts, -+ ,t; all lie in Tx and that
P(IXn(t) = Xu(t)| > A [Xa(t2) = Xa(8)] > A) < %{G(tz) — G(t)}”

fort; <t <ty andn > 1, where k > 0, 7 >
continuous function on [0,1]. Then X, —P X.

o=

and G is a nondecreasing

1.3 U-statistics

Let {n;} be a centered stationary sequence, weakly M-dependent in LP with
rate function 0(-). Let F' be the distribution function of ;.

Let ¥(y1,y2, - ,u) : Rl — R be a measurable symmetric function, which
will be called a kernel and define the U-statistic of degree [ by

—1
n
Un: (l) E ¢(77i1777i27"' 7nil>‘
1<i1 <ig <<y <n

We assume that for some r > 2

(8) sup E‘w(nlmnlm 777’il>|T < 0.

—00<41,2," ,1; <00

(9) o) = [ [ [t ,yoﬁldF(yij).

j=
To consider Hoeffding’s H-decomposition of the U-statistic, we define

VY1, 92, ,y;) (J=1,---,1—1) recursively by

wj(yuym“' 7yj) = /%’H(yl,ym“‘ 7yjuyj+1)dF(yj+1)-

Assume
[ ortonar) = op)
holds.
We introduce kernels of degrees 1,2, --- [ which are also defined recursively

by the equations

h(l)(?/l) = ¢1(yl) - G(F)
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and

ZW(yl,“-yk)—i Z 9 (s, - - ;) — O(F)

j=1 1<iy<--<ij<k

for k=2,3,---,1.
By the above definitions of h¥) we have that for j = 1,--- ,k —1 and k =

k
R, y)

k
= [ [ e ) T dPw) =0
i=j+1

and

(1) [ [0 w0 T ar ) <o

Now, we have the following well known H-decomposition of U,:

(12) U, = (7) h > i)

1<d <ig <<y <n

=0(F)+ zi: (2) U

where U,(lk) is the U-statistic of degree k based on kernel h(*).

Next, to estimate E |U,(Lk)|2 when U\ is constructed by an m-dependent se-
quence, we consider a kind of weak dependence conditions. Let {¢;} be a station-
ary sequence of random variables and denote by M2 be the o-algebra generated

by &, ,& (a < b). We say that {;} is ¢-mixing if

(13) ¢(n) N AEMOSU%EMC’O P(AB) ;(ZSA)P(B)

— 0 (n— o0).

For any stationary sequence {&;} let

(14) M(r) = maX{Hw(XileiQ?”' ’Xiz)“N
sSup ||¢(€n>€lza 7&1)”7“}

1< <2<+ <1

where X;,, X;,, -+, X, are i.i.d. random variables with the same distribution as
that of &;.
The following is known:
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LEMMA A. Suppose {&;} is a stationary ¢-mizing sequence satisfying M(r) <
oo holds for some r > 4 and

(15) Y " ngi(n) < .

Then,
(16) E|UP? = 0(n™?),
(17) EUP12=0mn"®), (k=3,---,1).

Furthermore, there exists a constant v > 0 such that
(18) E|UP[ = O(n~*7).
(cf. Yoshihara (1976) and Yoshihara (1993) Lemma 3.2.4.)
It is obvious that if {{;} is an m-dependent sequence, then it satisfies the
¢-mixing condition, and so we can use this lemma when {nz-(m)} is needed.
2. Main results

Let {n;} be a centered stationary sequence, weakly M-dependent in LP with
rate function §(-) and {ngm) } (with fixed m) be a centered stationary sequence of
random variables satisfying Conditions (A) and (B), so that {n§m)} is a centered
stationary m-dependent sequence with E|n [P < oco.

Let F' be the distribution function of ;.

2.1 U-statistics based on {7;}

Let ¥(y1,- -+ ,u) : R — R be a symmetric kernel function which has contin-
uous bounded partial derivatives, i.e., for some positive constant K

O ...
(19) sup max 7?(917 Y2, ) yl)
Y1,y 1S90 dy;

< K.

We prove the following theorems.

THEOREM 1. Let p > 4. Let {n;} be a centered, stationary sequence, weakly
M-dependent in LP with rate function 6(m) satisfying

(20) §(m) < Cm™"



96 K. YOSHIHARA

where 3 > 6. Let (y1,y2, -+ ,y1) be a measurable symmetric kernel satisfying
(19).
Define U-statistic of degree | by

(21) U, = (7;) B > V(i Wi+ 5 M)

1<i1 <ig <<y <n

and O(F) by (9). Suppose M(p), defined for {n;}, is finite.

