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Abstract. We consider a one-dimensional space-inhomogeneous discrete time
quantum walk. This model is the Hadamard walk with one defect at the origin
which is different from the model introduced by Wojcik et al. [14]. We obtain
a stationary measure of the model by solving the eigenvalue problem and an
asymptotic behaviour of the return probability by the path counting approach.
Moreover, we get the time-averaged limit measure using the space-time generating
function method. The measure is symmetric for the origin and independent of
the initial coin state at the starting point. So localization depends only on the
parameter which determines the model.

1. Introduction

The quantum walk (QW) has been investigated as a natural generalization
of the classical random walk. This manuscript focuses on the discrete-time case.
The QW on Z was intensively studied by Ambainis et al. [1], where Z is the set
of integers. A number of non-classical properties of the QW have been shown, for
example, ballistic spreading, anti-bellshaped limit density, localization. As for
review and books on QWs, see Kempe [7], Kendon [8], Venegas-Andraca [12, 13],
Konno [9], Cantero et al. [3], Manouchehri and Wang [11].

Wojcik et al. [14] introduced and investigated one-dimensional discrete time
QW with one defect which is called “the Wojcik model” in this paper. Endo
and Konno [4] obtained a stationary measure for the Wojcik model solving the
eigenvalue problem by the aid of the splitted generating function (SGF) method,
which is consistent with the result given in Wojcik et al. [14]. The SGF method
is useful to find the stationary measure for the QW with one defect in one di-
mension. Moreover, Endo and Konno [5] got the time-averaged limit measure of
the Wojcik model by several methods and found that the stationary measure is
a special case of the time-averaged limit measure. The time-averaged limit mea-
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sure is symmetric for the origin and localization depends heavily on the initial
state and parameter (determines the model).

In this manuscript, we present another one-dimensional discrete time QW
with one defect. For the one defect QW, we first obtain the stationary measure
by the SGF method. From the path counting approach, we have a combina-
torial expression of the return amplitude and its asymptotic behaviour. As a
consequence, we get the time-averaged return probability which agrees with the
result via the CGMV method [2]. Furthermore, we present the time-averaged
limit measure by the space-time generating function method. We should remark
that the space-time generating function method does not allow us to get the
stationary measure in our model. Like the corresponding measure of the Wojcik
model, the measure is symmetric for the origin and localization depends on the
model parameter £. However, we confirm that the time-averaged limit measure is
independent of the initial coin state ¢, so localization depends only on parameter
¢. Our model is suitable to consider the relation between the stationary measure
and the time-averaged limit measure such as the Wojcik model.

The rest of the paper is organized as follows. In Sect. 2, we define our QW
model. We obtain the stationary measure in Sect. 3. The proofs of Proposition
3.1 and Lemma 4.1 are devoted to Sects. 4 and 5, respectively. The asymptotic
behaviour of the return probability amplitude is computed in Sect. 6. Section
7 deals with the result via the CGMV method. We give proofs of Proposition
6.1 and Theorem 6.2 in Sects. 8 and 9, respectively. In Sect. 10, we explain the
space-time generating function method. Section 11 gives the time-averaged limit
measure by this method.

2. Model

Let U, (z) = T[WL(z), ¥ ()] denote the amplitude of our model at time n
and position x, where L and R mean the left and right chirarities, respectively.
Here T' stands for the transposed operator. First we prepare a sequences of 2 x 2
unitary matrices {U, : x € Z} given by

a, by
Ux - |:Cx dx:| )

where Z is the set of the integers. The time evolution of our model is determined

by

U, (2) = Poy U2+ 1) + Qe Up(z — 1) (2 € Z),
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where
a; b 0 0
}% - ’ N s (Qz::
0 O ¢y dg

with U, = P, + Q),. Then P, and @), correspond to left and right movements,
respectively. For our one-defect model, we define U, by

cosé  siné
: (I = O)?
U, = [smﬁ —COSJ (2.1)
H (z € Z\{0}),

where £ € (0,7/2). We can extend some cases to £ = 0 or £ = w/2. Here H is
the Hadamard matrix:

From now on, we use notations C = C(§) = cos{ and S = S(§) = siné.
If & = /4, then U, = H (x € Z), i.e., this model becomes the well-known
Hadamard walk. Therefore, our model can be considered as the Hadamard walk
with one defect. We should remark that det(U,) = —1 for any x € Z. Another
Hadamard walk with one defect is the Wojcik model whose quantum coin U, at
position x is defined by

— wH ($3:30%
%—{f{ (v eZ)\ {0}), (22)

where w = ¥ (¢ € (0,1)). Then det(Up) = —w? is not equal to det(U,) =
det(H) = —1 for z # 0, so det(U,) depends on the position for the Wojcik
model. One of our motivations is that we want to know the influence of the
position-dependence of det(U,) on the analysis.

3. Stationary measure

Let U(x) = [UE(z), ¥R (x)] denote the amplitude at position x. As in the
case of the Wojcik model (see [4]), we introduce the generating functions of W% (z)
and U (z), respectively, to get the stationary measure:

B =3 W@, Pe)=S W@ (G=LR. (33

r=-—1
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The quantum coin at the origin is different from that of the other position, so
we consider both positive and negative parts. Then, the eigenvalue problem
USW = \V is equivalent to

b B 1 s R P | 2

From the SGF method, we solve the eigenvalue problem U®)W = A\¥ and obtain

PROPOSITION 3.1. Put o = VL(0) and 8 = UE(0). Then, solution of the
ergenvalue problem

U = \0

is given in the following way. Here ¥ = T[... WE(—1), WE(-1), ¥L(0), ¥¥(0),
UE(1),¥f(1),---] € C>, and X € C satisfies |\| = 1.
(1) = —ia case. We get

)\:i(]+(\/_—5)i.
3—2v28
Then, we have
’ a X (i;) (x > 1),
3 —2v28
\IIL([L') = « Y (.I‘ = 0)7
\ {\/iC’a + (V25 — 1)&} X <$BT\/§S> (x < —1),
and
{(1 = V25)a +v2C3} x (im) (x>1),
Uiz ={ p y (z =0),
\ B x (31:3_—2\/53) (x < —1).

(2) f =ia case. We get

iC—(\/_—S)i
3225

A\ =
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Then, we have

M) wo)

and
{(1=v2S)a ++208} x <¢m> (x> 1),
Ui z) =< B » (x =0),
| <i3—2¢§s) @< -1

The proof of Proposition 3.1 is given in Sect. 4. Indeed, we confirm that
¥ in this proposition is a solution of the eigenvalue problem U®W = \W. The
measure at position x is defined by

pla) = [ (2)]* = [T ()] + [0 ().
So Proposition 3.1 gives the following stationary measure what we want.
THEOREM 3.2.
|cf? (z =0),

o) o
T - vk (5mss) 0

where a = ¢/\/2 and § = £ci/\/2 with ¢ € C.

