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Abstract. Let (1,32 be a pair of disjoint circles in the plane such that there is
a cyclic sequence of circles ajas . . . o, in which each consecutive pair are tangent
and each «; is tangent to both (1, 32. It is proved that b(ay) + -+ + b(ay,) =
(n/2) cot?(m/n){b(31)+b(B2)} holds, where b(-) denote the bend (that is, a signed
reciprocal of the radius). Similar formulas are derived for Soddy’s hexlet and
other sphere-systems.

1. Introduction

A finite family of spheres F in R" is called normal if for each o € F, all other
member of F lie in the same side (inside or outside) of o. For example, Figure
1(a) shows a normal family of circles in R?, but other two are not. In a normal
family of spheres, the bend b(c) of a sphere o is defined as follows:

(o) = { 1/r(c)  if all other members of the family lie outside o

—1/r(c)  otherwise,

where r(o) denotes the radius of o.

(a) (b) (c)

Figure 1 (a) is normal, (b) (c) are not
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For a normal family of mutually tangent circles {ay, ag, g, iy} in R?,

4

2> " b(ay)? = (Z b(ai)>

i=1

holds. This is known as Descartes’ circle formula, see e.g. Coxeter [2]. This
formula is also extended to higher dimensions: If {oy,...,0,.2} is a normal
family of mutually tangent n + 2 spheres in R", then

an(ai)Q - (Z b(@)

holds. This is called Soddy’s formula (Soddy [7], see also [1,2,5]).

For m > 3, an m-cycle of spheres in R™ is a cyclic sequence of m spheres,
in which each consecutive pair are tangent, and each non-consecutive pair are
disjoint. Figure 2 (a), (b) are 6-cycles of circles.

(a) (b) (c)

Figure 2 Two 6-cycles of circles and a Steiner 6-cycle

Suppose that for an n-cycle ajas ..., of circles in R?, there is a pair of
disjoint circles 1,3 such that each «; is tangent to both (;,(>. Such an
n-cycle ajas ..., is called a closed Steiner n-chain, or simply, a Steiner n-
cycle to the pair [y, B2, see Figure 2(c). Notice that in this case, the family
{ai, ..., ap, 1, B2} is a normal family.

If a 4-cycle ajanazay is a Steiner 4-cycle to some pair of circles, then

b(Oél) + b(Oég) = b(Oég) + b(Oé4)

holds. This formula, and the 3-dimensional case of Soddy’s formula appeared in
Japanese Sangaku tablet in 1822, see Rothman [6].

In this paper, we present similar formulas concerning bends for Steiner cycles
and some other special families of spheres.
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THEOREM 1. Forn > 3, let ajas . ..« be a Steiner n-cycle to a pair of disjoint
circles By, B2 in R%. If n = km for some k > 2, then, for any j (1 < j <m), the
following holds:

B

-1

blotssan) = & cot?(x/n) (b(51) + ().

I
o

For example, if ajas ... aqs is a Steiner 12-cycle to a pair of disjoint circles
1, B2, and k = 4, then since cot?(r/12) = 7 + 41/3, we have

b(a;) + b(tjps) + blajg) + b(aje) = 2(7 + 4V3){b(B1) + b(5s)}

for each 7 =1,2,3.

If 717973 is a 3-cycle of spheres in R3, and o, is a sphere tangent to all
T1, T2, T3, then there always exists a 6-cycle of spheres o105 ... 0g such that each
o; is tangent to all 7, 7, 73. This 6-cycle 0,05 ...04 is called Soddy’s hexlet
([7], see also [3,4,5]) to the 3-cycle Tymo13. The family {o1,...,06, 71,72, 73} is a
normal family.

THEOREM 2. [fo105...04 ts a Soddy’s hezlet to a 3-cycle 1175715 of spheres in
R3, then

b(oy) + b(og) = b(o2) 4+ b(os) = b(o3) + b(og) = 2{b(11) + b(72) + b(73)},
b(o1) + b(o3) + b(os) = b(02) + b(oy) + b(og) = 3{b(11) + b(12) + b(73)}.

