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Abstract. New sufficient conditions for the oscillation of all solutions of differ-
ence equations with several deviating arguments are presented. Corresponding
difference equations of both retarded and advanced type are studied. The signif-
icance of the conditions established are demonstrated by comparing with known
oscillation conditions. Examples illustrating the results are also given.

1. Introduction

In this paper we study the oscillation of all solutions of the difference equation

with several variable retarded arguments of the form

∆x(n) +
m∑

i=1

pi(n)x(τi(n)) = 0, n ∈ N0, m ∈ N (ER)

and the (dual) difference equation with several variable advanced arguments of

the form

∇x(n) −
m∑

i=1

pi(n)x(σi(n)) = 0, n ∈ N, m ∈ N, (EA)

where (pi(n)), 1 ≤ i ≤ m are sequences of nonnegative real numbers, (τi(n)),

1 ≤ i ≤ m are sequences of integers such that

τi(n) ≤ n − 1 ∀n ∈ N0, and lim
n→∞

τi(n) = ∞, 1 ≤ i ≤ m (1.1)

(σi(n)), 1 ≤ i ≤ m are sequences of integers such that

σi(n) ≥ n + 1 ∀n ∈ N, 1 ≤ i ≤ m. (1.2)
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Here, ∆ denotes the forward difference operator ∆x(n) = x(n+1)−x(n) and ∇
denotes the backward difference operator ∇x(n) = x(n) − x(n − 1).

If τi(n) = n− ki and σi(n) = n + ki where ki ∈ N, 1 ≤ i ≤ m, then equations

(ER) and (EA) take the forms

∆x(n) +
m∑

i=1

pi(n)x(n − ki) = 0, n ∈ N0 (E
′
R)

and

∇x(n) −
m∑

i=1

pi(n)x(n + ki) = 0, n ∈ N, (E
′
A)

respectively.

Set w = −min n≥0
1≤i≤m

τi(n). Clearly, w is a positive integer.

By a solution of (ER), we mean a sequence of real numbers (x(n))n≥−w which

satisfies (ER) for all n ≥ 0. It is clear that, for each choice of real numbers

c−w, c−w+1, ..., c−1, c0, there exists a unique solution (x(n))n≥−w of (ER) which

satisfies the initial conditions x(−w) = c−w, x(−w+1) = c−w+1, ..., x(−1) = c−1,

x(0) = c0.

By a solution of (EA), we mean a sequence of real numbers (x(n))n≥0 which

satisfies (EA) for all n ≥ 1.

A solution (x(n))n≥−w (or (x(n))n≥0) of (ER) (or (EA)) is called oscillatory,

if the terms x(n) of the sequence are neither eventually positive nor eventually

negative. Otherwise, the solution is said to be nonoscillatory.

In the last few decades, the asymptotic and oscillatory behavior of the so-

lutions of difference equations has been extensively studied. See, for example,

[2−9, 12−17] and the references cited therein. Most of these papers concern the

special case of the equations (E′
R) and (E′

A) with m = 1, while a small number

of these papers are dealing with the general case of the equations (ER) and (EA)

with m = 1, in which the arguments (n − τi(n))n≥0, (σi(n) − n)n≥1, 1 ≤ i ≤ m

are variable. For the general theory of difference equations the reader is referred

to the monographs [1, 10, 11].

In 1989 Erbe and Zhang [9], in 1999 Tang and Yu [14], and in 2001, Tang

and Zhang [16] proved that either one of the following conditions

m∑
i=1

(
lim inf
n→∞

pi(n)
) (ki + 1)

(ki)
ki

ki+1

> 1, (1.3)

lim inf
n→∞

m∑
i=1

(
ki + 1

ki

)ki+1 n+ki∑
j=n+1

pi(j) > 1, (1.4)
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or

lim sup
n→∞

m∑
i=1

n+ki∑
j=n

pi(j) > 1, (1.5)

implies that all solutions of the equation (E
′
R) oscillate, while in 2002, Li and

Zhu [12] proved that if

lim inf
n→∞

m∑
i=1

(
ki + 1

ki

)ki+1 n−1∑
j=n−ki

pi(j) > 1. (1.6)

then all solutions of the equation (E
′
A) oscillate.