This stationary measure is symmetric at the origin and has an exponential
decay except for S = 1/v/2 (¢ = 7/4), i.e., the Hadamard walk case. Moreover,
when 0 < S < 1/v/2 (€ € (0,7/4)), we have

228
;u —1_\/—S||

If we let || = v/1 —v/25/v/3 — 2/25, then the following stationary probability
measure is obtained:
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COROLLARY 3.3. If0 < S < 1/V/2, that is, £ € (0,7/4), then

([ 1-25
5-225 @ =0)
p(x) = 5 5 .
(1= v25)(2 — v25) 1 g
\ 3_2v29 <3—2\/§S> (w#0)

We should remark that the initial coin state satisfies a® + (% = 0 in this case.

4. Proof of Proposition 3.1

First we should remark that the eigenvalue problem we need to solve is equiv-

alent to
AU (2) = Poy W(z + 1) + Qo Uz — 1), (4.4)
where
=[] wezon
P, =
g oo
0] ez
Qz =
[g _OC] (x = 0).

\

Here C' = cos¢ and S = siné. Let ¥(z) = T[¥l(z), VE(x)]. Equation (4.4)
implies

1. x # %1 case.
AUE () = %\I/L(x +1) + %\PR(QS +1), (4.5)
MR (1) = iqu(:c —1) - i\lxR(x —1). (4.6)

V2 V2
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2. x =1 case.

1 1
V2 V2
AUE(1) = SUL(0) — CTE(0).

A1) = —0E(2) + —=TH(2),

3. x = —1 case.

AE(—1) = CUE(0) + STF(0)

R _i Li_ _L R
AU (—1)—\/§\If (—2) 2\11 (—2).
Then we have
LEMMA 4.1.
Afi(z) = ax(2).
Here
N b L
NN i(2)
4= z 2| felz) = R 7
_ﬁ )\_‘_ﬁ [ (2)
Ca+ Sp
B - 0 (2) = .
R R I ECES }

where o = VE(0) and 5 = ¥E(0).

The proof is given in Sect. 5. Noting

detA:ﬁ{ZQ—\/ﬁ<§—)\>z—l},

we define 6, and 6, € C satisfying

A

det A =
e 73

(2 = 0s)(z = ),

with [0, <1 <6 .
By using Lemma 4.1, we will get f£(z) and f£(z).

1. f£(z) case. Equation (4.11) gives

fi(2) = ﬁ{(ﬂ %) (—Aa) + Lﬁoﬁ}

55

(4.11)

(4.12)

(4.13)
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1 (_A_a) {H (\/§A2—S)a+06}'

" det A V2 pYe
2)\2 —
We put 95:—<\/_ S)OH_CQ. Then we have
A
FE(z) = — ar ___ex 204
L S
Os

= —a(02) {1+ (—0s2) + (—052)° + (—02)° +--- }

Therefore, we see

oo

fhz) =a) (—0.2)".

From Eq. (4.14) and definition of f£(z), we have
\IJL<:C) = Q(_GS):E (CIZ’ =12, )7
where

(V2N = S)a+ cp

0, =
Ao

. [E(2) case. From Eq. (4.11), we see

R 1 {(1 = V29)a + V2031
e = a7 |” V2
< {H Sa —Cf }
((1—v25)a + vV203IA
Sa—CB

Put 0, = — . Then we have

{(1 = V29)a + V208
{(1=V28)a+v2CB} 2

2—91

Fiz) =—

- {(1 —V28)a + \/506} i(—esz)””-

r=1

Combining Eq. (4.18) with definition of ff(z) gives

0(z) = {(1-V2S)a + V2CB} (-0, (x=1,2,-"),
where
Sa—Cp

= {1 = V29)a + V20BN

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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3. fL(z) case. Equation (4.11) implies

57

.. Ca+8p {V2Ca+ (V25 —1)3} A
S A P e [Z * Ca+ 58 - (a2
Let 0, = — {\/§C’oz —{C—’o(z?gﬁ_ 1)6} >\. Then we have
_ Ca+Sp 1 Ca+S53 1 6, 1
f2z) = A Xz—Qsi A Xesle_@
z
_Cat88 1[0 (0.
I f(z) e
Thus we obtain
e = S (1) Sy
s r=—1
= {\/EC’oz +(V2S - 1)&} f (0712)" (4.22)
r=—1
Therefore, by Eq. (4.22) and definition of fL(z), we have
(@) = {VaCa + (V2S = 1)8} (0)7 (v =—1,-2,--),
where
B Ca+Sp3
b= {V2Ca + (V25 = 1)B} A (4.23)
4. fB(2) case. From Eq. (4.11), we see
Ry 1 Ca+ (S —V2)\%)p { A3 }
=) = (z—0)(z — 0y) . A Z+C’oz+(S—\/§)\2)6 '
AB

Put 6, = . Then we get

CCa+ (S —V2X2)8
_Ca+(S—v2\)p L]

FE(2) 3 po—
_C’oz—l—(S—\/?)\Q)ﬁXlx%X 1
N A 0, =z 0"

1—- 2=
z
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Thus, we have

B2 =p _Z (0712)%. (4.24)

r=—1

Combining Eq. (4.24) with definition of f%(z) implies

where
g, = Lot <SA; V2X)5 (4.25)
Therefore, we obtain
00 |1 yasi s vacs] @=L
U(z) = [g} (z = 0), (4.26)
| (0, [\/ica + (5/55 - 1)5} 6= —1,-2,.0)

Moreover, four expressions of 6, that is, Eqs. (4.16), (4.20), (4.23), and
(4.25), yield f = ia or f = —ic. In fact, we have

0__(\/§A2—S)oz+0ﬂ__ Sa—Cp
’ A {(1 = V28)a+v208} A
B Ca+Sp _ Ca+(S—V2X3)3
{V2Ca + (V25 = 1)B} A A3 '
The first and fourth expressions imply
o+ 3 =0.
Thus we consider § = +ia. For f = —ia case, the first and second expressions

give

\2 —(v25 - 1) = 2(S — V2)Ci
B 3 —2V/28 '

And the third expression implies

V2-8-Ci

(3 —2v29)\

s
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Therefore, we have

+ (V2 - 8)i P S
3_2/25 ’ 32,25

Similarly, for 3 = ia case, the first and second expressions give

(V25 — 1) +2(S — V2)Ci

)\:ic

N =
—2¢/28
And the third expression implies
V2-5+0Ci
T (3=2V29)\
Thus, we get
)\:iO—(\/_—S)z, Qszi;.
3 —2v2S 3—2v28

So we have the desired conclusion.