The contact graph of a normal family F of spheres is a graph whose vertices
are in one-to-one correspondence with the members of F, and two vertices are
adjacent whenever the corresponding spheres are tangent. If the contact graph
of a normal family F is isomorphic to a graph G, then the family is called a G-
system. For example, if o7 ... 0¢ is a Soddy’s hexlet to a 3-cycle 77573, then the
family {04, ...,06, 71,72, 73} is a (Cg + K3)-system in R?, where Cg + K3 denotes
the join of the 6-cycle Cg and the complete graph K3. (The join G + H of two
graphs G, H is the graph obtained from the disjoint union of G, H by adding
every edges connecting each vertex of G to each vertex of H.) Let KJ* denote

For every n > 2, there is a K5 '-system in R™. To see this, consider the
n-dimensional cross polytope R™ with vertices

(£1,0,...,0),(0,£1,0,...,0),...,(0,...,0,£1).

Its circum-radius is clearly equal to 1. Let 0,71, 09,09, ...,0,,0, be the spheres
of the same radius /2 /2 centered at the vertices of this cross polytope, and let
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09,00 be the concentric spheres with center O and radii 1 + \/§/2, 1 - \/5/27
respectively. Then, {09, 50, 01,51,...,0n,0,} is a Ky l-system in R™.

For a graph G, its complement is denoted by G. For every n > 2, there
is a (K + K,41)-system in R". To see this, consider a regular n-simplex of
unit edge-length in R™ with barycenter at the origin O. The circum-radius r
of this simplex is equal to \/n/(2(n+ 1)). Let 0g,01,...,0, be the spheres of
radius 1/2 centered at the vertices of the simplex, and 71,7 be the concentric
spheres with center O and radii r 4+ 1/2, » — 1/2, respectively. We have then a
(Ky + Kpy1)-system {71, 72, 00,01,...,0,}.

THEOREM 3. In any (Ks + K, 11)-system in R™, we have

n+1

>~ blo) = "5 {b(m) + b)),

where {11, 72} are the pair corresponding to the vertices of Ky, and {o1,...,0p41}
are the spheres corresponding to the vertices of K.

THEOREM 4. In any K5 -system in R" (n > 2), we have

> {b(0:) +b(6:)} = n{b(o0) + b(d0)},

i=1

where {o;,0;} denotes a pair of mutually non-tangent spheres, for each i =
0,1,2,...,n. Therefore, b(cy) 4+ b(do) = b(o1) +b(a1) = -+ - = b(0o,) + b(F,).

2. Inversions of R"

An inversion of R™ with center p and radius r is a transformation of R"\ {p}
that sends € R” \ {p} to a point ' lying on the ray p2 and satisfying

|z —p|- |z’ —p|=r>

For a complete definition of an inversion, we need to add a point co to R™ at the
infinity and consider R" U {oo} instead of R", see Coxeter [2] or Ogilvy [5] for
details.

An inversion is an involution, that is, if we repeat the same inversion twice,
then every points returns to the original position.

An important fact on an inversion of R"™ is that it maps a sphere to a sphere,
regarding a hyperplane as a sphere of infinite radius. More precisely, an inversion
of R™ with center p satisfies the following:
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1. It transforms a sphere not passing through p into a sphere not passing
through p.

2. It transforms a sphere passing through p into a hyperplane not passing
through p and wvice versa. In this case, the line through p and the center
of the sphere is perpendicular to the hyperplane.

3. It transforms a hyperplane passing through p into itself.

The following fact is also used in this paper.

4. For any pair of disjoint spheres in R", there is an inversion of R™ which
transforms the pair into a pair of concentric spheres.

It is not difficult to check the following.

5. If a family F* of spheres is obtained from a normal family F of spheres by
applying an inversion, then F* is also a normal family of spheres.

3. Proof of Theorem 1

For a point p € R”, let us denote by f, the inversion of R" with center p and
radius 1.

LEMMA 1. Let {o1,09,...,01} be a normal family of k unit spheres in R™ with
centers &, ..., Ty such that x| =+ = |xg| =d > 1, &1 + T2+ - + ) = O,
the origin. For any p € R"\ (Ug;),

k

> blfp(o0) = k(Ipl* + d* = 1).

i=1
Proof. Let o} = fp(0;), i =1,2,.... k. Let a;,b; be the points where the line
px; intersects the sphere o; and |a; — p| < |b; — p|, see Figure 3. The diameter of
o} is equal to | fp(a;)— fp(b;)|. If p lies outside o, then since |a;—p| = |z;—p|—1
and | fp(a;) — p|-|a; —p| = 1, we have |fp(a;) —p| = 1/(|z; —p| —1). Similarly,
we have |fp(b;) — p| =1/(|x; — p| +1). Therefore,