In 2005, Yan, Meng and Yan [17], and in 2006, Berezansky and Braverman

[2], proved that if

lim inf
n→∞

n−1∑
j=τ(n)

m∑
i=1

pi(j)

(
n − τi(j) + 1

n − τi(j)

)n−τi(j)+1

> 1, (1.7)

or

lim sup
n→∞

m∑
i=1

pi(n) > 0 and lim inf
n→∞

m∑
i=1

n−1∑
j=τ(n)

pi(j) >
1

e
, (1.8)

where τ(n) = max1≤i≤m τi(n), ∀n ≥ 0, then all solutions of (ER) oscillate.

Very recently, Chatzarakis et al. [6] established the following oscillation cri-

teria for the equations (ER) and (EA).

THEOREM 1.1. (See [6, Theorems 2.1 [3.1], 2.2 [3.2]) Assume that the se-

quences (τi(n)) [(σi(n))], 1 ≤ i ≤ m are increasing, (1.1) [(1.2)] holds, and

lim sup
n→∞

m∑
i=1

n∑
j=τ(n)

pi(j) > 1,

lim sup
n→∞

m∑
i=1

σ(n)∑
j=n

pi(j) > 1,

 (1.9)

where τ(n) = max1≤i≤m τi(n), ∀n ≥ 0, [σ(n) = min1≤i≤m σi(n), ∀n ≥ 1], or

lim sup
n→∞

m∑
i=1

pi(n)>0 and lim inf
n→∞

m∑
i=1

n−1∑
j=τi(n)

pi(j)>
1

e

lim inf
n→∞

m∑
i=1

σi(n)∑
j=n+1

pi(j)>
1

e

 .

(1.10)

Then all solutions of Eq. (ER) [(EA)] oscillate.

The authors study further (ER) and (EA) and derive new sufficient oscillation

conditions when neither (1.9) nor (1.10) is satisfied. Examples illustrating the

results are also given.
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2. Oscillation criteria for Eq. (ER)

In this section we establish sufficient conditions for the oscillation of all so-

lutions of (ER), when the conditions (1.9) and (1.10) are not satisfied. To that

end, the following lemma provides a useful tool.

LEMMA 2.1. Assume that the sequences (τi(n)), 1 ≤ i ≤ m are increasing,

(1.1) holds and (x(n))n≥−w is a nonoscillatory solution of (ER). Set

α = min {αi : 1 ≤ i ≤ m} where αi = lim inf
n→∞

n−1∑
j=τi(n)

pi (j) . (2.1)

If 0 < α ≤ 1, then

lim inf
n→∞

x(n + 1)

x(τ(n))
≥ (1 −

√
1 − α)2, (2.2)

where

τ(n) = max
1≤i≤m

τi(n), ∀n ≥ 0. (2.3)

If 0 < α < 3
√

5−5
2

and, in addition,

pi(n) ≥ 1 −
√

1 − α for all large n, (1 ≤ i ≤ m) , (2.4)

then

lim inf
n→∞

x(n + 1)

x(τ(n))
≥ α

[
1

3
√

1 − α + α − 2
− 1

]
. (2.5)

Proof. Since the solution (x(n))n≥−w of (ER) is nonoscillatory, it is either even-

tually positive or eventually negative. As (−x(n))n≥−w is also a solution of (ER),

we may restrict ourselves only to the case where x(n) > 0 for all large n. Let

ρ ≥ −w be an integer such that x(n) > 0 for all n ≥ ρ, and consider an integer

r ≥ 0 so that τi(n) ≥ ρ, 1 ≤ i ≤ m for n ≥ r (clearly, r > ρ). Then it follows

immediately from (ER) that ∆x(n) ≤ 0 for every n ≥ r, which means that the

sequence (x(n))n≥r is decreasing.

Assume that 0 < α ≤ 1, where α is defined by (2.1). Consider an arbitrary

real number ε with 0 < ε < α. Then we can choose an integer n0 ≥ r such that

τi(n) ≥ r, 1 ≤ i ≤ m for n ≥ n0, and

n−1∑
j=τi(n)

pi (j) ≥ αi − ε ≥ α − ε for all n ≥ n0, (1 ≤ i ≤ m) . (2.6)

Observe that 0 < 1 −
√

1 − (α − ε) < α − ε. We will establish the following

claim.
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CLAIM. For each n ≥ n0, there exists an integer n∗
i ≥ n for each i = 1, 2, · · ·,m

such that τi(n
∗
i ) ≤ n − 1, and

n∗
i∑

j=n

pi (j) ≥ 1 −
√

1 − (α − ε), (2.7)

n−1∑
j=τi(n∗

i )

pi (j) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
. (2.8)

To prove this claim, let us consider an arbitrary integer n ≥ n0. Assume, first,

that pi(n) ≥ 1−
√

1 − (α − ε), and choose n∗
i = n. Then τi(n

∗
i ) = τi(n) ≤ n− 1.

