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Summary. Corresponding to the Ito formula we consider difference equations

defined by some weakly dependent sequence of random variables and examine
the asymptotic behavior of their solutions.

1. Introduction

Let {&,} be a strictly stationary sequence of zero mean random variables
defined on a probability space (2, M, P) and satisfies the strong mixing condition

a(n) = sup |P(AB) — P(A)P(B)| — 0 (n— o0)
AeMO _ BEMSP

where M? (a < b) denotes the o-algebra generated by &,, -+, &.
Then, under the conditions on {;} in Theorem 1 (below),

(1) PP =E&+2) E{é < oo
1=2

holds. We always assume p > 0.

Remark. In Yoshihara (2009) it was shown that under the conditions in Theorem
1 (below)

k T

(2) %; (Z (5(1—1)r+j — %g&))Q — p* a.s.

J=1

where = [n7] with 0 < v < 1 and k = [n/r]. So, we can obtain an approximate
value of p by simulation.
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100 K. YOSHIHARA

Let {X(t);t > 0} be a continuous process. Corresponding to the stochastic
differential equation

(3) dX (t) = X (1) (udt + odW (1)),

where p and ¢ > 0 are constants and {W(t) : ¢ > 0} is a standard Wiener
process, Yoshihara (2013) considered the difference equation

(4) AX(t) = X (tp_y) (u% + a\/gfk) (k=1,---,n)

where t, = (kT)/n (k=1,--- ,n), and obtained that the solution X™(T) of (4)
converges almost surely to

(5) X(T) = X(O){ (M - %Q)T + apW(T)}.

as n — 00.
In particular, if {&,} is a sequence of i.i.d. N(0,1) random variables, then
p =1 and (5) becomes

(6) X(T) = X(O){(u— O;)T—FO'W(T)}.

In this paper, we consider the more general type of difference equations,
corresponding to differential equations of types

(7) dX (1) = h(X (L), t)dt + v(X (£), )dW (2).

Denote by C2(A®) the set of functions A® — R which possess continuous
bounded partial derivatives up to order a.
For F(z1,22) € C3(R?) write

8F(x1, 1‘2)
Oz,

82F({E1, iCQ)

'—1.9).
e (¢,4 =1,2)

qu(xth) - ) qu,mq/ (ZUh.’,CQ) —

In the following sections, we use ”¢” to denote some absolute constant which
does not depend on i, j, k,n and may differ from line to line and write ||(]|, =

{E|¢|P}!/? for any random variable (.

2. Main results

Let T > 0 be fixed and put
T
T n

Si
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and for any continuous process {Z(t) : 0 <t < oo} put

We consider the difference equations of functions of {X(¢) : 0 <t < T}.
The following theorem corresponds to the It6 formula.

THEOREM 1. Let {X(t) : t > 0} be a continuous process. Let h(x,t) and
v(z,t) > 0 be elements of C2([0,00)). Let {&,} be a strictly stationary strong
mizing sequence of random variables such that B, = 0, B2 =1 and

(8) El&|"P <oo and a(n) =O0nm*).

Assume p > 0.
Suppose that for an arbitrarily fived positive integer n

(9) AX(s;) = h(X(si-1), si_l)% + \/%U(X(Si_l), $i1)&
(1<i<n).
For F € C3(R2) define the process {Z(t) = F(X(t),t): 0 <t <T}. Then
(10) AZ(s;) = Z(s:) — Z(si-1)

(Fac (8i—1), Si—1)M( X (8i-1), 8i-1) + Fi(X(85-1), Si-1))

LR (X (i), s 1>v2<X<si_1>,si_1>§3)

2
T
+4/ nFm (8i—1)s 8i—1)v(X (8i-1), Si—1)& + R;

where R; = R(s;) denotes the residual such that
(11) |R;| < —5 a.s. (1<i<n).
n4

Denote the solution of (10) by Z™(t) with Z™(0) = Z(0) =z (n > 1), i.e.,
(12) AL (T)