5. Proof of Lemma 4.1

By Egs. (4.5) and (4.6), we have
AY Uh(2)2” Uh(z+1 Uh(z+1
S = S s S

/\g\PR(m)zm:E;\PLx—l 2° ——Z\Ile—l

From these equations, we see

1 L _L R(,\ — \»pL _* gL R
(A—@) FHE) = =) = AW (1) = S0 2) + 7))
1 L R
—ﬁ(\ll (1) + ¥™(1)), (5.27)
(A 55) £ = S5 He) = xewm), (5.25)

From now on, we will express the right hand side of the above equations by using
UE(0) and WE(0). First, we put 2 = 0 in Eq. (4.5) and have

AUE(0) = — W (1) + —=TH(1).

1
V2

Sl



60 T. ENDO, N. KONNO, E. SEGAWA, AND M. TAKEI

We substitute this equation and Eq. (4.7) into the right hand side of Eq. (5.27).

Then we have

AU (1) — A2 Uh (1) — AUE(0) = - AT (0) = —Aa.

Similarly, Eq. (4.8) implies that the raight hand side of Eq. (5.28) becomes

M UF(1) = 2(STL(0) — CUH(0)) = 2(Sa — CB).
Next, in a similar fashion, Egs. (4.5) and (4.6) give

A i Ul(r)z" = % Z Uh(r +1)2" + % Z_ Uh(z 4 1)27,

r=—2

T=—2

From these equations, we have

LY eny o Lorey A g
(A=) 74 = ) = 2w,

(A ¥ ﬁ) ) = =)

A 1 1 1

= 2UR(-1) = = (UH(=2) — WR(-2)) - oW (1) + =0 (-1),

V22 V2 V2

Equation (4.9) implies that the right hand side of Eq. (5.29) becomes

i\IIL(—l) _ CUL(0) + STE(0) _ Ca+ Sﬁ'
z z z
We put x =0 in Eq. (4.6) and get
R L L +r
AUH(0) = \/EKI/ (—=1) \/E\If (—1).
This equation and Eq. (4.10) imply that the right hand side of Eq.
becomes
AR AR R R
;\IJ (—1) — ;\IJ (—1) = AUT(0) = —=AUT(0) = —A0.

Therefore, the proof of Lemma 4.1 is complete.

6. Asymptotic behaviour

Let the probability amplitude at time 2n be

0= uily |

A _Z Uh(2)2" = 7 Z Uh(z —1)2" — % Z Ul — 1)z

(5.29)

(5.30)

(5.30)

(6.31)



A ONE-DIMENSIONAL HADAMARD WALK WITH ONE DEFECT 61

Remark that Wy,.1(0) = T[¥L . (0), 0% ,(0)] = 7[0,0]. Then we have an ex-
pression of Wy, (0).

PROPOSITION 6.1. We consider the QW stariting from the origin with the
quantum bit ¢ = T, B], where a, 8 € C with |a|* + |B|> = 1. Put

1 (2m — 2)! B
o (—1) Yo (m — 1)im m=4m—1m > 1),
"'n = 0 m#4m —1,n>2 m>1),
-1 (m=1).

Then, we have forn > 1,

wO=3 3 ()

(a1, ap)E(Zs)r: T

1| @ (%): T (a+if) (—%):

Here Z~. = {1,2,...} and

The proof of Proposition 6.1 appears in Sect. 8. Let the return probability
at the origin and at time n be denoted by 7,(0) = P(X, = 0). From this
proposition, we obtain one of our main results, that is, the asymptotic behaviour
of Ul (0) and WE (0) as follows.

THEOREM 6.2.

L — V25 -
04,0) ~ 2L Y2 fcontat) a — siniat) 5} x Tioar ©)
—/3S
2 0) ~ 2L feos(o) 3+ sinin) ) < T €.
where [4(x) =1(x € A), =0(x € A), and
cosfy = ——<1 ~ V25)° Oy = —2<\/_ —5)C
' 3-2V28° " 3-2V28

Here, f(n) ~ g(n) means f(n)/g(n) — 1 (n — o0).
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The proof of Theorem 6.2 is given in Sect. 9. By this theorem, we have

WL (0)]* ~ (?El ;?g {cos? (nby) |a]? + sin?(nfy) |5
— cos(nby) sin(nbp) (a3 + aB)} x Ipxm(8),
\\115;(0)\2 ~ M {0082(m90) |82 + sin®(néy) |a|?

(3 —2v29)2
+ cos(nby) sin(nb) (B + @B) } x Ijo.x/a)(€).

The definition of 74, (0) implies

4(1 - v28)?
(3-2v25)
Thus we have the limit of r9,(0). Moreover, noting r9,.1(0) = 0, we get the
time-averaged limit measure at the origin, fi. (0), as follows.

ran(0) = [ W3, (0)* + [W3,,(0)* ~ Tjo,r/2)(§)-

COROLLARY 6.3.

. 4(1 - V25)?
1 n(0) =
A rn0) = 5 ey
_ (1 -2 5)2
0 X Lo.x .
If £ € [0,7/4), then localization occurs. If £ € [r/4,7/2), then localization

does not occur. Remark that when ¢ = 7/4, the model becomes the Hadamard
walk.

X T0,.x/2)(§),

7. Result via the CGMYV method

We can derive the time-averaged limit measure at the origin i (0) also from
the CGMV method [2]. From now on, we use the same notations as in Ref. [2].
Applying the CGMV method to our model, we have

a=—, b=1iS, w=1, ((b)==xC+ Si.
As the conditions ML, we see that the following same inequality holds.
™
0<€&<—.
¢ 4

Moreover, we have

01=0,00=7, o=01+0y=7m, 6O=—=—

b0 9
bo | 3
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=0 mh=a T=T4+T=m.

According to the CGMV method, we get

_

i PL(2n) = 5 (1~ ﬁ) {1 _ (1A — |5 R0 + zpbwmﬁ)} |
£

noo @0 2 b) —a - 5%
(7.32)

where Po(:)g(2n) is the probability that the walker return to the origin at time 2n
with the initial qubit ¢ = T[a, 3], where o, 3 € C and |a|? + |3|> = 1. Here,

Sb=2S, Rb=0, p=C, a=AYa=aq,

[ 2(1 — /252 o .
G 2vasy* T Mie g€ 0n/Y)

lim PY(2n) = 2
%WHW (M- i€ € (0,m/4)).

Thus, we obtain

_ )
m 72n(0) (3-2v25)2 fomn(®)
_ _2(1—/28)?