Moreover, we have

n∗
i∑

j=n

pi (j) =
n∑

j=n

pi (j) = pi(n) ≥ 1 −
√

1 − (α − ε)

and, by (2.6),

n−1∑
j=τi(n∗

i )

pi (j) =
n−1∑

j=τi(n)

pi (j) ≥ (α − ε) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
.

So, (2.7) and (2.8) are fulfilled. Next, we suppose that pi(n) < 1−
√

1 − (α − ε).

It is not difficult to see that (2.6) guarantees that
∑∞

j=0 pi (j) = ∞. In particular,

it holds
∞∑

j=n

pi (j) = ∞.

Thus, as pi(n) < 1−
√

1 − (α − ε), there always exists an integer n∗
i > n so that

n∗
i −1∑

j=n

pi (j) < 1 −
√

1 − (α − ε) (2.9)

and (2.7) holds. We assert that τi(n
∗
i ) ≤ n − 1. Otherwise, τi(n

∗
i ) ≥ n. We also

have τi(n
∗
i ) ≤ n∗

i − 1. Hence, in view of (2.9), we get

n∗
i −1∑

j=τi(n∗
i )

pi (j) ≤
n∗

i −1∑
j=n

pi (j) < 1 −
√

1 − (α − ε).

On the other hand, (2.6) gives

n∗
i −1∑

j=τi(n∗
i )

pi (j) ≥ α − ε > 1 −
√

1 − (α − ε).
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We have arrived at a contradiction, which shows our assertion. Furthermore, by

using (2.6) (for the integer n∗
i ) as well as (2.9), we obtain

n−1∑
j=τi(n∗

i )

pi (j) =

n∗
i −1∑

j=τi(n∗
i )

pi (j) −
n∗

i −1∑
j=n

pi (j) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
and consequently (2.8) holds true. Our claim has been proved.

By the definition of τ , suppose that τ(n) = τ`(n) where ` ∈ [1,m]∩N. Clearly,

` is a fixed natural number. Taking into account that (2.6), (2.7) and (2.8) hold

for each i = 1, 2, . . . ,m, we conclude that

n−1∑
j=τ(n)

p` (j) ≥ α − ε for n ≥ n0,

n∗∑
j=n

p` (j) ≥ 1 −
√

1 − (α − ε) for n ≥ n0,

n−1∑
j=τ(n∗)

p` (j) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
for n ≥ n0,

where n∗ = n∗
` . Thus, for all n ≥ n0, the above three inequalities guarantee that

m∑
i=1

n−1∑
j=τ(n)

pi (j) ≥
n−1∑

j=τ(n)

p` (j) ≥ α − ε, (2.6′)

m∑
i=1

n∗∑
j=n

pi (j) ≥
n∗∑

j=n

p` (j) ≥ 1 −
√

1 − (α − ε) (2.7′)

and

m∑
i=1

n−1∑
j=τ(n∗)

pi (j) ≥
n−1∑

j=τ(n∗)

p` (j) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
. (2.8′)

Summing up (ER) from n to n∗, and using the fact that the function x is

decreasing and the function τ (as defined by (2.3)) is increasing, we have

x(n) = x(n∗ + 1) +
m∑

i=1

n∗∑
j=n

pi (j) x(τi(j)) ≥ x(n∗ + 1) +
m∑

i=1

n∗∑
j=n

pi (j) x(τ(j)),
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or

x(n) ≥ x(n∗ + 1) + x(τ(n∗))
m∑

i=1

n∗∑
j=n

pi (j) ,

which, in view of (2.7′), gives

x(n) ≥ x(n∗ + 1) +
(
1 −

√
1 − (α − ε)

)
x(τ(n∗)). (2.10)

Summing up (ER) from τ(n∗) to n − 1, and using the same arguments, we have

x(τ(n∗)) = x(n) +
m∑

i=1

n−1∑
j=τ(n∗)

pi (j) x(τi(j)) ≥ x(n) +
m∑

i=1

n−1∑
j=τ(n∗)

pi (j) x(τ(j)),

or

x(τ(n∗)) ≥ x(n) + x(τ(n − 1))
m∑

i=1

n−1∑
j=τ(n∗)

pi (j) ,

which, in view of (2.8′), gives

x(τ(n∗)) > x(n) +
[
(α − ε) −

(
1 −

√
1 − (α − ε)