=z+4+ — Z Fo(X(si-1), Si—1), Si—1)h(X (8i-1), Si-1)

+— ZFt (8i-1),8i-1)

+2nZFMC (5i-1),55-1)0* (X (8i-1), 8i-1)&7

+\/;Z ng(X(Sifl), Sifl)U(X(Sifl)’ Sifl)fi -+ Z Rz



102 K. YOSHIHARA

Then, Z™(T) converges almost surely to

(13) Z(T) = 2 + /0 <Fx(X(t), HR(X(E), 1)

+F(X(t),1) + %Fz,x(X(t), H*(X(t), t)) dt

—i—p/o Fo.(X(t),t)v(X(t),t)dW(t)

as n — oo, where {W(t) : 0 <t < T} is a standard Wiener process.

As an application of Theorem 1, we prove the following theorem which cor-
responds to the Feynman-Kac theorem.

THEOREM 2. Suppose that the conditions of Theorem 1 are satisfied. Let
X™(t) be the solution of (9). Suppose further that for some functions f(x,t) €
C3(R?) and h(z,t) the partial differential equation

of |1, 0%f af
Iy 2L b, )2 ) fx,t) =

ot +2U ( )ax2+ ( )ax+a<x7 )f(xv ) 07

f(X(0),0) = F(0)

(14)

holds. Then, asn — oo f(X"™(T),T) converges almost surely to
(15) FX(T),T) = F(0)e™ o oX(u)du

+p€ fO a(X (u),u)d / fo a(X (u),u dudW()

3. Preliminaries

To prove theorems we need the following inequality and the strong approxi-
mation theorems.

LEMMA A. Letn (¢) be an M?_ (M3, )- measurable random variable. Sup-
pose there are positive numbers p cmd q with p~' + ¢! < 1 such that ||n||, < oo
and |[C]|, < co. Then

[En¢ — EnEC| < 10[n,[I¢ll,a™" " (n).
Specifically, if EnE¢ =0 and ||n|s]|C||s < oo, then

(16) 1Bn¢| < cllnllsl¢lsat (n).
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THEOREM A. Let {{,} be a stationary strong mizing sequence of zero mean
random variables and having (2 + 0)-th moments (0 < § < 1). Assume that for
some T >0

a(n) < e~ (1HNA+E)

Then, we can redefine the sequence {&,} on a new probability space together with
a standard Wiener process W (t) such that

Zén - pW(t)' = O(ti) a.s.

n<t

(17)

Remark. Precise explanations on strong approximations of sums are found in
Berkes, et al (2011). In the ii.d. case, the right hand side of (16) is of order
o(n2) if B¢ =0 and BE2 = 1.

THEOREM B. Let {£,} be a stationary strong mizing sequence of centered ran-
dom wvariables. Suppose {&,} satisfies the conditions of Theorem A. Then

(18) lim sup(2nploglog pn)~ Z{, =1 a.s.

n—oo

4. Proof of Theorem 1
Firstly, we prove the following lemmas.

LEMMA 1. Suppose the conditions in Theorem 1. If hg and vy are elements of
CH(R?), then for fized i (1 <i<n)

(19) |AX {|h0 Sz 1 y Si—1 |— \/7|Uo Sz 1 y Si— 1)€z|}
S.

- a.

Proof. We note that

13

e T N LAY M

’13 T13 T—

E UO(X(Sifl)y 5171)&

)

< C{E’ho (S,L 1) Si— 1)
C

< —3,
n=
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since ho(x,t) and vo(z,t) are continuous functions with bounded derivatives.
Thus, for all n sufficiently large
_s>
>n 12

g
13

< ni: g

T T
ho(X (si-1), Si—l)ﬁ + \/;UO(X<51'—1)7 si—1)&i

ho(X (si-1), 51‘—1)% + \/§U0<X(3i—1)7 $i—1)&i—1

C

—_

g
12

IN

cn <

wl5
m\w

TL TLl

which implies that for all n sufficienly large
> T
ZP< hO(X(Si—l)wSi—l)E
n=1

+\/§UO(X(31'—1> si-1)&i

Now, (19) follows from the Borel-Cantelli lemma. O

\ o

>n 1

V]

)<oo (1 <i<mn).