Then, the series in the next equation is absolutely convergent and

(22) 0% = Var(ihy(m) + 2> cov(ih(m), v (n;)) < oo

J=2

15 well defined.

Furthermore, if 0 > 0, then

(23) \2/_3(U" —0(F)) =Wy =0(1) as. (n— o),

where Wy is an N'(0,1) random variable.

THEOREM 2. Suppose conditions of Theorem 1 hold. Then

(24) U, — 0(F) a.s.

For the function h(®(z,,2;) defined by (10) associated with the kernel
Y(xy, 9, ,21) (I > 2), we define an operator A on the function space L?
by
(25) Ao(a) = [ W9 )ot)dPl). e R L2
In connection with any such operator A, we define the associated eigenvalues
A1, A2 -+ to be the real numbers A (not necessarily distinct) corresponding to
the distinct solutions ¢1, ¢, - - - of the equation

Ap— Ao = 0.
Then
1 j=k)
(20) [ o@ionwrire) - |
’ 0 G#kK)

N—oo

im [ (h.9) = 3 Non(x)ouls) A @F () =
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Thus, we can write

(27) K (z,y) = i Aq®q()dq(y)-
=1
Let
San = D0 uln)
i=1
Using facts E¢g(n;) = 0 and ||¢x(n:)]]2 = 1, by the usual method (cf. Lemma

3 (below)) we can prove that for some constant C' > 0 (independnt of n > 1 and
Ky)

n 2
Esg,n =EB Z Gq(ni)| < Cn.
i=1
and so put
.1 =
(28) 0, = lim EESt?,n =1+2 21 E¢q(1m)¢q(nis1)
and
o1

(29) 04y = lim HESq,nSq/,n

= E¢y(m)oq (m) + Z{E%(Th)%' (Mi41) + Edg () dg(nis1) }-

i=1

THEOREM 3. Suppose conditions of Theorem 1 hold and

E|h(1)(7h)|2 =0, and inf E|h(2)(77i777j)|2 > 0.

—00<1,j <00

Suppose the above defined eigenvalues satisfy the conditions
(30) Ml > [do| = [As] =+, and > [\ < oo,
=1

and the above defined eigenfunctions satisfy the Lipschitz condition

(31) sup |¢q(x + h) — ¢q(2)| < K1h].

q>1

Furthermore, assume

2 inf o2 < 2 .
(32) 0<£10q_?§1)%<00
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Then

(33) nUP 2 Y =3 (W2 - 1),

k=1

where USY is defined by (12), Wy ~ N(0,03) (¢ > 1), EW Wy = 04¢ (¢# ¢ >
1) and Y is defined in the sense of the limit in mean square.
Consequently, from (16) and (17) in Lemma A, we have

b I(l—1)

(34) n(U, - 6(F)) & =Y.

2.2 Empirical processes based on {7}

Define the empirical distribution function by

=23 1 e (—o0.0)

Let U = {{us;0 <t < 1}} be the class of functions satisfying the conditions

(35) {O<ut() 1, 0<t<l,

(y) <w(y), 0<s<t<1 forally.
Put
G(t) = Eu(m) and  g(y) = w(y) — G(1).
We assume that G is Lipschitz continuous on [0, 1], i.e
(36) |G(t) = G(s)| < Kt — s|.

For u; € U, define

(37) mwzﬂ/mwwm—w@>

{:me - [utiar)}.

Then, {W,(t);0 <t < 1} is a random element of D0, 1].

THEOREM 4. Let p > 4. Let {n;} be a centered, stationary sequence, weakly
M-dependent in LP with rate function 6(m) satisfying

(38) s(m) < Cm™"
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where 3 > 4. Let u; € U and the function G satisfies (36).
Then, the empirical processes {W,(t);0 < t < 1} converges weakly to the
centered Gaussian process {W(t);0 <t < 1} with covariance structure

(39) cov(W (s), W (t))

= cov(us(m), us(m)) + Zcov(us(m),ut(m +1))

Jj=1

+ Z cov(us(nj41), ue(m)).

Jj=1

Moreover, the series on the right hand side of (39) converges absolutely and the
limit process W has continuous paths almost surely.