)]
x(τ(n − 1)). (2.11)

Combining inequalities (2.10) and (2.11), we obtain

x(n) > x(n∗ + 1)

+
(
1 −

√
1 − (α − ε)

){
x(n) +

[
(α − ε) −

(
1 −

√
1 − (α − ε)

)]
x(τ(n − 1))

}
,

or

x(n)

x(τ(n − 1))
>

(
1 −

√
1 − (α − ε)

)2

and, for large n, we have

x(n + 1)

x(τ(n))
>

(
1 −

√
1 − (α − ε)

)2

. (2.12)

Hence,

lim inf
n→∞

x(n + 1)

x(τ(n))
≥

(
1 −

√
1 − (α − ε)

)2

,

which, for arbitrarily small values of ε, implies (2.2).

Next, we consider the particular case where (2.4) holds. Therefore

pi(n) > 1 −
√

1 − (α − ε) , for all large n, (1 ≤ i ≤ m) .
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Assume now that 0 < α < 3
√

5−5
2

. In view of (2.12), it is clear that

x(n + 1) >
(
1 −

√
1 − (α − ε)

)2

x(τ(n)).

Thus, from (ER) we have

x(n) = x(n + 1) +
m∑

i=1

pi(n)x(τi(n)) ≥ x(n + 1) +
m∑

i=1

pi(n)x(τ(n))

>
(
1 −

√
1 − (α − ε)

)2

x(τ(n)) +
(
1 −

√
1 − (α − ε)

)
x(τ(n)),

or

x(n) >
(
1 −

√
1 − (α − ε)

)(
2 −

√
1 − (α − ε)

)
x(τ(n)). (2.13)

Summing up (ER) from τ(n) to n − 1, and using the same arguments, we have

x(τ(n)) = x(n) +
m∑

i=1

n−1∑
j=τ(n)

pi (j) x(τi(j)) ≥ x(n) +
m∑

i=1

n−1∑
j=τ(n)

pi (j) x(τ(j))

≥ x(n) + x(τ(n − 1))
m∑

i=1

n−1∑
j=τ(n)

pi (j) ,

which, in view of (2.6′), gives

x(τ(n)) ≥ x(n) + (α − ε) x(τ(n − 1)). (2.14)

Combining inequalities (2.13) and (2.14), we obtain

x(n) >
(
1 −

√
1 − (α − ε)

)(
2 −

√
1 − (α − ε)

)
[x(n) + (α − ε) x(τ(n − 1))] ,

or, using the assumption that α − ε < 3
√

5−5
2

, we have

x(n)

x(τ(n − 1))
> (α − ε)

[
1

3
√

1 − (α − ε) + (α − ε) − 2
− 1

]
,

and, for large n, we have

x(n + 1)

x(τ(n))
> (α − ε)

[
1

3
√

1 − (α − ε) + (α − ε) − 2
− 1

]
.

Hence,

lim inf
n→∞

x(n + 1)

x(τ(n))
≥ (α − ε)

[
1

3
√

1 − (α − ε) + (α − ε) − 2
− 1

]
,

which, for arbitrarily small values of ε, implies (2.5).

The proof of the lemma is complete.
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THEOREM 2.1. Assume that the sequences (τi(n)), 1 ≤ i ≤ m are increasing,

(1.1) holds, and define α by (2.1).

If 0 < α ≤ 1, and

lim sup
n→∞

m∑
i=1

n∑
j=τ(n)

pi(j) > 1 −
(
1 −

√
1 − α

)2
, (2.15)

where τ is defined by (2.3), then all solutions of Eq. (ER) oscillate.

If 0 < α < 3
√

5−5
2

, (2.4) holds, and

lim sup
n→∞

m∑
i=1

n∑
j=τ(n)

pi(j) > 1 − α

[
1

3
√

1 − α + α − 2
− 1

]
, (2.16)

then all solutions of Eq. (ER) oscillate.

Proof. Assume, for the sake of contradiction, that (x(n))n≥−w is a nonoscillatory

solution of (ER). Then it is either eventually positive or eventually negative. As

(−x(n))n≥−w is also a solution of (ER), we may restrict ourselves only to the case

where x(n) > 0 for all large n. Let ρ ≥ −w be an integer such that x(n) > 0

for all n ≥ ρ, and consider an integer r ≥ 0 so that τi(n) ≥ ρ, 1 ≤ i ≤ m for

n ≥ r (clearly, r > ρ). Then it follows immediately from (ER) that ∆x(n) ≤ 0

for every n ≥ r, which means that the sequence (x(n))n≥r is decreasing.