LEMMA 2. Suppose {&,} be a stationary sequence of zero mean random vari-
ables with mizing coefficient a(n). If E|&|® < oo, then for any q > 1

(20) B E{&IMZL ] < cat () ol
Proof. Since E{y = 0 and E{{|M_. } is M_] -measurable, by (16)

E|B{&|M~
= E{E{&MZL Y E{&|IMTL Y} = E{foE{fdM:Zo}}
< cat (7)) &lls|| E{eol M5}, < cat (r)]|&lI2.

Since

B|B{&|IML Y < ||E{& MY,

(20) is obtained. O
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Proof of Theorem 1. By the Taylor theorem

(2].) AZ(Sl) = Z(Sz) — Z(Si_1>
= F(X(SJ, Si) — F(X(Si_l), Si—l)

(Fw(X(Si_l), Si_l)AX(Si) + Ft(X(SZ‘_l), 51‘—1)(32‘ — 31‘—1))

+% (Fgg,z(X(si_l), si—1)(AX(s:))?

+2F, (X (8i-1), 5i-1) (AX(8:))(s: — si-1)
+F (X (8i-1), Si—1)(8i — Si 1)2> + R, (1<i<n)

and hence
(22) Z(T) — Z(0)
T
= Z{ ( X(8i-1),5i-1)AX(5;) + Fy(X(si-1), 31‘—1)%)
1
3 (FanlX(si), si_1><AX<si>>2
+2Fr7t(X(SZ 1) Si— 1)(AX(SZ
T\ 2
+Ft7t(X Si— 1 ,Si—1 (—) > }
n
(U11 +U12) (U U22 +U2(T§)+U3 (say),
where Ry,---, R, are re81duals.

Firstly, we consider Uén). We note that for each 1 < i < n R; is may be

written by uniformly bounded random variables A ;, As;, As; and Ay; as
R,L' = Alyi(AX(Si))S + Az’i(AX(Si))2<Si — Sifl)
—’—Ag,Z(AX(SZ))(SZ - 82'_1)2 + A4,i(8i - Si_1)3.

(Uniform boundedness of A, ;,---Ay; are obtained from the assumption that

F e C3(R?).)
Noting that s; — s;-1 = T'/n, from Lemma 1 we have

max | A1, (AX(s))%] <

1<i<n ni
c
: <
1H<113<>§L|A21<AX<51)) (si—si1)] < s
c
max | A3 (AX (s;))(s4 Si_1)2| < —%,
1<i< niz

IIEE%MM( i—sic1)’] < = n3
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almost surely. Thus, we have

n

(23) U =S R <5
i=1 n4
It is obvious that
T
(24) Uy — / F(S(t),t)dt  (n — o).
0

Next, since F,; and F;; are uniformly bounded and (19) holds, there is a
bound M such that

N> ¢
|Ft7t(X(Si—l>7si—l>|(Si — 87;_1)2 S M(_) S _

n n?
T c
[ Fo (X (8i-1), 8i-1) (AX () (8: — si-1)| < M’AX(Si)|E < —
niz
almost surely. Hence
C
25 Uss | = F i i i — Si < -,
(25) U5y = Z|tt$131)\(3 si1)” < —
(26) (US| = | D Fea(X(sio1),si1) (AX (5:)(s5 = si1)| < ==
niz

hold almost surely.
Now, we decompose Uz("l) as

ZFJ}x SZ 1 Si—l)(AX(Si))Q

< > ZFM (si1), sio)P*(X (sio1), 8i-1)

( >QZF” (5i-1), 8i—1)R(X (8i-1), 5i—1)v(X (8i-1), 5i-1)&s

+— Zsz (8i-1),8i-1)0* (X (8i21), 8i-1)E7

= U2,1,1 + U2,1,2 + U2,1,37 (say).