These agrees with our result, Corollary 6.3.

8. Proof of Proposition 6.1

In this section, we prove Proposition 6.1. To do so, we consdier the Hadamard
walk starting from m (> 1) on Z> = {0,1,2,...} with absorbing boundary at
the origin. The dynamics depends only on {U, = H : = > 1}. Thus, we should
remark that for any x > 1,

szpzﬁ[é H Chz@z%“ _01} (2> 1),
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Next, we let =™ be the sum of weights over all paths starting the origin,
moving on Zs, and returning to the origin for the first time at time n. For

example,
E(oo,l) _ PZQPQ +P3Q2.

Here, we introduce R and S as follows:

1 1 -1 1 0 O
R=— S=— .
Alo o | =1 1]
Then P,(Q, R, S are an orthonormal basis of the vector space of complex 2 x 2
matricies with respect to the trace inner product (A|B) = tr(A*B), where x

means the adjoint operator. Thus, Z°°™ can be uniquely expressed as

Eom) = plom p g gleom g 4 peom R 4 gleom) g,

n

7m)

Noting the definition of = , we see that for m > 1,

—(co,m —(co,m—1 —(oco,m+1
:7(1 ’ )::51—1 )P+:7(1—1 " )Q-

By using this, we have

1 1
(Oovm) — (oo,m—l) + r (e.¢] m—l)
Py, D) n—1 \/§ n—1 ’
1 1
(00,m) — (00,m+1) + oco,m+1)
qn 2 qn—l \/é n— 5
T(OO m) — i (001m+1) . 1 (oi>1m+1),
1 - 1 _
(Oovm) (Oozm 1) (oo,m 1)
s = —= T+ 2 8
2 " V2

Moreover, the definition of = oem) implies that the possible paths can be ex-
pressed as the following two types, P... P and P...(Q), since the last weight is
P. Then, we have ¢™ = 5™ =0 (n > 1). In order to compute ™ and

%™ we introduce the following generating functions:

p(oo,m) (Z) _ Zp%oo,m)zn’ r(oo,m) (Z) _ Z Tiboo,m)zn.
n=1 n=1
Therefore, we have

p(oo,m) (Z) _ p(oo,m—l) (Z) + T(oo,m—l) (2)7

Sl

V2
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poom) () = = i

2! V2

From these equations, we see that p(>™(z) and r(>™)(z) satisfy

(oo,m+1)(z) . 7n(oo,m—&-l)(z)'
P VB () oo (e) = )~
(oo m+2) ( )+ \/_ (_ . Z) T(oo,m—i—l)(Z) . ’I“(Oo’m)(z) = 0.

Thus, the characteristic equation has the following two roots:

—14+ 22+ V1 + 24

p—
- J2-
Next, the definition of 27" implies p{™™" = 0 (n > 2) and p(001 = 1. Thus,
we have p(OO D(z) = z. Moreover, the definition of ¥ ) ¢ gives lim,, . p®™(z) =
0. Similarly, we have lim,, .., 7™ (z) = 0. Combining p®V(z) = z with

1,00 PO (2) = lim,y, 0o 7™ (2) = 0, we get

—1—1-\/1—1-,24)\77%1
— YT

PO () = 2XT, oo (z) = Y

Therefore, for any m = 1, we have

—14+V1+24

r(oD (7)) =
2

In a s1m11ar fashlon we consdier the Hadamard walk starting from m(< —1)
on Z< ={0,—1,—-2,...} with absorbing boundary at the origin.

- V1+Z4)\m+1'

q(_oo’m)(Z) _ Z)\T—H, S(—oo,m)<z) —
z

Thus, for any m = —1,

1 —vV1+24

(—00,—1) .
5 z) =
()= —L
It is easily checked that for any n > 1, ri 4 7Y = 0. Here we put
Ch ”("0 I)QO and =~ = 5;1 Y P, where

c S 0 0
That is, =t (resp. =) is the sum of all paths with the weights that the quantum

walker restricted in region Zs (resp. Z<) reaches the origin for the first time at
time n. Therefore, we have
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LEMMA 8.1. (i) When n > 4 and n is even,

where

- -1 -5 C — 1 0 0
e A R P

(iii) When n is odd,

stz = |20

Here we put =% = 2+ +Z,. From this lemma and s\, ™" = =5 (n > 1),
we have
—% __ r;klfl _S C
/2 | -C =S ]’
where
1 (2m — 2)! B
o (—1) Yo (m = 1)l (n=4m—1m > 1),
"'n = 0 m#4dm -1, n>2, m>1),
-1 (n=1).
Indeed, we have
rm=-1,r=0,r=1/2,r;=rf =r; =0,
rr=—1/8, rg=r5=r1 =0,

Then, the generating function of 7 is given by

f: e =221 2
rrat = .
n=1
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;aj> 90’

From the definition of =}, we have

o=y Y (

(a1,.,a5)€(Z>)*:
al+--+ar=n

[1]

k
1

J

where Zs = {1,2,...}. Moreover,
EERIN ,
ST e [

From Lemma 8.1 (iii), we have
f1=) o= (fs) () [ ST (5]
= —2a; 2 = 2a;—1 \/5 -C =S ﬁ :

Therefore, we have the desired conclusion.

9. Proof of Theorem 6.2

By using Proposition 6.1, we compute the generating function of WL (0). We
put 2, =75, and u = (=S + C4)/v2, @ = (=S — Ci)/+/2. Then we have

. [e'S) n k
S EPY ORI SR | CA TS
n=1 k=1 (a1 ..... ak)E(Z>)k: J=1
a1+---tap=n

. o) n k
on;Zﬁ Z{Z Z (H%]) fdk}zm
PR G e@s )k YT
a1+-+ap=n

> U5 (027 =
n=1

+
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S Y (M)

1
(at,ar)€(Zs )R
al+--+ap=n

The first equality comes from Proposition 6.1. Thus, we get

imgn(())z"—o‘_w Z{ zQ—I—m)u}k

a“ﬁz{ VI )

_a—if (—1—z2+m)u

2 1 (124 V1t

+a—|—zﬂ (=1 =22+ V1+2%Yu
2 1—(-1-224+V1+290

As for the first equality, we see that for any k£ > 1,

Z 3 (m) (~1- 224 VIg 20

1
F aran)e@s)k: Y

Noting the initial state ¥f(0) = «, we have

> h_a—if 1 atif 1
;‘I’én(o)w T2 1z 2 1-Za
V(2 + SZ)OMLC'Zﬁ}’ (9.33)

2+ 2257 + 72

where Z = —1 —w + v/1 + w?. As for the generating function of ¥Z(0), noting
that U'(0) = 3, we similarly obtain