2.3 U-processes of stochastic sequences

Let H be a class of kernel functions h(z,y;t) : R*> x R — R such that

(40) {o < h(z,y;t) <1, hlz,y;0) =0,
h(z,y;t) is increasing in ¢, for fixed z,y € R.
Define
Un(t) = ﬁ 1<;<nh(m,m;t),
U = [ [beir@ar) (e R,
Wo(t) = vn(Ua(t) — U(t)).
Put

W(e0) = [ Wy 0dFG) (@ eR)
Note that if h € H,
0<hW(z;t) <1, hV(x;0) =

and it is increasing in ¢.

We impose the following condition.

Condition IT There exists a constant K > 0 such that

(41) U(t) = U(s)| < Kt — s,
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(42) ‘Eh To, Tk ) Eh(%ﬂ?ka )’ <K|t_5|
(43) ’ // yo;Qk» dF yo)dF(yk)

- / / By, v $)AF (o) dF ()| < Kt — s
hold for all s,¢ (€ [0,1]) and k£ > 1.

THEOREM 5. Let p > 4. Let {n;} be a centered, stationary sequence, weakly
M-dependent in LP with rate function 6(m) satisfying

(44) §(m) < Cm™"

where 3 > 4. Suppose that h(-,-;t) € H for all t € [0,1] and Condition II holds.
Then

45)  {VaU,) —U@®):0<t<1} B{w@;0<t<1} inD[0,1]
where {W (t);0 <t < 1} is a centered Gaussian process with covariance structure
(46)  cov(W(s), W(t))

= 4dcov(h D (n1, s), ™M (1, 1) +4ZCOV D(m, ), KV (1541, 1))

7j=1

143" cov(hD (41, ), 80 (1, 1)),

=1

which converges absolutely and the limit process W has continuous paths on [0, 1]
almost surely.

3. Proofs

3.1 Proofs of Theorems 1-3

In the sequel, we use Z(n,l) to denote the sum taken over all subsets 1 < iy <
~<iy<nof{l,2,---,n}

Let p > 4. Let {n;} be a centered, stationary sequence, weakly M-dependent

in LP with rate function §(-). Then, corresponding to {n;}, we can choose a

centered, stationary m dependent sequence {nj(m)} with E|n™|P < oo satisfying

(1). For a while we assume that m is fixed. Let F'(y;) be the ditribution function

of ni™.
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Corresponding to U,, we consider the following U-statistic and its H-decompo-
sition as follows:

(47) ( > Zw 77“ 777@2 7' 7771(lm))

AN
F)+ Z (k) u®
k=1

where (A]ék) is the U-statistic of degree k based on kernel h®) which is defind by

™3
We note that by (19) and (3)

G- om) =™, ™), < UKS(m)

which implies
(48) 1Un = Unllz < U = Unll < c5(m).
We prove the following lemma, which will be used in the proofs of Theorems.

LEMMA 1. Suppose conditions of Theorem 1 hold. Then, for some v > 0

(49) E|UP|* < Cyn=37
and
(50) EUP2<Cn™ (k=3,---,1)

where Cy is a positive constant independent of n.
Consequently, we have

(51) ViU =0(n"2) as. (k=2 ,1).

Proof. By the Holder inequality and (1)

(2)
BEU) — B(U,7Y
< U@ = 0,102 + 10" D (2)2 + G, )]s < cdm),
and similarly
[E(UMY? - B(U,

Hence, by Lemma A we have

- (@) - @)
(52) EUPI" < {EIU, " + [BUP) = E(U. )"}
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<c{n 7 +6(m)}
and similarly
(53) EUP < B, + | BUD) - B0}
<c{n P +0(m)} (k=3,---,1).
Now, put m = [n2] and we have
s(m)<n® (3> 6).
2

Thus, (49) and (50) follow from (52) and (53).
By the Markov inequality and (49)

P(/AUP| > n= %) < n EJUPP < en~ 13
Thus, from the Borel-Cantelli lemma, (51) (with k& = 2) is obtained.