Since F; ., h and v are uniformly bounded, from Lemma 1 we obtain that

lese |<CZ( ) Sg,

’U2 |<Cz %g %
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almost surely.
Next, we show that

T
27 UW, — | F (X)), 03X (1), H)dt a.s.
1,3 )

and consequently

|
(28) Uzt =5 Z Fra(X (51-1), 8i21) (AX (s:))°
1 T
- 5/ Fo.(X(t),t)0*(X(t),t)dt a.s.
0
To do so, let
ly = [n%} and me = [E}
ly
kE—1)T Ty
tf):( ) J 1§j<lg,1<k<m2), té2()]:O

and for brevity put
G(z,t) = Fyp(x, t)v*(2,1).
Then, it is obvious that G € C}(R?). Let

My = sup  max{|G.(z,1)],|Gz,1)|}.
(z,t)ERX[0,00)

Now, we can write

n

T

Sy = po D Ga(X(sim1),5i1)8
=1
T meo o )
TS S GO A
k=1 j=1
T < )
+— Z G(X(Si_l), Si—l)gi .

i=mola+1

Since G € C!(R?), by Lemma 1 and the definitions of I, and my, we have

n

a | Y G(X(si1), 818

(29) P

i=molo+1

107
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By the Taylor theorem and Lemma 1 we see that for all 1 <r </,

(30) GX (D) 1) — GX (), 1))
— [ SEx ). 42) - ox () ). 42 m\
j=1
<CZM2(|AX(t§j§ ) <cd (nE4n
j=1

and so from Lemma 1 we obtain

ng lo

2
31 ]gZZGM( DD e,
k=1 j=1
T 2)
S WL
k=1
T A& 2)y (2 2\ (2
< 222 |G (D H5) — GX (), 806y
k=1 j=1
0 T = g(k 1lg+j 11 5 _13
<cn” 48—22 <cen mp(n ) <cens o as.
=1 j=1

Further, by the assumption E¢? = 1 and Theorem B

1 1 <
< —=|—F= (5(2k—1)l2+j - E§(2k—1)12+j)
LIVE &
log log l5 1
< <ecn T oas.
I

which implies

(32)

mo lo
%ZG( t(2 Z (k=1)la4j — )’
<C_Z

_ 1
ZQZék s —1 et o
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Now, noting that lyms ~ n, from (31) and (32) we have

m2
(33) U2,1,3=< ZZG (8i-1)s $i-1)E0e1)1n 44

k=1 j=1

Tm2 2) 2
T3 GO D Y )
l2

+= ZG XU (e — 1)

Jj=1

2 2
+gz22G<X<tli,3>,t,i,é>
= N G t0) +0n™)  as.
sz ) tip) 0™ aus

for some € > 0 and (27) follows.
Finally, we consider Ul(q We write U 7 as

Uy = ZF (5i-1), 5i-1) AX (1)
_ —ZF (8i1), Sim1)R(X (si-1), 8i-1)
+\/; Z F(X(si—1), 5i-1)v(X (5i-1), 8i-1)&;
+= ZF} (8i-1), 8i-1)

= U1,1,1 + U1,1,2 + U1,1,3 (say).

It is obvious that

T
(34) U, / FL(X(5), (X (s), s)ds,
0
and
T
(35) Uy — / F(X(s), t)ds,
0

hold almost surely.

109
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For brevity, we put J(z,t) = Fy(z,t)v(z,t) and H(t) = J(X(¢),t). It is
obvious that J € C?(R?). Hence, noting s; — s;_1 = T'/n, by the Taylor theorem
and Lemma 1 we have
(36) [H (i) — H{(si1)|

= [H(X(s),5:) = H(X(si-1), si-1)]

T s, T T\?
_c{|AX(si)|+E+|AX(si)| +E|AX<S")|+(E) }
<en B (1<i<n) as.