Now, we choose an integer n0 > r such that τ(n) ≥ r for n ≥ n0. Further-

more, we consider an integer N > n0 so that τ(n) ≥ n0 for n ≥ N . Then, as

the sequence (τ(n))n≥0 is increasing and the sequence (x(n))n≥r is decreasing, it

follows from (ER) that, for every n ≥ N ,

x(τ(n)) = x(n+1)+
m∑

i=1

n∑
j=τ(n)

pi (j) x(τi(j)) ≥ x(n+1)+x(τ(n))
m∑

i=1

n∑
j=τ(n)

pi (j) .

Consequently,

m∑
i=1

n∑
j=τ(n)

pi (j) ≤ 1 − x(n + 1)

x(τ(n))
for all n ≥ N ,

which gives

lim sup
n→∞

m∑
i=1

n∑
j=τ(n)

pi (j) ≤ 1 − lim inf
n→∞

x(n + 1)

x(τ(n))
. (2.17)
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First, assume that 0 < α ≤ 1 and (2.15) holds. Then by Lemma 2.1, inequality

(2.2) is fulfilled, and so (2.17) leads to

lim sup
n→∞

m∑
i=1

n∑
j=τ(n)

pi (j) ≤ 1 −
(
1 −

√
1 − α

)2
,

which contradicts condition (2.15).

Next, let us suppose that 0 < α < 3
√

5−5
2

and (2.4), (2.16) hold. Then by

Lemma 2.1, inequality (2.5) is fulfilled, and so (2.17) leads to

lim sup
n→∞

m∑
i=1

n∑
j=τ(n)

pi (j) ≤ 1 − α

[
1

3
√

1 − α + α − 2
− 1

]
,

which contradicts condition (2.16).

The proof of the theorem is complete.

3. Oscillation criteria for Eq. (EA)

In this section we establish sufficient conditions for the oscillation of all solu-

tions of (EA), when the conditions (1.9) and (1.10) are not satisfied.

LEMMA 3.1. Assume that the sequences (σi(n)), 1 ≤ i ≤ m are increasing,

(1.2) holds and (x(n))n≥0 is a nonoscillatory solution of (EA). Set

α = min {αi : 1 ≤ i ≤ m} where αi = lim inf
n→∞

σi(n)∑
j=n+1

pi (j) . (3.1)

If 0 < α ≤ 1, then

lim inf
n→∞

x(n − 1)

x(σ(n))
≥ (1 −

√
1 − α)2 (3.2)

where

σ(n) = min
1≤i≤m

σi(n), ∀n ≥ 1. (3.3)

If 0 < α < 3
√

5−5
2

and, in addition,

pi(n) ≥ 1 −
√

1 − α for all large n, (1 ≤ i ≤ m) , (3.4)

then

lim inf
n→∞

x(n − 1)

x(σ(n))
≥ α

[
1

3
√

1 − α + α − 2
− 1

]
. (3.5)
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Proof. Since the solution (x(n))n≥0 of (EA) is nonoscillatory, it is either eventu-

ally positive or eventually negative. As (−x(n))n≥0 is also a solution of (EA), we

may restrict ourselves only to the case where x(n) > 0 for all large n. Let r ≥ 0

be an integer such that x(n− 1) > 0 for all n ≥ r. Then x(n) > 0, x(σi(n)) > 0,

∀n ≥ r, 1 ≤ i ≤ m. Then it follows immediately from (EA) that ∆x(n) ≥ 0 for

every n ≥ r, which means that the sequence (x(n))n≥r is increasing.

Assume that 0 < α ≤ 1, where α is defined by (3.1). Consider an arbitrary

real number ε with 0 < ε < α. Then we can choose an integer n0 ≥ r such that

σi(n)∑
j=n+1

pi (j) ≥ αi − ε ≥ α − ε for all n ≥ n0, (1 ≤ i ≤ m) . (3.6)

Consequently, (3.6) guarantees that

∞∑
j=1

pi (j) = ∞, for each i = 1, . . . ,m.

Therefore, it is clear that there exists n1 ≥ n0 such that

n1∑
j=1

pi (j) ≥ 1 −
√

1 − (α − ε), for each i = 1, . . . ,m.