Similarly, for £ = 3,--- ] we have
(54) P(y/n|UW| > n_%) < ngnE\Uflk)\z <enind <end,
which, via the Borel-Cantelli lemma, implies (51) (with k= 3,--- ). O

Proof of Theorem 1. Since U,, defined by (21) may be written as (12), we have

l

Vit = 00) = = 3 n0 ) + 3 () vave.

k=2

Noting that {h)(n;)} is a weakly, centered stationary sequence, weakly M-
dependent in LP with rate function §(m) satisfying 6(m) < m=" (8 > 6), from
Theorem A we obtain

g s 21 -

where

= O0(n™1) a.s.

o = BV (m))* +2 BhD (n)h® (1)

i=1

Further, by (51)
l

> (/i) VaU® =0(n %) as. (n— oo).

k=2

for some v > 0. Combining these results we obtain (23). O
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Proof of Theorem 2. We note that by Theorem A

1< \
56 = n(n) =o(n72) as. :
56) T = o) s (o0

Hence, from (56) and Lemma 1 we obtain that for some v > 0
U, —0(F) = 1 i AW (n;) + i (l> U = o(n_%) a.s.
i ok !
as n — oo and the proof is completed. O

LEMMA 2. Let p > 2. Let {n;} be a centered, stationary sequence, weakly M-
dependent in LP with rate function 6(m) satisfying

D, = i(S(m) < 00.

m=0

Let g : R — R (I = 1,2) be Lipschitz continuous functions such that

(57) {Egz(m) =0, Elg(m)lP <oo
l91(y) — ai(z)| < Kly — |,
Then
(58) %E (Z g1(m:) Zgz(m))
— Vg1, 92) = Egi(m)gz2(m) + Z Eg1(m)g2(ni+1)
+  Ega(m)gr (mis1)

i=1

as n — 0o. The series in V (g1, g2) is absolutely convergent.

Proof. We use the method of the proof in Berkes et al (2011).

We note first that both {g1(nx)} and {g2(nx)} are centered, stationary se-
quences, weakly M-dependent in LP with rate function K§(m). We use below
that

sup max{ g1 (™) 2, 92" 12}

< max {[|g1(m)|l2 + K Dy, ||g2(mi)||2 + K D2} < C
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Without loss of generality we assume that Eg; (77,(;")) = Egg(n,(cm)) = 0 for all

ke Z and m € N.

Since ¢g; (77,(3 _1)) and gg(n,(i:jl)) are independent, by Condition I (B)

—1 1
Egi(n™)g2(n? V) = 0.

Hence, we have

(59)  |Bgi(m)g2(mess)) = |EL (g1 () — g1 ")) ga(1nis)

—1 —1 —1 1
+ 911N (g2 (rry) — 92 () + 91 () g (P Y|

< |E g1 T]k) — 91(77;(;_1)))92(7]%]')‘
+E|gi (™) (g2 me+5) — 9203,

1
< ||gl<nk+]>|| g1 () — g1(n ™)l
g™ ugmm a2l

< (g2 (mr)ll2 + Nlgr (™) l2) K8 (5 — 1)
< K([gi(m)llz2 + lga(m)ll2 + KD2)d(j — 1) < Co(5 — 1)

and by the same method we obtain

(60)  [Egi(m)g2(meri)| < K(llgi(m)ll2 + [lga(m) |2 + KD2)d(j — 1)
<005 —1).

Here C' > 0 is a constant independent of k£ and j. From relations (59) and (60)
we obtain

‘V(gl,gz) - %E(é 91(n;) ém(m)) ’
= ‘V(glaQQ) - {Egl (11)g2(m)
+Z

+ Z E{(91(1)g2(n1+;) + 92(771)91(771+j)}} ‘

j=n

(N145) + 92(11)91(N145) }

—_

n—

< 57 1B m)ga(ms) + | Bgalom)an 1)}

+> {|Egi(m)g2(my)| + | Ega(ni) g (me;)|}

J=n
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-1

—%Z ~|—025

J:

Since D, < 0o, we have

S =ef1) and >24() =

which implies

‘Vgl,gz ——E(Zgl i) 292 m)‘—o 1) (n— o0).