~ Rk fa—if 1 a+if 1
gq’”w)z _Z( 2 1-Zu 2 1—Zﬂ)
_ V2{(V2+52)8 - CZa}

24 2V28Z2+ 22

Thus, if we have the asymptotic behaviour of ¥Z (0) as n — oo, then we also
have that of ¥l (0) by @« — 3 and 3 — —a. So it is sufficient to consider the
case of WX (0). From now on, we will study an asymptotic behaviour of ¥Z (0).
From Eq. (9.33), we get
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LEMMA 9.1. We put

> U5, (0w = {Af(w) + AF(w)} @+ {A)(w) + A (w)} 5,

where
w22 =35 +V2(1 = v29)%w + (V2 — S)w?
N B (V2 = S)(1 4 w)V1+ w?
A (w) = Bw) ;
A () = -C {1+ 2(1B—<f5)w + w2}7
Ag(w) _ C(l —g()w\/)l + w2’

B(w) = V2(3 — 2V25) {1 + 2(31__2—\/\/%?210—%202}.

First, we consider the following case:
C2V2-38+V2(1 - v29)*w + (V2 — S)w?

Af(w) = ; :
V2(3 — 2¢/25) {1 + %w + w2}

The two roots of

+ 221__2—\/\/?5)210 +w?* =0 (9.34)
are denoted by v = €% and 7 = e~ with
cos By = —2(1_—\/55)2 (< 0).
3-2V28
Thus, we have
1—+28 1 —w?

A = 3 ovEs) < e =)

In general, when we have

f(Z) = Z fnzn>
n=0
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we let [2"](f(2)) = f.. Here noting

1 _ 1 B 1 (w)n
w=y  All-wh)  y\v/)
1 _ 1 B 1 (w)n
w=y  Fl-wm)  F\V/) '
we get
1
[wn] = —~ (n+1) e (n+1)6o
w =7
[wn] L — _77(n+1) _,YnJrl — ei(n+1)0
w ="

Therefore, we have

1 —w? 1—72 1—72
w ( )~ (e )+l (5 )
(w =) (w—=7) (v =7)(w =) 7 =7(w="2)
As for the above derivation, see pp.264-265 in Flajolet and Sedgewick [6], for
example. By using Eq. (9.34), we obtain

) (=)~ (6= * =)
- {1__727 my L2707 7 7_(%1)}
7= 3
— R ( () )
e

= 2 cos(nbp).

Thus, we have

1—+28

[w"] (AT (w)) ~ m

cos(nbp).

Similarly, we consider
—C{1+2(1 — V25w +w?}

20-v29? |
\/5(3—2\/55){1 S Tovhs +w}

A (w) =
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Then, we get
o 1+2(1— V25w + w?
(w =) (w —7)
(14201 =28y +92 1 +2(1 —V29)7 + 72
~ [w"] — + — —
(v =7)(w —7) (7 = )(w—=7)
_ ) 1+2(1 - V25)y + 9 ) 1+2(1-v29)7 +7° (1)
Y= 7=
77
:_Q%(v+%1—y?n+wvﬂ>
Y=
_ V2L V2S)
C
In the above derivation, we used
sin(6y) = M—_S)C
3 —2v28
Therefore, we have
_1-v28

n B ~Y —_—m 1
[w"] (Al (w)) 3_2v35 sin(nfy).
Next we consider

(V2= 9)(1 +w)V1+uw?

A3 (w) = .
2(1 — v/29)? ,
Then
[wn] (1+w)\/1+w2 ~ (1+7)\/1+72 —(n+1)
(w="w=7) =7
CADVIHT iy
7-7
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7+ 1)(_?61'90/2 fyn)
Y=

= —24/—2cos0y X 3?(

cos(nby)

= 2 _—

v —2cos by X Sn(00/2)°

Here we should remark that
7 g
V1+92=/—2cosb (sin (50) — i.Cos (50)) = \/—2cos By (—i)e/?,
VI+7 = V1492

Moreover, noting

\/ —2cosby = M7 sin (@> - ﬂ’
3—2v29 2

we obtain

[w"] (A3 (w)) ~
In a similar fashion, we consider

C(1 —w)v1+w?

Ax(w) = 2(1 - v25)° '
V2(3 — 2¢/25) {1 =T3S +w2}
Then, we get
[wn] (1_w>\’ 1_'—3)2 ~ _ (1_7)\/i+72 ’Y_(n+l)
(w=7)(w—=7) v =5
—I—(l _7) V1+7 7—(71-‘1-1)}
Y=

— _oR ((1 — 7)1+ 2 7_(n+1)>

7 i)eto/2
(0
B sin(nfy)
= —+/—2cos by x m
= \/_|1 ~ V25 sin(nép)

C
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In this derivation, we used

V2|1 — /28] 0o C
v/ —2cosyg = ——————, cos <—> =
" V3225 2 53— 2725
Thus, we have
n Aﬁ ~ 1= Verl
0] (Adw)) ~ o

Therefore, we obtain
WE(0) = [w"] { (A7 (w) + A5 (w)) o + (AT (w) + AF(w)) B
= [w"}{AT () + A5 ()} o + [w|{AT(w) + A (w))} B

20— V28)
3 — 228

So the proof of Theorem 6.2 is complete.

{cos(nby) a — sin(nby) B} % Ljg.x/2)(§).

10. Space-time generating function method

In general, both the Fourier analysis and stationary phase method are useful
for investigating space-homogeneous QWs, however, not for space-inhomogeneous
models. On the other hand, the space-time generating function method intro-
duced by [10] is applicable to some space-inhomogeneous QWs. The result given
here can be obtained as a corollary of the result in [10]. However, for the conve-
nience for readers, we will explain the details on this derivation in this paper.

First, the quantum coin U, at position x is given by

a; b
U, = 1" 7.
o
Here we suppose that a,b,c,d, # 0 for simplicity. Let A, = det U,.
Let F*)(z,n) denote the sum of all path, which the quantum walker starting

from position & moves in the region {y € Z : y > x} and reaches position = at
time n for the first time. For example,

F(+)(l‘, 2) = Pa:+1Qxa F(+)(ZL',4) = Px+1PJ1+2Qx+1Qx~

Indeed, each path has the form P, ---Q,, so FF)(x,n) is expressed that there
exists f)(x,n)(€ C) such that

F®(z,n) = fD(z,n)R,, (10.35)
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where

In fact, noting

F(Jr)(x’ 2) = PCBJrlQI = berlR:L"u
F(2,4) = Pyt Poi2Qui1 Qo = toi1dui1boia R,

we have f(F)(2,2) = b1, f(2,4) = apy1dps1beyro. Here we introduce the
generating function of F*)(x, n) with respect to time n as follows.