We will establish the following claim.

CLAIM. For each n ≥ n1, there exists an integer n∗
i ≤ n for each i = 1, 2, · · ·,m

such that σi(n
∗
i ) ≥ n + 1, and

n∑
j=n∗

i

pi (j) ≥ 1 −
√

1 − (α − ε), (3.7)

σi(n
∗
i )∑

j=n+1

pi (j) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
. (3.8)

To prove this claim, let us consider an arbitrary integer n ≥ n1. Assume, first,

that pi(n) ≥ 1−
√

1 − (α − ε), and choose n∗
i = n. Then σi(n

∗
i ) = σi(n) ≥ n+1.

Moreover, we have

n∑
j=n∗

i

pi (j) =
n∑

j=n

pi (j) = pi(n) ≥ 1 −
√

1 − (α − ε)
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and, by (3.6),

σi(n
∗
i )∑

j=n+1

pi (j) =

σi(n)∑
j=n+1

pi (j) ≥ (α − ε) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
.

So, (3.7) and (3.8) are fulfilled. Next, we suppose that pi(n) < 1−
√

1 − (α − ε).

Then there always exists an integer n∗
i < n so that

n∑
j=n∗

i +1

pi (j) < 1 −
√

1 − (α − ε) (3.9)

and (3.7) holds. We assert that σi(n
∗
i ) ≥ n + 1. Otherwise, σi(n

∗
i ) ≤ n. We also

have σi(n
∗
i ) ≥ n∗

i + 1. Hence, in view of (3.9), we get

σi(n
∗
i )∑

j=n∗
i +1

pi (j) ≤
n∑

j=n∗
i +1

pi (j) < 1 −
√

1 − (α − ε).

On the other hand, (3.6) gives

σi(n
∗
i )∑

j=n∗
i +1

pi (j) ≥ α − ε > 1 −
√

1 − (α − ε).

We have arrived at a contradiction, which shows our assertion. Furthermore, by

using (3.6) (for the integer n∗
i ) as well as (3.9), we obtain

σi(n
∗
i )∑

j=n+1

pi (j) =

σi(n
∗
i )∑

j=n∗
i +1

pi (j) −
n∑

j=n∗
i +1

pi (j) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
and consequently (3.8) holds true. Our claim has been proved.

By the definition of σ, suppose that σ(n) = σ`(n) where ` ∈ [1,m] ∩ N.

Clearly, ` is a fixed natural number. Taking into account that (3.6), (3.7) and

(3.8) hold for each i = 1, 2, . . . ,m, we conclude that

σ(n)∑
j=n+1

p` (j) ≥ α − ε for n ≥ n1,

n∑
j=n∗

p` (j) ≥ 1 −
√

1 − (α − ε) for n ≥ n1,
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σ(n∗)∑
j=n+1

p` (j) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
for n ≥ n1,

where n∗ = n∗
` . Thus, for all n ≥ n1, the above three inequalities guarantee that

m∑
i=1

σ(n)∑
j=n+1

pi (j) ≥
σ(n)∑

j=n+1

p` (j) ≥ α − ε, (3.6′)

m∑
i=1

n∑
j=n∗

pi (j) ≥
n∑

j=n∗

p` (j) ≥ 1 −
√

1 − (α − ε), (3.7′)

and

m∑
i=1

σ(n∗)∑
j=n+1

pi (j) ≥
σ(n∗)∑
j=n+1

p` (j) > (α − ε) −
(
1 −

√
1 − (α − ε)

)
. (3.8′)

Summing up (EA) from n∗ to n, and using the fact that the functions x and

σ (as defined by (3.3)) are increasing, we have

x(n) = x(n∗ − 1) +
m∑

i=1

n∑
j=n∗

pi (j) x(σi(j)) ≥ x(n∗ − 1) +
m∑

i=1

n∑
j=n∗

pi (j) x(σ(j))

which, in view of (3.7′), gives

x(n) ≥ x(n∗ − 1) +
(
1 −

√
1 − (α − ε)

)
x(σ(n∗)). (3.10)

Summing up (EA) from n + 1 to σ(n∗), and using the same arguments, we have

x(σ(n∗)) = x(n) +
m∑

i=1

σ(n∗)∑
j=n+1

pi (j) x(σi(j)) ≥ x(n) +
m∑

i=1

σ(n∗)∑
j=n+1

pi (j) x(σ(j)),

which, in view of (3.8′), gives

x(σ(n∗)) > x(n) +
[
(α − ε) −

(
1 −

√
1 − (α − ε)

)]
x(σ(n + 1)). (3.11)

Combining inequalities (3.10) and (3.11), we obtain

x(n) > x(n∗ − 1)

+
(
1 −

√
1 − (α − ε)

){
x(n) +

[
(α − ε) −

(
1 −

√
1 − (α − ε)

)]
x(σ(n + 1))

}
,

or

x(n)

x(σ(n + 1))
>

(
1 −

√
1 − (α − ε)

)2
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and, for large n, we have

x(n − 1)

x(σ(n))
>

(
1 −

√
1 − (α − ε)

)2

.