[n13/16]

To consider Ul(ﬁ),z let [ = and my = [n/l;] and

o _ (k=0T 4T . (1)
t = 1< <, 1<Ek< too = 0.
k.j - + maly (I<j<h,1<k<mi), t
Let p = [n3/19].
We write
) mily n
Uita =1/ — Z H(si)& + — Z H{(s:)&
=1 i=mqli+1
my
=\ ZZH )i+ >
k=1 j=1 i=mil1+1

=W+ 1" (say)

We decompose further VQ(") as

n

W= \T > S -

T n
1/ n Z H(si—p)&i
=mql1+1
=V 4+ Vi (say).

Firstly, we consider VQ(?) Let mil; + 1 < i < n be arbitrarily fixed. Since
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H € C%(R?) and E¢; = 0, by the method of the proof of Lemma 2 and (36)

B gw(si) - Hlsio)6
- 5{5{ gwm - e[ M

< Z E{E{|H (s;) — H(si—)||&]IM" o }}

<c>w BB{E{GIML )} < an S B{B{gIIM L}
r=1

< cpn_%a%(p) <ecn 2,

> ) (H(si) = H(sizr)&

Thus, we have
i=mqli+1 r=1

T
ElV™| < /ZE
Vol < Vo
131

_1, _1 _131
<ecn 2lin 21 < cn” s,

which, by the Markov inequality, implies

PV} 2 n7h) < nB|V;}| < e,
Now, by the Borel-Cantelli lemma
(37) 1/2(7}) =0(n™") as.

Next, we consider 1/2(’;) Since H(s;_,) is My P-measurable and H € C2(R x
[0,00)) and E& = 0, by the above method we have

E|H(si—p)&| = E{E{|H (si,p)£i||Mi*£}i i
< cE{E{|&||IMZL}} < cas(p) < cen16

which implies

n

Z H(Si—p)gi

i=mqli+1

< Z ElH(si—p)&| < chin~16 < en2,

i=mili+1

E

Hence, by the Markov inequality
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Thus, from the Borel-Cantteli lemma we obtain
(38) VQ(;L) =0(n™") as.
Combining (37) and (38), we have
(39) Vi =0m™) a.s.
To consider the limiting behavior of ;™ we write V" as

Vl(n)Z\/iZZHtko Sk=1)11+j

k=1 j=1

li—j
\/722 > (H(trj—r) = H(tko))Ete—1yin+s

k=1 j=1 r=2p+1

+[ZZZ H(trj—r) = H(tr0))So—1)+5

k=1 j=1 r=1
=V + 0y + V5 (say).
To prove that for some x > 0
(40) Vi =0mn™) as.

we show that for each 1 <k <mjand1<j <[

li—j
(41) > (H(tkjr) = H(tro))E-1yn45
r=2p+1
li—j
= Chovnei Y (H(trj—r) — H(tre)) = O(n™27") a.s.
r=2p+1

Since

E{f k—1 l1+j|M AR } € M(k i and

k=1)l1+j—p (k=1)l1+j—p
]

k—1)l3+j—2
Z (H(tyj—r) — H(tro)) € MEk 2 ziiﬁ B

r=2p+1
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by Lemma A, (36) and Lemma 2

li—j
E ( S (Hltyy) —H<tk,o>>)s<k-1)h+j
r=2p+1
el k l
71 1 y
_ E{E{ S (Hltey) - H(tk,o»\rfwm Mémihi;}}
r=2p+1
i (k l
1 ;
_ E{ S (Hltayr) — Hitro) E{|§<k_1>h+j|rM(k_gigi;}}
r=2p+1
i (k—1)1
—1li+j
< E{ S (Htyor) — Hltr)) E{\m1>h+jHMwl+;p}}
r=2p+1
li—j
k— ll
<m S (Hte,) - H<tk,o>>]E|E{|s<k_1>hﬂ|w§k by
r=2p+1
, li—j
reat )| 3 (o) = Hewa) | il
r=2p+1