2r(o}) = |folai) = fp(bi)| = | fp(ai) — p| — [ fo(bi) — P
R 2
lz;—pl—1 |e;—p|l+1 |z;—p?-1

and hence b(c}) = |z;—p|*—1. If p lies inside o;, then since |a; —p| = 1—|z; —p|
and | fp(a;) —p| = 1/]a;—p|, we have [f(a;) —p| = 1/(1—|z; —p|) = —1/(|&: —
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p| — 1). Therefore,

27’(‘7;) = |fp<ai> - fp(bi)| = |fp(ai) —p| + |fp(bz‘) —p|
1 1 —9
@i—pl—1 Jm—pl+1 jm-pP-1

In this case, however, o} encloses all other spheres. Hence b(c}) = —1/r(0}) =
|z; — p|*> — 1. Thus, we always have b(c}) = |&; — p|> — 1. And hence

k k k
Zb(af) :Z\mi—p|2—k:kd2+k\p|2—k—22xi~p
i=1 i=1 i=1
k
=k(lpP+d*—1)—2(> @) -p=k(p]*+d* - 1).
=1
This proves Lemma 1. O]

Figure 3 The diameter |b; — a;| of o;

LEMMA 2. Let (11, 72) be a pair of concentric spheres centered at the origin in
R™ with radii d+1,d — 1 (d > 1), respectively. For any point p € R™\ (Ut;), we
have

b(fp(m1)) + b(fp(72)) = (Ip* +d* = 1).

d?—1
Proof. To make our argument clear, let us consider the case that p lies inside 7.
(The other cases follows similarly.) The diameter of f,(72) can be computed as
S S (i)
d—1—1|p| d—1+[p] (d—1)*—|p|*




BEND-FORMULAS IN SOME SPHERE-SYSTEMS 7

Similarly, the diameter of f,(71) can be computed as %. Since fp(2)

encloses all other spheres, we have

_d+12—IpP  (d—-1)*—|p|’

b(fp(71)) + b(fp(72)) = d+ 1 d—1
1 1

— @+ )= -0+ o (7 - 1)

1 d+1

2
= (P + & 1)

]

Proof of Theorem 1. It is possible to transform the circles 3, 3> to a pair of
concentric circles, namely, there is a point p € R? such that f,(31) and fp(0s)
are concentric circles. In this case, all fp(a;) must have the same radius. We may
suppose that the center of f,(01) (and fp(f2)) is the origin. Since the formula in
Theorem 1 is invariant under the similarity, we may suppose that all f,(c;) have
unit radius. Let d be the distance between the origin and the center of fp(c).

We have

) 1
sin(mw/n) = p
and the radii of f,(051), fp(B2) are d + 1,d — 1, respectively. If x; denotes the
center of f,(c;), then for each 1 < j < m, we have Zf:_ol Zjiim = O. Hence, we

can apply the 2-dimensional versions of Lemmas 1, 2, to the normal families of

circles {fp(cu), ..., fp(an)} and {fp(51), fp(B2)}. Noting that
fo(Fo(B5)) = Bj, fo(fplew)) = i,

we have

T
L

b(0jrim) = k(Ip[* + d* — 1)

Il
o

7

(81) + Do)l = =

- (pl* + & — 1),

Since d = 1/sin(m/n), we have d* — 1 = cot?(7/n). Hence we have the theorem.

]

4. Soddy’s hexlet and other sphere-systems

LEMMA 3. Let 1 be the unit sphere centered at the origin in R", and let £, de-
note the hyperplanes x,, = 1 and x,, = —1, respectively. Let p = (p1,p2,...,Dn) €
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R™ be a point not lying on T UEUn, and put 7" = fp(7),&* = fp(§),n" = fp(n).
The family {7*, £, n*} is a normal family of spheres, and

b(7*) + b(E) + b(n*) = |p|* + 3.

Proof. Let us consider the case that |p,| < 1 and p lies outside of 7. (Other
cases are similar.) The diameters of 7%, £*, n* are calculated as

. 1 1 2
2r(1") = - =
pl—1 |p/+1 |p*-1
1
2r(&*) =
1
2r(n*) = )
(1) = 1 .,
Hence we have the lemma. O

Proof of Theorem 2. Let p be the contact point of 7 and 7. Put € = fp(m1), n =
fp(m2) and 7 = fp(73). The images &, n are two parallel planes, and 7" is a
sphere tangent to these two planes. Let o} = fp(0;), i = 1,2,...,6. The images

of,1 = 1,2,...,6, are spheres all tangent to &, n, 7"

Since the formulas in
Theorem 2 are invariant under the similarity, we may suppose that both o, 7*
are unit spheres, and the center of 7* is the origin of R?. Let x; denote the center

of 0. Then, |x;| = 2. Now, applying Lemma 1 with d = 2, we have

2

D bfp(oa)) = 3PP +3)  (k=3)

Zb(fp(a;%i)) = 2(|p|2 +3) (k=2)

=0

By Lemma 3, we have

b(fp(77)) + b(fp(€)) + b(fp(n)) = Ip|* + 3.