Proof of Theorem 3. Let

60 Gan=(5) X M)640) = (0= DAV~ Z40)

(n,2)

where

IR - U _ IS
(62) qu_\/ﬁ;gbq(nﬂ and Zq,n—n;cbq(m)a

and consider
(63) (n—1VN = 3" Gy
g=N+1

Since ¢,’s satisfy (57), from Lemma 3 we obtain

2
lim EVV2 N—nhm E(ng)q 771) :02

n—oo
and

lim Ean NWq/ n,N

n—oo

- nhjf}o nE<Z Gqg(mi ) (; ¢q/<7h’)) = 0Oqq-
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In addition, as E¢y(m) = 0, E¢Z(m) = 1 and E¢y(n) < oo, by Theorem A
we can construct a sequence of Gaussian random variables {W;;¢ > 1} on the
common probability space such that Var(W,) = o7, cov(W,, Wy ) = 044 and

1 n
(64) Wy — W, < ‘%;%(m) | =

and
©) VAl Dl =| = Y - D] = o) as

By the Schwarz inequality

PO = (S A0 70)

g=N+1
L 2
< E( > |Aq|\wq2—1+o(ni)|)
g=N+1
L 2 L 2
< CE( Z AW — 1|> —f—cn_%( Z |/\q|)
q=N+1 q=N+1

c(qéjﬂ Mq')E(qiﬂ I\l (W2 — 1)2) +cn—%( XL: |)\q|)2
c( ZL: |Aq\)2(1+n-%).
g=N+1

Hence, as n — oo first, and then N, L — oo, from (30) we obtain

(66) (n —1)2E|VMD2 0.

Now, put

N
nN = n - 1 Z G
q=1
By (66) we have that for all n sufficiently large

(67) ET,; —Ton>=m—-1?EV™ D)2 -0 (N, L — o).

In terms of the representation (27), T,, may be expressed as

e}

=(n—1)) Gyn
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Hence, by Fatou’s lemma

(68) E|T, = Ton|* < lim E|T, = T, n* =0
for all n sufficiently large.
Next, let
N
(69) Yy = AW —1).
q=1

By (69), (64), (65) and (30) we have

(70)  E|T,~—Yn[ = E(Z A{ (W = W) = (Zgn — 1)}2)

N 2 N 2
(Z)\q cn” 4 ) §cn2<Z{)\q|) — 0
g=1 g=1

as n — oo.
Further, by the Schwarz inequality we have

L

ZAW—

q=N+1

<u{( g ) ( % vz - 1)}

sC(;w)( S BN 2-17)

q=N+1

(71) ElY,-YyN|?=E

L

§0<Z

g=N+1

2
w) S0 (N.L— o),

which implies that {Y} is a Cauchy sequence in the L? space. Thus, we can
define in the sense of the limit in mean square

o0

Y =D AW -
q=1

and hence

(72) ElY -Yy[?—=0 (N — o0).
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From (68),(70) and (72) we obtain that for an arbitrary positive € there are
positive constants Ny and ng such that for all N > Ny and n > ng

ElY — T,
S B(E’Y — YN‘2 —|— E’YN — Tn,N’2 —|— E|Tn,N — Tn’2) S 96,
which implies
|E(exp(itY) — E(expitT,)|
< EIY = T, < [HlI[Y = T2 < 3Ve.

Hence, the distribution of 7T;, converges to that of Y. O

4. Proofs of Theorems 4 and 5

4.1 Proof of Theorem 4

LEMMA 3. Let p > 4. Let {n;} be a centered stationary sequence, weakly M-

dependent in LP with rate function 6(m). If u,(x) satisfies the conditions in
Theorem 4, then for fized t the {u,(x)I(n; < x)} is weakly M-dependent in L'
with rate function K+/0(m) where K > 0 some constant.

Proof. Let {nfm")} be the random variables which corresponding to {n;} satisfy
Condition I (A) and (B). For brevity put m = m;. Define

B=A{w:|n - T]i(m)| </0(m)} and B°=Q-B.
Since for fixed t 0 < uy(z) <1,
Eluy(@)I(g; < x) — w(2) (") < )|

< Bl(g; < 2) = I(n™ < )|
< B{B{|I(n; < 2) — I(n\"™ < )| B}}

7

HE{E{|I(n < x) — I(n"™ < x)|B°}}.

Further, noting that on B
i = V/3(m) <™ < it /3(m)

and so using the absolute continuity of F' we have

BE{E|I(g < x) — I()\"™ < x)|B}}
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< maX{E(](ni <x)—1I(n; <z —+/6(m))),
E(I(n, < o+ /8(m) — I(; < x))}

= maX{F(x) — F(z —+/6(m)), F(z +/6(m)) — F(:p)}
< Ky/d(m).