< chn~as(p) + cai(p)hn T < cnfg

Hence, by the Markov inequality we have

g
and so, by the Borel-Cantelli lemma, (41) with x = (1/12) is obtained and

consequently (40) follows.
Next, we show

Sy Y, (Hltejr) — H(tro))

r=2p+1

li—j
—Z 1
‘ >n 2) <cn 6.

(42) Vi =0n™) as.
As before, it suffices to show that
J

(43) S (H(trjor) = H(trgor))Enins; = O(n~

r=1

D=

_”) a.s.
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2p

By (36) and Lemma 2
> (H(trjor) = H(thj—r))&r-1)+5

|
r=1
_ E{E{ S (Hteyr) — Hltisoo)iniss
r=1
< epn” 1 B{E{|€g-vp i IM{ 0 1
< epn™ 2 B{E{|€ 1y, 15 || M2y

2p }

(h=1)l1+j
Moty

o~~~

k—2)ly
5 3 2
<cpn 1zas(p) < cn 2.
and so
2p
_3 _4
P( Z(H(tk,j—r) — H(tkj—r—1))§k-1)11+4| = 10 4) <cn 3
r=1

which, via the Borel-Cantelli lemma, we have (43) with £ = (1/4) and conse-
quently (42).

Finally, we consider the limiting behavior of Vl(ﬁ). Since mily/n = 1+
O(n=%/1%) as n — oo, it suffices to consider the case n = m,l;: for some x > 0

mi ll
m1l1 \/T 1 Kk
vt = > H(X(t,ﬁf%),t&%)w > Envuyy O as.
- =1

Since by Theorem A

e Z ) - W - )

_ ’7 i: E-nnrs — AW (K) = Wk — 1)}‘

we have

Vi = 2D S BV ()~ W = 1)+ O )

_ pki H(X<t;f%),tifé>{W(%> - W(%) }
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and cosequently

(44) VI(T{) — p/OTH(X(s),s)dW(s) a.s.

It is obvious that

(45) U12 - / F(X
Hence, from (45), (41), (43) and (46) we have

n

(46) > (Fx(X(si_l), 8i-1)AX (57) + Fy(X (8i1), 8i-1) (8 — si_1)>

i=1

= U+ U = (VD + V5 + Vi) + Ul
T
. / FL(X (), D)h(X (s), s)ds
0
T T
iy / FL(X(s), s)o(X (s), s)dV (s) + / Fi(X(s), 5)ds
0 0

almost surely as n — oo.
Thus, (13) follows from (46), (28), (24), (25) and (22) and the proof is com-
pleted. O]

EXAMPLE. As an example we consider the following case. Suppose the time-
continuous process {X(t) : 0 < ¢t < T} satisfies the difference equation (4),
i.e.,

AX(s;) = ,uX(Xil)% + o—X(s“)\/ggi (1 <i<n)
Let F(z,t) = logx. Then,
Fia,t) =0, Fy(xt) = é Foulz,t) = ——
and so the solution {X ™ (¢);0 <t < T} of (4) satisfies

F(X™(8),1) + Fo(X™ (), 1) (nX™(1))

0_2

1
5 Fea (X (1), ) (0 X (1) = p— =,

E (XM (), 1) (e XM (1) = 0.

Hence, by Theorem 1 we have

log X(T') — log X (0)

T o2 T o2
zlog/ (,u—?)dtjtp/ odW = <,u—?)T—l—paW(T),
0 0

which coincides with (6).
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As an easy application of Theorem 1, we can prove the following corollary.