Hence,

lim inf
n→∞

x(n − 1)

x(σ(n))
≥

(
1 −

√
1 − (α − ε)

)2

,

which, for arbitrarily small values of ε, implies (3.2). The rest of the proof is

similar to the corresponding of Lemma 2.1 in the case where (3.4) holds.

The proof of the lemma is complete.

Oscillation of all solutions of (EA) is described by the theorem below. Note

that the proof is an easy modification of the proof of Theorem 2.1 and hence is

omitted.

THEOREM 3.1. Assume that the sequences (σi(n)), 1 ≤ i ≤ m are increasing,

(1.2) holds, and define α by (3.1).

If 0 < α ≤ 1, and

lim sup
n→∞

m∑
i=1

σ(n)∑
j=n

pi(j) > 1 −
(
1 −

√
1 − α

)2
, (3.12)

where σ is defined by (3.3), then all solutions of Eq. (EA) oscillate.

If 0 < α < 3
√

5−5
2

, (3.4) holds, and

lim sup
n→∞

m∑
i=1

σ(n)∑
j=n

pi(j) > 1 − α

[
1

3
√

1 − α + α − 2
− 1

]
, (3.13)

then all solutions of Eq. (EA) oscillate.

4. Remarks and examples

REMARK 4.1. It is easy to see that

α

[
1

3
√

1 − α + α − 2
− 1

]
>

(
1 −

√
1 − α

)2
, ∀α ∈

(
0,

3
√

5 − 5

2

)
.

Hence, if (2.4) [(3.4)] holds, then the condition (2.16) [(3.13)] is weaker than the

condition (2.15) [ (3.12)].
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REMARK 4.2. When α → 0, then the conditions (2.15), (2.16) [(3.12), (3.13)]

reduce to

lim sup
n→∞

m∑
i=1

n∑
j=τ(n)

pi(j) > 1,

lim sup
n→∞

m∑
i=1

σ(n)∑
j=n

pi (j) > 1,


that is, to the condition (1.9). However the improvement is clear when α → 1

e
.

For illustrative purposes we give the values of the lower bound on the above

conditions when α = 1
e

= 0.3678794. The lower bound in (2.15) [ (3.12)] is

0.957999647, while in (2.16) [(3.13)] is 0.879366516. That is, our conditions

(2.15) [ (3.12)] and (2.16) [(3.13)] essentially improve (1.9).

EXAMPLE 4.1. Consider the retarded difference equation

∆x(n) + p1(n)x(n − 2) + p2(n)x(n − 3) = 0, n ∈ N0 (4.1)

where

p1(3n) =
6

100
, p1(3n + 1) =

8

100
, p1(3n + 2) =

4

10
, n ∈ N0

and

p2(4n) =
3

100
, p2(4n + 1) =

5

100
, p2(4n + 2) =

7

100
, p2(4n + 3) =

335

1000
, n ∈ N0

Here m = 2, τ1(n) = n − 2, τ2(n) = n − 3 and τ(n) = n − 2.

It is easy to see that

α1 = lim inf
n→∞

n−1∑
j=n−2

p1(j) =
6

100
+

8

100
= 0.14

and

α2 = lim inf
n→∞

n−1∑
j=n−3

p2(j) =
3

100
+

5

100
+

7

100
= 0.15.

Thus

α = min {αi : 1 ≤ i ≤ 2} = min {0.14, 0.15} = 0.14 <
1

e
.