On the other hand, by the Markov inequality
B{E{|I(n; <) = 1(n" < 2)|B}} < 2P(B")
1
<2——— By — 0™ < e/d(m)".
6(m)

Combining these results, we have

ﬂiﬁmEmwﬂﬂm<x%ﬂM@H%m<xﬂ§0¢ﬂm)

Thus, we have the desired conclusion. O

LEMMA 4. Suppose conditions of Theorem / are satisfied. Then

n 4
(73) E(Zm) < cn?[lm .
=1

Proof. We note first that for fixed m {nl-(m)} is a stationary m-dependent sequence
which satisfies a ¢-mixing condition. Hence, we have

n 4
Sou| < eI

i=1

(cf. Uteev (1984) and Doukhan(1994)). Consequently, we have

Z 77im)
i=1

From (74) it follows that

H(5) <

i=1

E

4

(74) E < en{||m:lls + llm — 0™ |14}

n

> (i —n™)

i=1

4 4
+E

.
> g
=1

< en {3+ llm — nt™ 13} + en®llm — 0™ |13}
< en®{[m |3 + 6% (m) + n26*(m)}.

Put m = [n2]. Then, 6*(m) = o(n"2) and so n26*(m) < ||m||2. Thus, we
have (73). O
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Proof of Theorem 4. We show first that for fixed t € [0, 1]

(75) Walt) = = ilgtm) 2 7 (0,02)
where

o7 = Eg; (o) +2_ cov(gi(m0), 9¢(n;)) > 0.

j=1

The random variables g;(n;) are centered and bounded, and themselves again
weakly M-dependent in LP with rate function 24/6(m). Hence, from Theorem
A (75) is obtained.

Now, an application of the Cramér-Wold device (cf. Billingsley 1968) yields
that for any (t1,ts,- - ,tx) the vector (W, (t1), Wy(ta), -+, Wy (tx)) a k-dimen-
sional centered normal distribution with covariance given by (46).

It remains to show that the sequence of processes {W,,(t);0 <t <1} (n > 1)
is tight. Thightness follows if we can show that the condition of Theorem B is
satisfied.

Consider the difference

Walt) = W, (s) = —= > {au(m) = ()}

Note that if t > s, then uy(x) — us(x) > 0 and G(t) — G(s) > 0 and hence

(76) 9¢(n0) — 9s(10)]
= |(ut(no) — G(t)) — (us(mo) — G(s))]
= [(us(n0) — us(mo)) — (G(t) — G(s))| < G(t) — G(s)

and hence, for any 2 <r <p
19:(110) = gs(mo)ll}, < €|G () = G(s)]"-

Applying Lemma 5 we have that for any 2 <r <p

r

() BIWL(0) = W)l = E| 7= 3 (5(n) - 5:00)

< cn2n” 2 |gi(mo) — gs(mo) |7 < ¢|G(t) — G(s)]2

Thus, by the Markov inequality and the Schwarz inequality we have that for
any 0 <t <t <ty <1

P([Wa(t2) = Wa(t)] > X, [Wa(t) = Wa(ta)] > A)
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< S B{ W) = WO (0 - Wae) |

< s B - waor } {Emno - e}
< (G = G)F (G(t) - G)'

< 5(Glt2) = G(1))*.

Since r > 2, we can use Theorem B with 27 = r and the tightness of {W,,(¢)}
follows.

Hence, {W,,(t) : 0 < t < 1} converges weakly to some Gaussian process
{W(t):0<t<1}.

Since

EW, ()W, (s) = %E (2;: gt(m)) (XZ; gt(m))

and

Egi(m:i)gs(n;) = cov(ug(mi), us(mi)) (1 <4, <nss,t €[0,1]),

by Lemma 3 we see that (46) is the covariance structure of {W (¢)}. O
4.2 Proof of Theorem 5

Proof of Theorem 5. Put

g(l‘,t) = h1($’t> - U(t)

and
J(z,y,t) = h(z,y,t) — hy(z,t) — hi(y,t) + U().
Define
Vall) = ~gmist) and Rult) = ——— 37 I, m0)
n n(n —1) S Ten
Then

Up —U(t) =2V, (t) + R, (¢)
and by Lemma 1

(78) sup vVnR,(t) = O(n_%) a.s.

0<t<1
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for some v > 0. Further, as h;(x,t) satisfies the conditions of Theorem 4, we

have that
(79) {2VAVu(0:0 <t <1} S {W(B;0<t <1} (n— o).
Now, from (78) and (79) the conclusion of Theorem 5 follows. O
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