FH(2) = Z FO(z,n)2"
n=2
Moreover, we put
EOED B A CADED
n=2

We should remark that ﬁ;,ng)(O) = 09, f}fr)(O) = 0, where O, is the n X n zero
matrix. Thus, Eq.(10.35) gives

V() =Y fD (@, n)Rez" = [ (2)R..
n=2
Indeed, we have

(10.36)

Foe =76 |5 0]

0 0

Similarly, F (_)(:z:, n) denotes the sum of all path, which the quantum walker
starting from position 2 moves in the region {y € Z : y < x} and reaches position
x at time n for the first time. For example,

FO(@,2) = Qi Pry, FO(2,4) = Qp 1Qu 2Py 1 Py

In fact, each path has the form P, ---Q,_1, so /") (x,n) is expressed that there
exists f()(x,n)(€ C) such that

FO(z,n) = f(x,n)S,, (10.37)
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where

For instance, we have

F(7)<.I', 2) = Qxflpx = folsxv

F(_)(ZL‘, 4) = Q:c—le—2P:v—1Pz = aw—ldm—lczv 2S

So, we get f(7)(z,2

) = co—1, fN2,4) = ap_1dy_1co—p. Here we introduce a
generating function of F(7)(x,n) with respect to time n:

= iF(_)(x n)z
n=2

Furthermore,

(z) = if()(:c n)z

Remark that ﬁé‘)(o) = 0y, ﬂ_)(O) = 0. Thus, Eq. (10.37), we have

Zf (2,n)S,2" = f)(2)S,.

In fact, we get

~ 0 0
V(r) = £5) 1
SR ECIRNE (10.38)
Let (+)(x, n) denote the sum of all path, which the quantum walker starting

from position x moves in the region {y € Z : y > x} and reaches position z at
time n. For example,

(1]

(Jr)(x: 2) = Px+1Qx7

[1]

(+)(x, 4) = Poi1PryoQui1Qu + Poy1Qu P Qs

Here, we introduce a generating function of Z*)(x, n) with respect to time n:

n=0

75
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From now on, we consider a relation between =" (z) and F ) (z). Each definition
implies

2P (2,4) = FO(2,4) + FP(x,2)%,
= (z,6) = FP(z,6) + FH (2, 4)FH) (z,2)
+ FO) (2, 2) FD) (2, 4) + FM) (2, 2)3,

Thus, we have

~ ~ 2 ~ ~
() = T+ FH(2) + (FH)(Z)) b= T+ EW()E0 ().

T

Here, I = I, is the 2 x 2 identity matrix. Therefore, we get

From Eq. (10.36), we have

~ 1 1 dfi7(2)
E0(z) = e 10.39
=) 1-— cm%+)(z) [0 1— ij?a(cﬂ(z) ( )
Moreover, we obtain
F)(2) = 2Py 259(2) 2Q.. (10.40)

Combining Eq. (10.40) with Eqgs. (10.36) and (10.39) gives

_ 2D fif)(2) + bos)

1= ot [ (2)

fP()

By this equation, we have the following continued fraction expansion on {f;ﬂ (z):
y=xz,x+1l,x+2 .. .}

~ 2A 2
FH() = 2221 (1 _ sl ) . (10.41)

Ca+1 1- c$+1f£i)1(z)

In a similar fashion, let =(7)(x,n) denote the sum of all path, which the
quantum walker starting from position z moves in the region {y € Z : y < x}
and reaches position x at time n. For example,

[1]

(7)(1‘7 2) = Qw—lpra
(_)<I', 4) = Qx—le—QPx—IPa: + Qx—lPxQx—lpac~

[1]
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Here, we introduce a generating function of Z(7)(x, n) with respect to time n as
follows.

=C)(2) = Z =) (2, n)2".

n=0

As in the case of Z(F)(z,n), we have
- - 2 -
E0() = I+ FOE) + (FO@) 4+ =T+ FO(2)E20().

Thus, we see

From Eq. (10.38), we get

=(- 1 1= b fi7(z) 0
1—bfi(2) | aufa '(2) 1
Moreover, we obtain

FO(2) = 2Q, 1 27 (2) 2P, (10.43)

Combining Eq. (10.43) with Egs. (10.38) and (10.42) gives the following contin-
ued fraction expansion on {fy '(2) :y =z, — 1L,z —2,...}:

~ ZA 2
FO()= 25t 1 - 'dx‘l’(_) : (10.44)
ba-1 1= byorfo1(2)

Let Z(x,n) denote the sum of all path, which the quantum walker starting
from the origin reaches position x at time n. We introduce a generating function
of Z(x,n) with respect to time n as follows.

Z.(2) = Z E(z,n)z".

n=0

First, we consider z = 0 case. A relation between Zo(z) and féi)(z) implies

Zo(2) = 1+ (B0 + B ) + (FD (e + ]50<—>(Z)>2 .

— I+ (ﬁ}g“(z) + ﬁg—><z)) Zo(2).
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By Egs. (10.36) and (10.38), we have

~ ~ CoJo z 0 ’g+) z
N

Thus, we see

)

0(2): 1 1_bOfO () d-ﬁ] ()
afy (2)  1—cafi(2)

where

Y2) =1 —cof§7(2) = b f§7(2) — Do f§ () 37 (2).

Next, we consider z > 1 case. Then we see

Za(2) = 20(2) 2Qu1 Eui(2).

For 0 <y < z, we put

N () F =
’u(+)> _ [)\y ( )fy ( )] : ’Uz(/+)> — {_y} ’

Y z dy

where

Then we have

EM(2) 2Qp 1 = [ul) (0T,

(10.45)

(10.46)

(10.47)

(10.48)

(10.49)
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Here, for x = 1 case, we have

- T () 7 _
51(2) _ [)\1 ( ) 1 ( )] [CO do} EO(Z).

z

Similarly, for x < —1 case, we have the corresponding results in the following
way. First, we should remark

§z<2) = E(i)<2> ZPI+1 Eerl(Z). (1050)

where
A () = — = (10.51)
' 10,57 (2)
Then we have
({7, uly =X (2). (10.52)
From Eq. (10.42), we get
E0(2) 2Ppyr = ) (0. (10.53)

By using Egs. (10.50), (10.52), and (10.53), we see that Z,(z) can be expressed
as

[
8
X
I
B
L

N W B (2)

= [N (W, a0 - 0 u D) WP Z0(2)

= (i, w0 - (0 D ) (0§ B (2)

= )\501)1 (2)--- )\(jl)(z) [X(—) ZN(—)<Z)] [CLO bo} Zo0(2).