Also,

lim sup
n→∞

2∑
i=1

n∑
j=τ(n)

pi(j) = lim sup
n→∞

[
n∑

j=n−2

p1(j) +
n∑

j=n−2

p2(j)

]

= 0.14 +
4

10
+

5

100
+

7

100
+

335

1000
= 0.995.
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Observe that

0.995 > 1 −
(
1 −

√
1 − α

)2 ' 0.994723699,

that is, condition (2.15) of Theorem 2.1 is satisfied and therefore all solutions of

equation (4.1) oscillate. On the other hand,

0.995 < 1,

lim inf
n→∞

2∑
i=1

n−1∑
j=τ(n)

pi(j) = lim inf
n→∞

[
n−1∑

j=n−2

p1(j) +
n−1∑

j=n−2

p2(j)

]
= 0.14 + 0.08 <

1

e
,

lim inf
n→∞

2∑
i=1

n−1∑
j=τi(n)

pi(j) = lim inf
n→∞

[
n−1∑

j=n−2

p1(j) +
n−1∑

j=n−3

p2(j)

]
= 0.14 + 0.15 <

1

e
,

lim inf
n→∞

m∑
i=1

(
ki + 1

ki

)ki+1 n+ki∑
j=n+1

pi(j) =

(
3

2

)3

· 0.14 +

(
4

3

)4

· 0.15

= 0.946574074 < 1,

lim inf
n→∞

n−1∑
j=n−2

2∑
i=1

pi(j)

(
n − τi(j) + 1

n − τi(j)

)n−τi(j)+1

=

(
3

2

)3

· 0.14 +

(
4

3

)4

· 0.08

= 0.7253 < 1,

and therefore none of the conditions (1.9), (1.8), (1.10), (1.4) and (1.7) is satisfied.

EXAMPLE 4.2. Consider the retarded difference equation

∆x(n) + p1(n)x(n − 2) + p2(n)x(n − 1) = 0, n ∈ N0 (4.2)

where

p1(3n) = p1(3n + 1) =
1

10
, p1(3n + 2) =

1

2
, n ∈ N0

and

p2(2n) =
8

100
, p2(2n + 1) =

317

1000
, n ∈ N0.

Here m = 2, τ1(n) = n − 2, τ2(n) = n − 1 and τ(n) = n − 1.

It is easy to see that

α1 = lim inf
n→∞

n−1∑
j=n−2

p1(j) = 2 · 1

10
= 0.2
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and

α2 = lim inf
n→∞

n−1∑
j=n−1

p2(j) =
8

100
= 0.08.

Thus

α = min {αi : 1 ≤ i ≤ 2} = min {0.2, 0.08} = 0.08 <
1

e
.

Furthermore, it is clear that

pi(n) > 1 −
√

1 − α ' 0.040833695 for all large n, (1 ≤ i ≤ 2) .

Also,

lim sup
n→∞

2∑
i=1

n∑
j=τ(n)

pi(j) = lim sup
n→∞

[
n∑

j=n−1

p1(j) +
n∑

j=n−1

p2(j)

]

=
1

10
+

1

2
+

8

100
+

317

1000
= 0.997.

Observe that

0.997 > 1 − α

[
1

3
√

1 − α + α − 2
− 1

]
' 0.996448991,

that is, conditions (2.4) and (2.16) of Theorem 2.1 are satisfied and therefore all

solutions of equation (4.2) oscillate. On the other hand,

0.997 < 1,

0.997 < 1 −
(
1 −

√
1 − α

)2 ' 0.998332609,

lim inf
n→∞

2∑
i=1

n−1∑
j=τ(n)

pi(j) = lim inf
n→∞

[
n−1∑

j=n−1

p1(j) +
n−1∑

j=n−1

p2(j)

]
= 0.18 <

1

e
,

lim inf
n→∞

2∑
i=1

n−1∑
j=τi(n)

pi(j) = lim inf
n→∞

[
n−1∑

j=n−2

p1(j) +
n−1∑

j=n−1

p2(j)

]
= 0.28 <

1

e
,

lim inf
n→∞

m∑
i=1

(
ki + 1

ki

)ki+1 n+ki∑
j=n+1

pi(j) =

(
3

2

)3

· 0.2 + 4 · 0.08 = 0.995 < 1,

lim inf
n→∞

n−1∑
j=n−1

2∑
i=1

pi(j)

(
n − τi(j) + 1

n − τi(j)

)n−τi(j)+1

=

(
3

2

)3

· 0.1 + 4 · 0.08

= 0.6575 < 1,

and therefore none of the conditions (1.9), (2.15), (1.8), (1.10), (1.4) and (1.7) is

satisfied.
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VIŠEGRADSKA 33, 18000 NIŠ, Serbia
jelenam@pmf.ni.ac.rs

Academia Militar, Departamento de Ciências Exactas e Naturais,
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