COROLLARY. Let T > 0 be fized and {X(t) : 0 < t < T} be a continuous
random process. Suppose the conditions in Theorem 1 are fulfilled. If for any
positive integer n

(47) AX(s1) = aX(si_l)% + a\/% (1<i<n),

then the solution of the difference equation (47) with X™(0) =z, i.e.,

n T -
4 X(n) T) = aT —as;_ =& aT .
(48) (T) =2+ ace ZZ:;exp( asi_1)4/ nf +e" R

converges almost surely to
T
(49) X(T)=xz+ ,ocw/ T dW (s),
0

asn — oo where {W(t): 0 <t < T} is a standard Wiener process and R,,’s are
residuals such that

R, —0 as. (n— o00).
Proof. Let F(x,t) = e *x. Then, it is obvious that
Fy(z,t) = e Fy(z,t) = —ae “z, F,(z,t) = 0.

Now, we put Z(t) = e~**X(t). Then, by Theorem 1, we have

T
AZ(s) = e &+ R™ (1<i<n)
where the R; = R(s;) are residuals such that
(50) |R§n)| —o(n™) as. (n— o).

Since X™(0) = 2, Z™(0) = z, and we have

n T n .
Z(n)(T) . e—aTx _ Ze—asi_1 /Eéfl + Z Rz( )
=1 =1

or equivalently

n T n
51 XO(T) =2+ €Ty ety /=g + T RZ(")
(51) (T) ; V- ;

Hence, (48) is obtained. (49) follows from (51). O
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5. Proof of Theorem 2

We use the notations and results in the proof of Theorem 1. Let

(52) v = A (p(% S al(X (o). sr>)f<X<si>, >)

r=1

S (5 SIETTENS) INTEN R

r=1
+A (exp (% a(X(ST),Sr)))f(X(Si)ysi)
r=1
= VP + 147 (say)

We note first that by the Taylor theorem

@ A(en( I3 ax00))

r=1

- (exp(%;ila()((sr),sr ) - (exp(%:_zlla )
= La(X (5. 59 DR o0 1 o)
T

= _a(X(Si—l)aSi—l)e%zr ro{Xer).er) +O(n ‘) a
n

since a(z,t) € CH(R?).
By (53) and the assumption f € C3(R?)

n T S S
G4) VA = et B (X (5,0), i) (X (51-1),5i1)
+O(n_2) a.s.

Furthermore, by (10), we have that for some € > 0

(55) V(n) = eZZT 1 a(X(sr),sr)

1,2

e LX) R X ) 00) + X )i

1 (fa:,x(X(Sil)7 51'71)772()((31'71)7 Sil)) %
+- fxz (si1),8i-1)v* (X (8i-1), 8i-1) (&7 = 1)

\/7fm X(si-1), 56— 1)U(X(Sz'—1)75z'—1)§z}+O(”_1_E)

SRR
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holds almost surely. Thus, by (14) we have

(56) V" =V vy
T TZ

=c 1 eX (X (si21), 8i21) F(X (si21), 8i21)

e LT alX (s

e LX) iR OX ) 00) + X )i
l(fx,x(X(sil), X)) )

S

+= f:cx (8i-1), Sz—l)v2(X(8i—1),Si—1)(§i2 —1)

\/7fm X(8i-1), Si- I)U(X<Si—1)75i—l)£i} +O0(n

—6" rl (8)87‘)

X {éfg:,z(X<Si—1); $i—1)0* (X (si-1), 8i-1)(&] — 1)%
+\/§fz(X<5i—1)a si—1)v(X(si-1), Si_1)§l} + O(n_l_e)

Summing i from 1 to n on both side of (56) and using Theorem B and (44)

A
\_/

(6T)  ETE a6 f(X(T),T) - F(X(0),0) = 3V

IT & i
=\ e Zrmn WXED ) £(X (521), 85-1)0(X (8i21), 8i-1)

=1

+O(n_% log log n) a.s.
Thus, letting n — oo, (15) is obtained. O
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