Hence we have the theorem.

Proof of Theorem 3. There is a point p such that f,(71), fp(m2) are concentric
spheres. Put 77 = fp(m1), 75 = fp(m2) and put o} = fp(0s), i = 1,2,...n + 1.
All o} are spheres of the same size. We may suppose that the center of 77 is the
origin, and all o} are unit spheres. Let x; be the center of o}. Since x1,..., T, 11
are the vertices of a regular simplex of edge length 2, its circum-radius is equal
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to y/2n/(n+ 1), that is, |x;| = \/2n/(n +1). Now, applying Lemmas 1 and 2

with d = y/2n/(n + 1), we have

n+1

Z b(fp(07)) = (n+ 1)(|p|* + d* - 1),

Do)+ DUAp(7)) = 5o (lpl? + 7 — 1),
and
S bator) = LD ) 405,50
Since .

we have the theorem.

Proof of Theorem 4. There is a point p such that f,(0o), fp(d0) are concentric
spheres. Put o = fp(00), 05 = fp(00) and o} = fp(0:), 07 = fp(d;). Now, all o}
and o, ¢ > 0, are spheres of the same size. We may suppose that the center of

og is the origin, and all o7, &7, ¢ > 0, are unit spheres. Let x; be the center of o

17 17

and ; be the center of 7, + > 0. Since

|z — x| = |@ — x)] = |o; — 25| = [T — 2] =2
for all 0 < 4,7 (i # j), we can deduce that n vectors x;x;, i = 1,2,...,n are

mutually perpendicular, and the midpoint of x;Z; is equidistant from all 2(n —1)
points x;, &;, j # i. Since these 2(n—1) points span a hyperplane, we can deduce
that the midpoint of «;&; is the center of &§, the origin. Hence " (x;+@;) = 0,
and |x;| = |%;| = v/2. Now, applying Lemmas 1 and 2 with d = |x;| = |%;| = V2,
we have

Z{b(fp(a;*)) +b(fp(3:)} = 2n(|p* + d* — 1),

WIplow) + BUfpl35)) = 2 (1P + & = 1)

Hence
2 _{b(fp(07)) + bl fp(a0))} = n{b(fp(o5)) + b(£p(55)},

which proves the theorem.
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5. Remarks

5.1. In a normal family of spheres, we may include hyperplanes as spheres with
infinite radius. The formulas in Theorems 1, 2, 3, 4 are still true.

9.2. Let Q,, denote the graph of an n-dimensional cube in R". For every n > 0,
there also exists a (K54 @Q,,)-system of spheres in R™. In this sphere-system, there
is no bend-formula like one in a (K5 + K,;1)-system in R™ or in a K3t '-system
in R™.

To see this, first consider a 3-dimensional cube of edge length 2 centered at
the origin in R3®. Let 0;, ¢ = 1,2,...,8 be the unit spheres with centers at the
vertices of this cube. Let 7y be the sphere with center O = (0,0,0), radius 1++/3,
and 7, be the sphere with center O, radius v/3 — 1. The family {o, ..., 05,71, T2}
is a (K3 + Q3)-system in R3. In this system, we have

8

> bloi) = 8{b(m) + b(m)}-

=1

Next, consider the sphere x?+y%+2% = 11/4 in R3. The sections of this sphere
by the planes z = +/3 /2 are circles with the same radius V2. We can inscribe
a square xi;xsx3x, in the upper circle on the plane z = \/§/2, and inscribe a
square Y;9Y»ysys in the lower circle on the plane z = —+/3/2, so that |z; —y;| = 2
fori=1,2,3,4. Let o}, ..., 0§ be unit spheres with centers @1, ..., &4, Y1,...,Ys
and let 71 be the sphere with center O, radius y/11/441 and 75 be the sphere with
center O, radius y/11/4—1. The family {o}, ..., 0%, 71,75} is a (K +Q3)-system.
In this sphere-system, we have

8

> b(ah) = 7{b(r]) + b(r3)}.

i=1

Thus, for a (Ks + Q4)-system in R", there is no general formula like one in
K} -system in R™.
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