Therefore, we obtain
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PROPOSITION 10.1. Put A, = det(U,). Then

1. ifx =0,
S0 = L [1mhR7E) dfe)
IO | Wl 1-afi =)
2. if |a| > 1,
( _ (Y oy 70 0] _
3030 [N )56 @2,
2.0 - .
NG 290 < w0 e w]EG) @<-1)
3O, -
where

1(2) =1 —cof§7(2) = bof§7(2) — Do f§V () 37 (2),
X(H(Z) = Zd:c/(l - Ciﬂfz—”(z))? Xé_)(z) = Zaﬂc/(l - bxﬁ_)(z))'

xT

Here, f(i)(z) has the following continued fraction expansion:

]”c;g+)(2) _ _ZQAI-‘F]. (1 _ |a:(:+1|2 ) 7

1= o fO0(2)

~ QA _ d _ 2
fé_)(z) - _Z e I | = L|(_) .
by 1 =0y x—1(2>

11. Time-averaged limit measure
From the definition of our model and continued fraction expansions of fi= (2),

we see that fo)(z) = fi)(z) = fi7(2) = fL7)(2), so we put fo(z) = fi7(2).
Thus, Eq. (10.41) gives

A SR U S RV, 3Y R N
fole) === (1 1—clfo<z>> ’ (1 2—\/§fo(2)>

Therefore, fy(z) is a solution of

2 — V2224 Dz + 22 =0.
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By definition, we have fo(0) = 0. Thus, we have

2 4+1—V2A+1
7 .

fo(z) =
Put z = €. So we get
fo(e?) = ' (\/§ cos 0 + isgn(sin 0)\/@) )
where 0 € [—37/4,—m/4) U [n/4,37/4). Furthermore, if we let
fo(eie) _ ei(6+¢~5(9))7
Eq. (11.54) gives

cos(p(0)) = V2 cos,

sin(¢(6)) = sgn(sinf)v'1 — 2 cos? 6.
On the other hand, fo(z) = A§+)(z) = fvo(_)(z) implies

W(z) =1 —cof§7(2) = 0o f§7(2) = Do fs V() i) (2)
=1— 25]?0(2) + %(z)z.

Thus, we see that

12 = 1-25u(2) + ((2) =0

is equivalent to

fo(z) = €0+90) — 5+ .
So we consider the following case:

000 = 5 4 .
Thus, we have

cos(0 + ¢(0)) = S.
So

V2 cos® 0 — sin 6 sin(p(6)) = S.

81

(11.54)

(11.55)
(11.56)

(11.57)

(11.58)

(11.59)
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Here, we used cos(¢(6)) = v/2cosf. On the other hand,
sin(0 + ¢(6)) = C.
Thus,
V25sin 6 cosf + cosf sin(¢()) = C. (11.60)
By using Eqs. (11.59) and (11.60), we have
V2cosh = Scosh 4 Csin . (11.61)

Thus, from this equation, we have

C
cosf = sin 6. 11.62
NG ( )
Therefore, noting
9 _
np—s Y275 , (11.63)
3 —2v28

we get cosf = +C/v/3 —2v/2S. Then, we see that two solutions of y(z) = 0

with |z| = 1 are as follows:

cos O gin M) = C V2-8

( e ) (\/3—2\/55’ \/3—2\/§S> g (11.64)
cos0?@ sine?) = [ — C - V2 S |

( 0 sin 6 ) ( \/3_2\/557 \/3_2\/§S>’ (11.65)

where 1), 02 € 37 /4, —7/4) U [1/4,31/4).
Next, we consider the following case:

000 — g _ i,

In a similar fashion, noting v/2 cos = S cosf — C'sinf, we have

cos 6@ sin @) = C B V2-8
(cost om0 <¢§fZE§’V@jgzg>a (11.66)
cos @ sino®) = | — C V2-58
( 0" sind ) < \/3_2\/557 \/3—2\/§S> ’ (11.67)

where 0©) 0W € =371 /4, —7/4) U [1/4,31/4).



A ONE-DIMENSIONAL HADAMARD WALK WITH ONE DEFECT 83

From now on, we compute the residue. We should remark that

S [1 ~hoh(z) dofi( ]
1—bofo(2) = cofo(z) = Dofo(2)? | @fo(z) 1 —cofol2)
_ 1 1—Sfo(z)  —Cfolz)
1-25f0+ fo(2)2 | Clo(z) 1=5fo(2)|
Thus, we have
= p = o [0] L |- Sh(z)a—Chi2)s
Zo(2)p = Zo(2) M v C’fo(z)aJr(l—SfO(z))B] : (11.68)

where

1(2) = 1-2573(2) + (7))

Putting z = €, we get
01(2) _ . _wdr()
0z 20
By using
() = 1 — 2800 | (2i(0+3(0))
we have
Iry(e? Ob(et . L
73(2 ) _ o <1 N cb(;«; )) £i(0+3(0)) (_ S Hz(ew(e))). (11.69)

We should note that
HRes <§0(z)g0; z = ei(’)
Res [ L= 8h(@)a=CR(EB.
7(2)

2

+ e (cfa@)a +(1- SR )

v(z)

First, we consider z = ¢’ case. Then we see

Res (1= Sfo2))or — C’ﬁ)(z)ﬁ; 2 = ei?"
7(2)
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(1= ST~ R s|

2 I

o(e”)
00
- ~ 2
Res [ CToFla+ (L= Sh(2)F o
(%)
~ - 2
Chz)a+ (1= Sf(=)8
= ~ , (11.70)
i0(1)
(e )
o6
where
(™) _ oy(e?)
200 90 |, 0
Here we compute
Ao (™) _ (e _ V2sing® V3 V2 -8
96 gy SMO(OW) 11— 25|
The second equality comes from Eq. (11.55). Thus, we have
2 ~ 2
aV(Gie(l)) 2 8¢<6i0<1)) 23— 2v/25)?
——| =4 1+ ———7+—7F =40 ————. 11.71
200 A+ 5w O V2s) (11.71)

From Egs. (11.70) and (11.71), we get

HRes (go(z)cp; z= ei9(1)> H2

(1= SR o~ CRE™)| + [CRule o+ (1= ST 5|

2

Dy(e”")
061
_ 2
= (1= V25" V25) x o —iB]*.

2(3 — 2v/29)2

In this derivation, we used fo(ei‘)(l)) = S + (. Similarly, we have

- 2o\ |12 (1 —+/29)? .
Res (= ; :ZG()H:—X —if?,
| Res (Eo(z)52 = ) 25 —avagy 210
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HRes (go(z)w; z= ei9(3)> ’ = % x | +iB%,
= PN —V/25)? 2
HRGS (:O(Z)go;z:ee()>H = % X o +38|%

Here we used
fole®y=8S+Ci,  fo(e®)=5—-Ci (k=3,4).

Konno et al. [10] presented the following key result to obtain the time-averaged
limit measure:

LEMMA 11.1.

2

Tioo(2) = 24: HRes (Ex(z)w; z= eie(k))
k=1

By using Lemma 11.1, we obtain the time-averaged limit measure at x = 0:

LEMMA 11.2.

_ L 2(1—/28)?
[l (0) = (3_2vasy X Ajor/4)(€)-

Next, we consider x # 0 case. To do so, we will compute X(H(z) = X;H(z)
(z > 1) for z = " (k =1,2,3,4). We begin with

if i0
2B (ei?) = de —¢

L) V2—fale?)

From Eq. (11.54), we have

~ , -1
>\(+) 620 _
) V2e=% — (/2 cos  + isgn(sin 0)y/1 — 2 cos? 6)
)
© V2sinf+ sgn(sinf)v/'1 —2cos? 6
= —1 (\/§Sin 0 — sgn(sinf)v'1 — 2 cos? 9) :

First, we consider #(!) case. Then we get

B (0 = —— 22\/55. (11.72)
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Similarly, we see that

3)

X(”(ew(”) _ _X(—i—)(ew(?)) — _X('i‘)(ei@( ) = X(+)(ei9(4>). (11.73)

Moreover, noting A(7)(z) = /\g(c_)(z) (x < —1), we have

aet® o0 ~

N () = — = - = AP (e?).
T TR T Ve

So we get

A () = XD (™) (k= 1,2,3,4). (11.74)
Therefore, we obtain
LEMMA 11.3.

2 1
- 3-22S8

From now on, we consider = # 0 case. First, we compute x > 1 case. From
Proposition 10.1, we have

RGN

(k=1,2,3,4).

1 5 [Cg do] 50(2%0

Ez(z)tp _ X:(;)l(z) .. ,X(‘F)(z) [XECH(Z)]?CI(»‘H(Z)

- RO s gz

N XD (2)fo(z) —CAD(2)o(2)]
Sz —Cz

1 (1= Sfo(z)a = Cfo(2)8
v(2) |Cfo(z)a+ (1 — Sfo(Z))ﬁ_ '

In order to compute the residue, we introduce

(11.75)

OO R fg_ 7
hie) = 20 {(5 = Jo(z))a - C8},
AP T g .
Bie) = = —{(8 - aea - o}

. . 0(1)
First, we consider z = €%

. Then, we get

) X(-‘r) 0N |22 ~ . ) -

11, (e®)2 = u Fo(e® (S = fole®'Na — OB
)P

‘ 2
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(1 — \/ES)Z < 1 >x S 12
- . 11.76
4(3 —2v/29)2 \3 —2v2S fo: = 4] ( )
Here we used ﬁ)(eie(l)) = S 4 (. Similarly, we have
o1 1 —+/25)? 1 et 4
L) = ( ) — 6. 11.77
B = ey men (5=avms) i (11.77)

By using Eqs. (11.75), (11.76), and (11.77), we see that for x > 1,

~ N G G
[Res (Eu(2)piz =€) | = (™) + 1)
(2 —v285)(1 — /25)? 1 ’ 9
= la —if]".
2(3 — 2v/29)2 3—2V2S8

case. In a similar fashion, we get

<2—ﬂs><1—ﬂs>2< ! )xya_mﬁ

2(3 — 2v/29)?2 3—2V/28 '
For z = ¢ (k = 3,4) cases also, we have

2 (2—V28)(1—V25)? 1 ! o
23 -2V29)2 (3—2\/55) o461

: 02
Next, we consider z = e

HRes <§x(z)¢, z = ew@)) H2 =

HReS (éx(Z)w; z= eio(k)>

Therefore, we obtain

~V35)(1 - V2 m
[ (Bregers = o) [ - 220 (LY

Thus, for x > 1, we see that Lemma 11.1 implies

2(2 — v29)(1 — v28)? 1 @
(3 — 2v/29)? (3_2\/55) Lom/2)(€)-

Next, we consider < —1 case. By Proposition 10.1, we have

floo () =

Z.(2)e = Aa(2)- AL () [; 7 >] [0 bo] Zo(2)e

[C S} uo( )@
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1[0 - Sh)a - Ch=)8
16 [Chza+ (1 - Sfo(Z))ﬁ] S
In order to calculate the residue, we introduce
B (A (2))lel -1 -
)= =5 {Cat (S - Ry
_ QAOe)k fo(2) 7
he) = {Ca (5= fol=)8}.
First, we consider z = e case. Then, we get
IOV (1- \/55)2 < 1 >|x|_1 02
|J1<6 )’ - 4(3—2\/55)2 3—2\/§S |Ck Zﬁ| : (1179>
Similarly, we have
0y 12 _ (1_\/55)2 ( 1 )'I a2
e = o5 men (s ouas) o (11.80)

Thus, by using Egs. (11.78), (11.79), and (11.80), we see that for x < —1,

= . 2 ' '
N

S L S
O 2(3-2V29)? 3— 228 '

61’9(2)

For z = case, we similarly have

ST S, |
2(3 — 2v/29)? 3 —2v/28 '

~ (2 2
HRes (Ez(z)gp;z:ew()w :(

For z = ¢ (k = 3,4) cases also, we get

2 (2-+/29)(1—+28)? 1 2 o
T 2(3—2V29)? (3—2\/53) o+ 4B

HRes <§x(2)80, z = ew(k))

So, we obtain

2

4
= Cy i (k)
; HRGS (Hm(z)go, z=¢" )

_2(2—29)(1 - V25)? ( 1 )I'
B (3 — 21/25)? 3-2v25)
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Therefore, we see that for x < —1, Lemma 11.1 gives
2(2 - V29)(1 - v25)? ( 1 )'z
(3 —21/25)2 3-2v25)

Then we have 7i(x) = i (—x) (z € Z).
Combaining Lemma 11.2 with the above result gives

Fioo ()

THEOREM 11.4.

( 2(1 . \/551)2 B
B_2v25)2 Lo (€) (z = 0),
oo () =
22— VI -VESE [ 1 \F
L (3_2\/58’)2 (3_2\/55> X I[OJT/4)(£) (SL’#O),
and

S i (o) = 2L V29)

= m x Tiox/ay () (< 1).

TEZL

The time-avereged limit measure does not depend on the inital qubit ¢ =

Tla, B)(, AEC, |af2[8P=1). Furthermore, we take [c| =\/2(1~ v2S)/(3~2V2S)
in Corollary 3.3 on the stationary measure and have the same result.
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